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ABSTRACT

Equivariance is a powerful inductive bias in neural networks, improving generali-
sation and physical consistency. Recently, however, non-equivariant models have
regained attention, due to their better runtime performance and imperfect sym-
metries that might arise in real-world applications. This has motivated the devel-
opment of approximately equivariant models that strike a middle ground between
respecting symmetries and fitting the data distribution. Existing approaches in this
field usually apply sample-based regularisers which depend on data augmentation
at training time, incurring a high sample complexity, in particular for continuous
groups such as SO(3). This work instead approaches approximate equivariance
via a projection-based regulariser which leverages the orthogonal decomposition
of linear layers into equivariant and non-equivariant components. In contrast to
existing methods, this penalises non-equivariance at an operator level across the
full group orbit, rather than point-wise. We present a mathematical framework for
computing the non-equivariance penalty exactly and efficiently in both the spatial
and spectral domain. In our experiments, our method consistently outperforms
prior approximate equivariance approaches in both model performance and effi-
ciency, achieving substantial runtime gains over sample-based regularisers.

1 INTRODUCTION

Over the past few years, equivariance has been proven to be a powerful design principle for machine
learning models across chemistry (Thomas et al., 2018; Satorras et al., 2021; Brandstetter et al.,
2022; Hoogeboom et al., 2022; Xu et al., 2024), physics (Bogatskiy et al., 2020; Spinner et al., 2024;
Brehmer et al., 2025), robotics (Huang et al., 2022; Hoang et al., 2025), and engineering (Toshev
et al., 2023).

Recently, however, there has been a shift back towards non-equivariant models, most prominently
AlphaFold-3 (Abramson et al., 2024). Non-equivariant architectures often allow more flexible fea-
ture parameterisations and can be easier to optimise because the search is not restricted to an equiv-
ariant hypothesis class. This broader parameter space may enable the optimiser to find better minima
than if it was confined to strictly equivariant models (Pertigkiozoglou et al., 2024). Moreover, many
existing equivariant architectures rely on specialised tensor products to preserve symmetry (Weiler
& Cesa, 2019; Brandstetter et al., 2022), which can be less efficient to compute on modern GPUs
than dense matrix–vector operations.

At the same time, recent work demonstrates that equivariance remains a valuable inductive bias
even at scale (Brehmer et al., 2024), and, for example, state-of-the-art molecular property predic-
tion models continue to leverage it (Liao & Smidt, 2023; Liao et al., 2024; Fu et al., 2025). This
motivates approaches that retain the benefits of equivariance without incurring its full constraints or
computational costs.

A common approach here is to promote equivariance in otherwise non-equivariant architectures at
the level of samples - for example via data augmentation (as in AlphaFold-3 (Abramson et al., 2024))
or pointwise equivariance penalties (Bai et al., 2025). In this work, we take a different perspective
and introduce projection-based equivariance regularisation, a novel framework which allows tuning
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equivariance into any neural architecture on the operator level, thereby directly affecting the model
weights.1 Our primary contributions are:

• We propose a theoretically-grounded approach to regularise general machine learning mod-
els towards exact equivariance.

• Making use of the orthogonal decompostion of functions into equivariant and non-
equivariant components, we are able to penalise non-equivariance on an operator level over
the whole group orbit.

• We show how to efficiently calculate the closed-form projection by working in the Fourier
domain, allowing efficient regularisation for continuous groups such as SO(n).

• We empirically demonstrate improvements over existing approaches for approximate
equivariance, consistently achieving better task performance and have especially large
gains in run-time over sample-based regularisers.

1.1 RELATED WORK

A growing body of work relaxes strictly equivariant architectures to better capture approximate or
imperfect symmetries in data. Finzi et al. (2021) model departures from symmetry by adding a
small non-equivariant “residual” pathway to an otherwise equivariant network. Romero & Lohit
(2022) introduce partial group convolutions that activate only on a subset of group elements. For
discrete groups, Wang et al. (2022c) propose relaxed group convolutions, later extended by Wang
et al. (2024) to expose symmetry-breaking mechanisms; Hofgard et al. (2024) further generalise
this framework to continuous groups. McNeela (2024) introduce Lie-algebra convolutions with a
non-strict equivariance bias, and van der Ouderaa et al. (2022) relax translation equivariance using
spatially non-stationary convolution kernels. On graphs, Huang et al. (2023) develop approximately
automorphism-equivariant GNNs. A complementary line of work studies how to measure equiv-
ariance (or its violation) and use it in training objectives Finzi et al. (2021); van der Ouderaa et al.
(2022); Gruver et al. (2023); Otto et al. (2023); Petrache & Trivedi (2023). Another common ap-
proach focusses on regularisation towards equivariance. Bai et al. (2025) penalise pointwise devi-
ations from equivariance constraints, Kouzelis et al. (2025) incorporate approximate symmetry in
VAEs for generative modelling, and Zhong et al. (2023) apply related ideas to depth and normal pre-
diction. Finally, Pertigkiozoglou et al. (2024) improve the training behavior of equivariant models
by learning a non-equivariant model and projecting it into the equivariant subspace at test time.

2 BACKGROUND

Notation. For vector spaces V and V ′, we denote the identity on V by IV and write Hom(V, V ′)
for the algebra of linear homomorphisms V → V ′. We write Hom(V, V ) = End(V ). For T ∈
Hom(V, V ′), its conjugate transpose is denoted by T ∗ : V ′→V and the group of unitary operators
is U(V ) = {T : TT ⋆ = T ⋆T = IV }. We can define a norm on the space of operators between
normed spaces (V, ∥ · ∥) and (V ′, ∥ · ∥V ′) by ∥T∥ = sup

∥v∥V =1

∥T (v)∥V ′ . The Kronecker delta δx,y is

equal to 1 if x = y and 0 otherwise.

