

000 APPROXIMATE EQUIVARIANCE VIA PROJECTION-BASED REGU- 001 002 LARISATION

003
004 **Anonymous authors**
005 Paper under double-blind review

006 007 008 ABSTRACT

009
010
011 Equivariance is a powerful inductive bias in neural networks, improving generalisation and physical
012 consistency. Recently, however, non-equivariant models have regained attention, due to their better
013 runtime performance and imperfect symmetries that might arise in real-world applications. This
014 has motivated the development of approximately equivariant models that strike a middle ground
015 between respecting symmetries and fitting the data distribution. Existing approaches in this field
016 usually apply sample-based regularisers which depend on data augmentation at training time, incurring
017 a high sample complexity, in particular for continuous groups such as $SO(3)$. This work instead
018 approaches approximate equivariance via a projection-based regulariser which leverages the orthog-
019 onal decomposition of linear layers into equivariant and non-equivariant components. In contrast
020 to existing methods, this penalises non-equivariance at an operator level across the full group orbit,
021 rather than point-wise. We present a mathematical framework for computing the non-equivariance
022 penalty exactly and efficiently in both the spatial and spectral domain. In our experiments, our
023 method consistently outperforms prior approximate equivariance approaches in both model perfor-
024 mance and efficiency, achieving substantial runtime gains over sample-based regularisers.

025 1 INTRODUCTION

026 Over the past few years, equivariance has been proven to be a powerful design principle for machine learning models
027 across chemistry (Thomas et al., 2018; Satorras et al., 2021; Brandstetter et al., 2022; Hoogeboom et al., 2022; Xu
028 et al., 2024), physics (Bogatskiy et al., 2020; Spinner et al., 2024; Brehmer et al., 2025), robotics (Hoang et al., 2025),
029 and engineering (Toshev et al., 2023).

030 Recently, however, there has been a shift back towards non-equivariant models, most prominently AlphaFold-
031 3 (Abramson et al., 2024). Non-equivariant architectures often allow more flexible feature parameterisations and can
032 be easier to optimise because the search is not restricted to an equivariant hypothesis class. This broader parameter
033 space may enable the optimiser to find better minima than if it was confined to strictly equivariant models (Pertigkio-
034 zoglou et al., 2024). Moreover, many existing equivariant architectures rely on specialised tensor products to preserve
035 symmetry (Weiler & Cesa, 2019; Brandstetter et al., 2022), which can be less efficient to compute on modern GPUs
036 than dense matrix–vector operations.

037 At the same time, recent work demonstrates that equivariance remains a valuable inductive bias even at scale (Brehmer
038 et al., 2024), and, for example, state-of-the-art molecular property prediction models continue to leverage it (Liao &
039 Smidt, 2023; Liao et al., 2024; Fu et al., 2025). This motivates approaches that retain the benefits of equivariance
040 without incurring its full constraints or computational costs.

041 A common approach here is to promote equivariance in otherwise non-equivariant architectures at the level of samples
042 - for example via data augmentation (as in AlphaFold-3 (Abramson et al., 2024)) or pointwise equivariance penal-
043 ties (Bai et al., 2025). In this work, we take a different perspective and introduce *projection-based equivariance*
044 *regularisation*, a novel framework which allows tuning equivariance into any neural architecture on the operator level,
045 thereby directly affecting the model weights.¹ Our primary contributions are:

- 046 • We propose a theoretically-grounded approach to regularise general machine learning models towards exact
047 equivariance.
- 048 • Making use of the orthogonal decomposition of functions into equivariant and non-equivariant components,
049 we are able to penalise non-equivariance on an operator level over the whole group orbit.

050
051
052
053 ¹Source code will be released with the camera-ready version.

- We show how to efficiently calculate the closed-form projection by working in the Fourier domain, allowing efficient regularisation for continuous groups such as $SO(n)$.
- We empirically demonstrate improvements over existing approaches for approximate equivariance, consistently achieving better task performance and have especially large gains in run-time over sample-based regularisers.

1.1 RELATED WORK

A growing body of work relaxes strictly equivariant architectures to better capture approximate or imperfect symmetries in data. Finzi et al. (2021) model departures from symmetry by adding a small non-equivariant “residual” pathway to an otherwise equivariant network. Romero & Lohit (2022) introduce partial group convolutions that activate only on a subset of group elements. For discrete groups, Wang et al. (2022c) propose relaxed group convolutions, later extended by Wang et al. (2024) to expose symmetry-breaking mechanisms; Hofgard et al. (2024) further generalise this framework to continuous groups. Veefkind & Cesa (2024) introduce a learnable non-uniform measure over the group within steerable CNNs, yielding partially equivariant SCNNs whose degree of symmetry breaking is explicitly encoded in the learned measure. Samudre et al. (2025) instead enforce approximate equivariance through group-matrix-structured convolutional layers with low displacement rank, so that symmetry and its controlled violation are encoded as proximity to the group-matrix manifold, leading to highly parameter-efficient CNNs for discrete groups. McNeela (2024) introduce Lie-algebra convolutions with a non-strict equivariance bias, and van der Ouderaa et al. (2022) relax translation equivariance using spatially non-stationary convolution kernels. On graphs, Huang et al. (2023) develop approximately automorphism-equivariant GNNs. A complementary line of work studies how to measure equivariance (or its violation) and use it in training objectives Finzi et al. (2021); van der Ouderaa et al. (2022); Gruver et al. (2023); Otto et al. (2023); Petrache & Trivedi (2023). Another common approach focusses on regularisation towards equivariance. Bai et al. (2025) penalise pointwise deviations from equivariance constraints, Kouzelis et al. (2025) incorporate approximate symmetry in VAEs for generative modelling, and Zhong et al. (2023) apply related ideas to depth and normal prediction. Finally, Pertigkiozoglou et al. (2024) improve the training behavior of equivariant models by learning a non-equivariant model and projecting it into the equivariant subspace at test time.

2 BACKGROUND

Notation. For vector spaces V and V' , we denote the *identity* on V by I_V and write $\text{Hom}(V, V')$ for the algebra of *linear homomorphisms* $V \rightarrow V'$. We write $\text{Hom}(V, V) = \text{End}(V)$. For $T \in \text{Hom}(V, V')$, its *conjugate transpose* is denoted by $T^* : V' \rightarrow V$ and the group of *unitary operators* is $U(V) = \{T : TT^* = T^*T = I_V\}$. We can define a *norm* on the space of operators between normed spaces $(V, \|\cdot\|)$ and $(V', \|\cdot\|_{V'})$ by $\|T\| = \sup_{\|v\|_V=1} \|T(v)\|_{V'}$. The

Kronecker delta $\delta_{x,y}$ is equal to 1 if $x = y$ and 0 otherwise.

Unitary representations. Given a group G , a *unitary representation* is a homomorphism $\pi : G \rightarrow U(V_\pi)$ into the unitary operators on a Hilbert space V_π ; we call the pair (V_π, π) a G -module. Two representations $\pi : G \rightarrow U(V_\pi)$ and $\pi' : G \rightarrow U(V_{\pi'})$ are said to be *isomorphic* if there exists a unitary $U : V_\pi \rightarrow V_{\pi'}$ with $\pi(g) = U \pi'(g) U^{-1}$ for all $g \in G$. A representation is *irreducible* if it is not isomorphic to a direct sum of non-zero representations $\pi \oplus \pi'$ where $\pi \oplus \pi' : G \rightarrow U(V \oplus V')$ is defined by $(\pi \oplus \pi')(g)(v, v') = (\pi(g)v, \pi'(g)v')$.

Haar measure. Let G be a compact group. The *Haar measure* λ is the unique *bi-invariant* and *normalised* measure, i.e. for all Borel sets $E \subset G$ and every $g \in G$ we have $\lambda(gE) = \lambda(Eg) = \lambda(E)$, and $\lambda(G) = 1$. We can view the Haar measure as a uniform distribution over the group G . Indeed, if G is discrete, the Haar measure becomes the discrete uniform measure with $\lambda(\{g\}) = \frac{1}{|G|}$ for all $g \in G$.

Equivariance and G -smoothing. Let $T : (V, \pi) \rightarrow (V', \pi')$ be a (bounded) linear map between G -modules. We say T is *G -equivariant* if $T(\pi(g)v) = \pi'(g)T(v)$ for all $g \in G, v \in V$. If the action on V' is trivial ($\pi'(g) = I_{V'}$), we call T *invariant*. Averaging over G yields the *G -smoothing (Reynolds) operator*

$$P(T) = \int_G \pi'(g)^* T \pi(g) d\lambda(g). \quad (1)$$

Projection onto the equivariant subspace. When π, π' are unitary, P is the orthogonal projector (with respect to the Hilbert–Schmidt inner product) from $\text{Hom}(V, V')$ onto the closed subspace of G -equivariant linear maps (Elesedy & Zaidi, 2021). The following structural decomposition will be useful.

108 Algorithm 1: Pseudo-code for the equivariant projection for finite (left) and continuous groups (right).
109
110

110 Projection for finite groups

```

1  def project_finite(W, group, rho_in,
2      rho_out):
3      W_proj = zeros_like(W)
4      for g in group:
5          W_proj += rho_out[g].conj().T @ W @
6          rho_in[g]
7      return W_proj / len(group)

```

111 Projection for continuous groups

```

1  def project_continuous(K, irreps,
2      spatial_axes):
3      K_hat = fftn(K, axes=spatial_axes)
4      for pi in irreps:
5          K_hat[pi] = mask_and_average(K_hat[
6          pi])
7      return ifftn(K_hat, axes=spatial_axes)

```

120
121 **Lemma 2.1** (Elesedy & Zaidi (2021), Lemma 1). *Let $\mathcal{H} \subset \{(V, \pi) \rightarrow (V', \pi')\}$ be a function space that is closed
122 under P (i.e. $P(T) \in \mathcal{H}$ whenever $T \in \mathcal{H}$). Define*

123 $S = \{T \in \mathcal{H} : T \text{ is } G\text{-equivariant}\}, \quad A = \ker P = \{T \in \mathcal{H} : P(T) = 0\}. \quad (2)$

124 Then P is an orthogonal projection with range S and kernel A , and hence $\mathcal{H} = S \oplus A$.125 In particular, every $T \in \mathcal{H}$ orthogonally decomposes uniquely as $T = P(T) + (T - P(T))$, where $P(T)$ is the G -
126 equivariant component S and $T - P(T) \in A$ is its G -anti-symmetric component. Moreover, we have the following:127 **Corollary 2.2.** *A function $T : (V, \pi) \rightarrow (V', \pi')$ is G -equivariant if and only if $P(T) = T$.*

132 3 EQUIVARIANT PROJECTION REGULARISATION

133 Motivated by these observations, we propose a simple framework for learning (approximately) equivariant models:
134 Let \mathcal{H} be a hypothesis class and $L_{\text{task}}(T)$ a task-specific loss function for $T \in \mathcal{H}$. We learn T by solving

135
$$T^* \in \arg \inf_{T \in \mathcal{H}} L_{\text{task}}(T) + \lambda_G \|P(T)\| + \lambda_{\perp} \|T - P(T)\|, \quad (3)$$

136 where $\lambda_G, \lambda_{\perp} \geq 0$ are hyperparameters. Intuitively, increasing λ_{\perp} (or decreasing λ_G) penalises $\|T - P(T)\|$ more
137 strongly, which encourages $P(T) = T$, steering the solution toward stronger equivariance according to Lemma 2.1.138 In what follows, we provide a theoretical justification for using $\|T - P(T)\|$ as a regulariser. Recalling that $P(T)$
139 denotes the closest equivariant operator to T , we show that the distance $\|T - P(T)\|$ is quantitatively equivalent to a
140 natural measure of non-equivariance, the *equivariance defect*.

