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ABSTRACT

Model distillation typically focuses on behavioral mimicry, where a student model
is trained to replicate a teacher’s output while treating its internal computations
as a black box. In this work we propose an alternative approach: Distilling the
underlying computational mechanisms implemented by a teacher model. Specif-
ically, we propose circuit distillation, which introduces an objective to align in-
ternal representations between analogous circuit components in teacher and stu-
dent models. We propose a method to match “functionally correspondent” circuit
components and introduce a loss reflecting similarities between the representa-
tions that these induce. We evaluate circuit distillation on entity tracking and
theory of mind (ToM) tasks using models from the L1ama3 family. Our results
demonstrate that circuit distillation outperforms standard distillation, successfully
transferring algorithmic capabilities by adjusting only a small, targeted subset of
student model parameters. This work establishes the feasibility of transferring
mechanisms, which may in turn allow for efficient distillation of targeted teacher
capabilities via interpretable and controllable internal student mechanisms.

1 INTRODUCTION

Model distillation entails training a relatively small and efficient “student” LM using a larger and
more capable teacher LLM (Gou et al.,2021). The prevailing training paradigm is one of behav-
ioral mimicry: The student model is trained to replicate the output distribution of the large “teacher”
model. This is typically done by minimizing the divergence between final-layer logits for the pre-
dictive task of interest (Hinton et al.| 2015). More recent work has has focussed on distilling “rea-
soning” capabilities (Shridhar et al.,[2023; L1 et al., 2023; Wadhwa et al., 2024).

Distillation permits effective transfer of task-specific knowledge (Xu et al.,[2024b). But the standard
mechanism of knowledge transfer is fundamentally bottlenecked: The student learns only from
teacher outputs, on the basis of which it must work out how to perform the task of interest. A more
direct approach might be to allow the student to learn from the algorithms the teacher implements
internally. This is the idea that we explore in this work.

More specifically, recent advances in mechanistic interpretability (Saphra & Wiegreffe| 2024;
Sharkey et al., [2025) have established the existence of human-understandable algorithms imple-
mented by subgraphs of attention heads and MLP layers within transformer models; these are called
“circuits” (Shi et al., 2024). Instead of merely matching teacher outputs, we propose to guide the
student model to functionally emulate the teacher’s relevant circuit(s). Our hypothesis is that by
enforcing this functional alignment at the component level, we can distill not just the teacher’s
knowledge, but its internal algorithms.

Following this intuition, we propose circuit distillation, in which we guide the student model to em-
ulate a specific relevant internal mechanism to functionally align with the behavior of this circuitin a
teacher model. This requires addressing two key technical challenges: (1) Establishing a functional
correspondence between components in models of different sizes; (2) Designing an objective that
enforces representational alignment between these circuits. We propose and evaluate approaches to
these challenges and report promising empirical results. We offer the following contributions.

(1) We introduce circuit distillation (Figure[I)), a new type of mechanistic distillation that modifies
the student learning objective from output-level mimicry to direct alignment of internal circuits.
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Figure 1: We propose circuit distillation which entails training a small student model to mimic not
only the outputs of a larger teacher model (left; the standard distillation setting (Hinton et al., 2015)),
but also its internal circuitry, i.e., how it executes a task of interest.

(2) We propose a functional component mapping strategy using ablation impact similarity to ad-
dress the circuit correspondence problem, providing an intuitive method for identifying analogous
attention heads between models of different scales.

(3) We introduce a transformation-invariant loss term to enforce representational similarity between
the mapped circuit head representations during training.

(4) We validate this approach on two tasks: Entity tracking (Prakash et al.,|2024) and causal Theory
of Mind (ToM; Prakash et al.|[2025). Our results show that mechanistic distillation can transfer
mechanisms, enabling student models to perform tasks using internal mechanisms aligned with their
teachers. This offers superior performance to models distilled using teacher outputs alone.

Our findings indicate that it is feasible to distill not just knowledge, but also the algorithms that
produce it. By shifting the focus of distillation from outputs to circuits, we take a concrete step
toward building models whose internal computations we can better understand and direct. This
work may provide a foundation for future efforts investigating types of mechanistic distillation.