Unitary representations. Given a group G, a unitary representation is a homomorphism π : G→
U(Vπ) into the unitary operators on a Hilbert space Vπ; we call the pair (Vπ, π) a G-module. Two
representations π : G→ U(Vπ) and π′ : G→ U(Vπ′) are said to be isomorphic if there exists a
unitary U : Vπ→Vπ′ with π(g) = U π′(g)U−1 for all g ∈ G. A representation is irreducible if it is
not isomorphic to a direct sum of non-zero representations π ⊕ π′ where π ⊕ π′ : G→ U(V ⊕ V ′)
is defined by (π ⊕ π′)(g)(v, v′) = (π(g)v, π′(g)v′).

Haar measure. Let G be a compact group. The Haar measure λ is the unique bi-invariant and
normalised measure, i.e. for all Borel sets E ⊂ G and every g ∈ G we have λ(gE) = λ(Eg) =
λ(E), and λ(G) = 1. We can view the Haar measure as a uniform distribution over the group G.
Indeed, if G is discrete, the Haar measure becomes the discrete uniform measure with λ({g}) = 1

|G|
for all g ∈ G.

1Source code will be released with the camera-ready version.
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Equivariance and G-smoothing. Let T : (V, π)→ (V ′, π′) be a (bounded) linear map between
G-modules. We say T is G-equivariant if T

(
π(g)v

)
= π′(g)T (v) for all g ∈ G, v ∈ V . If the

action on V ′ is trivial (π′(g) = IV ′), we call T invariant. Averaging over G yields the G-smoothing
(Reynolds) operator

P (T ) =

∫
G

π′(g)∗ T π(g) dλ(g). (1)

Projection onto the equivariant subspace. When π, π′ are unitary, P is the orthogonal projector
(with respect to the Hilbert–Schmidt inner product) from Hom(V, V ′) onto the closed subspace of
G-equivariant linear maps (Elesedy & Zaidi, 2021). The following structural decomposition will be
useful.

Lemma 2.1 (Elesedy & Zaidi (2021), Lemma 1). LetH ⊂ {(V, π)→(V ′, π′)} be a function space
that is closed under P (i.e. P (T ) ∈ H whenever T ∈ H). Define

S = {T ∈ H : T is G-equivariant}, A = kerP = {T ∈ H : P (T ) = 0}. (2)

Then P is an orthogonal projection with range S and kernel A, and henceH = S ⊕A.

In particular, every T ∈ H orthogonally decomposes uniquely as T = P (T ) +
(
T − P (T )

)
, where

P (T ) is the G-equivariant component S and T − P (T ) ∈ A is its G-anti-symmetric component.
Moreover, we have the following:

Corollary 2.2. A function T : (V, π)→(V ′, π′) is G-equivariant if and only if P (T ) = T .

3 EQUIVARIANT PROJECTION REGULARISATION

Motivated by these observations, we propose a simple framework for learning (approximately)
equivariant models: LetH be a hypothesis class and Ltask(T ) a task-specific loss function for T ∈ H.
We learn T by solving

T ∗ ∈ arg inf
T∈H

Ltask(T ) + λG ∥P (T )∥ + λ⊥ ∥T − P (T )∥, (3)

where λG, λ⊥ ≥ 0 are hyperparameters. Intuitively, increasing λ⊥ (or decreasing λG) penalises
∥T − P (T )∥ more strongly, which encourages P (T ) = T , steering the solution toward stronger
equivariance according to Lemma 2.1.

In what follows, we provide a theoretical justification for using ∥T −P (T )∥ as a regulariser. Recall-
ing that P (T ) denotes the closest equivariant operator to T , we show that the distance ∥T − P (T )∥
is quantitatively equivalent to a natural measure of non-equivariance, the equivariance defect.

3.1 BOUNDING THE EQUIVARIANCE ERROR

Definition 3.1 (Equivariance defect). Let T be a function between G-modules with actions πin and
πout. The equivariance defect at g ∈ G is

∆g(T ) := πout(g) ◦ T − T ◦ πin(g), (4)

and the worst-case defect is
E(T ) := sup

g∈G
∥∆g(T )∥. (5)

By Lemma 2.1 (Elesedy & Zaidi, 2021), the quantity E(T ) vanishes if and only if T is G-equivariant.
The next lemma shows that this defect is effectively controlled, up to constants, by the distance to
the equivariant subspace measured by the projection P .

Lemma 3.2. For every (Lipschitz) function T between G-modules with unitary actions,

∥T − P (T )∥ ≤ E(T ) ≤ 2 ∥T − P (T )∥. (6)

Proof. See Appendix A.1
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Lemma 3.2 shows that regularising by E(T ) or by ∥T − P (T )∥ is equivalent up to a factor of 2.
Thus, minimising ∥T − P (T )∥ minimises the worst-case defect.

In practice, T will be some type of neural network architecture and is hence a composition of
functions. The following bound decomposes the global defect of a network into per-layer defects,
weighted by downstream Lipschitz constants.
Lemma 3.3. Let T = fk ◦ fk−1 ◦ · · · ◦ f1 be a composition of Lipschitz maps between G-modules
with unitary actions, and set Lm := Lip(fm). Then

E(T ) ≤
k∑

i=1

(
k∏

m=i+1

Lm

)
E(fi)

(
i−1∏
m=1

Lm

)
. (7)

Proof. See Appendix A.2

The bound above immediately yields the following corollary for standard feed-forward networks
first shown by Kim et al. (2023).
Corollary 3.4 (Kim et al. (2023)). Let

T = W (S) ◦ σS−1 ◦W (S−1) ◦ · · · ◦ σ1 ◦W (1) (8)

be an S-layer network where each linear map W (l) acts between G-modules with unitary actions
and each activation σl is G-equivariant and Lipschitz. Then

E(T ) ≤ C

S∑
l=1

∥∥W (l) − P
(
W (l)

) ∥∥, (9)

for a constant C > 0 depending only on the operator norms of the W (l), the Lipschitz constants of
the σl, and (when working on a bounded input domain) its radius.

3.2 PROJECTION IN FOURIER SPACE

The previous section motivates using the norm of the projection operator as a regulariser. When
the projection operator in Equation 1 is efficiently computable in the spatial domain, e.g., for small
finite groups (see Section 4.3), this is straightforward. However, in many applications, the group is
large (for instance, uncountably infinite as in SO(n), the group of rotations about the origin in Rn;
see Section 4.1). In such cases, the integral in Equation 1 rarely admits a closed-form solution.