145 3.1 BOUNDING THE EQUIVARIANCE ERROR

146 **Definition 3.1** (Equivariance defect). *Let T be a function between G -modules with actions π_{in} and π_{out} . The equivariance defect at $g \in G$ is*

147
$$\Delta_g(T) := \pi_{\text{out}}(g) \circ T - T \circ \pi_{\text{in}}(g), \quad (4)$$

148 and the worst-case defect is

149
$$\mathcal{E}(T) := \sup_{g \in G} \|\Delta_g(T)\|. \quad (5)$$

150 By Lemma 2.1 (Elesedy & Zaidi, 2021), the quantity $\mathcal{E}(T)$ vanishes if and only if T is G -equivariant. The next lemma
151 shows that this defect is effectively controlled, up to constants, by the distance to the equivariant subspace measured
152 by the projection P .153 **Lemma 3.2.** *For every (Lipschitz) function T between G -modules with unitary actions,*

154
$$\|T - P(T)\| \leq \mathcal{E}(T) \leq 2 \|T - P(T)\|. \quad (6)$$

155 *Proof.* See Appendix A.1 □

162 Lemma 3.2 shows that regularising by $\mathcal{E}(T)$ or by $\|T - P(T)\|$ is equivalent up to a factor of 2. Thus, minimising
 163 $\|T - P(T)\|$ minimises the worst-case defect.
 164

165 In practice, T will be some type of neural network architecture and is hence a composition of functions. The following
 166 bound decomposes the global defect of a network into per-layer defects, weighted by downstream Lipschitz constants.
 167

168 **Lemma 3.3.** *Let $T = f_k \circ f_{k-1} \circ \dots \circ f_1$ be a composition of Lipschitz maps between G -modules with unitary actions,
 169 and set $L_m := \text{Lip}(f_m)$. Then*

$$170 \quad \mathcal{E}(T) \leq \sum_{i=1}^k \left(\prod_{m \neq i}^k L_m \right) \mathcal{E}(f_i). \quad (7)$$

172 *Proof.* See Appendix A.2 □
 173

174 The bound above immediately yields the following corollary for standard feed-forward networks first shown by Kim
 175 et al. (2023).
 176

177 **Corollary 3.4** (Kim et al. (2023)). *Let*

$$178 \quad T = W^{(S)} \circ \sigma_{S-1} \circ W^{(S-1)} \circ \dots \circ \sigma_1 \circ W^{(1)} \quad (8)$$

180 *be an S -layer network where each linear map $W^{(l)}$ acts between G -modules with unitary actions and each activation
 181 σ_l is G -equivariant and Lipschitz. Then*

$$182 \quad \mathcal{E}(T) \leq C \sum_{l=1}^S \|W^{(l)} - P(W^{(l)})\|, \quad (9)$$

186 *for a constant $C > 0$ depending only on the operator norms of the $W^{(l)}$, the Lipschitz constants of the σ_l , and (when
 187 working on a bounded input domain) its radius.*

188 *Proof.* See Appendix A.3. □
 189

190 3.2 PROJECTION IN FOURIER SPACE

192 The previous section motivates the use of the norm of the projection operator as a regulariser. When the projection
 193 operator in Equation 1 is efficiently computable in the spatial domain, e.g., for small finite groups (see Section 4.3),
 194 this is straightforward; [Algorithm 1 provides pseudo-code for this case](#). However, in many applications, the group is
 195 large (for instance, uncountably infinite, as in $SO(n)$, the group of rotations about the origin in \mathbb{R}^n ; see Section 4.1).
 196 In such cases, the integral in Equation 1 rarely admits a closed-form solution.
 197

198 We therefore switch to the spectral domain. We assume the following setup, which is in line with the geometric deep
 199 learning blueprint (Bronstein et al., 2021) that constructs equivariant networks as a composition of equivariant linear
 200 layers with equivariance-preserving non-linearities. Let G be a compact group with normalised Haar measure λ , and
 201 consider linear maps $T : L^2(G) \rightarrow L^2(G)$ on the Hilbert space of square-integrable complex functions,
 202

$$203 \quad L^2(G) = \{f : G \rightarrow \mathbb{C}\}, \quad \langle f, h \rangle = \int_G f(g) \overline{h(g)} d\lambda(g). \quad (10)$$

204 We study equivariance with respect to the (left) regular representation $\tau : G \rightarrow U(L^2(G))$ defined by
 205

$$206 \quad (\tau(g)f)(x) = f(g^{-1}x), \quad x, g \in G. \quad (11)$$

208 We denote by \widehat{G} the set of equivalence classes of finite-dimensional irreducible representations of G and call it the
 209 *unitary dual* of G . Each $[\pi] \in \widehat{G}$ has a representative $\pi : G \rightarrow U(V_\pi)$ with $d_\pi = \dim V_\pi$. For $f \in L^2(G)$, we define
 210 the *(non-abelian) Fourier transform* as
 211

$$212 \quad \widehat{f}(\pi) := \int_G f(g) \pi(g)^* d\lambda(g) \in \text{End}(V_\pi). \quad (12)$$

214 In the following, using tools from Fourier analysis on compact groups, we will derive that the projection operator of
 215 Equation 1 can be computed efficiently in Fourier space.
 216

Figure 2: Commutative diagrams showing how to apply the projection operator in Fourier space.

Theorem 3.5 (Informal). *Equivariant linear maps are block-diagonal in the frequency domain (one block per irreducible representation). Hence, the projection onto equivariant subspaces acts by zeroing out all off-diagonal terms.*

Hence, whenever an efficient Fourier transform is available (e.g., on regular grids) or the model is already parameterised spectrally (e.g., eSEN (Fu et al., 2025)), imposing equivariance reduces to diagonalising the relevant linear operators in the spectral domain.

3.3 INVARIANT FUNCTIONS IN FOURIER SPACE

In this subsection, we show that an invariant function $f \in L^2(G)$ only has trivial non-zero Fourier coefficients.

Lemma 3.6. *Let $f \in L^2(G)$ be left invariant with respect to the regular representation τ , i.e. $f(hg) = f(g)$ for all $h, g \in G$. Then $\widehat{f}(\pi)$ is non-zero if and only if π is the trivial representation $\mathbf{1} : g \mapsto I_{\mathbb{C}}$.*

Proof. See Appendix A.4. □

Corollary 3.7. *Let $f \in L^2(G)$ be any function on G and set P_{inv} to be the invariant projection. Then $\widehat{P_{\text{inv}}(f)}(\pi) = \widehat{f}(\pi)\delta_{\pi,1}$.*

Proof. See Appendix A.5 □

In Figure 2a, we schematically depict how we can exploit the simple structure of the projection in the spectral domain $\widehat{P_{\text{inv}}}$ to efficiently calculate the smoothing operator P_{inv} .

3.4 EQUIVARIANT MAPS ARE DIAGONAL ACROSS FREQUENCIES

Having shown the projection in the spectral domain for the invariant case, we now turn towards the case of equivariance. It turns out that in this case the projection acts by zeroing out all off-diagonal terms and averages over the rest. We can formalise this as follows:

Theorem 3.8. *Let $T : L^2(G) \rightarrow L^2(G)$ be a linear function which is equivariant with respect to the (left) regular representation, i.e. $\tau(g) \circ T = T \circ \tau(g)$ for all $g \in G$. Then T decomposes as follows:*

$$\widehat{T} \cong \bigoplus_{\pi \in \widehat{G}} I_{V_\pi} \otimes B_\pi \quad (13)$$

for some $B \in \text{End}(V_\pi^*)$ (one for each π). Equivalently, on Fourier coefficients:

$$\widehat{T(f)}(\pi) = \widehat{f}(\pi)\widehat{k}(\pi) \quad (14)$$

with $B_\pi \cong \widehat{k}(\pi)^*$.

Proof. See Appendix A.6. □

This means that an equivariant linear map T does not mix between irreps; it is block-diagonal. We now show what this means for the projection of a general linear operator T .

270 **Corollary 3.9.** Let $T : L^2(G) \rightarrow L^2(G)$ be linear and set $P_{\text{equiv}}(T)$ to be its equivariant projection. Then for each
 271 $[\pi] \in \widehat{G}$, there exists $B_\pi \in \text{End}(V_\pi^*)$ such that for all $f \in L^2(G)$,

$$273 \quad \widehat{P(T)(f)}(\pi) = \widehat{f}(\pi) B_\pi. \quad (15)$$

275 **3.5 VECTOR-VALUED SIGNALS AND FIBER-WISE PROJECTION**

277 Thus far we treated scalar signals $f \in L^2(G)$. In many applications (e.g. steerable CNNs Cohen & Welling (2017),
 278 tensor fields) one works with vector-valued signals taking values in a finite-dimensional unitary G -module (V, ρ) .
 279 Define

$$280 \quad L^2(G, V) \cong L^2(G) \otimes V \quad \text{with action} \quad ((\tau \otimes \rho)(g)f)(x) = \rho(g) f(g^{-1}x). \quad (16)$$

282 More generally, for an operator $T : L^2(G, V_{\text{in}}) \rightarrow L^2(G, V_{\text{out}})$ we measure equivariance with respect to the pair of
 283 actions $\tau \otimes \rho_{\text{in}}$ (on the domain) and $\tau \otimes \rho_{\text{out}}$ (on the codomain), i.e.

$$284 \quad (\tau \otimes \rho_{\text{out}})(g) \circ T = T \circ (\tau \otimes \rho_{\text{in}})(g) \quad \forall g \in G. \quad (17)$$

286 As in the scalar case, P_{equiv} is an idempotent, self-adjoint projection onto the equivariant subspace and we can anal-
 287 ogously show that a projected map T will have block-diagonal structure. Indeed, a Peter–Weyl–type decomposition
 288 yields the following (details in Appendix B):

289 **Theorem 3.10.** Let $T : L^2(G, V_{\text{in}}) \rightarrow L^2(G, V_{\text{out}})$ be linear. Then the equivariant projection decomposes as

$$291 \quad \widehat{P_{\text{equiv}}(T)} \cong \bigoplus_{\pi \in \widehat{G}} \left(I_{V_\pi} \otimes W_\pi \right) \quad (18)$$

294 with

$$296 \quad W_\pi = \int_G (\pi(g)^* \otimes \rho_{\text{out}}(g)) \widehat{T}(\pi, \pi) (\pi(g) \otimes \rho_{\text{in}}(g)^{-1}) d\lambda(g). \quad (19)$$

298 In particular, every equivariant T is block-diagonal across frequencies and acts as the identity on V_π and as an
 299 intertwiner on the fiber–multiplicity space $V_\pi^* \otimes V$.

