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ABSTRACT

Self-supervised pretraining methods with masked prediction demonstrate remark-
able within-dataset performance in skeleton-based action recognition. However,
we show that, unlike contrastive learning approaches, they do not produce well-
separated clusters. Additionally, these methods struggle with generalization in
few-shot settings. To address these issues, we propose Self-supervised Tuning
for 3D Action Recognition in Skeleton sequences (STARS). Specifically, STARS
first uses a masked prediction stage using an encoder-decoder architecture. It
then employs nearest-neighbor contrastive learning to partially tune the weights
of the encoder, enhancing the formation of semantic clusters for different ac-
tions. By tuning the encoder for a few epochs, and without using hand-crafted data
augmentations, STARS achieves state-of-the-art self-supervised results in various
benchmarks, including NTU-60, NTU-120, and PKU-MMD. In addition, STARS
exhibits significantly better results than masked prediction models in few-shot
settings, where the model has not seen the actions throughout pretraining. Our
code and trained weights are available at: https://anonymous.4open.
science/r/stars—-CD2E

1 INTRODUCTION

Human action recognition is receiving growing attention in computer vision due to its wide applica-
tions in the real world, such as security, human-machine interaction, medical assistance, and virtual
reality [Kazakos et al.| (2019); [Yang et al.| (2019); [Nikam & Ambekar| (2016); Wei et al.| (2014).
While some previous works have focused on recognizing actions based on appearance informa-
tion, other approaches have highlighted the benefits of using pose information. In comparison to
RGB videos, Representing videos of human activities with 3D skeleton sequences offers advan-
tages in privacy preservation, data efficiency, and excluding extraneous details such as background,
lighting variations, or diverse clothing types. Recent models for 3D action recognition based on
skeleton sequences have demonstrated impressive results |Lee et al.| (2023); Duan et al.| (2022azb);
Chen et al.[(2021)). However, these models heavily depend on annotations, which are labor-intensive
and time-consuming to acquire. Motivated by this, in this study, we investigate the self-supervised
representation learning of 3D actions.

Prior studies in self-supervised learning have employed diverse pretext tasks, such as predicting
motion and recognizing jigsaw puzzles|Lin et al|(2020); Zheng et al.| (2018)); Su et al.| (2020). More
recently, current research has shifted its focus towards contrastive learning |Lin et al.| (2023); [Mao
et al. (2022;2023b) or Mask Autoencoders (MAE) |Wu et al. (2023)); Mao et al.|(2023a).

Contrastive learning approaches, although effective in learning representations, rely heavily on data
augmentations to avoid focusing on spurious features. Without using data augmentations, they are
prone to the problem of shortcut learning (Geirhos et al.| (2020), leading to potential overfitting on
extraneous features, such as a person’s height or the camera angle, which do not provide a valid cue
to discriminate between different actions. As a result, some knowledge expert Tian et al.| (2020)
is needed to design different augmentations of the same sequence; and methods that incorporate
extreme augmentations in their pretraining pipeline Guo et al.[(2022); Lin et al.| (2023)) have shown
significant improvements.
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resentation of skeletons is still an issue for

skeleton-based action recognition. We believe that integrating MAE-based approaches with
contrastive-learning methods can enhance the generalizability of representations, while preserving
the strong performance of MAE models in within-dataset evaluations. To this end, we propose
Self-supervised Tuning for 3D Action Recognition in Skeleton Sequences (STARS), a simple and
efficient self-supervised framework for 3D action representation learning. It is a sequential approach
that initially uses MAE as the pretext task. In the subsequent stage, it trains a contrastive head in
addition to partially tuning the encoder for a few epochs, motivating the representation to form
distinct and well-separated clusters. Fig. [l|shows that STARS requires significantly less resources
during pretraining compared to contrastive learning approaches. In addition, STARS outperforms
both MAE and contrastive learning approaches.

In summary, our main contributions are as follows:

* We propose the STARS framework, a sequential approach that improves the MAE encoder
output representation to create well-separated clusters, without any extra data augmenta-
tions, and with only a few epochs of contrastive tuning.

* We show that, although MAE approaches excel in within-dataset evaluations, they exhibit
a lack of generalizability in few-shot settings. Subsequently, we significantly enhance their
few-shot capabilities while maintaining their strong within-dataset performance by employ-
ing our method.

* We validate the efficacy of our approach through extensive experiments and ablations on
three large datasets for 3D skeleton-based action recognition, attaining state-of-the-art per-
formance in most cases.

2 RELATED WORK

2.1 SELF-SUPERVISED SKELETON-BASED ACTION RECOGNITION

The objective of self-supervised action recognition is to train an encoder to discriminate sequences
with different actions without providing any labels throughout the training. Methods such as LongT-
GAN |Zheng et al.[(2018) pretrain their model with 3D skeleton reconstruction using an encoder-
decoder architecture; and P&C |Su et al.| (2020) improves the performance by employing a weak
decoder. Colorization Yang et al. (202 1)) represents the sequence as 3D point clouds and colorizes it
based on the temporal and spatial orders in the original sequence.