2 METHODS

In this section we describe our approach to model distillation from a mechanistic perspective. The
goal is to induce the student model to emulate not only the teacher model’s outputs, but also its in-
ternal mechanisms—and more specifically, relevant circuits (Conmy et al., 2023a; |Shi et al., [2024)).
This requires first designing an approach to quantify representational similarity at the level of spe-
cific circuit heads (Section 2.T). Next we must integrate this similarity measure into a distillation
objective term (Section which we combine with the standard distillation loss (Section [2.3).

2.1 QUANTIFYING REPRESENTATIONAL SIMILARITY

Understanding and transferring learned algorithms from a teacher to a student model requires a
method to compare their internal representations. In the context of circuits, we are particularly in-
terested in the computations performed by specific, identifiable sub-components within the network.
We focus on individual attention heads or MLP sub-layers that have been identified as participating
in a circuit in the teacher model. Standard similarity metrics like cosine similarity between different
(student and teacher) networks are not inherently meaningful given that dimensions may differ and
are anyways arbitrary (e.g., due to basis rotations or isotropic scaling).

Therefore, we adopt Centered Kernel Alignment (CKA; Kornblith et al|2019), which provides a
robust and theoretically grounded measure of representational similarity between model internals.
CKA is invariant to orthogonal transformations (including permutations) and isotropic scaling of
the feature space, making it well-suited to compare activations from different architectures or—
more relevant to our work—specific corresponding circuit heads in teacher and student of different
sizes. This invariance allows us to compare the functional similarity of these circuit components.
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Figure 2: Circuit distillation requires mapping student heads to functionally analogous teacher
heads. Here we propose do this by comparing performance drops under ablation (other approaches
may also be viable). These correspondences are then used to align model components via the com-
posite loss during distillation.

The intuition behind CKA is to measure the similarity between representational similarities induced
by networks: Networks are “similar” if they produce representations that yield comparable pairwise
similarities between examples (Kornblith et al.,|2019). More precisely, given a batch of m inputs,
let X € R™*P1 be the activation matrix from a specific circuit head in the student model, and
Y € R™*P2 be the activation matrix from the corresponding (or targeted) circuit head in the teacher
model. Here p; and p2 denote the dimensions of the activations for the respective circuit heads.
We compute Gram matrices K = XX " and L = YYTIH and then measure correlations between
the pairwise similarities induced by the two networks. Specifically we adopt the Hilbert-Schmidt
Independence Criterion (HSIC), a kernel-based measure of independence between variables. Given
two kernel matrices K, L. € R™*™ and a centering matrix H = I,,, — %1m1,Tn (where I, is the
m x m identity matrix and 1,,, is an m x m matrix of all ones), HSIC is calculated as:

1

The trace operator, tr(-), sums the diagonal elements of the resulting matrix. This adds the products
of all corresponding entries in centered K and L matrices (which here are pairwise similarities
between the respective network representations). Centering (via H) ensures that HSIC captures
covariance structure, independent of means.

HSIC(K, L) =

The reason not to use HSIC directly as our measure of representational similarity is that it is scale-
dependent. This motivates CKA (Kornblith et al., 2019), which normalizes HSIC:

HSIC(K, L)

CKA(K, L) = VHSIC(K, K) - HSIC(L, L)

2)

CKA scores range from 0O (indicating that the representations are dissimilar, even after accounting
for permissible transformations) to 1 (indicating that the representations are identical up to these
transformations). This provides a scalar measure of how similarly two circuit heads process infor-
mation across the input batch.

By focusing CKA on the activations produced by pre-identified circuit heads, we aim to measure
the similarity of specific computational pathways rather than diffuse, layer-wide representational
spaces. However, doing this requires a mapping of teacher circuit components to “comparable”
student components; we next turn to how we do this.

"We use a linear kernel.
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2.2 ALIGNING CORRESPONDING CIRCUIT HEADS

We have a (differentiable) measure of similarity between activations, but which pairwise similarities
should we enforce between student and teacher? What we want is to induce a circuit in the former
akin to a relevant circuit in the latter. Operationally this requires aligning circuit components in the
teacher to analogous components in the student, i.e., finding functionally analogous circuit heads.
It is not obvious how to do this, particularly as student and teacher models will often differ in size
(e.g., L1ama8B teacher and a L1ama3B student). We propose an ablation-based strategy to map
student heads to teacher heads based on their respective contributions to task performance. This
mapping then guides the CKA-based alignment.

