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Abstract

We introduce JEDI, a test-time adaptation method

that enhances subject separation and composi-

tional alignment in diffusion models without re-

quiring retraining or external supervision. JEDI

operates by minimizing semantic entanglement in

attention maps using a novel Jensen-Shannon di-

vergence based objective. To improve efficiency,

we leverage adversarial optimization, reducing

the number of updating steps required. JEDI is

model-agnostic and applicable to architectures

such as Stable Diffusion 1.5 and 3.5, consistently

improving prompt alignment and disentanglement

in complex scenes. Additionally, JEDI provides

a lightweight, CLIP-free disentanglement score

derived from internal attention distributions, of-

fering a principled benchmark for compositional

alignment under test-time conditions. Code and

results are available at ericbill21.github.io/JEDI/.

1. Introduction

Diffusion models have achieved remarkable success in gen-

erative modeling, particularly in the domain of image syn-

thesis (Ho et al., 2020; Rombach et al., 2022; Lipman et al.,

2022). Among these, text-to-image (T2I) diffusion mod-

els (Esser et al., 2024; Ramesh et al., 2022; Podell et al.,

2023) stand out for their ability to generate diverse and high-

quality images conditioned on natural language prompts.

However, despite these advances, current T2I models often

struggle with compositional prompts that involve multiple

objects or intricate spatial relationships. For example, when

given a prompt like “A horse and a bear in a forest,” models

from the Stable Diffusion family may produce semantically

inconsistent outputs: one subject may be omitted (missing

object), features from both animals may blend together into
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Stable Diffusion 3.5 Stable Diffusion 3.5 + JEDI

Figure 1. JEDI enables test-time subject disentanglement. For

the prompt “A horse and a bear in a forest”, JEDI reduces attribute

mixing and improves subject separation in Stable Diffusion 3.5.

a single entity (attribute mixing), or the spatial arrangement

may appear incoherent, refer to Figure 1.

Such failures are especially problematic at test time, where

retraining or fine-tuning is often infeasible. To address

these limitations, a range of test-time adaptation techniques

have been proposed, which broadly fall into two categories:

1.) Latent Optimization Methods, which adjust the latent

representations during sampling to better align with the

prompt (Meral et al., 2024; Chefer et al., 2023; Wei et al.,

2024). 2.) Concept-Based Methods which rely on external

structural cues such as layouts or segmentation maps to

guide the generation process (Kwon et al., 2024; Binyamin

et al., 2024; Liu et al., 2022).

While concept-based methods provide structural guidance,

they often require additional models and can alter the under-

lying generative distribution. In contrast, latent optimization

methods operate entirely within the model’s architecture

and offer a lightweight, model-preserving alternative for

test-time adaptation. In this work, we focus on latent opti-

mization and introduce a novel, training-free test-time adap-

tation method called JEDI (Jensen-Shannon Divergence for

Disentanglement at Inference). By framing compositional

entanglement as a probabilistic alignment problem, we pro-

pose a new divergence-based objective tailored for attention

distributions. Our main contributions are as follows:

i) We introduce a novel objective based on Jensen-

Shannon divergence to minimize semantic entangle-

ment in attention maps at test-time, providing a proba-

bilistically grounded alternative to cosine similarity.
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ii) By leveraging adversarial optimization techniques, we

reduce the number of optimization steps, making JEDI

lightweight and efficient for real-world use.

iii) JEDI demonstrates strong performance across multi-

ple architectures, including Stable Diffusion 1.5, LoR-

ACLR, and Stable Diffusion 3.5, consistently improv-

ing alignment with complex prompts.

iv) JEDI provides an entanglement score derived from

internal attention maps, enabling compositional evalu-

ation without relying on external models such as CLIP.

2. Latent Optimization

Latent alignment methods steer the iterative denoising pro-

cess in diffusion models by modifying the latent image

during sampling. These methods often leverage model’s

internal attention maps, which act as soft spatial probabil-

ity distributions, indicating how strongly each token (e.g.,

“horse”, “bear”) influences different image regions.