Several studies explored various contrastive learning approaches, showing promising results [Li
et al.[| (2021); |Guo et al.| (2022); [Lin et al.| (2023)); Mao et al.| (2022; 2023b). CrosSCLR |L1 et al.
(2021) applies the MoCo He et al.| (2020) framework and introduces cross-view contrastive learn-
ing. This approach aims to compel the model to maintain consistent decision-making across different
views. AimCLR |Guo et al.[(2022)) improves the representation by proposing extreme augmentations.
CMD [Mao et al.|(2022]) trains three encoders simultaneously and distills knowledge from one to an-
other by introducing a new loss function. 1?MD [Mao et al. (2023b) extends the CMD framework
by introducing intra-modal mutual distillation, aiming to elevate its performance through incorpo-
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Figure 2: The overall pipeline of our proposed STARS framework. The first stage uses MAMP Mao et al.
(2023a)) to reconstruct the motion of masked tokens. The second stage trains parameters of the projector and
predictor using a contrastive learning approach in addition to partially tuning the encoder weights.

rating local cluster-level contrasting. ActCLR [Lin et al.[|(2023) employs an unsupervised approach
to identify actionlets, which are specific body areas involved in performing actions. The method
distinguishes between actionlet and non-actionlet regions and applies more severe augmentations to
non-actionlet regions.

Recently, MAE-based approaches showed significant improvements. SkeletonMAE Wu et al.|(2023)
reconstructs the spatial positions of masked tokens. MAMP |Mao et al.| (2023a) uses temporal
motion as its reconstruction target and proposes a motion-aware masking strategy. However, we
show that MAE-based methods exhibit limited generalization in few-shot settings when compared
to contrastive-learning based approaches.

2.2 COMBINING MASKED AUTOENCODERS WITH INSTANCE DISCRIMINATION

Some recent works in the image domain investigated the effect of combining MAE and Instance
Discrimination (ID) methods [Zhou et al.| (2021); Wang et al. (2022)); [Mishra et al.| (2022); |Tao
et al.[| (2023); Lehner et al.| (2023). iBOT [Zhou et al.| (2021)) combines DINO |Caron et al.| (2021)
and BEiT Bao et al.| (2021) for the pretext task. RePre Wang et al.| (2022)) extends the contrastive
learning framework by adding pixel-level reconstruction loss. CAN Mishra et al.|(2022) adds gaus-
sian noise to the unmasked patches and it reconstructs the noise and masked patches, and adds a
contrastive loss to the encoder output. MSN |Assran et al| (2022) aligns an image view featuring
randomly masked patches with the corresponding unmasked image. SiameseIM [Tao et al.| (2023)
predicts dense representations from masked images in different views. MAE-CT |Lehner et al.| (2023)
proposes a sequential training by adding contrastive loss after MAE training.

Our work is a sequential self-supervised approach for pretraining of skeleton sequences. It initially
employs an MAE approach using an encoder-decoder architecture and further enhances the output
representation of the encoder by tuning its weights using contrastive learning.

3 METHOD

3.1 FRAMEWORK OVERVIEW

The overall framework of STARS is illustrated in Fig.[2] It is a sequential self-supervised approach
consisting of two main stages. The first stage relies on an MAE-like framework to pretrain the
weights of the encoder. We use MAMP [Mao et al.| (2023a) because it shows promising result in
3D action representation learning; however, any alternative MAE-based approach is also applicable.
The next stage is designed to tune the parameters of the encoder using an instance discrimination
method. Specifically, the second stage replaces the decoder with a projector and predictor (Grill
et al. (2020). It trains them in addition to the encoder using Nearest-Neighbor Contrastive Learning
(NNCLR) Dwibedi et al.| (2021)) to converge to a representation capable of discriminating different
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sequences. This approach helps the encoder learn to output distinct clusters for different actions,
improving its ability to discriminate between various sequences.

3.2 MAMP PRE-TRAINING (STAGE 1)

MAMP Mao et al.|(2023a) uses a transformer encoder-decoder architecture to reconstruct motions
from the 3D skeleton sequence. It receives the input skeleton sequence S € R7-*V*Cs where T,
V', and Cj are the temporal length, number of joints, and coordinate channels, respectively. Next,
the sequence is divided into non-overlapping segments S’ € R7e*V*\Cs " where T, = T/l and
l is the segment length. This division results in having T, x V tokens and reduces the temporal
resolution by a factor of /. Subsequently, the input joints are linearly projected into joint embedding
E ¢ RT-XV*Ce where C. is the dimension of embedding features.

As for the pretraining objective and the masking strategy, MAMP leverages the motion informa-
tion. Given an original sequence S, the motion M € R”7*V*Cs is derived by employing temporal
difference on joint coordinates:

Mi,:,: = Si,:,: - Sifm,:,:y rem,m+1,...Ts—1 (D

where the step size of the motion is controlled by the hyperparameter m. Specifically, MAMP uses
a stride of m = [ to capture motion among different segments of the sequence.

For masking the input sequence based on the motion, the obtained motion M should have the same
dimension as the segmented sequence S’. Hence, the motion M is padded by replicating the sequence
and further reshaped into M’ € R7*V*IxC gubsequently, to signify the importance of motion in
each spatio-temporal segment, the motion intensity I is calculated as follows:

l C;

I= ZZ ‘M/zg| e RV,

i=0 j=0 2

P = softmax(I/m),

where P indicates the probability of masking each embedding feature, and 7; is a temperature
hyperparameter. Finally, to increase the diversity in mask selection, the Gumbel-Max trick is used:

G = —log(—loge), e € U[0,1]T=*V,
3)
ide™* = Tndex-of-Top-K(log P + G),

where U0, 1] represents a uniform distribution ranging from 0 to 1, and idz™** denotes the masked
indices.

