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ABSTRACT

Equivariance is a powerful inductive bias in neural networks, improving generalisation and physical
consistency. Recently, however, non-equivariant models have regained attention, due to their better
runtime performance and imperfect symmetries that might arise in real-world applications. This
has motivated the development of approximately equivariant models that strike a middle ground
between respecting symmetries and fitting the data distribution. Existing approaches in this field
usually apply sample-based regularisers which depend on data augmentation at training time, incur-
ring a high sample complexity, in particular for continuous groups such as SO(3). This work instead
approaches approximate equivariance via a projection-based regulariser which leverages the orthog-
onal decomposition of linear layers into equivariant and non-equivariant components. In contrast
to existing methods, this penalises non-equivariance at an operator level across the full group orbit,
rather than point-wise. We present a mathematical framework for computing the non-equivariance
penalty exactly and efficiently in both the spatial and spectral domain. In our experiments, our
method consistently outperforms prior approximate equivariance approaches in both model perfor-
mance and efficiency, achieving substantial runtime gains over sample-based regularisers.

1 INTRODUCTION

Over the past few years, equivariance has been proven to be a powerful design principle for machine learning models
across chemistry (Thomas et al., 2018 |Satorras et al., 2021; [Brandstetter et al., 2022; Hoogeboom et al.l 2022} |Xu
et al.| [2024), physics (Bogatskiy et al.,[2020; |Spinner et al., 2024} Brehmer et al., 2025)), robotics (Hoang et al.,2025)),
and engineering (Toshev et al.| 2023).

Recently, however, there has been a shift back towards non-equivariant models, most prominently AlphaFold-
3 (Abramson et al.| 2024)). Non-equivariant architectures often allow more flexible feature parameterisations and can
be easier to optimise because the search is not restricted to an equivariant hypothesis class. This broader parameter
space may enable the optimiser to find better minima than if it was confined to strictly equivariant models (Pertigkio-
zoglou et al.| | 2024). Moreover, many existing equivariant architectures rely on specialised tensor products to preserve
symmetry (Weiler & Cesa, 2019; Brandstetter et al., [2022), which can be less efficient to compute on modern GPUs
than dense matrix—vector operations.

At the same time, recent work demonstrates that equivariance remains a valuable inductive bias even at scale (Brehmer,
et al., [2024), and, for example, state-of-the-art molecular property prediction models continue to leverage it (Liao &
Smidt, 2023} [Liao et al., [2024; [Fu et al., [2025). This motivates approaches that retain the benefits of equivariance
without incurring its full constraints or computational costs.

A common approach here is to promote equivariance in otherwise non-equivariant architectures at the level of samples
- for example via data augmentation (as in AlphaFold-3 (Abramson et al., [2024)) or pointwise equivariance penal-
ties (Bai et al., 2025). In this work, we take a different perspective and introduce projection-based equivariance
regularisation, a novel framework which allows tuning equivariance into any neural architecture on the operator level,
thereby directly affecting the model weightsﬂ Our primary contributions are:

* We propose a theoretically-grounded approach to regularise general machine learning models towards exact
equivariance.

* Making use of the orthogonal decompostion of functions into equivariant and non-equivariant components,
we are able to penalise non-equivariance on an operator level over the whole group orbit.

'Source code will be released with the camera-ready version.
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* We show how to efficiently calculate the closed-form projection by working in the Fourier domain, allowing
efficient regularisation for continuous groups such as SO(n).

* We empirically demonstrate improvements over existing approaches for approximate equivariance, consis-
tently achieving better task performance and have especially large gains in run-time over sample-based regu-
larisers.

1.1 RELATED WORK

A growing body of work relaxes strictly equivariant architectures to better capture approximate or imperfect sym-
metries in data. [Finzi et al.| (2021) model departures from symmetry by adding a small non-equivariant “residual”
pathway to an otherwise equivariant network. Romero & Lohit| (2022)) introduce partial group convolutions that acti-
vate only on a subset of group elements. For discrete groups, Wang et al.|(2022c) propose relaxed group convolutions,
later extended by [Wang et al.| (2024) to expose symmetry-breaking mechanisms; |Hofgard et al.| (2024) further gen-
eralise this framework to continuous groups. Veefkind & Cesal (2024) introduce a learnable non-uniform measure
over the group within steerable CNNs, yielding partially equivariant SCNNs whose degree of symmetry breaking is
explicitly encoded in the learned measure. Samudre et al.|(2025) instead enforce approximate equivariance through
group-matrix—structured convolutional layers with low displacement rank, so that symmetry and its controlled viola-
tion are encoded as proximity to the group-matrix manifold, leading to highly parameter-efficient CNNs for discrete
groups. McNeela| (2024) introduce Lie-algebra convolutions with a non-strict equivariance bias, and jvan der Oud-
eraa et al.| (2022) relax translation equivariance using spatially non-stationary convolution kernels. On graphs, Huang
et al.| (2023) develop approximately automorphism-equivariant GNNs. A complementary line of work studies how
to measure equivariance (or its violation) and use it in training objectives [Finzi et al.| (2021)); [van der Ouderaa et al.
(2022); |Gruver et al.| (2023); |Otto et al.| (2023); [Petrache & Trivedi (2023). Another common approach focusses on
regularisation towards equivariance. Bai et al.| (2025) penalise pointwise deviations from equivariance constraints,
Kouzelis et al.| (2025) incorporate approximate symmetry in VAEs for generative modelling, and |[Zhong et al.| (2023)
apply related ideas to depth and normal prediction. Finally, Pertigkiozoglou et al.|(2024)) improve the training behavior
of equivariant models by learning a non-equivariant model and projecting it into the equivariant subspace at test time.

2 BACKGROUND

Notation. For vector spaces V and V', we denote the identity on V by Iy, and write Hom(V, V’) for the algebra of
linear homomorphisms V — V'. We write Hom(V, V') = End(V'). For T' € Hom(V, V'), its conjugate transpose is
denoted by T* : V' — V and the group of unitary operatorsis U(V) = {T : TT* = T*T = Iy }. We can define a

norm on the space of operators between normed spaces (V, || - ||) and (V' || - ||y+) by |T|| = sup ||T(v)||v. The
lvllv=1
Kronecker delta §,, , is equal to 1 if z = y and 0 otherwise.

Unitary representations. Given a group G, a unitary representation is a homomorphism 7 : G — U(V;;) into the
unitary operators on a Hilbert space V;; we call the pair (V;;,7) a G-module. Two representations 7 : G — U (V)
and 7’ : G— U (V) are said to be isomorphic if there exists a unitary U : V; — V. with 7(g) = U 7’ (g) U~ for all
g € G. A representation is irreducible if it is not isomorphic to a direct sum of non-zero representations 7 & 7’ where
r@r G- UV & V’')isdefined by (7 & 7')(g)(v,v") = (7(g)v, 7’ (g)v").

Haar measure. Let G be a compact group. The Haar measure ) is the unique bi-invariant and normalised measure,
i.e. for all Borel sets £ C G and every g € G we have A(gE) = A(Eg) = A(E), and \(G) = 1. We can view
the Haar measure as a uniform distribution over the group G. Indeed, if G is discrete, the Haar measure becomes the
discrete uniform measure with A({g}) = ﬁ forallg € G.