At each timestep t during inference, we retrieve the updated

latent xt+1 and the internal attention maps At+1:

xt+1, At+1 = model(xt, t).

We then perform a test-time update of xt by minimizing a

disentanglement loss defined over At+1:

xt ← xt − α∇xt
score(At),

where score(At) penalizes overlap between attention maps

of different entities. This encourages spatial disentangle-

ment and mitigates attribute mixing. See Algorithm 1 in

Appendix C for a pseudo-code implementation.

Probabilistic View. Although attention maps are often

treated as similarity scores, the use of the softmax func-

tion ensures that they are normalized and can instead be

interpreted as discrete probability distributions.

Prior work (Meral et al., 2024; Wei et al., 2024) overlooked

this probabilistic structure, commonly relying on cosine sim-

ilarity as a measure for alignment, despite its lack of prob-

abilistic grounding. An exception is Chefer et al. (2023),

which considers attention probabilities but focuses only on

maximizing individual token activation without accounting

for inter-token competition.

In contrast, throughout this work we interpret attention maps

as discrete probability distributions and optimize them ac-

cordingly. Our objective is to encourage unimodal, spatially

localized, and non-overlapping attention for each subject

in the prompt. This enables more faithful and disentangled

representations, all achieved via test-time adaptation.

JEDI

NT-Xent Loss

Figure 2. Optimization Evolution of JEDI and NT-Xent. Syn-

thetic example with four overlapping distributions: blue/green

correspond to one subject, red/purple to another. Overlaps of blue

and green form teal, while red and purple form pink. JEDI pre-

serves coherent group structure, while NT-Xent collapses modes.

3. Methodology

We propose JEDI (Jensen-Shannon Divergence for

Disentanglement at Inference), a test-time adaptation

method that improves subject separation in diffusion models

by adjusting latent representations using attention statistics.

Our objective combines Jensen-Shannon divergence (JSD)

and Shannon Entropy to encourage intra-group coherence,

inter-group separation, and spatial diversity.

Jensen-Shannon Divergence. To measure the overlap

among a set P = {p1, . . . ,pn} ⊂ R
d of spatial attention

distributions, we use the Jensen-Shannon divergence:

DJS(P ) =
1

|P |
∑

p∈P

DKL(p ∥m), m =
1

|P |
∑

p∈P

p,

where DKL is the Kullback-Leibler divergence, defined as:

DKL(p ∥ q) =
d
∑

i=1

pi log
pi

qi
.

Since DJS(P ) ∈ [0, log n] is bounded, we normalize it by

dividing by log n, yielding D̂JS(P ) ∈ [0, 1], which enables

comparison across groups of different sizes. For a formal

proof of this bound, see Lemma B.1 in Appendix B.

Shannon Entropy. To control the sharpness of individual

attention maps, we incorporate the Shannon entropy:

H(p) = −
d
∑

i=1

pi log pi.
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SD 1.5 JEDI (ours) CONFORM

“A sparrow and a finch perched on a blossoming branch”

“A street bike and a dirt bike leaning [...]”

Figure 3. Comparison of JEDI and CONFORM on Stable Dif-

fusion 1.5. Each image triplet was generated under identical

conditions. For more details and examples, refer to Appendix G.

Entropy ranges from 0 (single peak) to log d (uniform). We

normalize it by log d, yielding Ĥ(p) ∈ [0, 1], which allows

scale-independent balancing, where high entropy indicates

spatial spread; low entropy implies tight localization. For a

proof of the bound refer to Lemma B.2 in Appendix B.

Objective Formulation. Let S denote the set of subjects

in the text prompt, and let Ps be the set of attention maps

associated with subject s ∈ S. The total loss consists of

three additive components:

1. Intra-group Coherence: Encourages attention maps

within each group (e.g., between an attribute and its

subject) to be similar by minimizing their JSD:

1

|S|
∑

s∈S

D̂JS(Ps).

2. Inter-group Separation: For each subject s, we com-

pute its mixture distribution: ms = 1
|Ps|

∑

p∈Ps
p.

Let M = {ms | s ∈ S}. To encourage separation be-

tween subjects, we maximize the divergence between

these mixtures, by minimizing:

1− D̂JS(M).