We therefore switch to the spectral domain. We assume the following setup, which is in line with
the geometric deep learning blueprint (Bronstein et al., 2021) that constructs equivariant networks
as a composition of equivariant linear layers with equivariance-preserving non-linearities. Let G be
a compact group with normalised Haar measure λ, and consider linear maps T : L2(G)→L2(G)
on the Hilbert space of square-integrable complex functions,

L2(G) = {f : G→ C}, ⟨f, h⟩ =
∫
G

f(g)h(g) dλ(g). (10)

We study equivariance with respect to the (left) regular representation τ : G → U(L2(G)) defined
by

(τ(g)f)(x) = f(g−1x), x, g ∈ G. (11)

We denote by Ĝ the set of equivalence classes of finite-dimensional irreducible representations of
G and call it the unitary dual of G. Each [π] ∈ Ĝ has a representative π : G → U(Vπ) with
dπ = dimVπ . For f ∈ L2(G), we define the (non-abelian) Fourier transform as

f̂(π) :=

∫
G

f(g)π(g)∗ dλ(g) ∈ End(Vπ). (12)

In the following, using tools from Fourier analysis on compact groups, we will derive that the pro-
jection operator of Equation 1 can be computed efficiently in Fourier space.
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f ∈ L2(G) finv ∈ L2(G)

f̂ : Ĝ →
⋃

π U(Vπ) f̂inv = f̂inv : Ĝ →
⋃

π U(Vπ)

Pinv

FT FTIFT

P̂inv=δπ,1

IFT⟲

(a) Invariance: keep only the trivial representation
and discards all other frequencies.

T : L2(G,Vin) → L2(G,Vout) Tequiv : L2(G,Vin) → L2(G,Vout)

T̂ =
{
T̂ (π, σ)

}
π,σ∈Ĝ

T̂equiv =
⊕

π∈Ĝ

(
IVπ ⊗Wπ

)

Pequiv

Peter–Weyl Peter–Weyl

P : {Tπσ}7→{δπ,σ Avπ(Tππ)}

⟲

(b) Equivariance: zero out off-diagonals (π ̸= σ) and
average within each frequency block to obtain IVπ ⊗
Bπ .

Figure 1: Commutative diagrams showing how to apply the projection operator in Fourier space.

Theorem 3.5 (Informal). Equivariant linear maps are block-diagonal in the frequency domain (one
block per irreducible representation). Hence, the projection onto equivariant subspaces acts by
zeroing out all off-diagonal terms.

Hence, whenever an efficient Fourier transform is available (e.g., on regular grids) or the model is
already parameterised spectrally (e.g., eSEN (Fu et al., 2025)), imposing equivariance reduces to
diagonalising the relevant linear operators in the spectral domain.

3.3 INVARIANT FUNCTIONS IN FOURIER SPACE

In this subsection, we show that an invariant function f ∈ L2(G) only has trivial non-zero Fourier
coefficients.

Lemma 3.6. Let f ∈ L2(G) be left invariant with respect to the regular representation τ , i.e.
f(hg) = f(g) for all h, g ∈ G. Then f̂(π) is non-zero if and only if π is the trivial representation
1 : g 7→ IC.

Proof. See Appendix A.3.

Corollary 3.7. Let f ∈ L2(G) be any function on G and set Pinv to be the invariant projection.
Then P̂inv(f)(π) = f̂(π)δπ,1.

Proof. See Appendix A.4

In Figure 1a, we schematically depict how we can exploit the simple structure of the projection in
the spectral domain P̂inv to efficiently calculate the smoothing operator Pinv.

3.4 EQUIVARIANT MAPS ARE DIAGONAL ACROSS FREQUENCIES

Having shown the projection in the spectral domain for the invariant case, we now turn towards the
case of equivariance. It turns out that in this case the projection acts by zeroing out all off-diagonal
terms and averages over the rest. We can formalise this as follows:

Theorem 3.8. Let T : L2(G) → L2(G) be a linear function which is equivariant with respect to
the (left) regular representation, i.e. τ(g) ◦ T = T ◦ τ(g) for all g ∈ G. Then T decomposes as
follows:

T̂ ∼=
⊕
π∈Ĝ

IVπ
⊗Bπ (13)

for some B ∈ End(V ∗
π ) (one for each π). Equivalently, on Fourier coefficients:

T̂ (f)(π) = f̂(π)k̂(π) (14)

with Bπ
∼= k̂(π)∗.

Proof. See Appendix A.5.
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This means that an equivariant linear map T does not mix between irreps; it is block-diagonal. We
now show what this means for the projection of a general linear operator T .

Corollary 3.9. Let T : L2(G)→ L2(G) be linear and set Pequiv(T ) to be its equivariant projection.
Then for each [π] ∈ Ĝ, there exists Bπ ∈ End(V ∗

π ) such that for all f ∈ L2(G),

̂P (T )(f)(π) = f̂(π)Bπ. (15)

3.5 VECTOR-VALUED SIGNALS AND FIBER-WISE PROJECTION

Thus far we treated scalar signals f ∈ L2(G). In many applications (e.g. steerable CNNs Cohen
& Welling (2017), tensor fields) one works with vector-valued signals taking values in a finite-
dimensional unitary G-module (V, ρ). Define

L2(G,V ) ∼= L2(G)⊗ V with action
(
(τ⊗ρ)(g)f

)
(x) = ρ(g) f(g−1x). (16)

More generally, for an operator T : L2(G,Vin)→L2(G,Vout) we measure equivariance with respect
to the pair of actions τ⊗ρin (on the domain) and τ⊗ρout (on the codomain), i.e.