On the joint embedding E, spatio-temporal positional embedding is added and unmasked tokens are
passed to the encoder. Following the computation of the encoder’s latent representations, learnable
mask tokens are inserted to them according to the mask indices idz™**. The decoder then predicts
the motion M/P"*? and the reconstruction loss is computed by applying mean squared error (MSE)

between the predicted motion MP"*? and the reconstruction target M“*"9¢* as follows:

1 red arge
L= > [(MES— M2 |3, 4)

= mask
|ld3? | (i,7) Eidxmask

3.3 CONTRASTIVE TUNING (STAGE 2)

In the second stage, we replace the decoder with projection and prediction modules. The projection
module aligns the encoder representation with a space targeted for contrastive loss. The prediction
module takes one positive sample from a pair and generates a representation vector resembling the
other sample in the positive pair to minimize the contrastive loss. More specifically, The encoder
fo receives segmented sequence tokens S’ and outputs representation tokens Yg = fo(S’). After
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applying average pooling of the output tokens, the projector gy aligns the result to the final represen-
tation vector zg = g¢(Yg). Following the NNCLR approach, vector zy is inserted into the queue @
and is compared to sequence representations from previous iterations. From these representations,
the top nearest neighbor is sampled as a positive sample in contrastive loss:

NN(z, Q) = argmin ||z — q||2 %)
q€Q

Concurrently, the feature vector zg is given to predictor module to output the feature z; . Next,
given positive pairs (NN(z, Q), z1), we have:

LINCIR _ 0 exp (NN(2;, Q) - /" /)
! > h_q €Xp (NN(zi, Q) Z]:_/Tz)

(6)

where 7 is a fixed temperature hyperparameter, ¢ is the sample index in batch of data, and n is the
batch size. Notably, in contrast to other contrastive learning approaches, our method operates more
effectively with a single, unaltered view of the sequence, without relying on two different augmented
views. Additionally, we show (later, in Fig.|3)) that after training these two modules, the predictor
output representation forms better cluster separation compared to the encoder trained with MAMP
framework in previous stage.

In addition to projector and predictor modules, we partially tune the encoder parameters to produce
well-separated clusters. Specifically, we use layer-wise learning rate decay [Clark et al.| (2020) to
tune the second-half of the encoder parameters. This is formulated as:

LR; = BaseLR * aN~% @)

where LR; denotes learning rate of the i layer, « is the learning rate decay, and N is the total
number of layers.

4 EXPERIMENTS

4.1 DATASETS

NTU-RGB+D 60 [Shahroudy et al.[ (2016) is a large-scale dataset containing 56,880 3D skeleton
sequences of 40 subjects performing 60 actions. In this study, we use the recommended cross-
subject (X-sub) and cross-view (X-view) evaluation protocols. In the cross-subject scenario, half of
the subjects are selected for the training set, and the remaining subjects are used for testing. For
the cross-view evaluation, sequences captured by cameras 2 and 3 are employed for training, while
camera 1 sequences are used for testing.

NTU-RGB+D 120 [Liu et al. (2019) is the extended version of NTU-60, in which 106 subjects
perform 120 actions in 114,480 skeleton sequences. The authors also substitute the cross-view
evaluation protocol with cross-setup (X-set), where sequences are divided into 32 setups based on
camera distance and background. Samples from half of these setups are selected for training and the
rest for testing.

PKU-MMD [Liu et al.[(2017) contains around 20,000 skeleton sequences of 52 actions. We follow
the cross-subject protocol, where the training and testing sets are split based on subject ID. The
dataset contains two phases: PKU-I and PKU-II. The latter is more challenging because of more
noise introduced by larger view variations, with 5,332 sequences for training and 1,613 for testing.

4.2 EXPERIMENTAL SETUP

Data Preprocessing: From an initial skeleton sequence, a consecutive segment is randomly trimmed
with a proportion p, where p is sampled from the range [0.5, 1] during training and, similar to Mao
et al.|(2023a)), remains fixed at 0.9 during testing. Subsequently, the segment is resized to a consistent
length 7’ using bilinear interpolation. By default, 7 is set to 120.
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Table 1: Performance comparison on NTU-60, NTU-120, and PKU-MMD in the linear evaluation protocol.
Single-stream: Joint. Three-stream: Joint+Bone+Motion. The best and second-best accuracies are in bold and
underlined, respectively. * indicates that result is reproduced using our GPUs.

Method Tnput NTU—60_ NTU-120 PKU-II
XSub(%) XView(%) XSub(%) XSet(%) XSub(%)
Other pretext tasks:
LongTGAN [Zheng et al.|(2018) Single-stream 39.1 48.1 - - 26.0
Contrastive Learning:
ISC|Thoker et al.|(2021) Single-stream 76.3 85.2 67.1 67.9 36.0
CrosSCLR [Li et al.|(2021) Three-stream 77.8 83.4 67.9 66.7 21.2
AimCLR |Guo et al.|(2022) Three-stream 78.9 83.8 68.2 68.8 39.5
CPM |Zhang et al.|(2022) Single-stream 78.7 84.9 68.7 69.6 -
PSTL|Zhou et al.|(2023) Three-stream 79.1 83.8 69.2 70.3 52.3
CMD Mao et al.|(2022) Single-stream 79.4 86.9 70.3 71.5 43.0
HaLP|Shah et al.|(2023) Single-stream 79.7 86.8 71.1 72.2 43.5
HiCLR |[Zhang et al.|(2023a) Three-stream 80.4 85.5 70.0 70.4 -
HiCo-Transformer Dong et al.|(2023)  Single-stream 81.1 88.6 72.8 74.1 494
SkeAttnCLR Hua et al.[(2023) Three-stream 82.0 86.5 77.1 80.0 55.5
I2MD [Mao et al. (2023Db) Three-stream 83.4 88.0 73.1 74.1 49.0
ActCLR|Lin et al.|(2023) Three-stream 84.3 88.8 74.3 75.7 -
UmURL |Sun et al.|(2023) Single-stream 82.3 89.8 73.5 74.3 52.1
Masked Prediction:
SkeletonMAE [Wu et al.|(2023) Single-stream 74.8 717.7 72.5 73.5 36.1
MAMP Mao et al.|(2023a) Single-stream 84.9 89.1 78.6 79.1 52.0%
Masked Prediction + Contrastive Learning:
PCM? Zhang et al.|(2023b) Single-stream 83.9 90.4 76.5 71.5 515
STARS-3stage (Ours) Single-stream 86.3 90.7 79.3 80.6 52.2
STARS (Ours) Single-stream 87.1 90.9 79.9 80.8 52.7

Table 2: Performance comparison on NTU-60, NTU-120, and PKU-MMD in the KNN evaluation protocol
(K=1).