3. Diversity Regularization: To avoid overly sharp or

degenerate maps, we encourage spatial spread by max-

imizing the normalized entropy of each mixture distri-

bution. To this end, we minimize:

λ · 1

|S|
∑

s∈S

(

1− Ĥ(ms)
)

,

where λ is a hyperparameter controlling the strength of

the regularization term. In practice, we set λ = 0.01.

We provide further analysis of the effect of each component

in the form of an ablation study in Appendix D.

Update Formulation. To efficiently update the latent repre-

sentation, we follow the Fast Gradient Sign Method (Good-

fellow et al., 2014) and perform:

xt ← xt − α · sign (∇xt
score(At)) ,

where sign(·) is applied element-wise. This formulation

accelerates updates while enabling finer control over the

latent shift. We analyze the effect of α in Figure 6; unless

otherwise stated, we use α = 3× 10−3 throughout.

4. Experiments

We evaluate JEDI in three settings: 1.) a synthetic compari-

son against the NT-Xent loss used in the latent optimization

technique CONFORM (Meral et al., 2024); 2.) qualitative

results on Stable Diffusion 3.5 (SD3.5)1; and 3.) quantita-

tive experiments on Stable Diffusion 1.5 (SD1.5)2, including

a comparison to CONFORM and an evaluation of JEDI ap-

plied to LoRACLR, a variant of SD1.5 (Simsar et al., 2024),

to demonstrate its broader applicability. All experiments

were conducted on a NVIDIA GeForce GTX TITAN X.

Implementation details are provided in Appendix E.

Synthetic Comparison. Contrastive objectives for aligning

attention maps—bringing same-subject maps closer while

pushing different ones apart—were first explored in CON-

FORM (Meral et al., 2024), which uses the NT-Xent loss

(Oord et al., 2018; He et al., 2020; Chen et al., 2020) based

on cosine similarity. While effective in embedding spaces,

cosine similarity is not well-suited for optimizing probabil-

ity distributions: it tends to collapse mass into narrow peaks

and fails to capture broader structural relationships.

To illustrate this limitation, we construct a toy example with

four overlapping 1D Gaussians: blue and green represent

one subject, red and purple another. The objective is to align

distributions within the same group while separating those

across groups. As shown in Figure 2, JEDI preserves the

support of each group, producing coherent mixtures, while

NT-Xent distorts shapes and leads to over-concentrated and

fragmented modes.

Since attention maps are soft spatial probability fields, pre-

serving their continuity and avoiding artificial multimodality

is critical, for example, to prevent the same subject from

being generated in multiple places. JEDI’s objective main-

tains this structure, encouraging stable and semantically

grounded attention patterns for generation.

Stable Diffusion 3.5. We apply JEDI to SD3.5 and assess

image quality on a custom dataset of prompts involving

1huggingface.co/stabilityai/stable-diffusion-3.5-medium
2huggingface.co/stable-diffusion-v1-5
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“A dachshund and a corgi sitting [...]” “A street bike and a dirt bike leaning [...]” “A sparrow and a finch perched on [...]”

“A black cat, an orange cat, and

a white cat lounging on a windowsill”

“A horse, a bear, and

a moose in a forest clearing”

“A Labrador, a Golden Retriever, and a

German Shepherd playing in a backyard”

Figure 4. Side-by-side comparison of Stable Diffusion 3.5 (left) and Stable Diffusion 3.5 + JEDI (right). The base model often mixes

attributes or omits subjects, while JEDI corrects these issues. See Figures 11 and 12 in Appendix G for full prompts and more examples.

“<Messi> and <Taylor> in front of Mount Fuji”

Figure 5. Comparison between LoRACLR (left) and LoRACLR

+ JEDI (right). The base model without a control shows attribute

mixing, while JEDI produces clearer subject separation.

visually similar object pairs (e.g., “apple” and “pear”). For

each prompt, we generate two images: one using vanilla

SD3.5 and one using SD3.5 + JEDI.