Equivariance and G-smoothing. Let T : (V,7)— (V' 7’) be a (bounded) linear map between G-modules. We say
T is G-equivariant if T (m(g)v) = n’(g) T(v) forall g € G, v € V. If the action on V" is trivial (7' (g) = Iy+), we
call T invariant. Averaging over G yields the G-smoothing (Reynolds) operator

P(T) = /G =(9)" T n(g) d\(g). 0

Projection onto the equivariant subspace. When 7, 7’ are unitary, P is the orthogonal projector (with respect to
the Hilbert—Schmidt inner product) from Hom(V, V") onto the closed subspace of G-equivariant linear maps (Elesedy
& Zaidi, 2021)). The following structural decomposition will be useful.
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Algorithm 1: Pseudo-code for the equivariant projection for finite (left) and continuous groups (right).

Projection for finite groups Projection for continuous groups

1 def project_finite(W, group, rho_in, 1 def project_continuous(K, irreps,
rho_out): spatial_axes):

2 W_proj = zeros_like(W) 2 K_hat = fftn(K, axes=spatial_axes)

3 for g in group: 3 for pi in irreps:

4 W_proj += rho_out[g].conj().T @ W @ 4 K_hat[pi] = mask_and_average(K_hat[
rho_in[g] pil)

5 return W_proj / len(group) 5 return ifftn(K_hat, axes=spatial_axes)

. / \ /

Lemma 2.1 (Elesedy & Zaidi| (2021), Lemma 1). Ler H C {(V,7) — (V',7')} be a function space that is closed
under P (i.e. P(T') € H whenever T € H). Define

S = {T € H: T is G-equivariant}, A =%kerP = {TeH: P(T)=0}. 2
Then P is an orthogonal projection with range S and kernel A, and hence H = S & A.

In particular, every T' € H orthogonally decomposes uniquely as T = P(T') + (T — P(T)), where P(T) is the G-
equivariant component .S and T — P(T) € A is its G-anti-symmetric component. Moreover, we have the following:

Corollary 2.2. A function T : (V,7)— (V', ') is G-equivariant if and only if P(T) = T.

3 EQUIVARIANT PROJECTION REGULARISATION

Motivated by these observations, we propose a simple framework for learning (approximately) equivariant models:
Let H be a hypothesis class and Ly, (T) a task-specific loss function for T' € H. We learn T by solving

T* carg inf Lak(T) + Ac[P(D) + ALIT = P(D)], ©)
where Ag, A > 0 are hyperparameters. Intuitively, increasing A, (or decreasing Ag) penalises |7 — P(7')|| more
strongly, which encourages P(T) = T, steering the solution toward stronger equivariance according to Lemma

In what follows, we provide a theoretical justification for using ||T" — P(T")|| as a regulariser. Recalling that P(T")
denotes the closest equivariant operator to 7', we show that the distance |7 — P(7')|| is quantitatively equivalent to a
natural measure of non-equivariance, the equivariance defect.

3.1 BOUNDING THE EQUIVARIANCE ERROR

Definition 3.1 (Equivariance defect). Let T be a function between G-modules with actions my, and Tout. The equiv-
ariance defect at g € G is

Ag(jﬂ) = Wout(g) ol — Toﬂ-in(g)? (4)
and the worst-case defect is
E(T) = sup [|Ay(T)]. ®)
geG

By Lemma2.1](Elesedy & Zaidi, 2021), the quantity £(T) vanishes if and only if T'is G-equivariant. The next lemma
shows that this defect is effectively controlled, up to constants, by the distance to the equivariant subspace measured
by the projection P.

Lemma 3.2. For every (Lipschitz) function T between G-modules with unitary actions,

IT = P(T)|| < &(T) < 2T = P(T)]. (6)

Proof. See Appendix [A] O
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Lemma [3.2) shows that regularising by £(T') or by ||T" — P(T)|| is equivalent up to a factor of 2. Thus, minimising
|7 — P(T')|| minimises the worst-case defect.

In practice, T' will be some type of neural network architecture and is hence a composition of functions. The following
bound decomposes the global defect of a network into per-layer defects, weighted by downstream Lipschitz constants.

Lemma 3.3. Let T = fro fy_10---0 f1 be a composition of Lipschitz maps between G-modules with unitary actions,

and set L, := Lip(f,,). Then
k

E(T) < Z ( H Lm) E(fi)- (7)

=1 m#i
Proof. See Appendix [A.7] O

The bound above immediately yields the following corollary for standard feed-forward networks first shown by Kim
et al.|(2023)).

Corollary 3.4 (Kim et al.| (2023)). Let
T =W oog 1oWE Vo000 WM )

be an S-layer network where each linear map W acts between G-modules with unitary actions and each activation
oy is G-equivariant and Lipschitz. Then

S
ET) < ¢y WO -pPWO), ©
=1

for a constant C' > 0 depending only on the operator norms of the W), the Lipschitz constants of the o;, and (when
working on a bounded input domain) its radius.

Proof. See Appendix O

3.2 PROJECTION IN FOURIER SPACE

The previous section motivates the use of the norm of the projection operator as a regulariser. When the projection
operator in Equation [I]is efficiently computable in the spatial domain, e.g., for small finite groups (see Section [4.3)),
this is straightforward; Algorithm [I] provides pseudo-code for this case. However, in many applications, the group is
large (for instance, uncountably infinite, as in SO(n), the group of rotations about the origin in R™; see Section .
In such cases, the integral in Equation [T|rarely admits a closed-form solution.

We therefore switch to the spectral domain. We assume the following setup, which is in line with the geometric deep
learning blueprint (Bronstein et al., 2021) that constructs equivariant networks as a composition of equivariant linear
layers with equivariance-preserving non-linearities. Let G be a compact group with normalised Haar measure A, and
consider linear maps T : L?(G) — L?(G) on the Hilbert space of square-integrable complex functions,

@) = {f:6=Ch ()= [ [o)Ta ). (10
We study equivariance with respect to the (left) regular representation 7 : G — U(L?(G)) defined by

(r(9)f)(x) = flg7'z), =x,9€G. (11)

We denote by G the set of equivalence classes of finite-dimensional irreducible representations of G and call it the

unitary dual of G. Each [] € G has a representative 7 : G — U(V;) with d = dim V. For f € L2(G), we define
the (non-abelian) Fourier transform as

fir) = /G f(g)7(9)* dX(g) € End(Vy). (12)

In the following, using tools from Fourier analysis on compact groups, we will derive that the projection operator of
Equation [I]can be computed efficiently in Fourier space.



Under review as a conference paper at ICLR 2026

Py

2 . 2
fe @) finw € L(G) T2 L2(G. Vin) = L2(G, Vo) —— 5 Toquae s L2(G, Vin) — L2(G Vo)
FT| |IFT O rr| |IFT PeteTW'eyl] o }Deffrwfyz
cLA = ~ 5 T ={T(r0)}, o6 — Tequv = ®,ca(lv, @ Wa)
62U UWVe) ————— fiw = fi : G = U U(Va) Pt {Tro o {0r,0 Ave(Trn)}

inv=07w 1
(b) Equivariance: zero out off-diagonals (w # o) and average

(a) Invariance: keep only the trivial representation and discards within each frequency block to obtain Iy;. ® B,

all other frequencies.