Method NTU 60. NTU 120
XSub(%) XView(%) XSub(%) XSet(%)

P&C|Su et al.|(2020) 50.7 75.3 42.7 41.7
ISC|Thoker et al.|(2021) 62.5 82.6 50.6 52.3
MAMP Mao et al.|(2023a) 63.1 80.3 51.8 56.1
CrosSCLR-B L1 et al.|(2021) 66.1 81.3 52.5 549
CMD Mao et al.|(2022) 70.6 85.4 58.3 60.9
I2MD Mao et al.|(2023b) 75.9 83.8 62.0 64.7
STARS-3Stage (Ours) 76.9 88.0 65.7 68.0
STARS (Ours) 79.9 88.6 67.6 67.7

Network Architecture: We adpoted the same network architecture as MAMP Mao et al.| (2023a).
It uses a vanilla vision transformer (ViT) |Dosovitskiy et al. (2020) as the backbone with L, =
8 transformer blocks and temporal patch size of 4. In each block, the embedding dimension is
256, number of multi-head attentions is 8, and hidden dimension of the feed-forward network is
1024. Tt also incorporates two spatial and temporal positional embeddings into the embedded inputs.
The decoder used in first stage is similar to the transformer encoder except that it has Ly = 5
layers. In the contrastive tuning modules used in the second stage, the projector module is solely a
Batch Normalization loffe & Szegedy|(2015)), given the relatively small size of the 256-dimensional
embedding space. The predictor module consists of a feed-forward network with a single hidden
layer sized at 4096.

Pre-training: The first stage follows the same setting as MAMP Mao et al.|(2023a). For the second
stage, we use the AdamW optimizer with weight decay 0.01, betas (0.9, 0.95), and learning rate
0.001. In the second stage, we train the projection and prediction modules in addition to finetuning
the encoder for 20 epochs, and the best representation is chosen based on K-NN (K=10) on validation
data. We employ layer-wise learning rate decay with a decay rate of 0.20. All the pretraining
experiments are conducted using PyTorch on four NVIDIA A40 GPUs with a batch size of 32 per
GPU.
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Table 3: Performance comparison on NTU-60, NTU-120, and PKU-MMD in terms of the fine-tuning protocol.
The best and second-best accuracies are in bold and underlined, respectively. * TF stands for Transformer.

NTU 60 NTU 120
Method Tnput Backbone  yqin%)  XView(%) XSub(%) XSet(%)
Other pretext tasks:
Colorization|Yang et al.|[(2021)  Three-stream DGCNN 88.0 94.9 - -
Hi-TRS |Chen et al.|(2022) Three-stream  Transformer 90.0 95.7 85.3 87.4
Contrastive Learning:
CPM |Zhang et al.|(2022) Single-stream ST-GCN 84.8 91.1 78.4 78.9
CrosSCLR L1 et al.|(2021) Three-stream ST-GCN 86.2 92.5 80.5 80.4
I2MD Mao et al.[(2023b) Single-stream GCN-TF* 86.5 93.6 79.1 80.3
AimCLR|Guo et al.|(2022) Three-stream ST-GCN 86.9 92.8 80.1 80.9
ActCLR |Lin et al.|(2023) Three-stream ST-GCN 88.2 93.9 82.1 84.6
HYSP Franco et al.|(2023) Three-stream ST-GCN 89.1 95.2 84.5 86.3
Masked Prediction:
SkeletonMAE Wu et al.|(2023)  Single-stream  STTFormer 86.6 929 76.8 79.1
SkeletonMAE |Yan et al.|(2023)  Single-stream STRL 92.8 96.5 84.8 85.7
MAMP Mao et al.|(2023a) Single-stream  Transformer 93.1 97.5 90.0 91.3
Masked Prediction + Contrastive Learning:
W/o pre-training Single-stream  Transformer 83.1 92.6 76.8 79.7
STARS-3stage (Ours) Single-stream  Transformer 93.2 97.5 89.8 91.3
STARS (Ours) Single-stream  Transformer 93.0 97.5 89.9 914

4.3 EVALUATION AND COMPARISON

In all evaluation protocols, we report on STARS, the method proposed in section 3, as well as
STARS-3stage. STARS-3stage involves a three-stage pretraining process. The second stage is di-
vided into two parts: the Head Initialization stage, where only the projector and predictors are
trained, and the contrastive tuning stage, where the encoder is fine-tuned along with the head mod-
ules. More details can be found in the supplementary materials.

Linear Evaluation Protocol: In this protocol, the weights of the pretrained backbone are frozen
and a linear classifier is trained with supervision to evaluate the linear-separability of the learned
features. We train the linear classifier for 100 epochs with a batch size of 256 and a learning rate of
0.1, which is decreased to 0 by a cosine decay schedule. We evaluate the performance on the NTU-
60, NTU-120, and PKU-II datasets. As shown in Tab. [1} our proposed STARS outperforms other
methods on both NTU benchmarks. On the PKU-II dataset, STARS achieves second-best result, and
SkeAttnCLR [Hua et al.|(2023)) outperforms it using a three-stream input method.