As shown in Figure 4, JEDI consistently improves over the

base model by correctly rendering both subjects and reduc-

ing attribute mixing. Moreover, since we set the learning

rate to α = 3 × 10−3, the overall composition and back-

ground remain nearly unchanged (e.g., in “A street bike and

a dirt bike [...]”). For additional examples, see Appendix G.

Comparison to CONFORM. To compare directly with

CONFORM, originally designed for SD1.5, we adapt their

implementation by replacing the CONFORM component

with our JEDI objective. CONFORM performs optimization

up to the 29th timestep, applying 20 iterative latent updates

at steps 0, 10, and 20—totaling 69 updates. In contrast, JEDI

achieves comparable or better results with just 18 updates,

making it approximately 67% faster in practice.

Additionally, JEDI operates with a smaller learning rate,

resulting in images that remain closer to the base model’s

distribution. By comparison, CONFORM begins with a

much higher rate (α = 20, tapering to 16.85), resulting in

greater stylistic drift. Visual comparisons in Figure 3 high-

light JEDI’s superior subject separation and overall image

quality. Additional examples are provided in Appendix G.

Extension to LoRACLR. We further test JEDI on LoR-

ACLR (Simsar et al., 2024), a multi-concept model known

to suffer from attribute mixing. On a model combining

14 distinct concepts, JEDI significantly improves subject

separation (see Figure 5), highlighting its flexibility across

architectures. Implementation details and additional exam-

ples are in Appendices E and G.

5. Discussion and Future Work

Unbiased Disentanglement Score. We find that the inter-

group loss term in the JEDI objective naturally serves as

an effective metric for measuring subject disentanglement

during generation. For the images in Figure 1, the disentan-

gled image achieves a mean JSD of 0.40± 0.15, compared

to 0.17± 0.10 for the entangled counterpart, with full pro-

gression over time shown in Figure 10. Unlike CLIP-based

metrics, this score is computed directly from internal atten-

tion maps, making it lightweight, model-internal, and free

from external supervision or bias. This presents a promising

alternative for evaluating subject separation in multi-object

prompts, particularly in test-time settings.

Efficiency and Time Complexity. While JEDI is highly

efficient relative to existing methods, it roughly doubles

inference time compared to the base model. One potential

solution is to shift its objective to the training or fine-tuning

stage, as it is naturally defined over all diffusion steps and

requires no supervision. This would reduce inference time

while preserving the benefits of the JEDI framework.
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A. Hyperparameter

The learning rate α serves as a critical hyperparameter in

our optimization, especially due to the use of the sign(·)
function, which restricts the gradient to unit magnitude.

As such, α directly controls the extent to which the latent

image is updated at each step. To illustrate this effect, we

show in Figure 6 the outputs of JEDI applied to Stable

Diffusion 3.5 under varying values of α. As expected, large

learning rates lead to overly aggressive updates, causing the

optimization to diverge and fail to produce coherent images.

Conversely, excessively small values have a negligible effect,

resulting in little to no noticeable changes.

B. Proofs

Lemma B.1 (Upper Bound of Jensen-Shannon Divergence).

Let P = {p(1), . . . ,p(n)} ⊂ R
d be a set of probability

distributions. Then, DJS(P ) is upper bounded by log n.

Proof. Define P as in Lemma B.1, then the JSD is defined

as follows:

DJS(P ) =
1

n

n
∑

k=1

DKL

(

p(k) ∥m
)

, m =
1

n

n
∑

k=1

p(k).

We can upper bound each DKL-term as follows:

DKL(p
(k) ∥m) =

d
∑

i=1

p
(k)
i log

p
(k)
i

mi

=

d
∑

i=1

p
(k)
i log

p
(k)
i

1
n

∑n

ℓ=1 p
(ℓ)
i

=
d
∑

i=1

p
(k)
i log

(

n · p
(k)
i

∑n

ℓ=1 p
(ℓ)
i

)

≤
d
∑

i=1

p
(k)
i log n

= log n.