Figure 2: Commutative diagrams showing how to apply the projection operator in Fourier space.

Theorem 3.5 (Informal). Equivariant linear maps are block-diagonal in the frequency domain (one block per irre-
ducible representation). Hence, the projection onto equivariant subspaces acts by zeroing out all off-diagonal terms.

Hence, whenever an efficient Fourier transform is available (e.g., on regular grids) or the model is already parame-
terised spectrally (e.g., eSEN (Fu et al.| [2025)), imposing equivariance reduces to diagonalising the relevant linear
operators in the spectral domain.

3.3 INVARIANT FUNCTIONS IN FOURIER SPACE

In this subsection, we show that an invariant function f € L?(G) only has trivial non-zero Fourier coefficients.

Lemma 3.6. Let f € L*(G) be left invariant with respect to the regular representation 7, i.e. f(hg) = f(g) for all

~

h,g € G. Then f(x) is non-zero if and only if 7 is the trivial representation 1 : g — I¢.

Proof. See Appendix[A.4] O
Corollary 3.7. Let f € L*(G) be any function on G and set P, to be the invariant projection. Then Ifw-(\f )(m) =
f(’]T)(sﬂ-’l.

Proof. See Appendix[A.5] O

In Figure2a] we schematically depict how we can exploit the simple structure of the projection in the spectral domain
P,y to efficiently calculate the smoothing operator P,y .

3.4 EQUIVARIANT MAPS ARE DIAGONAL ACROSS FREQUENCIES

Having shown the projection in the spectral domain for the invariant case, we now turn towards the case of equivari-
ance. It turns out that in this case the projection acts by zeroing out all off-diagonal terms and averages over the rest.
We can formalise this as follows:

Theorem 3.8. Let T : L?>(G) — L*(G) be a linear function which is equivariant with respect to the (left) regular
representation, i.e. T(g) o T =T o 7(g) for all g € G. Then T' decomposes as follows:

T =@, @B, (13)
we@

for some B € End(V}) (one for each w). Equivalently, on Fourier coefficients:

— ~

T(f)(x) = f(m)k(x) (14)
with B, & E(W)*

Proof. See Appendix [A.6] O

This means that an equivariant linear map 7" does not mix between irreps; it is block-diagonal. We now show what
this means for the projection of a general linear operator 7T'.
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Corollary 3.9. Let T : L*(G) — L*(G) be linear and set Poyr(T) to be its equivariant projection. Then for each
[7] € G, there exists B, € End(V}) such that for all f € L*(Q),

— ~

P(T)(f)(x) = f(7) Bx. (15)

3.5 VECTOR-VALUED SIGNALS AND FIBER-WISE PROJECTION

Thus far we treated scalar signals f € L?(G). In many applications (e.g. steerable CNNs Cohen & Welling| (2017),
tensor fields) one works with vector-valued signals taking values in a finite-dimensional unitary G-module (V, p).
Define

L*(G,V) 2 L*(G)®V  with action (r®p)(9)f)(z) = p(g) f(g~'z). (16)

More generally, for an operator T : L?(G, Vi,) — L?(G, V,u:) We measure equivariance with respect to the pair of
actions 7 ® pj, (on the domain) and 7® peyt (on the codomain), i.e.

(T®pout)(g) o T = T o (T®pin)(9)  VgeG. (17)

As in the scalar case, P.quiv 1S an idempotent, self-adjoint projection onto the equivariant subspace and we can anal-
ogously show that a projected map 7" will have block-diagonal structure. Indeed, a Peter—Weyl—type decomposition
yields the following (details in Appendix [B):

Theorem 3.10. Let T : L?(G, Vin) — L*(G, Vout) be linear. Then the equivariant projection decomposes as

Peuie(T) = @D (I, 2 W) (18)
we@
with
W, = /G(w(g)*®pout(g)) T(m,) (7(9)@pin(9) 1) dA(9). (19)

In particular, every equivariant T is block-diagonal across frequencies and acts as the identity on V, and as an
intertwiner on the fiber—multiplicity space V;QV.

Hence, the equivariant projection can be computed efficiently in Fourier space. Given a linear map 7', we (i) compute
the Fourier transform of the matrix representation of 7" to obtain the frequency blocks T (m, 0); (ii) zero all off-diagonal
blocks, setting f(w, o) + 0 for m # o; (iii) for each 7, project f(w, ) onto Homg (7* @ pin, 7 @ pout ) using the
averaging formula for B, above; and (iv) apply the inverse Fourier transform to obtain Pequiv(T) in the spatial domain.

This procedure is illustrated by the commutative diagram in Figure 2b] and a corresponding pseudo-code implemen-
tation is given in Algorithm [I]on the right.

3.6 ASYMPTOTIC COST

We now want to briefly comment on the computational complexity of calculating the projection for both finite and
continuous groups.

Finite groups. For finite groups we use Equation [I| directly. For a linear layer with weights W & C%ut*din and
Ny = doutdin parameters, the projection evaluates oyt (g)*Wmin(g) for each g € G, where Tout (g9), min(g) are
the representation matrices. Each step costs O(d? din) + O(doutd?,), which is O(d3 ;) under di, ~ dout. Since

out
Ny ~ d2,,, this is O(N;/?) per group element, and O(|G] Nf/z).
Continuous groups. For continuous groups, we use the Fourier-domain projection. For a kernel on a d-dimensional
grid of size S = k9, FFTs cost O(S log S) per input-output channel pair, so per layer O(dou;din S log S). Masking and
averaging in spectral space cost O(FPy) with Py = doutdinS = Ny, so the overall cost is O(doutdinS log S). If weights
are already stored in irreducible spectral blocks, the projection reduces to masking and averaging only, giving O(Ny)
per layer; this is precisely the regime of steerable CNNs, where kernels are parameterised directly in such blocks.
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Ac=1.0,A, =0.0001 Ac=0.001, A, =0.0001 Ac=0.0001, A, =0.0001 A =0.0001, A, =0.001 Ac=0.0001,A, =1.0
&(T) = 3.02e+01 &(T) = 2.43e+01 &(T) = 3.02e+01 &(T) = 1.10e+01 &(T) = 1.53e-02

Figure 3: Controlling the degree of learned SO(2) invariance by tuning the parameters A and A | , which penalise the
projections of the equivariant and non-equivariant components, respectively.