300 Hence, the equivariant projection can be computed efficiently in Fourier space. Given a linear map T , we (i) compute
 301 the Fourier transform of the matrix representation of T to obtain the frequency blocks $\widehat{T}(\pi, \sigma)$; (ii) zero all off-diagonal
 303 blocks, setting $\widehat{T}(\pi, \sigma) \leftarrow 0$ for $\pi \neq \sigma$; (iii) for each π , project $\widehat{T}(\pi, \pi)$ onto $\text{Hom}_G(\pi^* \otimes \rho_{\text{in}}, \pi^* \otimes \rho_{\text{out}})$ using the
 304 averaging formula for B_π above; and (iv) apply the inverse Fourier transform to obtain $P_{\text{equiv}}(T)$ in the spatial domain.

305 This procedure is illustrated by the commutative diagram in Figure 2b, and a corresponding pseudo-code implemen-
 306 tation is given in Algorithm 1 on the right.

308 **3.6 ASYMPTOTIC COST**

310 We now want to briefly comment on the computational complexity of calculating the projection for both finite and
 311 continuous groups.

314 **Finite groups.** For finite groups we use Equation 1 directly. For a linear layer with weights $W \in \mathbb{C}^{d_{\text{out}} \times d_{\text{in}}}$ and
 315 $N_\ell = d_{\text{out}} d_{\text{in}}$ parameters, the projection evaluates $\pi_{\text{out}}(g)^* W \pi_{\text{in}}(g)$ for each $g \in G$, where $\pi_{\text{out}}(g)$, $\pi_{\text{in}}(g)$ are
 316 the representation matrices. Each step costs $O(d_{\text{out}}^2 d_{\text{in}}) + O(d_{\text{out}} d_{\text{in}}^2)$, which is $O(d_{\text{out}}^3)$ under $d_{\text{in}} \sim d_{\text{out}}$. Since
 317 $N_\ell \sim d_{\text{out}}^2$, this is $O(N_\ell^{3/2})$ per group element, and $O(|G| N_\ell^{3/2})$.

319 **Continuous groups.** For continuous groups, we use the Fourier-domain projection. For a kernel on a d -dimensional
 320 grid of size $S = k^d$, FFTs cost $O(S \log S)$ per input-output channel pair, so per layer $O(d_{\text{out}} d_{\text{in}} S \log S)$. Masking and
 321 averaging in spectral space cost $O(P_\ell)$ with $P_\ell = d_{\text{out}} d_{\text{in}} S = N_\ell$, so the overall cost is $O(d_{\text{out}} d_{\text{in}} S \log S)$. If weights
 322 are already stored in irreducible spectral blocks, the projection reduces to masking and averaging only, giving $O(N_\ell)$
 323 per layer; this is precisely the regime of steerable CNNs, where kernels are parameterised directly in such blocks.

Figure 3: Controlling the degree of learned $SO(2)$ invariance by tuning the parameters λ_G and λ_\perp , which penalise the projections of the equivariant and non-equivariant components, respectively.

4 EXPERIMENTS

In this section, we conduct three sets of experiments to demonstrate the feasibility and efficiency of our approach to learn (approximate) equivariance from data. For implementation details and information on hyperparameters, see Appendix C.

4.1 EXAMPLE: LEARNED $SO(2)$ INVARIANCE

We first want to illustrate the approach in Section 3 on a simple toy problem (Figure 3). The task is binary classification on two point clouds in \mathbb{R}^2 . Using polar coordinates (r, θ) , we sample an inner disk-shaped cloud (blue, label +1), and the outer angular section of an annulus (red, label -1). We then train an approximately $SO(2)$ -invariant MLP with the following structure on this dataset: We first project inputs $(x, y) \in \mathbb{R}^2$ onto circular harmonics up to degree M , adding C radial channels via radial embedding functions, to obtain equivariant irreps features $H \in \mathbb{C}^{(2M+1) \times C}$. We then apply two fully connected complex linear layers

$$L_1 : \mathbb{C}^{(2M+1) \times C} \rightarrow \mathbb{C}^{(2M+1) \times C_{\text{hid}}}, \quad L_2 : \mathbb{C}^{(2M+1) \times C_{\text{hid}}} \rightarrow \mathbb{C}^{(2M+1) \times C_{\text{hid}}},$$

followed by an $SO(2)$ -equivariant tensor product. Lastly, we extract the invariant component and pass its real part through a final real-valued linear head $L_{\text{final}} : \mathbb{R}^{C_{\text{hid}}} \rightarrow \mathbb{R}$ to produce the scalar logit. For a more in-depth description of this architecture, see Appendix C.1.

In this setting, the projection onto the equivariant subspace reduces to masking. Let $W_i \in \mathbb{C}^{((2M+1)C) \times ((2M+1)C)}$ denote the flattened weight matrix of an intermediate linear layer. Define the mask $M \in \mathbb{R}^{((2M+1)C) \times ((2M+1)C)}$ by

$$M_{(m_1, c_1), (m_2, c_2)} = \delta_{m_1, m_2},$$

i.e., only blocks with matching harmonic order m are kept. The projected weights are $P(W_i) = M \odot W_i$, where \odot denotes elementwise multiplication. The overall objective is

$$L = L_{\text{task}} + \lambda_G \sum_i \|W_i\| + \lambda_\perp \sum_i \|W_i - M \odot W_i\|,$$

Figure 4: Effect of increasing angular perturbation at fixed projection strength. Each panel shows the decision boundary and level sets of the approximately $SO(2)$ -invariant network (blue) and an MLP (orange) trained with a fixed non-equivariant penalty $\lambda_\perp = 1.0$ on datasets with growing angular “wave” amplitude σ_\perp (left to right). As σ_\perp increases, the decision boundary becomes more angle-dependent and the learned classifier departs from perfect radial symmetry only where required to fit the data, while remaining nearly circular elsewhere. The empirical invariance defect $\mathcal{E}(T)$ for each setting is reported beneath the corresponding panel.

378 with $\lambda_G, \lambda_\perp \geq 0$ and L_{task} the standard classification loss.

379
 380 In Figure 3, we compare trained models across different values of $(\lambda_G, \lambda_\perp)$. From left to right, we first reduce λ_G
 381 and then increase λ_\perp , enforcing progressively stronger invariance. [For a full 2D grid for different combinations of](#)
 382 $(\lambda_G, \lambda_\perp)$ [see Figure 7](#) in Appendix C.1. As the regularisation intensifies, the decision boundary becomes increasing-
 383ly $\text{SO}(2)$ -invariant, confirming that the proposed projection-based regulariser effectively pushes the model toward
 384 invariance. Consistently, the empirical equivariance defect

$$385 \quad \mathcal{E}_{\text{emp}}(T) = \sum_{k,l} \left\| \rho_{\text{out}}(g_l) T(x_k) - T(\rho_{\text{in}}(g_l) x_k) \right\| \quad (20)$$

386 with k ranging over data samples and g_l drawn as random rotations in $\text{SO}(2)$, decreases from left to right.

387
 388 In a second experiment, we probe the behaviour of the regulariser when the target function departs from exact $\text{SO}(2)$ -
 389 invariance by making the labels increasingly dependent on the polar angle. Starting from two concentric rings, we
 390 introduce an angular “wave” perturbation of amplitude σ_\perp in the radial direction, such that for $\sigma_\perp = 0$ the data distri-
 391 bution is rotationally symmetric, whereas larger σ_\perp produce interlocking rings (Figure 4). We train the approximately
 392 $\text{SO}(2)$ -invariant network with projection-based regularisation alongside a plain MLP baseline on these datasets and
 393 compare both the learned decision boundaries and the empirical defect $\mathcal{E}_{\text{emp}}(T)$. As σ_\perp increases, the regularised
 394 model departs from strict invariance only insofar as needed to fit the angularly perturbed rings. This illustrates how
 395 the projection penalty (even for constant values of λ_\perp) furnishes a tunable bias toward invariance that can be gradually
 396 traded off against fitting angle-dependent structure in the data. For a full grid, where we also vary the value of λ_\perp , see
 397 [Figure 5](#) in Appendix C.1.

398 4.2 IMPERFECTLY SYMMETRIC DYNAMICAL SYSTEMS

400 In this section, we follow the experimental design of Wang et al. (2022c) and evaluate our regulariser when applied to
 401 their relaxed group and steerable convolutional layers. Using PhiFlow (Holl & Thuerey, 2024), we generate 64×64
 402 two-dimensional smoke advection–diffusion simulations with varied initial conditions under relaxed symmetries. Each
 403 network is trained to predict the velocity field one step ahead.

404 To test generalisation, we consider two out-of-distribution settings. In the *Future* setting, models predict velocity
 405 fields at time steps that are absent from the training distribution, while remaining within spatial regions that were seen
 406 during training. In the *Domain* setting, we evaluate at the same time indices as training but at spatial locations that
 407 were not seen. The data are produced to break specific symmetries in a controlled way: for *translation*, we generate
 408 series for 35 distinct inflow positions and split the domain horizontally into two subdomains with different buoyancy
 409 forces so that plumes diffuse at different rates across the interface; for *discrete rotation*, we simulate 40 combinations
 410 of inflow position and buoyancy, where the inflow pattern alone is symmetric under 90° rotations about the domain
 411 centre but a position-dependent buoyancy factor breaks rotational equivariance; and for *scaling*, we run 40 simulations
 412 with different time steps Δt and spatial resolutions Δx to disrupt scale equivariance.

413 We compare the relaxed group convolutional networks (RGroup) and relaxed steerable CNNs (RSteer) introduced by
 414 Wang et al. (2022c) with several baselines: a standard CNN (Conv), an equivariant convolutional network (Equiv)
 415 (Weiler & Cesa, 2019; Sosnovik et al., 2020), Residual Pathway Priors (RPP) (Finzi et al., 2021), a locally connected
 416 network with an explicit equivariance penalty in the loss (CLNN) and Lift (Wang et al., 2022a). We indicate the
 417 addition of our regulariser with the suffix +Reg.