Plugging this bound back into the definition of the JSD,

yields the desired results:

1

n

n
∑

k=1

DKL

(

p(k) ∥m
)

≤ 1

n

n
∑

k=1

log n = log n

Lemma B.2 (Upper Bound of Shannon Entropy). Let p ∈
R

d be a discrete probability distribution, such that pi ≥ 0
and

∑d

i pi = 1. Then, its entropy H(p) is upper bounded

by log d.

Proof. Let p be defined as in Lemma B.2. We define a

Lagrangian as follows:

L(p, λ) = H(p) + λ ·
(

1−
d
∑

i

pi

)

,

where λ ∈ R is a Langrage multiplier. Taking the derivative

with respect to each pi and setting it to zero yields:

∇pi
L(p, λ) = 0 ⇐⇒ log(pi) = λ− 1.

Thus, all pi must be equal at the maximum. Using the

constraint
∑d

i=1 pi = 1, it follows that pi =
1
d

for all i.

Substituting this result back into the definition of entropy

gives:

H(p) = −
d
∑

i=1

pi log(pi) = −
d
∑

i=1

1

d
log(

1

d
) = log(d).

C. Pseudo-code of JEDI

Algorithm 1 illustrates a minimal implementation of JEDI’s

test-time adaptation procedure, integrated into a standard

iterative denoising loop of a diffusion model. The modifica-

tions introduced by JEDI are highlighted in blue, while the

rest of the loop corresponds to the denoising process.

At each timestep, the model produces a denoised latent xt+1

along with the corresponding internal attention maps At.

Algorithm 1 JEDI Test-time Adaptation

1: Input: Condition prompt c

2: x0 ∼ N (0, I)
3: for t = 0 to T − 1 do

4: if t ≤ K then

5: , At ← Model(xt, c)
6: xt ← xt − α · sign(∇xt

JEDI(At, c))
7: end if

8: xt+1, ← Model(xt, c)
9: end for

10: return xT

D. Ablation

The JEDI objective comprises three additive components:

Intra-group Coherence, Inter-group Separation, and a Di-

versity Regularizer. To evaluate the individual contribution

of each term, we conduct an ablation study by systemati-

cally removing one component at a time. The results are

shown in Figure 7.

Overall, the best results are achieved when all three compo-

nents are included. Among them, Inter-group Separation
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α = 5× 10
−1

α = 3× 10
−1

α = 1× 10
−1

α = 5× 10
−2

α = 3× 10
−2

α = 1× 10
−2

α = 5× 10
−3

α = 3× 10
−3

α = 1× 10
−3 Base Model

Figure 6. Effect of learning rate α on image generation. Outputs generated for the same prompt, “A horse and a bear in a forest,” using

Stable Diffusion 3.5 under identical settings, varying only the learning rate. Higher α values lead to excessive changes in the latent space,

deteriorating image quality, while lower values result in minimal updates and limited visual difference.

has the most pronounced effect. This term encourages the

model to spatially disentangle subjects, thereby reducing

attribute mixing. Whenever it is removed, we observe no-

ticeable shifts in image style and a significant increase in

attribute mixing and spatial overlap between entities.

The effect of Intra-group Coherence is more subtle but still

important. For example, in the generation of the “moose”

subject, removing this term results in unnatural proportions.

We attribute this degradation to misalignment between atten-

tion distributions produced by Stable Diffusion 3.5’s dual

text encoders (T5 and CLIP) which differ substantially in ar-

chitecture and semantic representation. The coherence term

helps align these internal representations, yielding more

consistent subject rendering.

Finally, the contribution of the Diversity Regularizer is min-

imal in this setting. We scale this term with a small coef-

ficient of λ = 1× 10−2, which limits its influence during

optimization. However, we found it to be beneficial in syn-

thetic scenarios where we noticed attention map collapse.

For this reason, we retain it as a safeguard.

E. Implementation Details

To facilitate reproducibility, we describe the key implemen-

tation details for each architecture evaluated. Full source

code and experimental configurations are available on our

project website: ericbill21.github.io/JEDI/.

Stable Diffusion 1.5. To enable a direct comparison with

CONFORM (Meral et al., 2024), we adopt their implemen-

tation and replace the CONFORM module with our JEDI

objective. Following their experimental setup, we sample

the model for 50 timesteps using a guidance scale of 7.5.

