
Parameter-Efficient Fine-Tune on Open Pre-trained
Transformers for Genomic Sequence

Huixin Zhan
Division of Artificial Intelligence in Medicine

Cedars-Sinai Medical Center
Los Angeles, CA, USA, 90048
Huixin.Zhan@cshs.org

Zijun (Frank) Zhang∗
Division of Artificial Intelligence in Medicine

Cedars-Sinai Medical Center
Los Angeles, CA, USA, 90048
zijun.zhang@cshs.org

Abstract

Lately, pre-trained foundation models (PFMs) in DNA have achieved notable
advancements in unraveling the linguistic nuances of the genome. As these foun-
dational models expand in parameters and the number of downstream genomic
tasks increases, Parameter-Efficient Fine-Tuning (PEFT) has become the de facto
approach to fine-tune PFMs while decreasing the computational costs. Low-rank
adapters and adaptive low-rank adaptation (AdaLoRA) are popular PEFT methods
that introduce some learnable truncated singular value decomposition modules for
efficient fine-tuning. However, both methods are deterministic, i.e., once a singular
value is pruned, it stays pruned throughout the fine-tuning process. Consequently,
deterministic PEFTs can underperform if the initial states, before pruning, are
suboptimal—a challenge frequently encountered in genomics due to data hetero-
geneity. To address this issue, we propose an AdaLoRA with random sampling
(AdaLoRA+RS) to prune and stochastically reintroduce pruned singular vectors,
adhering to a cubic budget schedule. We evaluate the AdaLoRA+RS on PFMs
within genome domain, DNABERT 1/2 and Nucleotide Transformer; and lan-
guage domain, open pre-trained transformers (OPT). Our AdaLoRA+RS approach
demonstrates performance ranging from slightly above to on par with the Full-
Model Fine-Tuning (FMFT) across 13 genomic sequence datasets on two genome
understanding tasks, while using less than 2% of the trainable parameters. For in-
stance, in the human promoter detection, OPT-350M with AdaLoRA+RS achieves
a 4.4% AUC increase compared to its FMFT baseline, leveraging only 1.8% of
the trainable parameters. Our proposed AdaLoRA+RS provides a powerful PEFT
strategy for modeling genomic sequence.

1 Introduction

DNA-centric pre-trained foundation models (PFMs), such as DNABERT (Ji et al., 2021), DNABERT-
2 (Zhou et al., 2023), and Nucleotide Transformer (NT) (Dalla-Torre et al., 2023), have made
significant progress in decoding the linguistic intricacies of the genome. An important paradigm of
utilizing such PFMs is “pretraining+finetuning”, i.e., pre-training on large-scale unlabeled genomic
sequences, and then adaption to a particular genome understanding task. As models grow in size,
the practice of full-model fine-tuning (FMFT), which involves retraining every parameter, becomes
less practical. There are two lines of solutions to address this: first, model compression; second,
parameter-efficient fine-tuning (PEFT). While model compression approaches are well-established in
recent years, implementing them on large language models can be very expensive, as these techniques
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typically necessitate FMFT (Ma et al., 2023). As a countermeasure, PEFTs fine-tune the model on
only a small number of additional parameters, significantly decreasing the computational costs.

Both low-rank adapters (LoRA) (Hu et al., 2021) and adaptive low-rank adaptation
(AdaLoRA) (Zhang et al., 2023) are popular methods in PEFTs. LoRA keeps the main pretrained
weights of the model frozen and performs fine-tune on some additional LoRA blocks. While LoRA
blocks are parameter-efficient, the number of ranks in each block is fixed and cannot be modified
after training. This means that any adjustment to the rank necessitates retraining the blocks from the
beginning. To address this issue, AdaLoRA adaptively decreases the total rank of all LoRA blocks
and keeps the important singular values in each block according to their importance score. However,
both LoRA and AdaLoRA operate deterministically. The deterministic approaches in PEFTs can
result in suboptimal outcomes, particularly when the pre-pruning states were not ideal. To address
this, we introduce AdaLoRA with random sampling (AdaLoRA+RS) that not only prunes but also
probabilistically restores pruned singular vectors following a cubic budget schedule. AdaLoRA+RS
adeptly retains crucial singular values, taking into account both their importance and sensitivity during
current batch training. We test the AdaLoRA+RS on PFMs in genome domain, DNABERT 1/2 and
Nucleotide Transformer; and on PFMs in language domain, open pre-trained transformers (OPT), for
two genome understanding tasks, i.e., epigenetic marks prediction (EMP) and promoter detection
(PD). Our AdaLoRA+RS method achieves performance that varies between slightly superior and
equivalent to FMFT on 13 genomic sequence datasets, utilizing under 2% of the trainable parameters.
Moreover, when fine-tuning OPTs using their specialized byte-level BPE (BBPE) encoding, their
performance is on par with that of fine-tuned DNA-centric PFMs. This sheds light on the potential
for broader applications of language-based PLMs.