4 EXPERIMENTS

In this section, we conduct three sets of experiments to demonstrate the feasibility and efficiency of our approach
to learn (approximate) equivariance from data. For implementation details and information on hyperparameters, see

Appendix [C]
4.1 EXAMPLE: LEARNED SO(2) INVARIANCE

We first want to illustrate the approach in Section[3]on a simple toy problem (Figure[3). The task is binary classification
on two point clouds in R, Using polar coordinates (r, §), we sample an inner disk-shaped cloud (blue, label +1), and
the outer angular section of an annulus (red, label —1). We then train an approximately SO(2)-invariant MLP with
the following structure on this dataset: We first project inputs (z,y) € R? onto circular harmonics up to degree M,
adding C radial channels via radial embedding functions, to obtain equivariant irreps features H € CCM+xC Wwe
then apply two fully connected complex linear layers

Ll . C(2M+1)><C4> C(2A4+1)><Chid L2 . C(2M+1)><Chid*> (C(2M+1)><Chid
: , : ,
followed by an SO(2)-equivariant tensor product. Lastly, we extract the invariant component and pass its real part

through a final real-valued linear head Ly, : R — R to produce the scalar logit. For a more in-depth description
of this architecture, see Appendix [C.1]

In this setting, the projection onto the equivariant subspace reduces to masking. Let TW; € C((2M+1)C)x((2M+1)C)
denote the flattened weight matrix of an intermediate linear layer. Define the mask M € R(CGM+1C)x((2M+1)C) py

M(m1,01);(m2~,02) = 67”177”2’

i.e., only blocks with matching harmonic order m are kept. The projected weights are P(W;) = M © W;, where ®
denotes elementwise multiplication. The overall objective is

L = Lux + A Y_IWill + AL D IWi — M oW,

2

1.0

A=

&(T) = 2.61e-02 &(T) = 5.19e-02 &(T) = 8.15e+00 &(T) = 1.72e+01 &(T) = 1.59e+01

o, =0 o, =0.25 o, =05 o, =0.75 o, =1.00

Figure 4: Effect of increasing angular perturbation at fixed projection strength. Each panel shows the decision bound-
ary and level sets of the approximately SO(2)-invariant network (blue) and an MLP (orange) trained with a fixed
non-equivariant penalty A; = 1.0 on datasets with growing angular “wave” amplitude o (left to right). As o in-
creases, the decision boundary becomes more angle-dependent and the learned classifier departs from perfect radial
symmetry only where required to fit the data, while remaining nearly circular elsewhere. The empirical invariance
defect £(T) for each setting is reported beneath the corresponding panel.
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with Ag, A1 > 0 and Ly, the standard classification loss.

In Figure [3] we compare trained models across different values of (Ag, A1 ). From left to right, we first reduce Ag
and then increase A , enforcing progressively stronger invariance. For a full 2D grid for different combinations of
(Ag, A1) see Figure [7]in Appendix As the regularisation intensifies, the decision boundary becomes increas-
ingly SO(2)-invariant, confirming that the proposed projection-based regulariser effectively pushes the model toward
invariance. Consistently, the empirical equivariance defect

gemp(T) = Z‘ pout(gl) T<xk) - T(pin(gl) xk) H (20)
k.l
with k ranging over data samples and g; drawn as random rotations in SO(2), decreases from left to right.

In a second experiment, we probe the behaviour of the regulariser when the target function departs from exact SO(2)-
invariance by making the labels increasingly dependent on the polar angle. Starting from two concentric rings, we
introduce an angular “wave” perturbation of amplitude o in the radial direction, such that for o; = 0 the data distri-
bution is rotationally symmetric, whereas larger o | produce interlocking rings (Figure[d). We train the approximately
SO(2)-invariant network with projection-based regularisation alongside a plain MLP baseline on these datasets and
compare both the learned decision boundaries and the empirical defect Eqpp (T). As o, increases, the regularised
model departs from strict invariance only insofar as needed to fit the angularly perturbed rings. This illustrates how
the projection penalty (even for constant values of A | ) furnishes a tunable bias toward invariance that can be gradually
traded off against fitting angle-dependent structure in the data. For a full grid, where we also vary the value of A |, see

Figure[5]in Appendix [C.1]
4.2 IMPERFECTLY SYMMETRIC DYNAMICAL SYSTEMS

In this section, we follow the experimental design of Wang et al.|(2022c) and evaluate our regulariser when applied to
their relaxed group and steerable convolutional layers. Using PhiFlow (Holl & Thuereyl 2024)), we generate 64 x 64
two-dimensional smoke advection—diffusion simulations with varied initial conditions under relaxed symmetries. Each
network is trained to predict the velocity field one step ahead.

To test generalisation, we consider two out-of-distribution settings. In the Future setting, models predict velocity
fields at time steps that are absent from the training distribution, while remaining within spatial regions that were seen
during training. In the Domain setting, we evaluate at the same time indices as training but at spatial locations that
were not seen. The data are produced to break specific symmetries in a controlled way: for translation, we generate
series for 35 distinct inflow positions and split the domain horizontally into two subdomains with different buoyancy
forces so that plumes diffuse at different rates across the interface; for discrete rotation, we simulate 40 combinations
of inflow position and buoyancy, where the inflow pattern alone is symmetric under 90° rotations about the domain
centre but a position-dependent buoyancy factor breaks rotational equivariance; and for scaling, we run 40 simulations
with different time steps At and spatial resolutions Az to disrupt scale equivariance.

We compare the relaxed group convolutional networks (RGroup) and relaxed steerable CNNs (RSteer) introduced by
Wang et al.| (2022c) with several baselines: a standard CNN (Conv), an equivariant convolutional network (Equiv)
(Weiler & Cesal, 2019 Sosnovik et al.| 2020), Residual Pathway Priors (RPP) (Finzi et al., 2021)), a locally connected
network with an explicit equivariance penalty in the loss (CLNN) and Lift (Wang et al| 2022a). We indicate the
addition of our regulariser with the suffix +Reg.

Across these settings, incorporating our regulariser preserves performance when approximate translation equivariance
holds and delivers substantial improvements in the rotation and scaling regimes. In short, the penalty promotes the
desired approximate equivariance where symmetry is only partially present, without degrading accuracy where the
symmetry is already well aligned with the data.

4.3 CT-SCAN METAL ARTIFACT REDUCTION

We compare our approach with a sample-based equivariance penalty on metal artefact reduction (MAR) for CT scans.
Metal implants introduce characteristic streaking artefacts that obscure clinically relevant structures. The task is to
map a corrupted slice to its artefact-reduced counterpart.

We use the AAPM CT-MAR Grand Challenge datasets (AAPM, 2022a3b)), comprising 14,000 head and body CT
slices with synthetic metal artefacts (Table[2and Appendix Figure 6| for a visual comparison). The datasets were
generated with the open-source CT simulation environment XCIST (Wu et al., [2022), using a hybrid data-simulation
framework that combines publicly available clinical images (Yan et al., [2018}; |Goren et al., |2017) and virtual metal
objects.
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Table 1: Results on three synthetic smoke-plume datasets exhibiting approximate symmetries. We report means
and standard deviations of pixel-wise MSE over 5 random seeds. Future indicates that the test set occurs after the
training period; Domain indicates that training and test sets come from different spatial regions. Adding our proposed
equivariance regulariser (+Reg) consistently improves performance.