418 Across these settings, incorporating our regulariser preserves performance when approximate translation equivariance
 419 holds and delivers substantial improvements in the rotation and scaling regimes. In short, the penalty promotes the
 420 desired approximate equivariance where symmetry is only partially present, without degrading accuracy where the
 421 symmetry is already well aligned with the data.

422 4.3 CT-SCAN METAL ARTIFACT REDUCTION

423 We compare our approach with a sample-based equivariance penalty on metal artefact reduction (MAR) for CT scans.
 424 Metal implants introduce characteristic streaking artefacts that obscure clinically relevant structures. The task is to
 425 map a corrupted slice to its artefact-reduced counterpart.

426 We use the AAPM CT-MAR Grand Challenge datasets (AAPM, 2022a;b), comprising 14,000 head and body CT
 427 slices with synthetic metal artefacts (Table 2 and Appendix C.3, Figure 6 for a visual comparison). The datasets were
 428 generated with the open-source CT simulation environment XCIST (Wu et al., 2022), using a hybrid data-simulation
 429 framework that combines publicly available clinical images (Yan et al., 2018; Goren et al., 2017) and virtual metal
 430 objects.

432 Table 1: Results on three synthetic smoke-plume datasets exhibiting approximate symmetries. We report means
 433 and standard deviations of pixel-wise MSE over 5 random seeds. *Future* indicates that the test set occurs after the
 434 training period; *Domain* indicates that training and test sets come from different spatial regions. Adding our proposed
 435 *equivariance regulariser* (+Reg) consistently improves performance.

437	Model	Conv	Equiv	Rpp	CLCNN	Lift	RGroup	+Reg	RSteer	+Reg
438	Translation	Future	—	0.94 \pm 0.02	0.92 \pm 0.01	0.92 \pm 0.01	0.87 \pm 0.03	0.71\pm0.01	0.72\pm0.01	—
	Domain	—	0.68 \pm 0.05	0.93 \pm 0.01	0.89 \pm 0.01	0.70 \pm 0.00	0.62\pm0.02	0.62\pm0.01	—	—
440	Rotation	Future	1.21 \pm 0.01	1.05 \pm 0.06	0.96 \pm 0.10	0.96 \pm 0.05	0.82 \pm 0.08	0.82 \pm 0.01	0.80 \pm 0.01	0.80 \pm 0.00
	Domain	1.10 \pm 0.05	0.76 \pm 0.02	0.83 \pm 0.01	0.84 \pm 0.10	0.68 \pm 0.09	0.73 \pm 0.02	0.67 \pm 0.01	0.67 \pm 0.01	0.58\pm0.00
442	Scaling	Future	0.83 \pm 0.01	0.75 \pm 0.03	0.81 \pm 0.09	1.03 \pm 0.01	0.85 \pm 0.01	0.80 \pm 0.01	0.81 \pm 0.00	0.70 \pm 0.01
	Domain	0.95 \pm 0.02	0.87 \pm 0.02	0.86 \pm 0.05	0.83 \pm 0.05	0.77 \pm 0.02	0.88 \pm 0.01	0.88 \pm 0.02	0.73 \pm 0.01	0.62\pm0.01

443
 444 Following Bai et al. (2025), we adapt three convolution-based architectures ACDNet (Wang et al., 2022b), DICDNet
 445 (Wang et al., 2021) and OSCNet (Wang et al., 2023) by encouraging rotation equivariance with respect to the discrete
 446 group C_4 (rotations by multiples of 90°). We compare the unregularised baselines, the sample-based regulariser of
 447 Bai et al. (2025), and the same networks equipped with our projection-based regulariser. Additionally, we compare
 448 with Residual Pathway Priors (RPPs) (Finzi et al., 2021) and a train-then-project variant, in which we first train a
 449 non-equivariant model and then project its linear layers onto the equivariant subspace at test time using our projection
 450 operator.

451 For steerable CNN layers whose channels are organised into orientation groups of four, the layer-wise projection acting
 452 on a kernel $K \in \mathbb{R}^{C'_{\text{out}} \times C'_{\text{in}} \times 4 \times 4 \times s \times s}$ is

$$454 \quad P_{\text{equiv}}(K) = \frac{1}{4} \sum_{r=0}^3 S^r (\text{rot}_r K) S^{-r}, \quad (21)$$

455 where S is the 4×4 cyclic-shift matrix on orientation channels and rot_r rotates the spatial kernel by $90^\circ r$. For a
 456 derivation of this expression, see Appendix C.3.2.

457 In contrast, Bai et al. (2025) penalise a term that samples both a data point and a group element. For each sample x
 458 they draw a random $r \in C_4$ and add

$$462 \quad L_{\text{equiv}}(x, r) = \|S^r \text{rot}_r K(x) - K(S^r \text{rot}_r x)\|^2 \quad (22)$$

463 to the task loss. This requires an extra forward pass for each sampled rotation and each data sample, with asymptotic
 464 cost $O(N_{\text{samples}} \cdot \text{cost}_{\text{forward}})$ where N_{samples} is the number of sampled group elements and $\text{cost}_{\text{forward}}$ is the cost of a
 465 single forward pass. By contrast, as derived in Section 3.6, our projection-based regulariser $\|P_{\text{equiv}}(\cdot)\|$ incurs a cost
 466 that is linear in the number of parameters, does not sample rotations or data, introduces no extra forward passes, and
 467 has zero estimator variance.

468 We report peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and training throughput on a single A100
 469 GPU under two regimes. In the fixed-batch setting, we use batch size 4 for all methods. In the max-feasible setting,
 470 the sample-based regulariser remains at batch size 4 (limited by the extra forward/activation memory), whereas
 471 the baselines and our projection-based regulariser scale to batch size 12 due to unchanged per-sample compute and
 472 memory.

473 Our projection-based regulariser delivers competitive or superior reconstruction quality, surpassing the sample-based
 474 penalty in all metrics across all settings but one, and improving over the unregularised baselines in most cases. Owing
 475 to the extra forward pass in Equation 22, the sample-based approach is constrained to smaller batch sizes and lower
 476 throughput. Even under the fixed-batch protocol, its throughput is 42–47% lower than ours; under the max-feasible
 477 protocol, the gap widens to 54–61%. These results indicate that projection-based regularisation achieves stronger
 478 C_4 -equivariance with better hardware efficiency by avoiding per-sample group sampling. Similarly, due to the overpa-
 479 rameterisation of the equivariant subspace, RPPs incur slower runtime during both training and inference and require
 480 more learnable parameters, and still underperform our approach in reconstruction quality.

482 5 CONCLUSION

483 In this work, we introduced projection-based regularisation - a theoretically grounded approach to learned equivariance
 484 which directly penalises model weights and regularises over the entire group instead of only point-wise, per-sample

486 Table 2: **CT-scan metal artefact reduction on the AAPM challenge dataset.** We compare three baseline models in their
 487 vanilla form, the sample-based regulariser of Bai et al. (2025), a train-then-project approach, Residual Pathway Priors
 488 of Finzi et al. (2021), and our projection-based regulariser. We report PSNR/SSIM, training throughput (for batch
 489 sizes 4 and 12, where stable) and inference throughput, epoch wall-clock time, and peak memory usage. Sample-
 490 based regularisation is limited to batch sizes ≤ 4 , whereas the baselines and our method scale to batch size 12.

Model	#params	Throughput (no./GPU-s)		Epoch	Memory	AAPM	
		Train \uparrow	Inference \uparrow			time (s) \downarrow	(GB)
ACDNet (Wang et al., 2022b)	4.2M	4.90/5.16	8.40	1108	11.08	42.08	0.9559
+ sample-based (Bai et al., 2025)	4.2M	2.54/2.54	8.38	2011	21.99	40.02	0.9623
+ test-time projection	4.2M	—	—	—	—	23.63	0.8384
+ RPP (Finzi et al., 2021)	6.9M	3.49/4.14	5.37	1455	11.15	37.12	0.9413
+ projection-based (ours)	4.2M	4.25/4.99	7.44	1202	11.11	42.68	0.9620
DICDNet (Wang et al., 2021)	4.3M	8.38/9.72	11.86	632	10.90	41.44	0.9468
+ sample-based (Bai et al., 2025)	4.3M	4.05/4.05	10.15	1303	23.93	41.47	0.9464
+ test-time projection	4.3M	—	—	—	—	41.59	0.9602
+ RPP (Finzi et al., 2021)	6.6M	3.10/6.10	6.93	1028	12.08	39.42	0.9481
+ projection-based (ours)	4.3M	5.77/7.82	10.11	782	12.05	41.52	0.9605
OSCNet (Wang et al., 2023)	4.3M	8.59/9.86	12.00	624	10.37	42.36	0.9596
+ sample-based (Bai et al., 2025)	4.3M	4.05/4.05	10.13	1304	23.93	41.50	0.9593
+ test-time projection	4.3M	—	—	—	—	41.37	0.9609
+ RPP (Finzi et al., 2021)	6.6M	4.51/6.14	6.92	1016	12.08	39.45	0.9507
+ projection-based (ours)	4.3M	5.66/7.87	10.14	769	12.05	41.88	0.9612

506
 507 regularisation. For operators for which no closed-form solution of the projection can be computed efficiently in the
 508 spatial domain, we provide a general framework for computing the projection efficiently in Fourier space by masking.
 509 The experiments demonstrate that across synthetic and real-world experiments, covering both finite and continuous
 510 symmetry groups, the proposed approach improves both task performance and runtime.

511
 512 **Limitations and future work.** A limitation of the proposed approach is that the penalty term needs to be derived
 513 anew for each model architecture and group operation. Also, current experiments only evaluate the proposed method
 514 for relatively simple groups. In future work, we plan to extend this approach to more complex group structures
 515 consisting of several subgroups with applications in e.g. material sciences.

516 5.1 REPRODUCIBILITY STATEMENT

517 Reproducibility Statement: We performed our experiments on public datasets and included all necessary hyperparameters
 518 in Appendix C. Throughout Section 3, we clearly state all our theoretical assumptions, in particular in the
 519 statements of Theorems 3.8 and 3.10. We will publish the source code with evaluation scripts to reproduce the experiments
 520 with the camera-ready version.

523 REFERENCES

524
 525 American Association of Physicists in Medicine AAPM. Aapm ct metal artifact reduction (ct-mar) grand challenge,
 526 2022a. URL <https://www.aapm.org/GrandChallenge/CT-MAR/>.

527
 528 American Association of Physicists in Medicine AAPM. Aapm ct metal artifact reduction (ct-mar) grand challenge
 529 benchmark tool, 2022b. URL https://github.com/xcist/example/tree/main/AAPM_datachallenge/.