During each forward pass, we extract cross-attention maps

at a resolution of 16× 16 and compute the JEDI objective

over these maps. We then backpropagate the loss and update

the latent variables using signed gradients, with a learning

rate of α = 3× 10−3. Optimization is applied only during

the first 18 timesteps, which already yields strong results.

We do not perform extensive hyperparameter tuning, as our

primary focus is on evaluating JEDI with SD3.5.

For LoRACLR (Simsar et al., 2024), which is built on the

Mix-of-Show codebase (Gu et al., 2023), we extend the

CONFORM implementation to operate within this frame-

work by applying the same setup used for SD 1.5. The

only modification is an extended optimization window of

30 timesteps to account for the observed increased attribute

mixing in LoRACLR.

Stable Diffusion 3.5. Modern T2I models like Stable Dif-

fusion 3.5 are based on the Diffusion Transformer (DiT)

architecture by Peebles & Xie (2023), which replaces the

traditional U-Net with a sequence of DiT blocks. Unlike

U-Nets, DiT does not use explicit cross-attention between

image and text tokens, making it more challenging to extract

spatial attention distributions for individual prompt tokens.

To approximate this behavior, we took inspiration from Wei

et al. (2024).
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JEDI
Without

Intra-group Coherence
Without

Inter-group Separation
Without

Diversity Reguralization Base

“A horse and a bear in a forest”

“A violin and a viola on a wooden stage under soft spotlights”

“A horse, a bear, and a moose in a forest clearing”

Figure 7. Effect of individual components in the JEDI objective. Outputs generated from the same prompt using Stable Diffusion

3.5 under identical sampling settings. The left column shows results with all components enabled. The middle columns each omit one

component of the JEDI objective. The right column shows outputs from the base model without any JEDI adaptation.

Each DiT block processes image tokens X ∈ R
n×d and

prompt tokens C ∈ R
m×d separately, producing respective

query, key, and value matrices:

Qx,Kx,Vx (image) and Qc,Kc,Vc (text).

These matrices are then concatenated to form the full atten-

tion inputs:

Q = concat[Qx,Qc],

K = concat[Kx,Kc],

V = concat[Vx,Vc].

Self-attention is applied over the combined sequence,

yielding the attention matrix A = softmax(QK⊤) ∈
R

(n+m)×(n+m). To estimate the spatial influence of prompt

token i on the image, we compute:

1√
2

(

An+i,:n +A⊤
:n,n+i

)

.

Since this expression is not guaranteed to form a normalized

distribution, we consider two options: 1.) renormalize the

result, or 2.) bypass the softmax during attention and apply

it only during extraction, using raw logits. Empirically, we

find the second approach yields more stable and consistent

results.

SD3.5 contains 24 DiT blocks, each producing an attention

map per prompt token. However, not all blocks provide

equally useful information. Based on visual analysis and

computational efficiency, we select blocks 5 to 15 for both

extraction and optimization. See Figures 8 and 9 for exam-

ple visualizations.

We find that applying latent optimization during the first 18

timesteps is sufficient. All experiments use these settings,

along with 28 inference steps in total and a guidance scale

of 4.5, following the official recommendations.
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.

Figure 8. Attention maps for the subject “bear”. Extracted from diffusion timestep 13 of 28 across all 24 DiT blocks for the prompt “A

horse and a bear in a forest”, using Stable Diffusion 3.5 with JEDI. The final generated image is shown in Figure 1.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.

Figure 9. Attention maps for the subject “horse”. Extracted from diffusion timestep 13 of 28 across all 24 DiT blocks for the prompt “A

horse and a bear in a forest”, using Stable Diffusion 3.5 with JEDI. The final generated image is shown in Figure 1.

F. Score

Figure 10 presents the inter-group JSD between the two

subjects from Figure 1, computed across DiT blocks 7 to

15 over all diffusion timesteps. The image without attribute

mixing exhibits consistently higher inter-group JSD values

from timestep 5 onward, indicating stronger subject disen-

tanglement.
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Figure 10. Inter-group JSD across diffusion timesteps for the

base model (red) and JEDI (blue). Thick lines show the mean

JSD across blocks. JEDI is applied only during the first 18

timesteps, indicated by the dashed vertical line.