The approach is as follows. First, we establish baseline performance metrics for both the student
and teacher models on the target task dataset. Let P .5 be the performance of the student model
and P, p,s be that of the teacher model. We then quantify the functional importance of each rel-
evant student head hs by recording the performance drop on its removal. We denote the student
model’s performance when head h; is ablated (i.e., its activations replaced with mean activations)
by Py_ani(hs). The ablation impact for student head hy is then:

A-Ps(hs) = P pase — Ps,abl(h’s) 3)

Analogously, for each relevant teacher head (h;), we record P,_yp(h:) or the teacher’s performance
when head h; is ablated. Crucially, to align with the student’s operational capabilities, the teacher
head’s ablation impact is calculated relative to the student’s baseline performance:

AR(ht) - Ps,base - -Pl,abl(ht) (4)

This definition aims to identify teacher heads that, when ablated, result in performance degradation
comparable in magnitude to that observed when ablating a student head, relative to student perfor-
mance. With these ablation impacts computed, we create a mapping. For each student head hg, we
seek teacher heads h; whose ablation impact AP, (h;) is most similar to AP;(hs). For this we use
the absolute difference:

dabi (hs, he) = |AF(hs) — AR(he)| (&)

Smaller dyy (hs, hy) indicates a greater similarity in functional importance as measured by ablation.
We then map h; to the h; that minimizes dyp (hs, ht). This yields a mapping M : Hy — P(H,),
where H, and H, are the sets of relevant student and teacher heads, respectively. This mapping M
determines the pairs of student and teacher circuit heads that are used in the CKA loss term of the
composite loss function (described below), thereby guiding the student model to align its internal
mechanisms with those functionally important counterparts identified in the teacher.

2.3 A CoMPOSITE L0SS FUNCTION FOR CIRCUIT DISTILLATION

To align the student’s circuit to the teacher’s, we maximize the CKA between the corresponding
heads. CKA values are 1 for perfect alignment (up to invariant transformations), so we define the
CKA loss for a single pair of student (K) and teacher circuit head (/) Gram matrices as:

L"CKA(KSa Kt) =1- CKA(KS; Kt) (6)
Minimizing this loss pushes the CKA score toward 1, i.e., towards alignment of the induced repre-
sentations under the corresponding circuit heads.

We then define a composite objective for the student model as a weighted combination of the primary
task loss and the sum of CKA-based circuit similarity losses over aligned circuit head pairs:

Etotal = £lask(y7 gs) +A Z £CKA(A’\((‘)a Kl<c>) (N

c€Cpaired
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Figure 3: Tllustrations of the evaluated tasks: entity tracking (left), which tests recall of item loca-
tions, and theory of mind (right), which tests reasoning about beliefs under partial observability.

Where:

* Lusk(y, ys) is the conventional loss for the downstream task, with y denoting the teacher
labels and g the student predictions.

* Cpaired denotes the set of pairs of circuit heads identified as analogous in the student and
teacher models. The choice of these pairs is critical and should be informed by mechanis-
tic understanding of which circuits in the teacher are most vital for the task or represent
desirable computational properties.

« K9 and K, [(C) are the Gram matrices derived from the activations of the c-th paired student
and teacher circuit heads, respectively.

* )\ is a scalar hyperparameter that balances the contribution of the task performance ob-
jective against the mechanistic alignment objective. A careful tuning of ) is necessary to
ensure that the student model effectively learns the task while also internalizing the desired
computational strategies from the teacher’s circuits.

3 EXPERIMENTAL SETUP

Next we outline our experimental design, including the models, tasks, and the methods that we
use to identify relevant circuit components for our mechanistic distillation study. The aim of these
experiments is to assess whether and to what extent circuit distillation yields stronger performing
student models, compared to standard distillation (based solely on teacher outputs). We also perform
ablations to establish that the alignment between circuit components matters.

3.1 MODELS AND TASKS

We use models from the Llama3 family (Dubey et al., [2024), specifically the 1B, 3B, and 8B
parameter versions. The larger 8B model is used as the teacher and the smaller models as students
This allows us to explore distillation across varying model capacities.