KNN Evaluation Protocol: An alternative way to evaluate the pretrained encoder is by directly
applying a K-Nearest Neighbor (KNN) classifier to their output features. Following other works |Su
et al.|(2020); Mao et al.|(2022;2023b), each test sequence is compared to all training sequences using
cosine similarity and the test prediction is based on the label of the most similar neighbor (i.e. KNN
with k=1). Tab. ] compares different methods using KNN evaluation protocol. Notably, we find
that MAMP cannot achieve competitive results compared to contrastive learning models, despite
showing superior results on linear evaluation. We believe that this is because of the pretraining
objective of contrastive learning models, which, by pushing different samples into different areas
of the representation space, results in better-separated clusters. Our STARS approach leverages
contrastive tuning to enhance the feature representation of MAMP, outperforming all other methods.
This demonstrates the superiority of contrastive tuning over contrastive learning approaches.

Fine-tuned Evaluation Protocol: We follow MAMP and by adding MLP head on the pretrained
backbone, the whole network is fine-tuned for 100 epochs with batch size of 48. The learning rate
starts at 0 and is gradually raised to 3e-4 during the initial 5 warm-up epochs, after which it is reduced
to le-5 using a cosine decay schedule. As shown in Tab.[3] both MAMP and STARS notably enhance
the performance of their transformer encoder without pretraining. However, these results indicate
that contrastive tuning following MAMP pretraining does not impact the fine-tune evaluation, and
MAMP and STARS achieve nearly identical results, both outperforming other approaches.
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Table 4: Performance comparison in the transfer =~ Table 5: Performance comparison in the few-shot
learning protocol, where the source datasets are  settings, where the model is pretrained on NTU-60
NTU-60 and NTU-120, and the target dataset is XSub and tested on 60 new samples of NTU-120

PKU-II. XSub.
To PKU-II Method I-shot 2-shot 5-shot
Method -
NTU 60 NTU 120 MAMP Mao et al.|(2023a) 476 444 484
3 AimCLR|Guo et al.|[(2022) 48.9 459 51.1
LongTGAN Zheng et al.|(2018) ~ 44.8 - HiCLR [Zhang et al.[(2023a) 517 496  53.8
MS2L |Lin et al. (2020)\ 45.8 - ISC|Thoker et al.|(202T} 554 533 57.1
ISC|Thoker et al.|(2021) 51.1 52.3 HiCo-Transformer[Dong et al.|(2023)  60.0 582  60.9
CMD|Mao et al.[(2022) 56.0 57.0 CMD Mao et al.|(2022] 612 582 613
HaLP+CMD|Shah et al. (2023:' 56.6 57.3 STARS-3stage (Ours) 593 57.8 61.5
SkeletonMAE |Wau et al.[(2023) 58.4 61.0 STARS (Ours) 635 622 657
MAMP Mao et al.|(2023a) 70.6 73.2
STARS-3stage (Ours) 71.8 72.7
STARS (Ours) 71.9 72.2

Transfer Learning Protocol: In this protocol, the transferability of the learned representation is
evaluated. Specifically, the encoder undergoes pretraining on a source dataset using a self-supervised
approach, followed by fine-tuning on a target dataset through a supervised method. In this study,
NTU-60 and NTU-120 are selected as the source datasets, with PKU-II chosen as the target dataset.
Tab. 4| shows that when fine-tuned on a new dataset, masked prediction techniques like Skeleton-
MAE and MAMP demonstrate superior transferability compared to contrastive learning methods.
Moreover, STARS enhances performance when pre-trained on NTU-60, but its effectiveness dimin-
ishes when pre-trained on NTU-120.

Few-shot Evaluation Protocol: This protocol evaluates the scenario where only a small number
of samples are labeled in the target dataset. This is crucial in practical applications like education,
sports, and healthcare, where actions may not be clearly defined in publicly available datasets. In
this protocol, we pretrain the model on NTU-60 (XSub) and evaluate it on the evaluation set of
60 novel actions on NTU-120 (XSub) using n labeled sequences for each class in n-shot setting.
For the evaluation, we follow MotionBERT |Zhu et al. (2023) and calculate the cosine distance
between the test sequences and the exemplars, and use n-nearest neighbors to determine the action.
Tab. [5] compares different methods in the few-shot settings. Notably, MAMP demonstrates poor
generalization performance, in contrast to its robust performance in transfer learning and evaluations
within the dataset. By applying contrastive tuning, STARS surpasses contrastive learning approaches
in all settings, demonstrating its strength in various evaluations.

Qualitative Comparison: Fig. [3|compares the t-SNE visualization of our proposed STARS method
with AimCLR |Guo et al.|(2022)), CMD |Mao et al.|(2022), HiCo-Transformer Dong et al.|(2023)), and
MAMP Mao et al.[(2023a). CMD adds cross-modal mutual distillation loss to contrastive learning
and by ensuring that various input modalities (joint, bone, and motion) exhibit the same neighbor-
hood, it scatters actions across different areas of space and mitigates the impact of applying con-
trastive learning loss. On the other hand, AimCLR and HiCo-Transformer create distinct clusters
through the use of extreme augmentations and by applying contrastive loss at different hierarchical
levels, respectively. When compared to MAMP, these two contrastive learning methods exhibit a
higher inter-cluster distance than MAMP. Interestingly, actions involving interactions between two
individuals, such as kicking, giving objects, and shaking hands, create a distinct higher-level clus-
ter compared to actions involving a single person across various methods. Specifically, MAMP
shows the highest distance between these two cluster groups, whereas within each group, the action
clusters are closely situated. By employing contrastive tuning, STARS effectively minimizes intra-
cluster distance (as seen in examples like sneeze/cough) while maximizing inter-cluster distance.
This leads to the formation of clearly separated clusters, each representative of different actions.