Model Conv Equiv Rpp CLCNN Lift RGroup +Reg RSteer +Reg
Translati Future — 0.94+0.02 0.92+0.01 0.92+0.01 0.87+0.03 0.71+o0.01 0.724+0.01 — —
TansiEton | pomain — 0.68+0.05  0.93+0.01  0.8940.01  0.70+0.00 0.62+0.02 0.6240.01 — —
Rotation Future 1.2140.01 1.05+0.06 0.96+0.10  0.96+0.05 0.82+0.08 0.82+0.01 0.80+0.01 0.80=+0.00 0.79+0.00
Domain 1.10=+0.05 0.76+0.02 0.83%0.01 0.84+0.10  0.68%40.09 0.73+0.02 0.67+0.01 0.67+o0.01 0.58+0.00
Scalin Future 0.83+0.01 0.75+0.03 0.81+0.09 1.03+0.01 0.85+0.01 0.80+0.01 0.81+0.00 0.70+o0.01 0.62+0.01
& Domain 0.95+0.02 0.87+0.02 0.86+0.05  0.83%40.05 0.77+0.02 0.88+0.01 0.88+0.02 0.73+0.01 0.69+0.01

Following Bai et al.[ (2025), we adapt three convolution-based architectures ACDNet (Wang et al., [2022b), DICDNet
(Wang et al.,2021) and OSCNet (Wang et al., [2023)) by encouraging rotation equivariance with respect to the discrete
group C'y (rotations by multiples of 90°). We compare the unregularised baselines, the sample-based regulariser of
Bai et al.| (2025)), and the same networks equipped with our projection-based regulariser. Additionally, we compare
with Residual Pathway Priors (RPPs) (Finzi et al., 2021) and a train-then-project variant, in which we first train a
non-equivariant model and then project its linear layers onto the equivariant subspace at test time using our projection
operator.

For steerable CNN layers whose channels are organised into orientation groups of four, the layer-wise projection acting
on akernel K € RCou X Cinx4xdxsxs jg

3
> 8" (rot, K) 57", 2D

=0

Pequiv(K) =

=

where S is the 4 x 4 cyclic-shift matrix on orientation channels and rot, rotates the spatial kernel by 90°r. For a
derivation of this expression, see Appendix[C.3.2]

In contrast, [Bai et al.| (2025)) penalise a term that samples both a data point and a group element. For each sample =
they draw a random r € C, and add

I

Lequiv(z,r) = HST rot, K(x) — K(ST rot,«x) (22)

to the task loss. This requires an extra forward pass for each sampled rotation and each data sample, with asymptotic
cost O(Nsamples - COStforward) Where Ngamples 1s the number of sampled group elements and cOStforwarg 18 the cost of a
single forward pass. By contrast, as derived in Section our projection-based regulariser || Pquiv(+)|| incurs a cost
that is linear in the number of parameters, does not sample rotations or data, introduces no extra forward passes, and
has zero estimator variance.

We report peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and training throughput on a single A100
GPU under two regimes. In the fixed-batch setting, we use batch size 4 for all methods. In the max-feasible set-
ting, the sample-based regulariser remains at batch size 4 (limited by the extra forward/activation memory), whereas
the baselines and our projection-based regulariser scale to batch size 12 due to unchanged per-sample compute and
memory.

Our projection-based regulariser delivers competitive or superior reconstruction quality, surpassing the sample-based
penalty in all metrics across all settings but one, and improving over the unregularised baselines in most cases. Owing
to the extra forward pass in Equation 22} the sample-based approach is constrained to smaller batch sizes and lower
throughput. Even under the fixed-batch protocol, its throughput is 42-47% lower than ours; under the max-feasible
protocol, the gap widens to 54-61%. These results indicate that projection-based regularisation achieves stronger
Cy-equivariance with better hardware efficiency by avoiding per-sample group sampling. Similarly, due to the overpa-
rameterisation of the equivariant subspace, RPPs incur slower runtime during both training and inference and require
more learnable parameters, and still underperform our approach in reconstruction quality.

5 CONCLUSION

In this work, we introduced projection-based regularisation - a theoretically grounded approach to learned equivariance
which directly penalises model weights and regularises over the entire group instead of only point-wise, per-sample
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Table 2: CT-scan metal artefact reduction on the AAPM challenge dataset. We compare three baseline models in their
vanilla form, the sample-based regulariser of [Bai et al.|(2025), a train-then-project approach, Residual Pathway Priors
of [Finzi et al.| (2021)), and our projection-based regulariser. We report PSNR/SSIM, training throughput (for batch
sizes 4 and 12, where stable) and inference throughput, epoch wall-clock time, and peak memory usage. Sample-
based regularisation is limited to batch sizes < 4, whereas the baselines and our method scale to batch size 12.

Model #params Throughput (no./GPU-s) ~ Epoch ~ Memory AAPM
Train T  Inference T time(s)) (GB) PSNR?T SSIM 1

ACDNet (Wang et al.,|2022b) 42M  4.90/5.16 8.40 1108 11.08 42.08  0.9559
+ sample-based (Bai et al.|[2025)  4.2M  2.54/2.54 8.38 2011 21.99 40.02  0.9623
+ test-time projection 4.2M - - - - 23.63  0.8384
+ RPP (Finzi et al.}[2021) 69M  3.49/4.14 5.37 1455 11.15 37.12 09413
+ projection-based (ours) 42M  4.25/4.99 7.44 1202 11.11 42.68  0.9620
DICDNet (Wang et al.}[2021) 43M  8.38/9.72 11.86 632 10.90 41.44  0.9468
+ sample-based (Bai et al.,2025)  4.3M  4.05/4.05 10.15 1303 23.93 41.47  0.9464
+ test-time projection 4.3M - - - - 41.59  0.9602
+ RPP (Finzi et al.}[2021) 6.6M  3.10/6.10 6.93 1028 12.08 3942 0.9481
+ projection-based (ours) 43M  5.77/7.82 10.11 782 12.05 41.52  0.9605
0SCNet (Wang et al.,|2023) 43M  8.59/9.86 12.00 624 10.37 4236 0.9596
+ sample-based (Bai et al.,2025)  4.3M  4.05/4.05 10.13 1304 23.93 41.50  0.9593
+ test-time projection 4.3M - - - - 41.37  0.9609
+ RPP (Finzi et al.}[2021) 6.6M  4.51/6.14 6.92 1016 12.08 3945  0.9507
+ projection-based (ours) 43M  5.66/7.87 10.14 769 12.05 41.88  0.9612

regularisation. For operators for which no closed-form solution of the projection can be computed efficiently in the
spatial domain, we provide a general framework for computing the projection efficiently in Fourier space by masking.
The experiments demonstrate that across synthetic and real-world experiments, covering both finite and continuous
symmetry groups, the proposed approach improves both task performance and runtime.

Limitations and future work. A limitation of the proposed approach is that the penalty term needs to be derived
anew for each model architecture and group operation. Also, current experiments only evaluate the proposed method
for relatively simple groups. In future work, we plan to extend this approach to more complex group structures
consisting of several subgroups with applications in e.g. material sciences.