We focus on two tasks, depicted schematically in Figure[3] The selection of these models and tasks is
deliberate: We are following recent mechanistic analyses of these tasks, which characterized relevant
circuits in play (Prakash et al., 2024;|Zhu et al.,[2024). By using established circuits reported in prior
work, we can focus on the challenge of transferring a known mechanism (circuit) from a teacher to a
student. This avoids the separate and complex task of circuit discovery, which is an ongoing research
direction in its own right.

The first task we consider is Entity Tracking (Figure 3] left). We adopt the dataset and setup from
Prakash et al.| (2024) to explore how models maintain and update information about entities within
a given context. This task requires the model to identify the contents of a specific box based on a
preceding context describing various objects in different boxes. For example, given “The keys are

>We use relatively small teacher and student models throughout this work owing to compute constraints.
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in Box C, the phone is in Box A. Box C contains the...”, the model should predict “keys”. Motivated
by the findings that models fine-tuned on arithmetic tasks (e.g., the GOAT corpus; Liu & Low|[2023))
show superior entity tracking capabilities, we first fine-tune the teacher model on GOAT.

The second task we consider is causal Theory of Mind (ToM) (Figure [3| right). This task investi-
gates the model’s ability to reason about characters’ beliefs, especially when those beliefs depend
on differing perspectives or access to information.

For this we create a dataset from prompts provided in [Prakash et al.| (2025). This dataset comprises
simple stories where characters interact with objects, and the model must infer beliefs based on
visibility and actions. For instance, a story might state: “Sarah places her book in the drawer and
leaves the room. While Sarah is gone, Tom moves the book to the shelf.” When subsequently
prompted, “Where does Sarah believe her book is?”, the model should infer Sarah’s belief (the
drawer) rather than the actual location (the shelf).

For ToM, prior work established that instruction-tuned .1 ama 3 models perform significantly better
than their base counterparts The proprietary data used for official L1ama3-Instruct models is
not available, so we first prepare our teacher models by instruction-tuning larger L1 ama3—-8B base
variant on the publicly accessible Alpaca dataset (Taori et al., 2023)). This custom instruction-tuned
Llama3 model then acts as the teacher.

3.2 IDENTIFICATION OF RELEVANT CIRCUIT HEADS

A key component of our proposed mechanistic distillation approach is identifying and targeting
specific (teacher) circuit heads relevant to a given task. Methods for identifying such circuits are
currently task-dependent, improving automated discovery of circuits is an active area of research
(Conmy et al., [2023a; Wang et al.l 2022). Here we rely on prior efforts that have characterized
circuits for the two tasks we consider.

For entity tracking, we follow path patching as described in |[Prakash et al.| (2024), which allows
for the identification of a sparse set of attention heads that form the core circuit responsible for
tracking entities and their properties. For the ToM task, where distinct belief-tracking and reasoning
circuits are hypothesized, we use activation patching (with mean ablation) to assess causal impact
of individual attention heads to identify the top-n heads most critical for successful ToM reasoning.
Details of these experiments and patching methods are provided in Appendix [C} The sets of circuit
heads identified through these procedures for both tasks subsequently serve as alignment targets in
our CKA-based mechanistic distillation objective described in Section 2]

4 RESULTS

This section presents the empirical validation of our mechanistic distillation framework across the
two tasks detailed in the previous section: Entity Tracking and ToM. Our analysis is structured to
first establish baseline capabilities and the fidelity of the identified circuits within teacher and student
models. We first identify relevant circuits in teacher models as proposed in prior work (Section [3.2))
and then search for the corresponding circuits in the student models as described in Section[2.2] We
then provide a direct comparison of standard behavioral distillation (considering both full model and
targeted circuit updates; CE only) against our proposed mechanistic distillation method (CE + Align
CKA) and a crucial control condition (CE + Rand CKA) to isolate the effect of principled circuit
alignment. (We note that circuit distillation also affords efficiency gains: See Appendix Figure5])

4.1 ENTITY TRACKING

Table [1| summarizes the results on the entity tracking task, demonstrating the efficacy of aligning
internal mechanisms. The “Full Model” column reports the accuracy achieved using the entire
model, while “Circuit” measures performance when only the pre-identified entity tracking circuit is
active, with all other attention heads mean-ablated.