4.4 ABLATION STUDY

Tuning Strategy Design: Tab. [6] compares the NNCLR strategy used in our STARS framework
with DINO and MoCo. DINO |Caron et al.|(2021)) employs a student-teacher framework. It updates
the student’s weights by relying on the teacher’s output, which is constructed using a momentum
encoder, as the target. Unlike contrastive learning methods, DINO does not need negative samples
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AimCLR

@eat meal @ hopping
@brush teeth QO play with phone/tablet
Qpickup @ point to something
3 @reading @ sneeze/cough
QN * | @putonashoe QOkicking
.. :'&/

> Qtake off glasses ~ @giving object
@take off a hat/cap @shaking hands

Ohand waving

Figure 3: The t-SNE visualization of embedding features. We sample 15 action classes from the NTU-60
dataset and visualize the features extracted by our proposed STARS framework and compare it with Aim-

CLR [Guo et al(2022), CMD Mao et al| (2022), HiCo-Transformer Dong et al.|(2023), and MAMP Mao et al/|
(2023a)).

for contrast and employs centring and sharpening techniques to prevent collapse. MoCo He et al.
2020) is predominantly used by other contrastive learning approaches in action recognition|L1 et al.
2021));/Guo et al.|(2022); [Lin et al|(2023). It uses a memory bank to increase the negative samples
in contrastive loss and a key encoder, which is updated via exponential moving average to maintain
consistency. As shown in the Tab. [f] NNCLR significantly enhances KNN accuracy by forming
better clusters for different actions, while not using any data augmentations. For the remaining
two strategies, we also examined the impact of including augmentation through spatial flipping and
rotation. Generally, adding augmentations helps the methods achieve better performance; especially
for MoCo, which relies on augmentations to construct the positive samples. Note that it is expected
for the other two methods to further improve by incorporating more augmentations, which is not the
focus of this study. Additional details about the hyperparameters in this ablation study are provided
in the supplementary material.

Effect of Augmentation: Tab.[7]shows that applying augmentation results in a minor improvement
in the KNN evaluation protocol. However, we chose not to use augmentation as our main method
since the type of augmentation works heuristically and can result in different behavior in new scenar-
ios, sometimes even degrading performance in cases such as shearing or axis masking. Additionally,
we tested data augmentation on different evaluation protocols, such as linear evaluation, and did not
observe any performance improvement.



Under review as a conference paper at ICLR 2025

(a)
KNN accuracy on NTU-60 (K=10)
84 83.7

83.5 83.5
83.5 83.3 T 834 A

83.1

Accuracy
[ec}
w

©
N
o

82

84.6 84.5

4 6 8 10 12 14 16
Queue size (k)

Figure 4: Ablation study on (a) layer-wise learning decay (b) Queue size. The performance is evaluated on the
NTU-60 XSub dataset under the KNN evaluation protocol (K=10).

Table 6: Ablation study on the tuning strategy. The  Table 7: Ablation study on the effect of augmenta-
performance is evaluated on the NTU-60 XSub and  tion. The performance is evaluated on the NTU-60
NTU-60 XView datasets under the KNN evaluation =~ XSub and NTU-60 XView datasets under the KNN

protocol (K=10). evaluation protocol (K=10).
. NTU-60 . NTU-60

Tuning Strategy XSub  XView Augmentation XSub  XView

DINO 77.6 86.3 Spatial Flip 85.0 90.6

DINO, 4 77.4 86.7 Rotation 84.8 90.1

MoCo 72.2 86.7 Axis Mask 81.2 89.0

MoCo,yq 73.9 88.0 Shear 83.2 90.4

NNCLR 81.9 89.6 Spatial Flip + Rotation ~ 84.6 90.4
No Augmentation 84.5 89.6

Layer-wise Learning Rate Decay: As shown in Fig. 4] (a), we observe a decrease in accuracy with
higher learning decay. Our hypothesis is that increasing the decay causes the encoder to forget the
robust representations learned in the initial stage, leading to performance degradation comparable to
contrastive learning methods.

Queue size: Fig. | (b) explores how different queue sizes affect model accuracy during contrastive
tuning, evaluated using the KNN protocol. The results indicate that the queue size has little impact
on performance during pretraining. Based on these findings, we chose a queue size of 8k for all our
evaluations.

5 CONCLUSION

In this work, we proposed a sequential contrastive tuning method. We find that masked prediction
methods, despite showing promising results in various within-dataset evaluations, cannot outperform
contrastive learning based methods in few-shot settings. By using our STARS framework, we show
that we can further enhance the masked prediction baseline while achieving competitive results in
few-shot settings, outperforming other models in 5-shot setting. However, when the dataset size
is limited for pretraining and for evaluations when encoder is fine-tuned with supervision, STARS
cannot add significant value to its baseline.