(τ⊗ρout)(g) ◦ T = T ◦ (τ⊗ρin)(g) ∀g ∈ G. (17)

As in the scalar case, Pequiv is an idempotent, self-adjoint projection onto the equivariant subspace
and we can analogously show that a projected map T will have block-diagonal structure. Indeed, a
Peter–Weyl–type decomposition yields the following (details in Appendix B):

Theorem 3.10. Let T : L2(G,Vin) → L2(G,Vout) be linear. Then the equivariant projection
decomposes as

̂Pequiv(T ) ∼=
⊕
π∈Ĝ

(
IVπ
⊗Wπ

)
(18)

with

Wπ =

∫
G

(
π(g)∗⊗ρout(g)

)
T̂ (π, π)

(
π(g)⊗ρin(g)−1

)
dλ(g). (19)

In particular, every equivariant T is block-diagonal across frequencies and acts as the identity on
Vπ and as an intertwiner on the fiber–multiplicity space V ∗

π ⊗V .

Hence, we have seen how the equivariance projection can be efficiently calculated in Fourier space:
Given a (possibly non-equivariant) linear map T :

1. Compute the Fourier transform of T ’s kernel or matrix representation to obtain the fre-
quency blocks T̂ (π, σ).

2. Zero all off-diagonal blocks: T̂ (π, σ)← 0 for π ̸= σ.

3. For each π, project T̂ (π, π) onto HomG(π
∗⊗ρin, π∗⊗ρout) using the averaging formula

for Bπ above.

4. Inverse Fourier transform to obtain Pequiv(T ) in the spatial domain.

We visualise this approach in the commutative diagram in Figure 1b and provide a pseudo-code
implementation in Appendix C.

4 EXPERIMENTS

In this section, we conduct three sets of experiments to demonstrate the feasibility and efficiency
of our approach to learn (approximate) equivariance from data. For implementation details and
information on hyperparameters, see Appendix D.
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(T) = 3.02e+01
G = 1.0, = 0.0001

(T) = 2.43e+01
G = 0.001, = 0.0001

(T) = 3.02e+01
G = 0.0001, = 0.0001

(T) = 1.10e+01
G = 0.0001, = 0.001

(T) = 1.53e-02
G = 0.0001, = 1.0

Figure 2: Controlling the degree of learned SO(2) invariance by tuning the parameters λG and λ⊥,
which penalise the projections of the equivariant and non-equivariant components, respectively.

4.1 EXAMPLE: LEARNED SO(2) INVARIANCE

We first want to illustrate the approach in Section 3 on a simple toy problem (Figure 2). The task is
binary classification on two point clouds in R2. Using polar coordinates (r, θ), we sample an inner
disk-shaped cloud (blue, label +1), and the outer angular section of an annulus (red, label −1). We
then train an approximately SO(2)-invariant MLP with the following structure on this dataset: We
first project inputs (x, y) ∈ R2 onto circular harmonics up to degree M , adding C radial channels
via radial embedding functions, to obtain equivariant irreps features H ∈ C(2M+1)×C . We then
apply two fully connected complex linear layers

L1 : C(2M+1)×C→ C(2M+1)×Chid , L2 : C(2M+1)×Chid→ C(2M+1)×Chid ,

followed by an SO(2)-equivariant tensor product. Lastly, we extract the invariant component and
pass its real part through a final real-valued linear head Lfinal : RChid → R to produce the scalar
logit. For a more in-depth description of this architecture, see Appendix D.1.

In this setting, the projection onto the equivariant subspace reduces to masking. Let Wi ∈
C((2M+1)C)×((2M+1)C) denote the flattened weight matrix of an intermediate linear layer. Define
the mask M ∈ R((2M+1)C)×((2M+1)C) by

M(m1,c1),(m2,c2) = δm1,m2 ,

i.e., only blocks with matching harmonic order m are kept. The projected weights are P (Wi) =
M ⊙Wi, where ⊙ denotes elementwise multiplication. The overall objective is

L = Ltask + λG

∑
i

∥Wi∥ + λ⊥
∑
i

∥Wi −M ⊙Wi∥,

with λG, λ⊥ ≥ 0 and Ltask the standard classification loss.

In Figure 2, we compare trained models across different settings of (λG, λ⊥). From left to right, we
first reduce λG and then increase λ⊥, enforcing progressively stronger invariance. As the regulari-
sation intensifies, the decision boundary becomes increasingly SO(2)-invariant, confirming that the
proposed projection-based regulariser effectively pushes the model toward invariance. Consistently,
the empirical equivariance defect

Eemp(T ) =
∑
k,l

∥∥∥ρout(gl)T (xk) − T
(
ρin(gl)xk

)∥∥∥ (20)

with k ranging over data samples and gl drawn as random rotations in SO(2), decreases from left to
right.

4.2 IMPERFECTLY SYMMETRIC DYNAMICAL SYSTEMS

In this section, we follow the experimental design of Wang et al. (2022c) and evaluate our regulariser
when applied to their relaxed group and steerable convolutional layers. Using PhiFlow (Holl &
Thuerey, 2024), we generate 64× 64 two-dimensional smoke advection–diffusion simulations with
varied initial conditions under relaxed symmetries. Each network is trained to predict the velocity
field one step ahead.
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To test generalisation, we consider two out-of-distribution settings. In the Future setting, models
predict velocity fields at time steps that are absent from the training distribution, while remaining
within spatial regions that were seen during training. In the Domain setting, we evaluate at the same
time indices as training but at spatial locations that were not seen. The data are produced to break
specific symmetries in a controlled way: for translation, we generate series for 35 distinct inflow
positions and split the domain horizontally into two subdomains with different buoyancy forces so
that plumes diffuse at different rates across the interface; for discrete rotation, we simulate 40 com-
binations of inflow position and buoyancy, where the inflow pattern alone is symmetric under 90◦
rotations about the domain centre but a position-dependent buoyancy factor breaks rotational equiv-
ariance; and for scaling, we run 40 simulations with different time steps ∆t and spatial resolutions
∆x to disrupt scale equivariance.