In summary, our findings are as follows: (1) We introduce AdaLoRA with random sampling
(AdaLoRA+RS), an enhancement of the traditional PEFTs that dynamically prunes and probabilisti-
cally restores pruned singular vectors, ensuring optimized performance by balancing the importance
and sensitivity of different singular values during batch training. (2) The proposed AdaLoRA+RS
approach for OPT attains performance on the Pareto front compared to its FMFT baseline with only
0.94% of the trainable parameters. (3) We find that PLMs with its tailored BBPE encoding could
have a broader use cases. Notably, this encoding is well-suited for genomics data. We evaluate the
AdaLoRA+RS on PFMs within both genome and language domain. For two genome understanding
tasks, we observe that the OPTs achieve comparable performances with DNA-based PFMs.

2 Methods

In this section, we show the BBPE tokenization for the DNA sequences, the importance score
computation, and the cubic budget schedule with random sampling.

Table 1: Different tokenization algorithms for DNA sequences.

Original AACTCAACGATC
(1) “words” A A C T C A A C G A T C
(2) 6-mer AACTCA ACTCAA CTCAAC TCAACG CAACGA AACGAT ACGATC
(3) BBPE 1⃝41 41 43 54 43 41 41 43 47 41 54 43 → A A C T C A A C G A T C

2⃝4141 43 54 43 4141 43 47 41 54 43 → AA C T C AA C G A T C
3⃝414143 54 43 414143 47 41 54 43 → AAC T C AAC G A T C
4⃝414143 5443 414143 47 41 5443 → AAC TC AAC G A TC
5⃝414143 5443 414143 4741 5443 → AAC TC AAC GA TC

BBPE tokenization for DNA sequences
In Table 1, we present three popular to-
kenizers for DNA sequences, labeled
as (1), (2), and (3). The “words” tok-
enizer employs a dictionary derived from
the four nucleotides. The tokenized se-
quence length of an input DNA equates
to the number of nucleotides. However,
this method lacks contextual information.
In contrast, the 6-mer tokenizer is gaining popularity in DNA sequencing (Dotan et al., 2023). The
concept of k-mer revolves around extracting continuous subsequences of k nucleotides from a DNA
sequence. However, one drawback of k-mer tokenization is the increased computational complexity,
especially with larger k values. To address this, the BBPE tokenizer initializes a dictionary consisting
of all individual bytes in UTF-8 encoding. It progressively selects the most frequent pairs of tokens
to merge. Each combined pair is then added to the dictionary as a new token (shown in 1⃝− 5⃝).
OPTs are tailored with GPT-2’s BBPE tokenizer (Radford et al., 2019). This tokenizer is well-suited
for DNA sequences because it efficiently captures the recurring patterns of nucleotides. By focusing
on the frequency of specific sequences, it offers a nuanced encoding that can illuminate biological
motifs. This dictionary only consists of three tokens: “AAC”, “TC”, and “GA”.

2



Importance Score PLMs contain many weight matrices to perform matrix multiplication. These
weight matrices typically have full-rank. However, performing FMFT is not efficient. Thus, our
goal is to reduce the number of ranks to project the high dimensional weights matrices to smaller
subspaces. Mathematically, for a pre-trained weight matrix W0 ∈ Rdp×dq , we approximate the
gradient updates using singular value decomposition (SVD) for a low-rank representation, i.e.,
W0+∆W = W0+PΛQ, where P ∈ Rdp×r, Q ∈ Rr×dq , and the rank r ≪ min(dp, dq). Thus, for
n matrices in the PLM, we need to perform SVD: ∆Wk = PkΛkQk for k = 1, ..., n. Our importance
score computation considers the importance from both singular values, which capture the magnitude
of changes and indicate dominant variation directions, and singular vectors, which denote their
orientations. Thus, each triplet Σi = {λk,i, Pk,∗i, Qk,i∗} is constructed with the i-th singular value
λk,i and the corresponding singular vectors Pk,∗i, Qk,i∗. The importance score for each singular value
is then computed as (Zhang et al., 2022): Ski = s(λk,i) +

1
dp

∑dp

j=1 s(Pk,ji) +
1
dq

∑dq

j=1 s(Qk,ij).