G. Samples

We present additional qualitative results and highlight no-

table behaviors across different model variants.

Stable Diffusion 3.5. Figures 11 and 12 show samples

across a broader range of object categories. A noteworthy

observation is that when subjects are already well disen-

tangled (i.e., no visible attribute mixing), JEDI leaves the

image unchanged. This occurs because the JEDI loss ap-

proaches zero in such cases. For example, see the image

pair with “dachshund” and “corgi”.

Stable Diffusion 1.5. Additional samples are shown in

Figure 13. Due to CONFORM’s relatively high learning

rate, generated images occasionally deviate from the base

model’s distribution. For instance, a “violin” may appear

with an unnatural blue color. This phenomenon is absent

in JEDI, as the choice of α = 3× 10−3 prevents excessive

deviation from the base model.

LoRACLR. Further LoRACLR results are shown in Fig-

ure 14. Since the LoRACLR model combines 14 concepts—

many involving famous figures from film or sports—it oc-

casionally disregards background details, leading to mis-

alignment between the prompt and the image. However, this

issue is inherent to the LoRACLR model and not introduced

by JEDI. We solely demonstrate that JEDI can successfully

disentangle the subjects of the prompt.
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“A horse and a bear in a forest”

“A sparrow and a finch perched on a blossoming branch”

“An apple and a pear hanging from adjacent branches in an orchard”

“A dachshund and a corgi sitting together on a cozy rug”

“A canoe and a kayak tied to a wooden dock at dawn”

“A street bike and a dirt bike leaning against a garage wall”

Figure 11. Side-by-side comparison of Stable Diffusion 3.5 (left) and Stable Diffusion 3.5 + JEDI (right). Each image pair was

generated under identical conditions with a guidance scale of 4.5 and 28 inference steps.
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“A sailboat and a yacht anchored in a calm harbor at sunset”

“A sheep and a goat grazing in a misty pasture”

“A rabbit and a hare nibbling grass in a sunlit meadow”

“A dolphin and a whale breaching near each other in the ocean”

“A maple leaf and an oak leaf lying on a forest floor covered in moss”

“A jaguar and a leopard crouching in dense rainforest foliage”

Figure 12. Side-by-side comparison of Stable Diffusion 3.5 (left) and Stable Diffusion 3.5 + JEDI (right). Each image pair was

generated under identical conditions with a guidance scale of 4.5 and 28 inference steps.
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SD 1.5 JEDI (ours) CONFORM SD 1.5 JEDI (ours) CONFORM

“A violin and a viola on a wooden stage under soft spotlights”

“A street bike and a dirt bike leaning against a garage wall”

“A canoe and a kayak tied to a wooden dock at dawn”

“A sparrow and a finch perched on a blossoming branch”

“A jaguar and a leopard crouching in dense rainforest foliage”

“A sailboat and a yacht anchored in a calm harbor at sunset”

Figure 13. Comparison of JEDI and CONFORM on Stable Diffusion 1.5. Each image triplet was generated under identical conditions

with 50 inference steps and a guidance scale of 7.5. For details of each method, refer to Appendix E.
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“<Gosling> and <Margot> on the Moon” “<Margot> and <Gosling> in Times Square”

“<Pitt> and <Taylor>

in Venice on a gondola”

“<Messi> and <Taylor> in

front of Mount Fuji”

“<LeBron> and <Margot> at

the Pyramids of Giza”

“<Messi> and <Taylor> on

the Great Wall of China”

“<LeBron> and <Messi> at

the Tokyo Shibuya Crossing”

“<Margot> and <Pitt> at

on a ski lift in the Swiss Alps”

Figure 14. Comparison between LoRACLR (left) and LoRACLR + JEDI (right). The baseline model exhibits attribute mixing

between subjects (e.g., “Taylor” appears in football attire), whereas LoRACLR + JEDI achieves clearer subject disentanglement and

preserves subject-specific features.
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