5.1 REPRODUCIBILITY STATEMENT

Reproducibility Statement: We performed our experiments on public datasets and included all necessary hyperpa-
rameters in Appendix [C} Throughout Section [3] we clearly state all our theoretical assumptions, in particular in the
statements of Theorems 3.8 and We will publish the source code with evaluation scripts to reproduce the exper-
iments with the camera-ready version.
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A PROOFS IN SECTION[3]

A.1 PROOF OF LEMMA

Proof of Lemma[3.2] By definition of P,

T—P(T):/

G G

Tout ()" (Tout(9) 0 T — T 0 min(g)) dA(g) = / Tout (9)7 Ag(T) dA(g).

(23)

Pre-/post-composition with the unitaries 7oyt (g)* preserves the Lipschitz seminorm, and the seminorm of an average

is at most the average of the seminorms. Hence
7= P < [ 18D M) < sup AT = ET)
g

giving the lower bound. For the upper bound, note that P(T") is G-equivariant, and therefore,
Ag(T) = Tour(9) (T — P(T)) — (T — P(T))min(g)-
Taking Lipschitz seminorms and using that iy, /¢ (g) are unitaries,
12D < NT =PI+ T - P = 2(|T = P(T)].
Finally, take the supremum over g € G to obtain E(T) < 2||T — P(T)||.

A.2 PROOF OF LEMMA [3.3]

Proof of Lemma[3.3] For any composable maps A, B, the equivariance defect satisfies the chain rule
Ag(AoB) = (AjA)oB + Ao (AyB).
Applying this repeatedly to f o - - - o f; yields the telescoping identity

k
Ag(T) = Z (fk O"'Ofi+1) OAg(fi) o (fz‘—l 0"'°f1)-

i=1

Taking norms and using || X o Y| < Lip(X) ||Y|| together with Lip(f;) = L; to obtain

k k i—1
12D < > < 11 Lm> 1Ag(fi)l ( I1 Lm>-

i=1 m=i+41

(24)

(25)

(26)

27)

(28)

(29)

Finally, take sup,¢ on both sides and note that E(T") = sup, [|A4(T)| and E(f;) = sup, [[A4(fi)| to obtain the
O

stated bound.

A.3  PROOF OF COROLLARY [3.4]
Proof of Corollary[3.4) To fit into the framework of Lemma[3.3] we choose

for1 = WH), for = o,

so that
Log—1 = |[W®||, Loy = Lip(oy),

for k = 1,...,25 — 1. By construction E(o},) = 0 for all k, hence E(f2;,) = 0. Plugging this into Equation [7]and

noting that the even indices do not contribute, we obtain

E(T) < i( 11 Lm>E(W(k>).

k=1 \ m#2k—1

Now note that the product over m # 2k — 1 contains

» all activation Lipschitz constants Ly; = Lip(c;),j =1,...,25 — 1,

14

(30)
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* all weight norms Lo, 1 = |[W ()| with r # k.

Thus

Il Lm= (jl_leip(oj ) (H ||W“">||>

2k—1
m# T2k

and Equation [30]becomes

) < (ﬁmw) i(ﬁwn)mww.

= k=1 \r=

Next use Lemma 3.2, which states that for each linear layer

VW) < 2[w® - pw®)]|

Substituting this into Equation [31] yields

Define

Then, for every k,

and Equation [32]implies

E(T) < 2<SﬁLip(aj )zsj <H ||W<T)||>HW<“ PW®)].

j=1 k=1

S—1 S
_ . r)
C = 2( 11 Llp(%)) max [T W,
=t O TE

S—1 S
2( 11 Lip(o;»)) [Tiwor < ¢
j=1

r=1
r#£k

E(T) < CZHW(") PW®™)||.

€29

(32)

(33)

This is exactly Eq. (9), with the dependence of C' on the norms || *)|| and Lipschitz constants Lip(;) made explicit

in Equation

A.4 PROOF OF LEMMA

Proof of Lemma[3.6] We define the invariance operator of a function f € L?(G) as

finlg / f(hg) dA(n

The Fourier coefficients of this are

fll’lV

/ fin(9) 7(9)" dA(g)

/G(/Gf(hg)d/\(h)> m(g9)* dA\(g)

:/ f(z) (/ W(hlx)*d)\(h)) d\(z) substitutingz =hg = g=h"'z

= [ 5@ ([ w0ty xi) ) o ario

/ f(z (/ (h)* dA(h)) m(x)* d\(z). invariance of Haar measure
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O

(34)

(35)

(36)

(37

(38)

(39)
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Define A, := [, m(h)* dA(h) € End(Vy). Note that A is 7-equivariant; indeed, for all g € G,

w(0) Ax = [ wlg)n(h)” dr(R) (40)
:/Gﬂ(gh_l)d)\(h) (41)
- / w(k)*m(g)dA(k)  substituting k = ghg~! —> gh~! = k=g 42)
= chr m(g), 43)

Hence by Schur’s lemma (since 7 is irreducible), we have
Ar € EndG(Vn) =2 {A: A e C}.
So A, = M\ for some A € C.

Now,

tr A, = /G tr(m(h)*) dA(h) = /G Yo (h) dA(R) = /G X (h) dA(R). (44)

But the characters x are orthonormal, so denoting the trivial representation g — 1 by 1, i.e. have x(g) = 1 for all g,
we have

/wa(g) dA(g)=/wa(g)xl(g) dA(g) = (x=(9): x1(9)) r2(G) = Om,1- (45)
Finally, this gives
o) = trAd, = — X\ = 5;: - {21 :ii (46)
Substituting this into the above yields
Fin () = i f(m)oma. (47)
O

A.5 PROOF OF COROLLARY[3.7]

Proof of Corollary[ﬂ Since P, is a projection onto the G-invariant subspace, P, (f) is always invariant. Hence,

by Lemma m )() is zero for all 7 # 1. Now note that by invariance, Py (f)(g) = c forall g € G for some
¢ € C. We then calculate

Pl = [ Pa($la) 100" ae) = [ Pun(1)(0) dN0) = [ o) = @48)
At the same time
f = [ s 1079 = [ floang =« 49)
G G
which concludes the proof. O

A.6 PROOF OF THEOREM[3.8]

Proof of Theorem[3.8] By the Peter—Weyl theorem there is a unitary isomorphism

L’G) = Pv.ovy,
Treé

~

under which the left regular action is 7(g) = @, (7(g) ® Iv+). Any linear map T on L?(G) becomes a block matrix
T = (Trosrn)pn with Tryr € Hom(Vz @V}, Vir ® V). The equivariance condition 7(g)T = T'7(g) for all ¢
reads, blockwise,

(7'(9) @ Iv)) Tasnr = Trey (w(9) @ Iv,) Vg € G.
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Thus each T, is an intertwiner from 7 ® 1 to 7’ ® 1. By Schur’s lemma, if 7 % 7’ then T~ = 0. Hence T is
block-diagonal across distinct irreps:

T = PT,, TrecEnd(VaaV;)

Now choose A, € End(Vy), B, € End(V,*) such that

T = @AW®B7T.

Again by Schur’s lemma, A, must be a scalar multiple of Iy,_; this scalar can be absorbed into B, which gives the
desired decomposition in Equation[I3] O

B DETAILS ON VECTOR-VALUED SIGNALS

Fourier description. Peter—Weyl yields the unitary decomposition

LG = PveeVvy, LXGV)= PV (V;eV),
776@ 71'6@

where G acts by 7 on the first tensor factor and trivially on V¥, while the fiber transforms by p. Accordingly, any
bounded linear map 7' : L?(G, Vi) — L?(G, Viout ) admits a block form

~

T = (I(ro) T 0) : V@ (V; @Vin) — Va® (Vy Vo).