At each time step t, each entry in the matrix is associated with an importance score, computed as
the product of its sensitivity and uncertainty, i.e., st(wij) = Īt(wij)Ū

t(wij), where Īt(wij) denotes
the stabilized sensitivity and Ū t(wij) represents the stabilized uncertainty. These stabilized scores
refine the original scores through a weighted adjustment. The updating rules for Īt(wij) and Ū t(wij)
are: Īt(wij) = β1Ī

t−1(wij) + (1− β1)I
t(wij) and Ū t(wij) = β2Ū

t−1(wij) + (1− β2)|It(wij)−
Īt−1(wij)|, where It(wij) = |wij ▽wij

Lt| and Lt denotes the binary cross-entropy for a batch
of data. Therefore, the sensitivity captures how much the loss responds to changes in a specific
weight within a training batch. In contrast, uncertainty quantifies the fluctuations in the loss, given by
U t(wij) = |It(wij)− Īt−1(wij)|. The importance score is computed by balancing the two factors
via Īt(wij)Ū

t(wij).

Cubic Budget Schedule with Random Sampling We introduce a global budget, bt, which di-
minishes following a cubic budget schedule defined as bt = bT + (b0 − bT )(1 − t

T )
3. For the

random sampling process, we define masks Rt
k,ii for pruning λt

k and re-introducing the pruned
λt
k. These masks are random variables derived from a Bernoulli distribution with parameter p,

Rt
k,ii ∼ Bernoulli(p). The singular values to be retained are updated based on the following updating

rule:

Λ̂t
k,ii =

{
Λt
k,ii · (1−Rt

k,ii) if St
k,i is in the top bt of St,

Λt
k,ii ·Rt

k,ii otherwise.
(1)

Note that we here denote λt
k as Λt

k,ii to more conveniently assign masks based on their posi-
tion index i. Only those singular values, Λ̂t

k,ii, that meet both the random sampling criteria
and have their importance score St

ki
is in the top bt of all scores St are retained. By intro-

ducing randomness rather than strictly adhering to a deterministic cutoff, the process becomes
more robust against potential suboptimal initial states and inaccuracies in importance scores.

Figure 1: Parameter Size vs. MCC with Pareto
front for FMFT.

3 Experiments

3.1 Dataset and Setting-Up

We evaluate the FMFT, LoRA, AdaLoRA, and
AdaLoRA+RS on PFMs using two genome un-
derstanding tasks, i.e., EMP on yeast and PD on
humans. Please find the subsection 5.1 in the
supplementary material for details.

3.2 Experimental Results

FMFT of OPTs performs on-par with DNA-centric PFMs on the H3 EMP task. The results for
FMFT on different models are shown in Figure 1. We display the Matthews correlation coefficient
(MCC) (Chicco and Jurman, 2020) for OPT-125M, OPT-350M, DNABERT-2, and four PFMs from
NT, with sizes spanning from 500M to 2.5B parameters. These NT models have been pre-trained on
three distinct datasets: the human reference genome (HR), the 1000G dataset, and genomes from
multiple species (MS); therefore they are referred to as HR-500M, 1000G-500M, 1000G-2.5B, and
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MS-2.5B. On FMFT of H3 EMP task, we find that the OPT with 350M paramters (OPT-350M) lies on
the Pareto front (shown in black dotted line) with two DNA foundation models, i.e., DNABERT-2 and
MS-2.5B. Specifically, the OPT-350M achieves a 2.5% decrease in MCC while utilizing a parameter
size of 14% compared to MS-2.5B. The OPT model with 125M parameters (OPT-125M) outperforms
the DNA foundation model HR-500M with 25% of HR-500M parameters. Despite OPTs being
trained on natural languages, we find their FMFT performance highly competitive with DNA-centric
PFMs, likely due to their strong reasoning ability (Coskun et al., 2023; Hu et al., 2023).