We compare the relaxed group convolutional networks (RGroup) and relaxed steerable CNNs
(RSteer) introduced by Wang et al. (2022c) with several baselines: a standard CNN (Conv), an
equivariant convolutional network (Equiv) (Weiler & Cesa, 2019; Sosnovik et al., 2020), Residual
Pathway Priors (RPP) (Finzi et al., 2021), a locally connected network with an explicit equivari-
ance penalty in the loss (CLNN) and Lift (Wang et al., 2022a). We indicate the addition of our
regulariser with the suffix +Reg.

Across these settings, incorporating our regulariser preserves performance when approximate trans-
lation equivariance holds and delivers substantial improvements in the rotation and scaling regimes.
In short, the penalty promotes the desired approximate equivariance where symmetry is only par-
tially present, without degrading accuracy where the symmetry is already well aligned with the data.

Table 1: Results on three synthetic smoke-plume datasets exhibiting approximate symmetries. Fu-
ture indicates that the test set occurs after the training period; Domain indicates that training and
test sets come from different spatial regions. Adding our proposed equivariance regulariser (+Reg)
consistently improves performance.

Model Conv Equiv Rpp CLCNN Lift RGroup +Reg RSteer +Reg

Translation Future — 0.94±0.02 0.92±0.01 0.92±0.01 0.87±0.03 0.71±0.01 0.72±0.01 — —
Domain — 0.68±0.05 0.93±0.01 0.89±0.01 0.70±0.00 0.62±0.02 0.62±0.01 — —

Rotation Future 1.21±0.01 1.05±0.06 0.96±0.10 0.96±0.05 0.82±0.08 0.82±0.01 0.80±0.01 0.80±0.00 0.79±0.00

Domain 1.10±0.05 0.76±0.02 0.83±0.01 0.84±0.10 0.68±0.09 0.73±0.02 0.67±0.01 0.67±0.01 0.58±0.00

Scaling Future 0.83±0.01 0.75±0.03 0.81±0.09 1.03±0.01 0.85±0.01 0.80±0.01 0.81±0.00 0.70±0.01 0.62±0.01

Domain 0.95±0.02 0.87±0.02 0.86±0.05 0.83±0.05 0.77±0.02 0.88±0.01 0.88±0.02 0.73±0.01 0.69±0.01

4.3 CT-SCAN METAL ARTIFACT REDUCTION

We compare our approach with a sample-based equivariance penalty on metal artefact reduction
(MAR) for CT scans. Metal implants introduce characteristic streaking artefacts that obscure clini-
cally relevant structures. The task is to map a corrupted slice to its artefact-reduced counterpart.

We use the AAPM CT-MAR Grand Challenge datasets (AAPM, 2022a;b), comprising 14,000 head
and body CT slices with synthetic metal artefacts (Table 2 and Appendix D.3, Figure 3 for a visual
comparison). The datasets were generated with the open-source CT simulation environment XCIST
(Wu et al., 2022), using a hybrid data-simulation framework that combines publicly available clinical
images (Yan et al., 2018; Goren et al., 2017) and virtual metal objects.

Following Bai et al. (2025), we adapt three convolution-based architectures ACDNet (Wang et al.,
2022b), DICDNet (Wang et al., 2021) and OSCNet (Wang et al., 2023) by encouraging rotation
equivariance with respect to the discrete group C4 (rotations by multiples of 90◦). We compare the
unregularised baselines, the sample-based regulariser of Bai et al. (2025), and the same networks
equipped with our projection-based regulariser.

For steerable CNN layers whose channels are organised into orientation groups of four, the layer-
wise projection acting on a kernel K ∈ RC′

out×C′
in×4×4×s×s is

Pequiv(K) = 1
4

3∑
r=0

Sr
(
rotrK

)
S−r, (21)

where S is the 4 × 4 cyclic-shift matrix on orientation channels and rotr rotates the spatial kernel
by 90◦r. For a derivation of this expression, see Appendix D.3.2.
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Table 2: CT-scan metal artefact reduction on the AAPM challenge dataset. We compare baselines,
the sample-based regulariser of Bai et al. (2025), and our projection-based regulariser. We report
PSNR/SSIM and training throughput. Due to higher memory usage, the sample-based regulariser
supports batch sizes ≤ 4, whereas baselines and ours scale to 12.

Model
Throughput (Samples / GPU-sec ↑) AAPM Challenge Dataset

fixed-batch (4) max-feasible (4-12) PSNR ↑ SSIM ↑

ACDNet (Wang et al., 2022b) 4.90 5.20 42.08 0.9559
+ sample-based (Bai et al., 2025) 2.33 2.33 40.02 0.9623
+ projection-based (ours) 4.39 4.99 42.68 0.9620

DICDNet (Wang et al., 2021) 8.38 9.72 41.44 0.9468
+ sample-based (Bai et al., 2025) 3.08 3.08 41.47 0.9464
+ projection-based (ours) 5.77 7.82 41.52 0.9605

OSCNet (Wang et al., 2023) 8.59 9.86 42.36 0.9596
+ sample-based (Bai et al., 2025) 3.34 3.34 41.50 0.9593
+ projection-based (ours) 5.71 7.88 41.88 0.9612

In contrast, Bai et al. (2025) penalise a sample-based term that samples both a data point and a group
element. For each sample x they draw a random r ∈ C4 and add

Lequiv(x, r) =
∥∥Sr rotr K(x) − K

(
Sr rotrx

)∥∥2 (22)

to the task loss. This requires an extra forward pass per sampled rotation and sample, and the
estimate has sampling variance from both x and r. By contrast, our projection-based regulariser acts
in parameter space via the fixed orthogonal projector Pequiv(·), does not sample rotations or data,
introduces no extra forward passes, and has zero estimator variance.

We report peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and training throughput
on a single A100 GPU under two regimes. In the fixed-batch setting, we use batch size 4 for all
methods. In the max-feasible setting, the sample-based regulariser remains at batch size 4 (limited
by the extra forward/activation memory), whereas the baselines and our projection-based regulariser
scale to batch size 12 due to unchanged per-sample compute and memory.