10
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Figure 5: The overall pipeline of our proposed STARS-3stage framework. The first stage uses MAMP Mao
et al.| (2023a)) to reconstruct the motion of masked tokens. The second stage keeps the encoder parameters
frozen and trains parameters of the projector and predictor using a contrastive learning approach. After these
parameters have converged to well-separated clusters, the third stage involves partial-tuning of the encoder
parameters.
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A 3-STAGE DESIGN

An alternative pretraining method is to follow MAE-CT Lehner et al.|(2023) and tune the encoder in
3 stages. Figure [3]shows the 3-stage design. Initially, when we initialize the projector and predictor
modules, we freeze the encoder weights. In the second stage, we exclusively train the projector
and predictor modules until they can effectively differentiate between different sequences using the
NNCLR approach. Finally, in the third stage, we fine-tune the encoder weights using layer-wise
learning rate decay. One motivation for this staged approach is the idea that the NNCLR head’s
random weights could interfere with the representation quality by mapping the features into a ran-
dom space, disrupting the learned structure. However, our findings challenge this assumption. The
t-SNE visualization in Fig.[6|demonstrates that even with random NNCLR head weights, the cluster
structure in the encoder’s output space remains intact in the new representation space. Furthermore,
we observed with STARS-3stage that replicating this three-stage process not only increases training
time but also leads to a drop in final accuracy. As a result, we use a two-stage design in our proposed
STARS method.

B SEMI-SUPERVISED EVALUATION RESULTS

In semi-supervised evaluation protocol, we follow previous works Li et al.|(2021)); Mao et al.| (2022
2023a)) and fine-tune the pretrained encoder in addition to a post-attached classifier while given a
small fraction of the training dataset. Specifically, the performance on the NTU-60 is reported while
using 1% and 10% of the training set. Since the training portions are selected randomly, we report
the result averaged over 5 different runs as the final result. As shown in Tab. [8] STARS is more
effective in all scenarios. Specifically, while using 1% of the training data, leading to an increase
in accuracy for the MAMP baseline by 3.1% and 4.2% in cross-subject and cross-view evaluations,
respectively.

C ABLATION HYPER-PARAMETERS

Tab. 9] shows the hyperparameters used in DINOTuning strategy. For simplicity and because of
limitation in resources, we used only two global views and did not use any local views in DINO.
As shown in Tab. [0} we can see that incorporating local views led to a small improvement in
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MAMP before projection layer MAMP after projection layer

Figure 6: Comparison between MAMP’s output vectors before and after using a projection layer with random
weights.

Table 8: Performance comparison on the NTU-60 dataset under the semi-supervised evaluation protocol, with
the final performance reported as the average of five runs.

NTU-60

Method XSub XView

(%) (10%) (%) (10%)
Other pretext tasks:
LongT GAN Zheng et al.| (2018) 352  62.0 - -
ASSL Si et al.|(2020) - 64.3 - 69.8
Contrastive Learning:
MS?L |Lin et al.| (2020) 33.1  65.1 - -
ISC|Thoker et al.[(2021 357 659 38.1 725
3s-CrosSCLRILi et al.[(2021) 511 744 500 778
3s-Colorization|Yang et al.|(2021) 483  71.7 525 78.9
CMD Mao et al.[(2022) 506 754 53.0 80.2
3s-Hi-TRS|Chen et al. 493 777 515 811
3s-AimCLR |Guo et al.| (2022) 548 782 543 81.6
3s-CMD Mao et al.[(2022) 556 790 555 824
CPM [Zhang et al.[(2022) 56.7 730 575 771
Masked Prediction:
Skeleto 544 806 54.6 835
MAMP Mao et al.|(2023al) 66.0 880 68.7 915
Masked Prediction + Contrastive Learning:
PCM? Zhang et al.|(2023b) 53.1 828 538 77.1
STARS-3stage (Ours 686 882 725 918
STARS (Ours) 69.1 880 729 918

performance. However, it came at the cost of significantly more resources. To be specific, we
introduced two local views that randomly trimmed a section of the sequence between 40% and
80% and fed it only to the student network. With these additional views, we had to reduce the
batch size to 16 and double the training time. Consequently, in our other experiments, we stuck
to using only global views. We also used Sinkhorn-Knopp centering |Caron et al.| (2020) a KoLeo
regularizer [Sablayrolles et al. (2018) to help the convergence. Tab [I3] shows the hyperparameters
used in MoCoTuning. Similar to previous approaches |Guo et al.| (2022); [Li et al.| (2021)), we used
32K as the queue size, 0.999 for the momentum and 0.07 for the temperature.
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Table 9: DINOTuning hyperparameters for ablation study in tuning strategy design.

Hyperparameter Value
Learning rate 0.001
Batch size 32
Augmentations Mirroring & Rotation
Centering Sinkhorn Knopp
KoLeo weight 0.1

# Global views 2

# Local views 0
Student temperature 0.1
Teacher temperature 0.04
Teacher momentum 0.996

Algorithm 1 PyTorch-style pseudo-code of contrastive tuning in the second stage.

1

2

3 output 256
4

5

6

7

8

9 r

10 = normalize(z, dim=1), normalize (p, dim=1)
11 nn = top_nn(z, Q) # finding nearest-neighbor sample in Q
12 loss = L(nn, p)

13 loss.backward ()

14 optimizer.step()

15 update_queue (Q, z)

16

17

18 def top_nn(z, Q):

19 similarities = z @ Q.T

20 idx = similarities.max(dim=1)

21 return Q[idx]

22

23 def L(nn, p, temperature=0.07):

24 logits = nn @ p.T

25 logits /= temperature # sharpening

26 labels = torch.arange (p.shape[0])

27 loss = cross_entropy (logits, labels)

28 return loss

Table 10: Effect of including local views on DINOTuning.

Method 10-NN 20-NN 40-NN

w/o local views 77.4 77.1 77.0
w/ local views 77.8 78.0 77.6

C.1 ALGORITHM PSUEDO CODE

Algo.|l|demonstrates the process in PyTorch-style pseudo code.