530
 531 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay
 532 Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions
 533 with alphafold 3. *Nature*, 630(8016):493–500, 2024.

534
 535 Yulu Bai, Jiahong Fu, Qi Xie, and Deyu Meng. A regularization-guided equivariant approach for image restoration.
 536 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2300–2310,
 June 2025.

537
 538 Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and Risi Kondor. Lorentz
 539 group equivariant neural network for particle physics. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the
 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*,
 pp. 992–1002. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/bogatskiy20a.html>.

540 Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric and physical
 541 quantities improve $e(3)$ equivariant message passing. In *International Conference on Learning Representations*,
 542 2022. URL https://openreview.net/forum?id=_xwr8g0BeV1.

543 Johann Brehmer, Sönke Behrends, Pim De Haan, and Taco Cohen. Does equivariance matter at scale? In *NeurIPS*
 544 2024 *Workshop on Symmetry and Geometry in Neural Representations*, 2024. URL <https://openreview.net/forum?id=L4gb2wvVhM>.

545 Johann Brehmer, Víctor Bresó, Pim de Haan, Tilman Plehn, Huilin Qu, Jonas Spinner, and Jesse Thaler. A lorentz-
 546 equivariant transformer for all of the lhc, 2025. URL <https://arxiv.org/abs/2411.00446>.

547 Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning: Grids, Groups,
 548 Graphs, Geodesics, and Gauges. *arXiv preprint arXiv:2104.13478*, 2021.

549 Taco S Cohen and Max Welling. Steerable cnns. In *International Conference on Learning Representations*, 2017.

550 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE Signal Processing*
 551 *Magazine*, 29(6):141–142, 2012.

552 Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models. In *International*
 553 *conference on machine learning*, pp. 2959–2969. PMLR, 2021.

554 Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance constraints. *Advances in Neural Information Processing Systems*, 34:30037–30049, 2021.

555 Xiang Fu, Brandon M Wood, Luis Barroso-Luque, Daniel S. Levine, Meng Gao, Misko Dzamba, and C. Lawrence
 556 Zitnick. Learning smooth and expressive interatomic potentials for physical property prediction. In *Forty-second*
 557 *International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=R0PBjxIbgm>.

558 Nir Goren, Tony Dowrick, James Avery, and David Holder. UCLH Stroke EIT Dataset – Radiology Data (CT), 2017.
 559 URL <https://doi.org/10.5281/zenodo.8383704>.

560 Nate Gruber, Marc Anton Finzi, Micah Goldblum, and Andrew Gordon Wilson. The lie derivative for measuring
 561 learned equivariance. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=JL7Va5Vy15J>.

562 Tai Hoang, Huy Le, Philipp Becker, Vien Anh Ngo, and Gerhard Neumann. Geometry-aware RL for manipulation of
 563 varying shapes and deformable objects. In *The Thirteenth International Conference on Learning Representations*,
 564 2025. URL <https://openreview.net/forum?id=7BLXhmWvwF>.

565 Elyssa Hofgard, Rui Wang, Robin Walters, and Tess Smidt. Relaxed equivariant graph neural networks. *ELLIS*
 566 *Workshop on Geometry-grounded Representation Learning and Generative Modeling, ICML*, 2024.

567 Philipp Holl and Nils Thuerey. Φ_{flow} (PhiFlow): Differentiable simulations for pytorch, tensorflow and jax. In *International Conference on Machine Learning*. PMLR, 2024.

568 Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion for molecule
 569 generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
 570 Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings*
 571 of *Machine Learning Research*, pp. 8867–8887. PMLR, 17–23 Jul 2022.

572 Ningyuan (Teresa) Huang, Ron Levie, and Soledad Villar. Approximately equivariant graph networks. In *Proceedings*
 573 of the 37th International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA,
 574 2023. Curran Associates Inc.

575 Hyunsu Kim, Hyungi Lee, Hongseok Yang, and Juho Lee. Regularizing Towards Soft Equivariance Under Mixed
 576 Symmetries, 2023. URL <https://arxiv.org/abs/2306.00356>.

577 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 578 2014.

579 Theodoros Kouzelis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Komodakis. EQ-VAE: Equivariance regular-
 580 ized latent space for improved generative image modeling. In *Forty-second International Conference on Machine*
 581 *Learning*, 2025. URL <https://openreview.net/forum?id=UWhW5YYLo6>.

594 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). URL <http://www.cs.toronto.edu/~kriz/cifar.html>.
 595
 596

597 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic graphs. In *International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=KwmPfARgOTD>.
 598

599 Yi-Lun Liao, Brandon Wood, Abhishek Das*, and Tess Smidt*. EquiformerV2: Improved Equivariant Transformer
 600 for Scaling to Higher-Degree Representations. In *International Conference on Learning Representations (ICLR)*,
 601 2024. URL <https://openreview.net/forum?id=mCOBKZmrzD>.
 602

603 Daniel McNeela. Almost equivariance via lie algebra convolutions, 2024. URL <https://arxiv.org/abs/2310.13164>.
 604

605 Samuel E Otto, Nicholas Zolman, J Nathan Kutz, and Steven L Brunton. A unified framework to enforce, discover,
 606 and promote symmetry in machine learning. *arXiv preprint arXiv:2311.00212*, 2023.
 607

608 Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Daniilidis. Improving equivariant
 609 model training via constraint relaxation. In *Proceedings of the 38th International Conference on Neural Information
 610 Processing Systems, NIPS '24*, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9798331314385.
 611

612 Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs under (approximate) group equiv-
 613 ariance. *Advances in Neural Information Processing Systems*, 36:61936–61959, 2023.
 614

615 David W Romero and Suhas Lohit. Learning partial equivariances from data. *Advances in Neural Information Pro-
 616 cessing Systems*, 35:36466–36478, 2022.
 617

618 Ashwin Samudre, Mircea Petrache, Brian Nord, and Shubhendu Trivedi. Symmetry-based structured matrices for
 619 efficient approximately equivariant networks. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtilay
 620 Khan (eds.), *Proceedings of The 28th International Conference on Artificial Intelligence and Statistics*, volume
 621 258 of *Proceedings of Machine Learning Research*, pp. 1171–1179. PMLR, 03–05 May 2025. URL <https://proceedings.mlr.press/v258/samudre25a.html>.
 622

623 Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks. In Marina
 624 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139
 625 of *Proceedings of Machine Learning Research*, pp. 9323–9332. PMLR, 18–24 Jul 2021.
 626

627 Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks. In *International Con-
 628 ference on Learning Representations*, 2020.
 629

630 Jonas Spinner, Victor Bresó, Pim de Haan, Tilman Plehn, Jesse Thaler, and Johann Brehmer. Lorentz-equivariant geo-
 631 metric algebra transformers for high-energy physics. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
 632 J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 22178–
 633 22205. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/277628cff838927d869cd1f671328ce0-Paper-Conference.pdf.
 634

635 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field net-
 636 works: Rotation- and translation-equivariant neural networks for 3d point clouds. *arXiv preprint arXiv:1802.08219*,
 637 2018.
 638

639 Artur Toshev, Gianluca Galletti, Johannes Brandstetter, Stefan Adami, and Nikolaus A Adams. E (3) equivariant graph
 640 neural networks for particle-based fluid mechanics. In *ICLR 2023 Workshop on Physics for Machine Learning*,
 641 2023.
 642

643 Tycho van der Ouderaa, David W Romero, and Mark van der Wilk. Relaxing equivariance constraints with non-
 644 stationary continuous filters. *Advances in Neural Information Processing Systems*, 35:33818–33830, 2022.
 645

646 Lars Veerkind and Gabriele Cesa. A probabilistic approach to learning the degree of equivariance in steerable
 647 CNNs. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
 648 lett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, vol-
 649 ume 235 of *Proceedings of Machine Learning Research*, pp. 49249–49309. PMLR, 21–27 Jul 2024. URL
 650 <https://proceedings.mlr.press/v235/veerkind24a.html>.
 651

652 Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant q learning in spatial action spaces. In *Confer-
 653 ence on Robot Learning*, pp. 1713–1723. PMLR, 2022a.
 654

648 Hong Wang, Yuexiang Li, Nanjun He, Kai Ma, Deyu Meng, and Yefeng Zheng. Dicdnet: Deep interpretable convolutional
 649 dictionary network for metal artifact reduction in ct images. *IEEE Transactions on Medical Imaging*, 41(4):
 650 869–880, 2021.

651 Hong Wang, Yuexiang Li, Deyu Meng, and Yefeng Zheng. Adaptive convolutional dictionary network for ct metal
 652 artifact reduction. In *The 31st International Joint Conference on Artificial Intelligence*. IEEE, 2022b.

653 Hong Wang, Qi Xie, Dong Zeng, Jianhua Ma, Deyu Meng, and Yefeng Zheng. Oscnet: Orientation-shared convolutional
 654 network for ct metal artifact learning. *IEEE Transactions on Medical Imaging*, 2023.

655 Rui Wang, Robin Walters, and Rose Yu. Approximately Equivariant Networks for Imperfectly Symmetric Dynamics.
 656 *Proceedings of the 39th International Conference on Machine Learning*, 2022c. doi: 10.48550/arXiv.2201.11969.
 657 URL <http://arxiv.org/abs/2201.11969>.

658 Rui Wang, Elyssa Hofgard, Han Gao, Robin Walters, and Tess E. Smidt. Discovering symmetry breaking in physical
 659 systems with relaxed group convolution. In *Proceedings of the 41st International Conference on Machine Learning*,
 660 ICML’24. JMLR.org, 2024.

661 Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. *Advances in neural information processing*
 662 *systems*, 32, 2019.

663 M. Wu, P. FitzGerald, J. Zhang, W. P. Segars, J. Yu, Y. Xu, and B. De Man. XCIST – an open access x-ray/ct simulation
 664 toolkit. *Physics in Medicine and Biology*, 2022.

665 Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar Azizzadenesheli, Jure Leskovec, Stefano
 666 Ermon, and Anima Anandkumar. Equivariant graph neural operator for modeling 3d dynamics. In *Proceedings*
 667 *of the 41st International Conference on Machine Learning*, pp. 55015–55032, 2024.

668 Ke Yan, Xiaosong Wang, Le Lu, and Ronald M. Summers. DeepLesion: Automated mining of large-scale lesion
 669 annotations and universal lesion detection with deep learning. *Journal of Medical Imaging*, 2018.