Table 2: AUCs for various models and methods on the PD task.

Model Method # Train.
Params. Prom_all Prom_notata Prom_tata

DNABERT-2

FMFT 117M 0.908 0.950 0.804
LoRA 1.6M 0 .918 0.971 0 .812
AdaLoRA 1.0M 0.912 0.954 0.802
AdaLoRA+RS 1.0M 0.920 0 .964 0.815

1000G-500M

FMFT 500M 0.950 0.951 0.939
LoRA 7M 0.921 0.942 0.899
AdaLoRA 6.9M 0.924 0.949 0.871
AdaLoRA+RS 6.9M 0 .926 0.951 0 .918

OPT-125M

FMFT 125M 0.898 0 .947 0.864
LoRA 1.1M 0.887 0.907 0.853
AdaLoRA 1.0M 0 .902 0.931 0 .886
AdaLoRA+RS 1.0M 0.959 0.962 0.928

OPT-350M

FMFT 350M 0.894 0.923 0.866
LoRA 6.3M 0.917 0.928 0.904
AdaLoRA 6.2M 0 .922 0 .947 0 .911
AdaLoRA+RS 6.2M 0.938 0.956 0.929

Benchmarking PEFT on DNA-centric
PFMs and OPTs. In Table 2 and Ta-
ble S2 (in subsection 5.2 of the supple-
mentary material), we show the AUCs
and MCCs for various models and meth-
ods on the PD and EMP tasks, re-
spectively. The best results for each
PFM are highlighted in bold, while
the second best are in italic. In Ta-
ble 2, AdaLoRA+RS consistently out-
performs other PEFT techniques when
applied to OPTs. Specifically, OPT-
125M with AdaLoRA+RS achieves an
AUC of 0.959 for the prom_all dataset. In comparison, AdaLoRA and LoRA attain
AUCs of 0.902 and 0.887, respectively. Regarding DNA-focused models like 1000G-500M,
AdaLoRA+RS’s performance is comparable to that of FMFT. As an example, AdaLoRA+RS
posts a 0.926 AUC with merely 6.9M trainable parameters (only 1.3% of FMFT’s pa-
rameters), whereas FMFT achieves a 0.95 AUC using 500M trainable parameters. Fur-
thermore, as evidenced by Table S2, AdaLoRA+RS’s performance parallels that of FMFT.

Table 3: # of performances for the
method are among Top-2 for PD and
EMP.

Model Method # Top-2
for PD

# Top-2
for EMP

OPT-125M
LoRA 0/3 2/10
AdaLoRA 1/3 5/10
AdaLoRA+RS 3/3 3/10

OPT-350M
LoRA 1/3 4/10
AdaLoRA 2/3 5/10
AdaLoRA+RS 2/3 4/10

OPTs are strong genomic sequence learners. We also high-
light the performances of OPTs in Table 3. This Table demon-
strates the numbers of the performances for the PEFT method
using OPTs are among the Top-2 for PD and EMP tasks, re-
spectively. For the three datasets in PD task, OPT-125M with
AdaLoRA+RS is among the Top-2 performed models in 3/3
tasks. Similaly, for the ten datasets in EMP task, OPT-350M
with AdaLoRA+RS is among the Top-2 performed models
in 4/10 tasks. This shows that when fine-tuning OPTs using
genomic datasets with their BBPE encoding, they not only
match the prowess of DNA-centric PFMs in the EMP task
but also surpass the performance of fine-tuned DNA-centric PFMs in the PD task. This shows the
adaptability of PLMs with BBPE encoding to genomic data, thereby illuminating the potential for a
wider spectrum of applications for these natural language-based PLMs.