Our projection-based regulariser delivers competitive or superior reconstruction quality, surpassing
the sample-based penalty in all metrics across all settings but one, and improving over the unreg-
ularised baselines in most cases. Owing to the extra forward pass in Equation 22, the sample-
based approach is constrained to smaller batch sizes and lower throughput. Even under the fixed-
batch protocol, its throughput is 42–47% lower than ours; under the max-feasible protocol, the gap
widens to 54–61%. These results indicate that projection-based regularisation achieves stronger
C4-equivariance with better hardware efficiency by avoiding per-sample group sampling.

5 CONCLUSION

In this work, we introduced projection-based regularisation - a theoretically grounded approach to
learned equivariance which directly penalises model weights and regularises over the entire group
instead of only point-wise, per-sample regularisation. For operators for which no closed-form so-
lution of the projection can be computed efficiently in the spatial domain, we provide a general
framework for computing the projection efficiently in Fourier space by masking. The experiments
demonstrate that across synthetic and real-world experiments, covering both finite and continuous
symmetry groups, the proposed approach improves both task performance and runtime.

Limitations and future work. A limitation of the proposed approach is that the penalty term
needs to be derived anew for each model architecture and group operation. Also, current experiments
only evaluate the proposed method for relatively simple groups. In future work, we plan to extend
this approach to more complex group structures consisting of several subgroups with applications in
e.g. material sciences.
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5.1 REPRODUCIBILITY STATEMENT

Reproducibility Statement: We performed our experiments on public datasets and included all nec-
essary hyperparameters in Appendix D. Throughout Section 3, we clearly state all our theoretical
assumptions, in particular in the statements of Theorems 3.8 and 3.10. We will publish the source
code with evaluation scripts to reproduce the experiments with the camera-ready version.
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A PROOFS IN SECTION 3

A.1 PROOF OF LEMMA 3.2

Proof of Lemma 3.2. By definition of P ,

T − P (T ) =

∫
G

πout(g)
∗(πout(g) ◦ T − T ◦ πin(g)

)
dλ(g) =

∫
G

πout(g)
∗ ∆g(T ) dλ(g). (23)

Pre-/post-composition with the unitaries πout(g)
∗ preserves the Lipschitz seminorm, and the semi-

norm of an average is at most the average of the seminorms. Hence

∥T − P (T )∥ ≤
∫
G

∥∆g(T )∥ dλ(g) ≤ sup
g∈G
∥∆g(T )∥ = E(T ), (24)

giving the lower bound. For the upper bound, note that P (T ) is G-equivariant, and therefore,

∆g(T ) = πout(g)
(
T − P (T )

)
−
(
T − P (T )

)
πin(g). (25)

Taking Lipschitz seminorms and using that πin/out(g) are unitaries,

∥∆g(T )∥ ≤ ∥T − P (T )∥+ ∥T − P (T )∥ = 2 ∥T − P (T )∥. (26)

Finally, take the supremum over g ∈ G to obtain E(T ) ≤ 2∥T − P (T )∥.

A.2 PROOF OF LEMMA 3.3

Proof of Lemma 3.3. For any composable maps A,B, the equivariance defect satisfies the chain rule

∆g(A ◦B) = (∆gA) ◦B + A ◦ (∆gB). (27)

Applying this repeatedly to fk ◦ · · · ◦ f1 yields the telescoping identity

∆g(T ) =

k∑
i=1

(
fk ◦ · · · ◦ fi+1

)
◦∆g(fi) ◦

(
fi−1 ◦ · · · ◦ f1

)
. (28)

Taking norms and using ∥X ◦ Y ∥ ≤ Lip(X) ∥Y ∥ together with Lip(fj) = Lj to obtain

∥∆g(T )∥ ≤
k∑

i=1

(
k∏

m=i+1

Lm

)
∥∆g(fi)∥

(
i−1∏
m=1

Lm

)
. (29)

Finally, take supg∈G on both sides and note that E(T ) = supg ∥∆g(T )∥ and E(fi) =
supg ∥∆g(fi)∥ to obtain the stated bound.

A.3 PROOF OF LEMMA 3.6

Proof of Lemma 3.6. We define the invariance operator of a function f ∈ L2(G) as

finv(g) =

∫
G

f(hg) dλ(h) (30)

The Fourier coefficients of this are

f̂inv(π) =

∫
G

finv(g)π(g)
∗ dλ(g) (31)

=

∫
G

(∫
G

f(hg) dλ(h)

)
π(g)∗ dλ(g) (32)

=

∫
G

f(x)

(∫
G

π(h−1x)∗ dλ(h)

)
dλ(x) substituting x = hg =⇒ g = h−1x (33)

=

∫
G

f(x)

(∫
G

π(h−1)∗ dλ(h)

)
π(x)∗ dλ(x) (34)

=

∫
G

f(x)

(∫
G

π(h)∗ dλ(h)

)
π(x)∗ dλ(x). invariance of Haar measure (35)
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Define Aπ :=
∫
G
π(h)∗ dλ(h) ∈ End(Vπ). Note that Aπ is π-equivariant; indeed, for all g ∈ G,

π(g)Aπ =

∫
G

π(g)π(h)∗ dλ(h) (36)

=

∫
G

π(gh−1) dλ(h) (37)

=

∫
G

π(k)∗π(g) dλ(k) substituting k = ghg−1 =⇒ gh−1 = k−1g (38)

= Aπ π(g), (39)

Hence by Schur’s lemma (since π is irreducible), we have

Aπ ∈ EndG(Vπ) ∼= {λI : λ ∈ C}.
So Aπ = λI for some λ ∈ C.