670 Yuanyi Zhong, Anand Bhattacharjee, Yu-Xiong Wang, and David Forsyth. Improving equivariance in state-of-the-art super-
 671 vised depth and normal predictors. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 672 pp. 21775–21785, 2023.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PROOFS IN SECTION 3
703704 A.1 PROOF OF LEMMA 3.2
705706 *Proof of Lemma 3.2.* By definition of P ,

707
$$T - P(T) = \int_G \pi_{\text{out}}(g)^* (\pi_{\text{out}}(g) \circ T - T \circ \pi_{\text{in}}(g)) d\lambda(g) = \int_G \pi_{\text{out}}(g)^* \Delta_g(T) d\lambda(g). \quad (23)$$

708
709

710 Pre-/post-composition with the unitaries $\pi_{\text{out}}(g)^*$ preserves the Lipschitz seminorm, and the seminorm of an average
711 is at most the average of the seminorms. Hence

712
$$\|T - P(T)\| \leq \int_G \|\Delta_g(T)\| d\lambda(g) \leq \sup_{g \in G} \|\Delta_g(T)\| = \mathbb{E}(T), \quad (24)$$

713
714

715 giving the lower bound. For the upper bound, note that $P(T)$ is G -equivariant, and therefore,

716
$$\Delta_g(T) = \pi_{\text{out}}(g)(T - P(T)) - (T - P(T))\pi_{\text{in}}(g). \quad (25)$$

717

718 Taking Lipschitz seminorms and using that $\pi_{\text{in}/\text{out}}(g)$ are unitaries,

719
$$\|\Delta_g(T)\| \leq \|T - P(T)\| + \|T - P(T)\| = 2\|T - P(T)\|. \quad (26)$$

720

721 Finally, take the supremum over $g \in G$ to obtain $\mathbb{E}(T) \leq 2\|T - P(T)\|$. \square 722 A.2 PROOF OF LEMMA 3.3
723724 *Proof of Lemma 3.3.* For any composable maps A, B , the equivariance defect satisfies the chain rule

725
$$\Delta_g(A \circ B) = (\Delta_g A) \circ B + A \circ (\Delta_g B). \quad (27)$$

726

727 Applying this repeatedly to $f_k \circ \dots \circ f_1$ yields the telescoping identity

728
$$\Delta_g(T) = \sum_{i=1}^k (f_k \circ \dots \circ f_{i+1}) \circ \Delta_g(f_i) \circ (f_{i-1} \circ \dots \circ f_1). \quad (28)$$

729

730 Taking norms and using $\|X \circ Y\| \leq \text{Lip}(X) \|Y\|$ together with $\text{Lip}(f_j) = L_j$ to obtain

731
$$\|\Delta_g(T)\| \leq \sum_{i=1}^k \left(\prod_{m=i+1}^k L_m \right) \|\Delta_g(f_i)\| \left(\prod_{m=1}^{i-1} L_m \right). \quad (29)$$

732

733 Finally, take $\sup_{g \in G}$ on both sides and note that $\mathbb{E}(T) = \sup_g \|\Delta_g(T)\|$ and $\mathbb{E}(f_i) = \sup_g \|\Delta_g(f_i)\|$ to obtain the
734 stated bound. \square 735 A.3 PROOF OF COROLLARY 3.4
736737 *Proof of Corollary 3.4.* To fit into the framework of Lemma 3.3, we choose

738
$$f_{2k-1} := W^{(k)}, \quad f_{2k} := \sigma_k,$$

739

740 so that

741
$$L_{2k-1} := \|W^{(k)}\|, \quad L_{2k} := \text{Lip}(\sigma_k),$$

742

743 for $k = 1, \dots, 2S - 1$. By construction $E(\sigma_k) = 0$ for all k , hence $E(f_{2k}) = 0$. Plugging this into Equation 7 and
744 noting that the even indices do not contribute, we obtain

745
$$E(T) \leq \sum_{k=1}^S \left(\prod_{m \neq 2k-1} L_m \right) E(W^{(k)}). \quad (30)$$

746

747 Now note that the product over $m \neq 2k - 1$ contains748

- all activation Lipschitz constants $L_{2j} = \text{Lip}(\sigma_j)$, $j = 1, \dots, 2S - 1$,

756 • all weight norms $L_{2r-1} = \|W^{(r)}\|$ with $r \neq k$.

757 Thus

758
$$\prod_{m \neq 2k-1} L_m = \left(\prod_{j=1}^{S-1} \text{Lip}(\sigma_j) \right) \left(\prod_{\substack{r=1 \\ r \neq k}}^S \|W^{(r)}\| \right),$$

759 and Equation 30 becomes

760
$$E(T) \leq \left(\prod_{j=1}^{S-1} \text{Lip}(\sigma_j) \right) \sum_{k=1}^S \left(\prod_{\substack{r=1 \\ r \neq k}}^S \|W^{(r)}\| \right) E(W^{(k)}). \quad (31)$$

761 Next use Lemma 3.2, which states that for each linear layer

762
$$E(W^{(k)}) \leq 2 \|W^{(k)} - P(W^{(k)})\|.$$

763 Substituting this into Equation 31 yields

764
$$E(T) \leq 2 \left(\prod_{j=1}^{S-1} \text{Lip}(\sigma_j) \right) \sum_{k=1}^S \left(\prod_{\substack{r=1 \\ r \neq k}}^S \|W^{(r)}\| \right) \|W^{(k)} - P(W^{(k)})\|. \quad (32)$$

765 Define

766
$$C := 2 \left(\prod_{j=1}^{S-1} \text{Lip}(\sigma_j) \right) \max_{1 \leq k \leq S} \prod_{\substack{r=1 \\ r \neq k}}^S \|W^{(r)}\|. \quad (33)$$

767 Then, for every k ,

768
$$2 \left(\prod_{j=1}^{S-1} \text{Lip}(\sigma_j) \right) \prod_{\substack{r=1 \\ r \neq k}}^S \|W^{(r)}\| \leq C,$$

769 and Equation 32 implies

770
$$E(T) \leq C \sum_{k=1}^S \|W^{(k)} - P(W^{(k)})\|.$$

771 This is exactly Eq. (9), with the dependence of C on the norms $\|W^{(k)}\|$ and Lipschitz constants $\text{Lip}(\sigma_j)$ made explicit in Equation 33. \square

772 A.4 PROOF OF LEMMA 3.6

773 *Proof of Lemma 3.6.* We define the invariance operator of a function $f \in L^2(G)$ as

774
$$f_{\text{inv}}(g) = \int_G f(hg) d\lambda(h) \quad (34)$$

775 The Fourier coefficients of this are

776
$$\widehat{f_{\text{inv}}}(\pi) = \int_G f_{\text{inv}}(g) \pi(g)^* d\lambda(g) \quad (35)$$

777
$$= \int_G \left(\int_G f(hg) d\lambda(h) \right) \pi(g)^* d\lambda(g) \quad (36)$$

778
$$= \int_G f(x) \left(\int_G \pi(h^{-1}x)^* d\lambda(h) \right) d\lambda(x) \quad \text{substituting } x = hg \implies g = h^{-1}x \quad (37)$$

779
$$= \int_G f(x) \left(\int_G \pi(h^{-1})^* d\lambda(h) \right) \pi(x)^* d\lambda(x) \quad (38)$$

780
$$= \int_G f(x) \left(\int_G \pi(h)^* d\lambda(h) \right) \pi(x)^* d\lambda(x). \quad \text{invariance of Haar measure} \quad (39)$$

810 Define $A_\pi := \int_G \pi(h)^* d\lambda(h) \in \text{End}(V_\pi)$. Note that A_π is π -equivariant; indeed, for all $g \in G$,

$$812 \quad \pi(g) A_\pi = \int_G \pi(g) \pi(h)^* d\lambda(h) \quad (40)$$

$$813 \quad = \int_G \pi(gh^{-1}) d\lambda(h) \quad (41)$$

$$814 \quad = \int_G \pi(k)^* \pi(g) d\lambda(k) \quad \text{substituting } k = ghg^{-1} \implies gh^{-1} = k^{-1}g \quad (42)$$

$$815 \quad = A_\pi \pi(g), \quad (43)$$

816 Hence by Schur's lemma (since π is irreducible), we have

$$817 \quad A_\pi \in \text{End}(V_\pi) \cong \{\lambda I : \lambda \in \mathbb{C}\}.$$

818 So $A_\pi = \lambda I$ for some $\lambda \in \mathbb{C}$.

819 Now,

$$820 \quad \text{tr } A_\pi = \int_G \text{tr}(\pi(h)^*) d\lambda(h) = \int_G \overline{\chi_\pi(h)} d\lambda(h) = \overline{\int_G \chi_\pi(h) d\lambda(h)}. \quad (44)$$

821 But the characters χ_π are orthonormal, so denoting the trivial representation $g \mapsto 1$ by $\mathbf{1}$, i.e. have $\chi_{\mathbf{1}}(g) = 1$ for all g ,
822 we have

$$823 \quad \int_G \chi_\pi(g) d\lambda(g) = \int_G \chi_\pi(g) \overline{\chi_{\mathbf{1}}(g)} d\lambda(g) = \langle \chi_\pi(g), \chi_{\mathbf{1}}(g) \rangle_{L^2(G)} = \delta_{\pi, \mathbf{1}}. \quad (45)$$

824 Finally, this gives

$$825 \quad d_\pi \lambda = \text{tr } A_\pi \implies \lambda = \frac{\delta_{\pi, \mathbf{1}}}{d_\pi} = \begin{cases} 0, & \pi \neq \mathbf{1}, \\ \frac{1}{d_\pi}, & \pi = \mathbf{1}. \end{cases} \quad (46)$$

826 Substituting this into the above yields

$$827 \quad \widehat{f}_{\text{inv}}(\pi) = \frac{1}{d_\pi} \widehat{f}(\pi) \delta_{\pi, \mathbf{1}}. \quad (47)$$

828 \square

829 A.5 PROOF OF COROLLARY 3.7

830 *Proof of Corollary 3.7.* Since P_{inv} is a projection onto the G -invariant subspace, $P_{\text{inv}}(f)$ is always invariant. Hence,
831 by Lemma 3.6, $\widehat{P_{\text{inv}}(f)}(\pi)$ is zero for all $\pi \neq \mathbf{1}$. Now note that by invariance, $P_{\text{inv}}(f)(g) = c$ for all $g \in G$ for some
832 $c \in \mathbb{C}$. We then calculate

$$833 \quad \widehat{P_{\text{inv}}(f)}(\mathbf{1}) = \int_G P_{\text{inv}}(f)(g) \mathbf{1}(g)^* d\lambda(g) = \int_G P_{\text{inv}}(f)(g) d\lambda(g) = \int_G c d\lambda(g) = c. \quad (48)$$

834 At the same time

$$835 \quad \widehat{f}(\mathbf{1}) = \int_G f(g) \mathbf{1}(g)^* d\lambda(g) = \int_G f(g) d\lambda(g) = c. \quad (49)$$