D ADDITIONAL ABLATION STUDIES

Combining MAMP and NNCLR.: One idea to tune the encoder in second stage is to combine
NNCLR with MAMP and use both. Tab [[T] compares this tuning stage with the proposed STARS.
By including MAMP in the second stage of tuning, although it improves the final representation of
encoder compared to the baseline (MAMP), it cannot perform as effective as STARS.

Training NNCLR from scratch: Table [I2] presents the K-NN evaluation results for training the
transformer from scratch using the NNCLR method for 300 epochs. Without augmentation, the
model struggles to select positive samples in contrastive learning that truly represent the same ac-
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Table 11: Ablation study on second stage of tuning.  Table 12: Training the transformer encoder using
The performance is evaluated on the NTU-60 XSub ~ NNCLR method from scratch. The performance is
and NTU-60 XView datasets under the KNN evalua-  evaluated on the NTU-60 XSub and NTU-60 XView

tion protocol (K=1). datasets under the KNN evaluation protocol
NTU-60 NTU-60
Method XSub  XView K Xsub  XView
MAMP (Baseline)  63.1 80.3 1 37.6 30.5
STARS 79.9 88.6 2 35.8 28.7
MAMP + NNCLR  74.6 86.5 5 39.9 32.3
10 412 33.6

Table 13: MoCo hyperparameters for ablation study  Table 14: Comparison on memory usage in pretrain-

in tuning strategy design. ing between the methods.
Hyperparameter Value Method Memory usage (MB)
Learning rate 0.001 MAMP 240
Batch size 32 AimCLR 139
Augmentations ~ Mirroring & Rotation ActCLR 116
Queue size 32,768 CMD 1,492
Momentum 0.999 STARS 998
Temperature 0.07

tions. This happens because the encoder starts with random weights, which lack meaningful cluster
separation. Consequently, the encoder fails to fully use the advantages of NNCLR in the second
stage of STARS, resulting in poorer performance.

Memory usage: Table ?? compares memory usage across different methods using a single input
(Batch size = 1) and observed notable differences. MAMP, a transformer-based approach, generally
consumes more memory due to its complexity but mitigates this by processing only 10% of tokens
in the encoder and reconstructing the mask using a lightweight decoder. In contrast, STARS pro-
cesses all tokens and incorporates queues for contrastive learning, resulting in higher memory usage.
AimCLR and ActCLR, which are GCN-based, require significantly less memory. CMD, utilizing
three encoders for joint, motion, and bone streams along with a GRU-based design, demonstrates
the highest memory consumption.

Using naive MAE instead of MAMP: Tab. and Tab[T6| present a comparison of K-NN and
few-shot evaluations for a variant that uses naive MAE instead of MAMP in the first stage. While
tuning in the second stage leads to significant improvements, the overall performance remains lower
because MAE performs worse than MAMP in the initial stage.

E CONFUSION MATRIX

Fig.[7]illustrates the confusion matrix under KNN evaluation protocol when K=10 on NTU-60 XSub
dataset. The errors depicted in the figure can be classified into two distinct categories. Firstly, there
are errors stemming from a lack of contextual information. For instance, when only a skeletal
sequence is provided, actions like ”play with phone/tablet” might be misinterpreted as “reading”
and “writing.” Secondly, there are errors arising from subtle movements, such as distinguishing
between “clapping” and “hand rubbing,” which pose challenges for the model in differentiation. In
summary, these errors manifest due to either insufficient context or the intricacy of distinguishing
minute actions, highlighting the complexities inherent in the task.
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Table 15: Ablation study on first K-NN evaluation by
changing the first-stage of STARS to naive MAE.

Table 16: Ablation study on first few-shot evaluation
by changing the first-stage of STARS to naive MAE.

NTU-60

Method

XSub  XView

MAMP
STARS

MAE
STARS-MAE

63.1
79.9
44.1
535

80.3
88.6
43.7
55.2

Method

1-shot

2-shot

5-shot

MAMP
STARS

MAE
STARS-MAE

47.6
63.5
35.0
41.5

44.4
62.2
31.8
37.9

48.4
65.7
342
40.6

Confusion Matrix
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sit down 4
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clapping -

reading
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tear up paper

put on jacket 4

take off jacket -

put on a shoe -
take off a shoe 4
put on glasses q
take off glasses 4
put on a hat/cap
take off a hat/cap
cheer up 1

hand waving
kicking something 1
reach into pocket 4
hopping -

jump up

phone call 4

play with phone/tablet -
type on a keyboard -
point to something 4
taking a selfie
check time (from watch) 4
rub two hands

nod head/bow -
shake head

wipe face

salute q

put palms together 4
cross hands in front -
sneeze/cough -
staggering -

falling down -
headache 4

chest pain q

back pain

neck pain
nausea/vomiting -
fan self {
punch/slap 4
kicking

pushing

pat on back q

point finger 4
hugging 1

giving object 4
touch pocket 4
shaking hands
walking towards
walking apart 4

drink water
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brush teeth 4
brush hair 4
drop

pick up 4
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sit down 4
stand up 4

writing 4

reading 1
tear up paper -

clapping 4

put on jacket 4
take off jacket
put on a shoe
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put on a hat/cap 4

take off a hat/cap

cheer up 4
hand waving 4
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kicking something -
reach into pocket 4

jump up A
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type on a keyboard 4
point to something 4
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Predicted Labels

chest pain 4
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neck pain 4
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punch/slap 4
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touch pocket 4
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Figure 7: Confusion matrix of KNN evaluation in NTU-60 XSub dataset (k=10).
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