Now,

trAπ =

∫
G

tr
(
π(h)∗

)
dλ(h) =

∫
G

χπ(h) dλ(h) =

∫
G

χπ(h) dλ(h). (40)

But the characters χπ are orthonormal, so denoting the trivial representation g 7→ 1 by 1, i.e. have
χ1(g) = 1 for all g, we have∫

G

χπ(g) dλ(g) =

∫
G

χπ(g)χ1(g) dλ(g) = ⟨χπ(g), χ1(g)⟩L2(G) = δπ,1. (41)

Finally, this gives

dπλ = trAπ = =⇒ λ =
δπ,1
dπ

=

{
0, π ̸= 1,
1
dπ

, π = 1.
(42)

Substituting this into the above yields

f̂inv(π) =
1

dπ
f̂(π)δπ,1. (43)

A.4 PROOF OF COROLLARY 3.7

Proof of Corollary 3.7. Since Pinv is a projection onto the G-invariant subspace, Pinv(f) is always
invariant. Hence, by Lemma 3.6, P̂inv(f)(π) is zero for all π ̸= 1. Now note that by invariance,
Pinv(f)(g) = c for all g ∈ G for some c ∈ C. We then calculate

P̂inv(f)(1) =

∫
G

Pinv(f)(g) 1(g)
∗ dλ(g) =

∫
G

Pinv(f)(g) dλ(g) =

∫
G

c dλ(g) = c. (44)

At the same time
f̂(1) =

∫
G

f(g) 1(g)∗dλ(g) =

∫
G

f(g)dλ(g) = c. (45)

which concludes the proof.

A.5 PROOF OF THEOREM 3.8

Proof of Theorem 3.8. By the Peter–Weyl theorem there is a unitary isomorphism

L2(G) ∼=
⊕
π∈Ĝ

Vπ ⊗ V ∗
π ,

under which the left regular action is τ(g) ∼=
⊕

π

(
π(g) ⊗ IV ∗

π

)
. Any linear map T on L2(G)

becomes a block matrix T = (Tπ→π′)π,π′ with Tπ→π′ ∈ Hom(Vπ⊗V ∗
π , Vπ′⊗V ∗

π′). The equivariance
condition τ(g)T = Tτ(g) for all g reads, blockwise,(

π′(g)⊗ IV ′
π

)
Tπ→π′ = Tπ→π′

(
π(g)⊗ IVπ

)
∀g ∈ G.
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Thus each Tπ→π′ is an intertwiner from π ⊗ 1 to π′ ⊗ 1. By Schur’s lemma, if π ̸≃ π′ then
Tπ→π′ = 0. Hence T is block-diagonal across distinct irreps:

T ∼=
⊕
π

Tπ, Tπ ∈ End(Vπ ⊗ V ∗
π ).

Now choose Aπ ∈ End(Vπ), Bπ ∈ End(V ∗
π ) such that

T ∼=
⊕
π

Aπ ⊗Bπ.

Again by Schur’s lemma, Aπ must be a scalar multiple of IVπ ; this scalar can be absorbed into Bπ ,
which gives the desired decomposition in Equation 13.

B DETAILS ON VECTOR-VALUED SIGNALS

Fourier description. Peter–Weyl yields the unitary decomposition

L2(G) ∼=
⊕
π∈Ĝ

Vπ ⊗ V ∗
π , L2(G,V ) ∼=

⊕
π∈Ĝ

Vπ ⊗
(
V ∗
π ⊗ V

)
,

where G acts by π on the first tensor factor and trivially on V ∗
π , while the fiber transforms by ρ.

Accordingly, any bounded linear map T : L2(G,Vin)→L2(G,Vout) admits a block form

T̂ ∼=
(
T̂ (π, σ)

)
π,σ∈Ĝ

, T̂ (π, σ) : Vσ⊗
(
V ∗
σ ⊗Vin

)
−→ Vπ⊗

(
V ∗
π ⊗Vout

)
.

Averaging equation ?? annihilates all off-diagonal (π ̸= σ) blocks and, on each frequency π, or-
thogonally projects T̂ (π, π) onto the intertwiner space

HomG

(
π∗⊗ρin , π∗⊗ρout

)
.

Theorem B.1 (Theorem 3.10 restated). Let T : L2(G,Vin)→L2(G,Vout) be linear. Then

̂Pequiv(T ) ∼=
⊕
π∈Ĝ

(
IVπ
⊗Bπ

)
, (46)

Bπ =

∫
G

(
π(g)∗⊗ρout(g)

)
T̂ (π, π)

(
π(g)⊗ρin(g)−1

)
dλ(g), (47)

with Bπ ∈ HomG

(
π∗⊗ρin, π∗⊗ρout

)
. In particular, every equivariant T is block-diagonal across

frequencies and acts as the identity on Vπ and as an intertwiner on the fiber–multiplicity space
V ∗
π ⊗V .

Sketch. Decompose both domain and codomain via Peter–Weyl and write T̂ in blocks T̂ (π, σ).
Conjugation by (τ⊗ρ) restricts, on the (π, π) block, to the representation π∗⊗ρout on the codomain
multiplicity and π∗⊗ρin on the domain multiplicity. Averaging is the orthogonal projection onto the
commutant, hence onto HomG(π

∗⊗ρin, π∗⊗ρout), and kills π ̸= σ by Schur orthogonality. The
displayed formula is the explicit Bochner average of that projection.

C PSEUDO-CODE IMPLEMENTATION OF EQUIVARIANCE REGULARISATION

Algorithm 1 Python-like pseudocode for calculating the equivariant projection-based in Fourier
space.

# input - model weight w
1: function PROJECT TO EQUIVARIANT(w)
2: ŵ ← forward ft(w) # compute the forward Fourier transform over spatial indices
3: ŵequiv ← diag(ŵ) # zero out off-diagonal terms
4: wequiv ← inverse ft(ŵequiv) # compute the inverse Fourier transform over spatial indices
5: return wequiv
6: end function
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Algorithm 2 Python-like pseudocode for calculating the projection-based penalty.

# input - model
1: pen← 0 # accumulated non-equivariance penalty
2: for l in model.layers do # iterate over linear model layers
3: w ← l.weigth
4: wequiv ← project to equivariant(w)
5: pen← pen + ∥w − wequiv∥2
6: end for
7: return pen

D IMPLEMENTATION DETAILS

In this section, we provide additional information on the implementation details of all of our exper-
iments.