836 which concludes the proof. \square

837 A.6 PROOF OF THEOREM 3.8

838 *Proof of Theorem 3.8.* By the Peter–Weyl theorem there is a unitary isomorphism

$$839 \quad L^2(G) \cong \bigoplus_{\pi \in \widehat{G}} V_\pi \otimes V_\pi^*,$$

840 under which the left regular action is $\tau(g) \cong \bigoplus_\pi (\pi(g) \otimes I_{V_\pi^*})$. Any linear map T on $L^2(G)$ becomes a block matrix
841 $T = (T_{\pi \rightarrow \pi'})_{\pi, \pi'} \in \text{Hom}(V_\pi \otimes V_\pi^*, V_{\pi'} \otimes V_{\pi'}^*)$. The equivariance condition $\tau(g)T = T\tau(g)$ for all g
842 reads, blockwise,

$$843 \quad (\pi'(g) \otimes I_{V_{\pi'}^*}) T_{\pi \rightarrow \pi'} = T_{\pi \rightarrow \pi'} (\pi(g) \otimes I_{V_\pi}) \quad \forall g \in G.$$

864 Thus each $T_{\pi \rightarrow \pi'}$ is an intertwiner from $\pi \otimes \mathbf{1}$ to $\pi' \otimes \mathbf{1}$. By Schur's lemma, if $\pi \not\sim \pi'$ then $T_{\pi \rightarrow \pi'} = 0$. Hence T is
 865 block-diagonal across distinct irreps:
 866

$$867 \quad T \cong \bigoplus_{\pi} T_{\pi}, \quad T_{\pi} \in \text{End}(V_{\pi} \otimes V_{\pi}^*).$$

869 Now choose $A_{\pi} \in \text{End}(V_{\pi})$, $B_{\pi} \in \text{End}(V_{\pi}^*)$ such that
 870

$$871 \quad T \cong \bigoplus_{\pi} A_{\pi} \otimes B_{\pi}.$$

873 Again by Schur's lemma, A_{π} must be a scalar multiple of $I_{V_{\pi}}$; this scalar can be absorbed into B_{π} , which gives the
 874 desired decomposition in Equation 13. \square
 875

876 B DETAILS ON VECTOR-VALUED SIGNALS

878 **Fourier description.** Peter–Weyl yields the unitary decomposition
 879

$$880 \quad L^2(G) \cong \bigoplus_{\pi \in \widehat{G}} V_{\pi} \otimes V_{\pi}^*, \quad L^2(G, V) \cong \bigoplus_{\pi \in \widehat{G}} V_{\pi} \otimes (V_{\pi}^* \otimes V),$$

883 where G acts by π on the first tensor factor and trivially on V_{π}^* , while the fiber transforms by ρ . Accordingly, any
 884 bounded linear map $T : L^2(G, V_{\text{in}}) \rightarrow L^2(G, V_{\text{out}})$ admits a block form
 885

$$886 \quad \widehat{T} \cong \left(\widehat{T}(\pi, \sigma) \right)_{\pi, \sigma \in \widehat{G}}, \quad \widehat{T}(\pi, \sigma) : V_{\sigma} \otimes (V_{\sigma}^* \otimes V_{\text{in}}) \longrightarrow V_{\pi} \otimes (V_{\pi}^* \otimes V_{\text{out}}).$$

888 Averaging annihilates all off-diagonal ($\pi \neq \sigma$) blocks and, on each frequency π , orthogonally projects $\widehat{T}(\pi, \pi)$ onto
 889 the intertwiner space $\text{Hom}_G(\pi^* \otimes \rho_{\text{in}}, \pi^* \otimes \rho_{\text{out}})$.
 890

Theorem B.1 (Theorem 3.10 restated). *Let $T : L^2(G, V_{\text{in}}) \rightarrow L^2(G, V_{\text{out}})$ be linear. Then*

$$892 \quad \widehat{P}_{\text{equiv}}(T) \cong \bigoplus_{\pi \in \widehat{G}} \left(I_{V_{\pi}} \otimes B_{\pi} \right), \quad (50)$$

$$895 \quad B_{\pi} = \int_G (\pi(g)^* \otimes \rho_{\text{out}}(g)) \widehat{T}(\pi, \pi) (\pi(g) \otimes \rho_{\text{in}}(g)^{-1}) d\lambda(g), \quad (51)$$

897 with $B_{\pi} \in \text{Hom}_G(\pi^* \otimes \rho_{\text{in}}, \pi^* \otimes \rho_{\text{out}})$. In particular, every equivariant T is block-diagonal across frequencies and
 898 acts as the identity on V_{π} and as an intertwiner on the fiber-multiplicity space $V_{\pi}^* \otimes V$.
 899

900 *Sketch.* Decompose both domain and codomain via Peter–Weyl and write \widehat{T} in blocks $\widehat{T}(\pi, \sigma)$. Conjugation by $(\tau \otimes \rho)$
 901 restricts, on the (π, π) block, to the representation $\pi^* \otimes \rho_{\text{out}}$ on the codomain multiplicity and $\pi^* \otimes \rho_{\text{in}}$ on the domain
 902 multiplicity. Averaging is the orthogonal projection onto the commutant, hence onto $\text{Hom}_G(\pi^* \otimes \rho_{\text{in}}, \pi^* \otimes \rho_{\text{out}})$, and
 903 kills $\pi \neq \sigma$ by Schur orthogonality. The displayed formula is the explicit Bochner average of that projection. \square
 904

905 C IMPLEMENTATION DETAILS

907 In this section, we provide additional information on the implementation details of all of our experiments.
 908

909 C.1 EXAMPLE: LEARNED $SO(2)$ INVARIANCE

911 **Data generation.** Using polar coordinates (r, θ) , we sample the inner cloud (blue, label +1) by drawing $r \sim$
 912 $\text{Unif}[0, 1]$ and $\theta \sim \text{Unif}[0, 2\pi]$, and the outer cloud (red, label -1) by drawing $r \sim \text{Unif}[2.3, 3]$ and $\theta \sim \text{Unif}[-\frac{\pi}{4}, \frac{\pi}{4}]$.
 913

914 **Feature map and network.** We project inputs $(x, y) \in \mathbb{R}^2$ onto circular harmonics up to degree $M = 4$ with $C = 4$
 915 radial channels as follows: viewing (x, y) as a complex number $z \in \mathbb{C}$ with $r = |z|$ and $\hat{z} = z/r$, define radial basis
 916 functions

$$917 \quad b_n(r) = \exp\left(-\frac{(r - c_n)^2}{2\sigma^2}\right), \quad \sigma = 0.5, \quad c_n \text{ uniform in } [0, 4], \quad n = 1, \dots, C.$$

918 Form the order- m harmonic features by $h^{(m)}(r, \hat{z}) = (b_n(r) \hat{z}^m)_{n=1}^C$ for $m = -M, \dots, M$, and concatenate across
 919 m to obtain the embedding
 920 $H \in \mathbb{C}^{(2M+1) \times C}$.

921 We then apply two fully connected complex linear layers
 922

$$923 L_1 : \mathbb{C}^{(2M+1) \times C} \rightarrow \mathbb{C}^{(2M+1) \times C_{\text{hid}}}, \quad L_2 : \mathbb{C}^{(2M+1) \times C_{\text{hid}}} \rightarrow \mathbb{C}^{(2M+1) \times C_{\text{hid}}},$$

925 followed by an $\text{SO}(2)$ -equivariant tensor product:

$$926 h'_{m_{\text{out}}} = \sum_{m_1+m_2=m_{\text{out}}} h_{m_1} h_{m_2},$$

929 with complex multiplication applied channel-wise. We then extract the invariant component h'_0 and pass its real part
 930 through a final real-valued linear head $L_{\text{final}} : \mathbb{R}^{C_{\text{hid}}} \rightarrow \mathbb{R}$ to produce the scalar logit.

931 We then train a new model for each combination of $\lambda_G, \lambda_{\perp}$ (see Figure 3) using the Adam optimiser Kingma & Ba
 932 (2014) for 200 epochs with a learning rate of 0.003. We use a binary cross-entropy loss as task-specific loss.

936 **Angular perturbation experiment.** To study the interaction between the projection regulariser and violations of
 937 exact $\text{SO}(2)$ symmetry, we construct a family of “wavey” ring datasets parameterised by an amplitude $\sigma_{\perp} \geq 0$. For
 938 each σ_{\perp} we independently sample angles $\theta_+, \theta_- \sim \text{Unif}[0, 2\pi)$ and define class-conditional radii

$$939 r_+(\theta_+) = r_{\text{in}} + \sigma_{\perp} \sin(f\theta_+) + \epsilon_{\text{in}}, \quad r_-(\theta_-) = r_{\text{out}} + \sigma_{\perp} \sin(f\theta_-) + \epsilon_{\text{out}},$$

941 with $(r_{\text{in}}, r_{\text{out}}) = (1.1, 2.2)$, frequency $f = 5$ and independent jitters $\epsilon_{\text{in}} \sim \text{Unif}[-b_{\text{in}}, b_{\text{in}}]$, $\epsilon_{\text{out}} \sim \text{Unif}[-b_{\text{out}}, b_{\text{out}}]$
 942 for $(b_{\text{in}}, b_{\text{out}}) = (0.15, 0.22)$. Mapping (r_{\pm}, θ_{\pm}) to Cartesian coordinates yields two noisy rings labelled +1 (inner)
 943 and -1 (outer). In Figure 5, we consider $\sigma_{\perp} \in \{0, 0.5, 0.75, 1.0\}$, sample 350 points per class, and split the data
 944 into 80% training and 20% test. For each $(\sigma_{\perp}, \lambda_{\perp})$ we then train (i) the approximately $\text{SO}(2)$ -invariant architecture
 945 described above (blue lines), and (ii) a plain real-valued MLP on the raw coordinates (orange).

946 We see that even for a fixed value of λ_{\perp} , the regulariser allows us to capture different effective levels of invariance
 947 as the data depart from rotational symmetry; see, for instance, the row with $\lambda_{\perp} = 1.0$, where the learned classifier
 948 remains nearly invariant for small σ_{\perp} and gradually departs from invariance as the angular modulation strengthens.
 949 For strongly broken $\text{SO}(2)$ symmetry (e.g. $\sigma_{\perp} = 1.0$), the decision boundary remains “as radially symmetric as
 950 possible”: away from the perturbed regions the contours revert to circular rings, and in the region between the two
 951 classes, around each arm of the star-shaped pattern, the classifier exhibits consistent behaviour across angles.