)71',06@’

Averaging annihilates all off-diagonal (7 # o) blocks and, on each frequency 7, orthogonally projects T (7, ) onto
the intertwiner space Homg( T* @ pPin s TR Pout )

Theorem B.1 (Theorem restated). Let T : L*(G, Viy) — L*(G, Vout) be linear. Then

Pequie(T) = @ (1. @ By, (50)
weé
B, = /(}(w(g)*@pout(g))f(ﬂﬂf) (m(9)®@pin(9)~") dA(9), (51)

with B, € Homg(w* ® Pin, TF ®p0ut). In particular, every equivariant T' is block-diagonal across frequencies and
acts as the identity on V. and as an intertwiner on the fiber—multiplicity space VRV

Sketch. Decompose both domain and codomain via Peter—Weyl and write T in blocks T (m, o). Conjugation by (7®p)
restricts, on the (7, ) block, to the representation 7* ® poyut on the codomain multiplicity and 7* ® p;,, on the domain
multiplicity. Averaging is the orthogonal projection onto the commutant, hence onto Homg (7* ® pin, 7 ® pout ), and
kills m # o by Schur orthogonality. The displayed formula is the explicit Bochner average of that projection. O

C IMPLEMENTATION DETAILS

In this section, we provide additional information on the implementation details of all of our experiments.

C.1 EXAMPLE: LEARNED SO(2) INVARIANCE

Data generation. Using polar coordinates (r,6), we sample the inner cloud (blue, label +1) by drawing r ~
Unif[0, 1] and § ~ Unif[0, 27r), and the outer cloud (red, label —1) by drawing r ~ Unif[2.3, 3] and 6 ~ Unif[—Z, Z).

Feature map and network. We project inputs (,y) € R? onto circular harmonics up to degree M = 4 with C' = 4
radial channels as follows: viewing (z,y) as a complex number z € C with » = |z| and Z = z/r, define radial basis
functions

(r—cn)? . .
bu(r) = exp(—T), 0=0.5, c¢,uniformin[0,4], n=1,...,C.
%
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Form the order-m harmonic features by h(™)(r, 2) = (b, (r) 2 m)szl form = —M, ..., M, and concatenate across
m to obtain the embedding
H ¢ ceM+)xC
We then apply two fully connected complex linear layers
Ll . C(QM—Fl)XC_) (C<2M+1)X0hid L2 . C(2M+1)Xchid_> C(2M+1)><Chid

followed by an SO(2)-equivariant tensor product:

W = S hny B,

mi1+ma=mMou

with complex multiplication applied channel-wise. We then extract the invariant component h{, and pass its real part
through a final real-valued linear head Ly, : RS — R to produce the scalar logit.

We then train a new model for each combination of A, A (see Figure [3) using the Adam optimiser Kingma & Ba
(2014) for 200 epochs with a learning rate of 0.003. We use a binary cross-entropy loss as task-specific loss.

Angular perturbation experiment. To study the interaction between the projection regulariser and violations of
exact SO(2) symmetry, we construct a family of “wavey” ring datasets parameterised by an amplitude o; > 0. For
each o we independently sample angles 6,0_ ~ Unif[0, 27) and define class-conditional radii

ry(0y) = rin + oy sin(f0y) + €, r—(0-) = rout + oL sin(fO_) + €out,

with (rin, rout) = (1.1,2.2), frequency f = 5 and independent jitters €, ~ Unif[—bin, bin]s €out ~ Unif[—bout, bout]
for (bin, bout) = (0.15,0.22). Mapping (r+, 01 ) to Cartesian coordinates yields two noisy rings labelled +1 (inner)
and —1 (outer). In Figure |5 we consider o, € {0,0.5,0.75,1.0}, sample 350 points per class, and split the data
into 80% training and 20% test. For each (o, A ) we then train (i) the approximately SO(2)-invariant architecture
described above (blue lines), and (ii) a plain real-valued MLP on the raw coordinates (orange).

We see that even for a fixed value of A, the regulariser allows us to capture different effective levels of invariance
as the data depart from rotational symmetry; see, for instance, the row with A = 1.0, where the learned classifier
remains nearly invariant for small o, and gradually departs from invariance as the angular modulation strengthens.
For strongly broken SO(2) symmetry (e.g. o, = 1.0), the decision boundary remains “as radially symmetric as
possible”: away from the perturbed regions the contours revert to circular rings, and in the region between the two
classes, around each arm of the star-shaped pattern, the classifier exhibits consistent behaviour across angles.

C.2 IMPERFECTLY SYMMETRIC DYNAMICAL SYSTEMS

For each baseline, relaxed group convolution (RGroup) and relaxed steerable CNN (RSteer), and for each symmetry
setting, we conduct a hyperparameter sweep over learning rate, batch size, hidden width, number of layers, and the
number of rollout steps used to compute prediction errors during training, using the same search ranges as(Wang et al.
(2022c)) (see Table ED We also tune the number of filter banks for group-convolution models and the coefficient for the
non-equivariance penalty A for relaxed weight-sharing models. The input sequence length is fixed to 10. To ensure
a fair comparison, we cap the total number of trainable parameters for every model at no more than 107.

Table 3: Hyperparameter tuning range for the asymetric smoke simulation data.

LR Batch size | Hid-dim | Num-layers | Num-banks | #Steps for Backprop AL

1072~107° 8 ~ 64 64 ~ 512 3~6 1~4 3~6 0,1072,10%,10°°

C.3 CT SCAN METAL ARTIFACT REDUCTION
C.3.1 HYPERPARAMETERS

For the most part, we use the same hyperparameters as Bai et al.[(2025]). We train for 80 epochs with a batch size of 12
for the baselines and our projection-based regulariser, and a batch size of 4 for the sample-based regulariser. We set
the patch size at 256 x 256. Optimization uses Adam Kingma & Ba| (2014)) (51=0.5, $2=0.999) with initial learning
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Effect of angular noise vs. A |

=1le+02

AL

=1le+00

AL

//
&(T) = 1.86e+01

le—-01

AL

=0e+00

AL

&(T) = 2.61e+01 &(T) = 5.26e+01 &(T) = 9.61e+01 &(T) = 1.05e+02

0,=0.00 0,=0.50 0,=0.75 0,=1.00

Figure 5: Effect of angular perturbations and projection strength. Columns vary the angular wave amplitude o ,
rows vary the non-equivariant penalty weight X | . Blue contours show level sets of the approximately SO(2)-invariant
network and points denote training samples. Orange dashed lines are the decision boundary of a non-equivariant
MLP. The value £(T) underneath each panel is the empirical invariance defect, demonstrating that larger A keeps
the classifier close to invariant even as the Bayes decision boundary becomes increasingly angle-dependent.
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Figure 6: Qualitative comparison of the baseline methods (left column) with each of the sample-based (middle column)
and our projection-based regulariser (right column) on the metal artefact reduction task. We show a cropped pelvic
slice containing two metallic implants that generate artefacts.