4 Related Works and Conclusion

Recently, there have been significant advancements in the field of genomic domain, attributed
to the development of DNA-centric Pre-trained Foundation Models (PFMs) such as DNABERT-
2 (Zhou et al., 2023) and Nucleotide Transformer (NT) (Dalla-Torre et al., 2023). While Pre-trained
Embedding Fine-Tuning (PEFT) is a well-established method in natural language-based Pre-trained
Language Models (PLMs), there is a notable absence of mature applications of PLMs in DNA-
centric PFMs. DNABERT-2 employs low-rank adapters (Hu et al., 2021) with a fixed number
of ranks to curtail the quantity of trainable parameters. However, deterministic PEFTs can yield
suboptimal performance when the initial states are less than ideal. To solve this issue, we propose an
AdaLoRA (Zhang et al., 2023) with random sampling (AdaLoRA+RS) to prune and stochastically
reintroduce pruned singular vectors. Our empirical observations on two genome understanding tasks
demonstrate that OPT-350M, when combined with AdaLoRA+RS, positions itself on the Pareto
front in comparison to its full-model fine-tuning baseline, utilizing merely 0.94% of the trainable
parameters. Interestingly, we also discerned that natural language-based PLMs, exemplified by
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OPT-125M, surpass the performance of the DNA foundation model HR-500M, despite using only
25% of the parameters.

References
Chicco, D. and Jurman, G. (2020). The advantages of the matthews correlation coefficient (mcc) over

f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):1–13.

Coskun, B., Ocakoglu, G., Yetemen, M., and Kaygisiz, O. (2023). Can chatgpt, an artificial
intelligence language model, provide accurate and high-quality patient information on prostate
cancer? Urology.

Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J., Carranza, N. L., Grzywaczewski, A. H., Oteri,
F., Dallago, C., Trop, E., Sirelkhatim, H., Richard, G., et al. (2023). The nucleotide transformer:
Building and evaluating robust foundation models for human genomics. bioRxiv, pages 2023–01.

Dotan, E., Jaschek, G., Pupko, T., and Belinkov, Y. (2023). Effect of tokenization on transformers for
biological sequences. bioRxiv, pages 2023–08.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021). Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

Hu, Y., Ameer, I., Zuo, X., Peng, X., Zhou, Y., Li, Z., Li, Y., Li, J., Jiang, X., and Xu, H. (2023).
Zero-shot clinical entity recognition using chatgpt. arXiv preprint arXiv:2303.16416.

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. (2021). Dnabert: pre-trained bidirectional encoder
representations from transformers model for dna-language in genome. Bioinformatics, 37(15):2112–
2120.

Ma, X., Fang, G., and Wang, X. (2023). Llm-pruner: On the structural pruning of large language
models. arXiv preprint arXiv:2305.11627.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y., Chen, W., and Zhao, T. (2023). Adaptive
budget allocation for parameter-efficient fine-tuning. arXiv preprint arXiv:2303.10512.

Zhang, Q., Zuo, S., Liang, C., Bukharin, A., He, P., Chen, W., and Zhao, T. (2022). Platon: Pruning
large transformer models with upper confidence bound of weight importance. In International
Conference on Machine Learning, pages 26809–26823. PMLR.

Zhou, Z., Ji, Y., Li, W., Dutta, P., Davuluri, R., and Liu, H. (2023). Dnabert-2: Efficient foundation
model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006.

5



5 Supplementary Material

5.1 Dataset and Setting-Up

We evaluate the AdaLoRA+RS on PFMs using two genome understanding tasks, i.e., EMP on yeast
and PD on humans. The statistics for both datasets are shown in Table S0.

Table S0: Genome understanding tasks
Task Num. Datasets Num. Classes Sequence Length
EMP 10 2 500
PD 3 2 300

For FMFT, LoRA, AdaLoRA, and AdaLoRA+RS, we use a batch size of 8, while the evaluation
batch size is set to 16. The model is trained over 5 epochs on all datasets for both tasks. We employ
the Adam optimizer, with a learning rate of 3e− 5. Additionally, we implement a warmup ratio of 0.1
followed by linear decay. The L2 regularization weight decay is set at 5e− 3. For LoRA, we set the
rank =8. For AdaLoRA and AdaLoRA+RS, the additional hyper-parameters are shown in Table S1.
In this Table, Avg. b0 and Avg. bT denote the average number of singular values in each matrix.
(Ttotal − T )/Ttotal denotes the final fine-tune ratio after pruning and reintroducing, and ∆T indicates
the intervals at which pruning and reintroducing are performed. The additoinal hyper-parameters
for AdaLoRA are shown in gray columns and the additoinal hyper-parameters for AdaLoRA+RS is
shown in all columns including the random sampling ratio p.

5.2 MCCs for various models and methods on the EMP task.

The MCCs for various models and methods on the EMP task is shown in Table S2. As evidenced by
Table S2, AdaLoRA+RS’s performance lies on a Pareto front with that of FMFT.
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