952 C.2 IMPERFECTLY SYMMETRIC DYNAMICAL SYSTEMS

954 For each baseline, relaxed group convolution (RGroup) and relaxed steerable CNN (RSteer), and for each symmetry
 955 setting, we conduct a hyperparameter sweep over learning rate, batch size, hidden width, number of layers, and the
 956 number of rollout steps used to compute prediction errors during training, using the same search ranges as Wang et al.
 957 (2022c) (see Table 3). We also tune the number of filter banks for group-convolution models and the coefficient for the
 958 non-equivariance penalty λ_{\perp} for relaxed weight-sharing models. The input sequence length is fixed to 10. To ensure
 959 a fair comparison, we cap the total number of trainable parameters for every model at no more than 10^7 .

960 961 Table 3: Hyperparameter tuning range for the asymmetric smoke simulation data.

962 LR	963 Batch size	964 Hid-dim	965 Num-layers	966 Num-banks	967 #Steps for Backprop	968 λ_{\perp}
$10^{-2} \sim 10^{-5}$	$8 \sim 64$	$64 \sim 512$	$3 \sim 6$	$1 \sim 4$	$3 \sim 6$	$0, 10^{-2}, 10^{-4}, 10^{-6}$

966 C.3 CT SCAN METAL ARTIFACT REDUCTION

968 C.3.1 HYPERPARAMETERS

970 For the most part, we use the same hyperparameters as Bai et al. (2025). We train for 80 epochs with a batch size of 12
 971 for the baselines and our projection-based regulariser, and a batch size of 4 for the sample-based regulariser. We set
 the patch size at 256×256 . Optimization uses Adam Kingma & Ba (2014) ($\beta_1=0.5, \beta_2=0.999$) with initial learning

Figure 5: Effect of angular perturbations and projection strength. Columns vary the angular wave amplitude σ_{\perp} , rows vary the non-equivariant penalty weight λ_{\perp} . Blue contours show level sets of the approximately $SO(2)$ -invariant network and points denote training samples. Orange dashed lines are the decision boundary of a non-equivariant MLP. The value $\mathcal{E}(T)$ underneath each panel is the empirical invariance defect, demonstrating that larger λ_{\perp} keeps the classifier close to invariant even as the Bayes decision boundary becomes increasingly angle-dependent.

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 6: Qualitative comparison of the baseline methods (left column) with each of the sample-based (middle column) and our projection-based regulariser (right column) on the metal artefact reduction task. We show a cropped pelvic slice containing two metallic implants that generate artefacts.

Table 4: Hyperparameters for the CT-MAR experiments.

Parameter	Value
N (feature maps)	8
N_p (concat channels)	35
d (dict. filters)	32
Residual blocks / ResNet	3
Stages T	10

rate $\eta_0=2\times10^{-4}$ and a MultiStepLR scheduler (milestones at epochs $\{50, 100, 150, 200\}$, decay factor $\gamma=0.5$). The model hyperparameters are summarised in Table 4.

The scalar weight for sample-based regulariser is set at 10^6 . To set ours, we performed a hyperparameter sweep over the set $\{1.0, 10^{-1}, \dots, 10^{-6}\}$ and chose $\lambda_G = 1.0$.

C.3.2 PROJECTION ONTO THE C_4 -EQUIVARIANT KERNEL SUBSPACE

We consider steerable CNN layers whose input and output feature spaces are arranged in orientation groups of four (regular-representation channels) for the discrete rotation group $C_4 = \{0, 1, 2, 3\}$ (multiples of 90°). Let

$$K \in \mathbb{R}^{C'_{\text{out}} \times C'_{\text{in}} \times 4 \times 4 \times s \times s}$$

denote an $s \times s$ convolution kernel with output block index $p \in \{1, \dots, C'_{\text{out}}\}$, input block index $q \in \{1, \dots, C'_{\text{in}}\}$, orientation indices $\alpha, \beta \in \{0, 1, 2, 3\}$, and spatial indices $(i, j) \in \{0, \dots, s-1\}^2$. Let S be the 4×4 cyclic-shift matrix so that the channel representations of C_4 act by $\rho_{\text{out}}(r) = S^r$ and $\rho_{\text{in}}(r) = S^r$ for $r \in \{0, 1, 2, 3\}$. Write rot_r for rotation of the spatial kernel by $90^\circ r$ (with exact index permutation on the discrete grid).

1080 The natural action of C_4 on kernels combines spatial rotation with orientation-channel permutations:
 1081
 1082

$$(\mathcal{A}(r) K) = \rho_{\text{out}}(r) (\text{rot}_r K) \rho_{\text{in}}(r)^{-1} = S^r (\text{rot}_r K) S^{-r}. \quad (52)$$

1083 The orthogonal projector onto this subspace is the (finite) Haar average of the action:
 1084
 1085

$$P(K) = \frac{1}{4} \sum_{r=0}^3 S^r (\text{rot}_r K) S^{-r}. \quad (53)$$

1086 Index-wise, for any $(p, q, \alpha, \beta, i, j)$, this reads
 1087
 1088

$$[P(K)]_{p,\alpha; q,\beta}[i, j] = \frac{1}{4} \sum_{r=0}^3 [\text{rot}_r K]_{p,\alpha-r; q,\beta-r}[i, j]. \quad (54)$$

1089 Since equation 53 is the average of unitary (permutation + rotation) actions, P is an orthogonal projector: $P^2 = P$
 1090 and $P^\top = P$. In practice, equation 53 yields an efficient, exact implementation requiring only four 90° rotations and
 1091 two inexpensive orientation-channel permutations per term.
 1092
 1093

1094 D SENSITIVITY WITH RESPECT TO λ_G AND λ_\perp

1095 We study the sensitivity of our method to the scalar weights λ_G and λ_\perp through two ablation experiments. First, we
 1096 repeat the experiment from Section 4.1 on approximate $SO(2)$ invariance in 2D for $\lambda_G, \lambda_\perp \in \{0, 0.001, 0.01, 0.1\}$;
 1097 the resulting decision boundaries are shown in Figure 7. When the penalty on the orthogonal component dominates
 1098 (e.g. $\lambda_\perp = 0.1$ and $\lambda_G \in \{0, 0.001, 0.01\}$), the decision boundary becomes essentially rotationally invariant. In the
 1099 regime $\lambda_\perp \approx \lambda_G$, the regulariser effectively reduces to standard Tikhonov (ℓ_2) regularisation and no longer induces a
 1100 geometric inductive bias. For $\lambda_\perp < \lambda_G$, the learned level sets increasingly depend on angular information.
 1101
 1102

1103 **Training setup.** Additionally, we study learned translation equivariance on a perfectly translation-equivariant task:
 1104 image classification on MNIST Deng (2012) and CIFAR Krizhevsky et al.. Figure 8 reports the classification accuracy
 1105 for different values of λ_G and λ_\perp . As expected in this setting, models with a stronger equivariance bias perform
 1106 better: the best results are generally obtained for $\lambda_G = 0$, and accuracy increases as λ_\perp grows. In Figure 9, we show
 1107 the corresponding equivariance defect for each $(\lambda_G, \lambda_\perp)$ pair. This defect remains largely unchanged when varying
 1108 λ_G at fixed λ_\perp , and decreases sharply as λ_\perp increases, consistent with the role of λ_\perp as the primary control on the
 1109 non-equivariant component.
 1110
 1111

1112 E SENSITIVITY WITH RESPECT TO NORM

1113 In this ablation, we study the impact of the choice of matrix norm in the projection regulariser. We consider the
 1114 following norms. First, the spectral norm

$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2, \quad (55)$$

1115 which is equal to the largest singular value of A . Second, the Frobenius norm

$$\|A\|_F = \sqrt{\sum_{i,j} a_{i,j}^2}. \quad (56)$$

1116 Third, the (entrywise) infinity norm

$$\|A\|_\infty = \max_{i,j} |a_{i,j}|. \quad (57)$$

1117 Finally, we consider mixed (p, q) -norms, defined row-wise as

$$\|A\|_{p,q} = \left(\sum_i \left(\sum_j |a_{i,j}|^p \right)^{\frac{q}{p}} \right)^{\frac{1}{q}}, \quad (58)$$

1118 for $p, q \in \{1, 2, 3\}$. The corresponding results are reported in Table 5. We can see that the choice of norm has only
 1119 a modest effect on both computational cost and reconstruction quality. Training and inference throughput, as well
 1120 as epoch time, are nearly identical across all norms, except for the spectral norm, which is about 10–15% slower per
 1121 epoch.
 1122

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 7: Controlling the degree of learned $SO(2)$ invariance by varying the values of λ_G and λ_{\perp} over the grid $\{0, 0.001, 0.01, 0.1\}$.

Figure 8: Classification accuracy on the CIFAR and MNIST datasets for models trained with varying values of λ_G and λ_{\perp} .

Figure 9: Equivariance defect for models trained on the CIFAR and MNIST classification tasks for varying values of λ_G and λ_\perp .

Table 5: Results for the CT scan metal artifact reduction task from Section 4.3 for different matrix norms. We report throughput during training and inference as well as total epoch time; the performance metrics are PSNR/SSIM. We consider the spectral, Frobenius (which we use by default in Section 4.3) and infinity norms, as well as the (p, q) -norms for $p, q \in \{1, 2, 3\}$.

Norm	Throughput (no./GPU-s)		Epoch time (s) ↓	AAPM	
	Train ↑	Inference ↑		PSNR ↑	SSIM ↑
Spectral	6.59	10.16	877	39.25	0.9318
Frobenius	7.22	10.11	778	38.48	0.9457
Infinity	7.73	10.12	777	35.61	0.9153
(1, 1)	7.63	10.13	785	35.57	0.8864
(1, 2)	7.12	10.14	785	38.05	0.9365
(1, 3)	7.12	10.13	785	38.67	0.9391
(2, 1)	7.65	10.14	783	39.33	0.9299
(2, 2)	7.65	10.13	783	38.24	0.9430
(2, 3)	7.61	10.14	786	38.18	0.9299
(3, 1)	7.59	10.14	787	39.10	0.9304
(3, 2)	7.32	10.10	810	39.54	0.9322
(3, 3)	7.18	10.16	780	37.86	0.9346

epoch, as expected given the need to estimate the largest singular value. In terms of image quality, several choices yield very similar PSNR/SSIM, with the Frobenius and (p, q) -norms for $(p, q) \in (2, 2), (1, 3), (3, 3)$ all lying within roughly 1 dB PSNR and 0.01 SSIM of each other. Norms that emphasise elementwise extremal behaviour, such as the infinity norm and the $(1, 1)$ -norm, lead to clear degradation in both PSNR and SSIM, indicating that these penalties are too stiff and effectively underfit the reconstruction task. Since the spectral norm brings no systematic performance gains while incurring a noticeable runtime overhead, and more aggressive entrywise norms harm reconstruction quality, we adopt the Frobenius norm as our default in Section 4.3.

F DECLARATION OF LLM USE

We used LLMs to aid in the writing process for proof-reading, spell checking, and polishing writing.