Table 4: Hyperparameters for the CT-MAR experiments.

Parameter Value
N (feature maps) 8
N, (concat channels) 35
d (dict. filters) 32
Residual blocks / ResNet 3
Stages T' 10

rate 779=2x10"* and a MultiStepLR scheduler (milestones at epochs {50, 100, 150, 200}, decay factor y=0.5). The
model hyperparameters are summarised in Table [}

The scalar weight for sample-based regulariser is set at 10°. To set ours, we performed a hyperparameter sweep over
the set {1.0,10~%,...,1075} and chose Ag = 1.0.

C.3.2 PROJECTION ONTO THE C4-EQUIVARIANT KERNEL SUBSPACE

We consider steerable CNN layers whose input and output feature spaces are arranged in orientation groups of four
(regular-representation channels) for the discrete rotation group Cy = {0, 1,2, 3} (multiples of 90°). Let

Ke RC;uthi’nx4><4><s><s
denote an s x s convolution kernel with output block index p € {1,...,C. .}, input block index ¢ € {1,...,C/ },
orientation indices «, 8 € {0, 1,2,3}, and spatial indices (i,j) € {0,...,s — 1}%. Let S be the 4 x 4 cyclic-shift

matrix so that the channel representations of Cy act by pous(r) = S” and pin(r) = S” for r € {0, 1,2, 3}. Write rot,.
for rotation of the spatial kernel by 90°r (with exact index permutation on the discrete grid).
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The natural action of C4 on kernels combines spatial rotation with orientation-channel permutations:
(.A(r) K) = pout(r) (rotTK) pin(r)™t = 8" (rotrK) S, (52)

The orthogonal projector onto this subspace is the (finite) Haar average of the action:

3
= %Z (rot, K) (53)
r=0
Index-wise, for any (p, ¢, «, 3, 1, j), this reads
3
[P, 00 = iz [rot, K] o5 lisd]. (54)

Since equation [53|is the average of unitary (permutation + rotation) actions, P is an orthogonal projector: P? = P
and PT = P. In practice, equation [53|yields an efficient, exact implementation requiring only four 90° rotations and
two inexpensive orientation-channel permutations per term.

D SENSITIVITY WITH RESPECT TO A\g AND A |

We study the sensitivity of our method to the scalar weights A\ and A through two ablation experiments. First, we
repeat the experiment from Section on approximate SO(2) invariance in 2D for Ag, A, € {0,0.001,0.01,0.1};
the resulting decision boundaries are shown in Figure [7]] When the penalty on the orthogonal component dominates
(e.g. AL = 0.1 and A\g € {0,0.001,0.01}), the decision boundary becomes essentially rotationally invariant. In the
regime \ | ~ \g, the regulariser effectively reduces to standard Tikhonov (¢5) regularisation and no longer induces a
geometric inductive bias. For A| < Ag, the learned level sets increasingly depend on angular information.

Training setup. Additionally, we study learned translation equivariance on a perfectly translation-equivariant task:
image classification on MNIST Deng|(2012) and CIFAR [Krizhevsky et all| Figure[§]reports the classification accuracy
for different values of A\¢ and A;. As expected in this setting, models with a stronger equivariance bias perform
better: the best results are generally obtained for A = 0, and accuracy increases as A | grows. In Figure[9] we show
the corresponding equivariance defect for each (A, A ) pair. This defect remains largely unchanged when varying
Ac at fixed A\, and decreases sharply as A increases, consistent with the role of A as the primary control on the
non-equivariant component.

E SENSITIVITY WITH RESPECT TO NORM

In this ablation, we study the impact of the choice of matrix norm in the projection regulariser. We consider the
following norms. First, the spectral norm

[All2 = max [| Az||2, (55)

which is equal to the largest singular value of A. Second, the Frobenius norm

[Alp = [ a2 (56)
i,

[Alle = max |ai 1. (57

Third, the (entrywise) infinity norm

Finally, we consider mixed (p, ¢)-norms, defined row-wise as

S
Q=

[Allpg = | D[ D laisl? ; (58)
i\

for p,q € {1,2,3}. The corresponding results are reported in Table|5| We can see that the choice of norm has only
a modest effect on both computational cost and reconstruction quality. Training and inference throughput, as well
as epoch time, are nearly identical across all norms, except for the spectral norm, which is about 10-15% slower per
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Ac=0.1

A=0.01

Ac=0.001

/\G=0

&(T) = 4.52e+01 &(T) = 3.02e+01 &(T) = 1.12e+01 &(T) = 2.18e-02
A1=0 A,=0.001 A.=0.01 A.=0.1

Figure 7: Controlling the degree of learned SO(2)
invariance by varying the values of Ag and A over the grid {0, 0.001,0.01,0.1}.
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Figure 8: Classification accuracy on the CIFAR and MNIST datasets for models trained with varying values of A\ and
AL
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Figure 9: Equivariance defect for models trained on the CIFAR and MNIST classification tasks for varying values of
)\G and \ 1.

Table 5: Results for the CT scan metal artifact reduction task from Section 4.3|for different matrix norms. We report
throughput during training and inference as well as total epoch time; the performance metrics are PSNR/SSIM. We
consider the spectral, Frobenius (which we use by default in Section and infinity norms, as well as the (p, q)-
norms for p, q € {1,2,3}.

Norm \ Throughput (no./GPU-s) Epoch AAPM

\ Train 1 Inference 1 time (s) ] PSNR 1T SSIM 7?1
Spectral 6.59 10.16 877 39.25 0.9318
Frobenius 7.22 10.11 778 38.48 0.9457
Infinity 7.73 10.12 777 35.61 0.9153
(1,1) 7.63 10.13 785 35.57 0.8864
(1,2) 7.12 10.14 785 38.05 0.9365
(1,3) 7.12 10.13 785 38.67 0.9391
(2,1) 7.65 10.14 783 39.33 0.9299
(2,2) 7.65 10.13 783 38.24 0.9430
(2,3) 7.61 10.14 786 38.18 0.9299
(3,1) 7.59 10.14 787 39.10 0.9304
(3,2) 7.32 10.10 810 39.54 0.9322
(3,3) 7.18 10.16 780 37.86 0.9346

epoch, as expected given the need to estimate the largest singular value. In terms of image quality, several choices yield
very similar PSNR/SSIM, with the Frobenius and (p, ¢)-norms for (p, ¢) € (2,2), (1, 3), (3, 3) all lying within roughly
1 dB PSNR and 0.01 SSIM of each other. Norms that emphasise elementwise extremal behaviour, such as the infinity
norm and the (1, 1)-norm, lead to clear degradation in both PSNR and SSIM, indicating that these penalties are too
stiff and effectively underfit the reconstruction task. Since the spectral norm brings no systematic performance gains
while incurring a noticeable runtime overhead, and more aggressive entrywise norms harm reconstruction quality, we
adopt the Frobenius norm as our default in Section[d.3]

F DECLARATION OF LLM USE

We used LLMs to aid in the writing process for proof-reading, spell checking, and polishing writing.
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