D.1 EXAMPLE: LEARNED SO(2) INVARIANCE

Data generation. Using polar coordinates (r, θ), we sample the inner cloud (blue, label +1) by
drawing r ∼ Unif[0, 1] and θ ∼ Unif[0, 2π), and the outer cloud (red, label −1) by drawing
r ∼ Unif[2.3, 3] and θ ∼ Unif

[
− π

4 ,
π
4

)
.

Feature map and network. We project inputs (x, y) ∈ R2 onto circular harmonics up to degree
M = 4 with C = 4 radial channels as follows: viewing (x, y) as a complex number z ∈ C with
r = |z| and ẑ = z/r, define radial basis functions

bn(r) = exp
(
− (r − cn)

2

2σ2

)
, σ = 0.5, cn uniform in [0, 4], n = 1, . . . , C.

Form the order-m harmonic features by h(m)(r, ẑ) =
(
bn(r) ẑ

m
)C
n=1

for m = −M, . . . ,M , and
concatenate across m to obtain the embedding

H ∈ C(2M+1)×C .

We then apply two fully connected complex linear layers

L1 : C(2M+1)×C→ C(2M+1)×Chid , L2 : C(2M+1)×Chid→ C(2M+1)×Chid ,

followed by an SO(2)-equivariant tensor product:

h′
mout

=
∑

m1+m2=mout

hm1
hm2

,

with complex multiplication applied channel-wise. We then extract the invariant component h′
0 and

pass its real part through a final real-valued linear head Lfinal : RChid → R to produce the scalar
logit.

Training setup. We then train a new model for each combination of λG, λ⊥ (see Figure 2) using
the Adam optimiser Kingma & Ba (2014) for 200 epochs with a learning rate of 0.003. We use a
binary cross-entropy loss as task-specific loss.

D.2 IMPERFECTLY SYMMETRIC DYNAMICAL SYSTEMS

For each baseline, relaxed group convolution (RGroup) and relaxed steerable CNN (RSteer),
and for each symmetry setting, we conduct a hyperparameter sweep over learning rate, batch size,
hidden width, number of layers, and the number of rollout steps used to compute prediction errors
during training, using the same search ranges as Wang et al. (2022c) (see Table 3). We also tune the
number of filter banks for group-convolution models and the coefficient for the non-equivariance
penalty λ⊥ for relaxed weight-sharing models. The input sequence length is fixed to 10. To ensure
a fair comparison, we cap the total number of trainable parameters for every model at no more than
107.
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Table 3: Hyperparameter tuning range for the asymetric smoke simulation data.

LR Batch size Hid-dim Num-layers Num-banks #Steps for Backprop λ⊥
10−2 ∼ 10−5 8 ∼ 64 64 ∼ 512 3 ∼ 6 1 ∼ 4 3 ∼ 6 0, 10−2, 10−4, 10−6

D.3 CT SCAN METAL ARTIFACT REDUCTION

Input crop

Ground truth crop

Full input slice

AC
DN

et

Vanilla Stochastic Reg. Projection Reg.

DI
CD

Ne
t

OS
CN

et

Figure 3: Qualitative comparison of the baseline methods (left column) with each of the sample-
based (middle column) and our projection-based regulariser (right column) on the metal artefact
reduction task. We show a cropped pelvic slice containing two metallic implants that generate
artefacts.

D.3.1 HYPERPARAMETERS

For the most part, we use the same hyperparameters as Bai et al. (2025). We train for 80 epochs with
a batch size of 12 for the baselines and our projection-based regulariser, and a batch size of 4 for the
sample-based regulariser. We set the patch size at 256×256. Optimization uses Adam Kingma &
Ba (2014) (β1=0.5, β2=0.999) with initial learning rate η0=2×10−4 and a MultiStepLR scheduler
(milestones at epochs {50, 100, 150, 200}, decay factor γ=0.5). The model hyperparameters are
summarised in Table 4.

Table 4: Hyperparameters for the CT-MAR experiments.

Parameter Value
N (feature maps) 8
Np (concat channels) 35
d (dict. filters) 32
Residual blocks / ResNet 3
Stages T 10

The scalar weight for sample-based regulariser is set at 106. To set ours, we performed a hyperpa-
rameter sweep over the set {1.0, 10−1, . . . , 10−6} and chose λG = 1.0.
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D.3.2 PROJECTION ONTO THE C4-EQUIVARIANT KERNEL SUBSPACE

We consider steerable CNN layers whose input and output feature spaces are arranged in orientation
groups of four (regular-representation channels) for the discrete rotation group C4 = {0, 1, 2, 3}
(multiples of 90◦). Let

K ∈ RC′
out×C′

in×4×4×s×s

denote an s × s convolution kernel with output block index p ∈ {1, . . . , C ′
out}, input block index

q ∈ {1, . . . , C ′
in}, orientation indices α, β ∈ {0, 1, 2, 3}, and spatial indices (i, j) ∈ {0, . . . , s−1}2.

Let S be the 4× 4 cyclic-shift matrix so that the channel representations of C4 act by ρout(r) = Sr

and ρin(r) = Sr for r ∈ {0, 1, 2, 3}. Write rotr for rotation of the spatial kernel by 90◦r (with
exact index permutation on the discrete grid).

The natural action of C4 on kernels combines spatial rotation with orientation-channel permutations:(
A(r)K

)
= ρout(r)

(
rotrK

)
ρin(r)

−1 = Sr
(
rotrK

)
S−r. (48)

The orthogonal projector onto this subspace is the (finite) Haar average of the action:

P (K) = 1
4

3∑
r=0

Sr
(
rotrK

)
S−r. (49)

Index-wise, for any (p, q, α, β, i, j), this reads

[
P (K)

]
p,α; q,β

[i, j] = 1
4

3∑
r=0

[
rotrK

]
p,α−r; q,β−r

[i, j]. (50)

Since equation 49 is the average of unitary (permutation + rotation) actions, P is an orthogonal
projector: P 2 = P and P⊤ = P . In practice, equation 49 yields an efficient, exact implementation
requiring only four 90◦ rotations and two inexpensive orientation-channel permutations per term.

E DECLARATION OF LLM USE

We used LLMs to aid during the writing process for proof-reading, spell checking, and to polish
writing.
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