We first establish performance benchmarks to contextualize our findings. The teacher model
achieves an accuracy of 0.85 on this task. Importantly, the identified entity tracking circuit within the

3Our preliminary experiments corroborated these findings.
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Loss Full Model Circuit
Base-1B - 0.68 0.65
Baselines Base-3B - 0.72 0.70
GOAT-8B CE 0.85 0.81
.. Base-1B CE 0.75 0.66
Fully Distilled 5 e 38 CE 0.78 0.71
CE 0.73 0.69
Base_1B Align CKA 0.68 0.68
CE + Rand CKA 0.58 0.54
e CE + Align CKA 0.77 0.73
Circuit Distilled CE 0.77 075
Align CKA 0.73 0.72
Base-3B  -E7, Rand CKA 0.63 0.61
CE + Align CKA 0.82 0.79

Table 1: Entity tracking results for L1ama3 models. We report results for full distilation (all param-
eters) and circuit distillation (only matched circuit head parameters) under different losses: Cross
Entropy (CE), Centered Kernel Alignment (CKA), CKA with Random Head Assignment, and CE
+ CKA with ablation-based head alignment loss. Chance accuracy is 0.14. The improvements of
circuit distillation (1B, 3B) using CE + Align CKA are statistically significantly better than standard
full distillation under CE and circuit distillation using CE only (p<0.05) under McNemar’s test (de-
tails in Appendix).

teacher model operating in isolation nearly matches this, with an accuracy of 0.81. This high fidelity
validates that the circuit discovered is indeed the primary locus of the entity tracking capability in
the teacher model, making it a suitable target for distillation.

The base L1ama3-3B student model begins with a lower baseline accuracy of 0.72; we aim to
close the performance gap via distillation. Fine-tuning with traditional distillation improves its
performance to 0.78 with full model updates and 0.77 with targeted circuit updates (which constitute
approximately 11% of its total attention heads). We also observe that the latter yields a smaller
gap between full model and circuit-only performance showing that our proposed circuit alignment
method can identify relevant circuits within student models. The improvements in the students
circuit accuracy suggest that standard CE loss can impart circuits to some degree, at least when we
fine-tune only circuit relevant parameters.

Our proposed mechanistic distillation method CE + Align CKA, which uses a composite loss
(Equation [6) on functionally aligned heads, achieves an accuracy of 0.82 (with 0.79 for the circuit),
a substantial improvement compared to using the CE objective alone. Adding the CKA loss to
explicitly mimic the teacher’s circuitry nearly closes the gap between student and teacher when
considering circuit-only performance.

We also assess the impact of explicit alignment of circuit components via CKA by randomly assign-
ing each of the identified teacher heads to one of the student heads ((CE + Rand CKA)). This
approach yields an accuracy of 0.63, harming performance relative to the CE baseline. This means
the CKA loss—if applied to indiscriminate pairs—is not by itself helpful.

Taken together, these results suggest that enforcing representational alignment on a small, function-
ally critical subset of components facilitates a more direct and effective transfer of the underlying
computational mechanisms compared to merely matching the teacher’s final predictions.

4.2 THEORY OF MIND

To assess whether our framework generalizes beyond retrieval-based tasks to more complex reason-
ing problems, we apply the same methodology to the ToM task. The results, presented in Table [2}
corroborate and extend our initial findings.
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Loss Full Model Circuit
Base-1B - 0.55 0.54
Baselines Base-3B - 0.58 0.56
8B-Instruct (Meta) — 0.79 0.78
8B-Alpaca CE 0.76 0.76
.. Base-1B CE 0.60 0.55
Fully Distilled (. 3B CE 0.63 0.56
CE 0.59 0.55
Base—1B Align CKA 0.52 0.47
ase CE + Rand CKA 0.49 0.44
. CE + Align CKA 0.64 0.61
Circuit Distilled CE 0.62 057
Align CKA 0.55 0.55
Base-3B CE + Rand CKA 0.49 0.41
CE + Align CKA 0.65 0.65

Table 2: Theory of Mind (ToM) results for L1ama3 models. Instruction-tuned models (e.g.,
Llama3-Instruct) outperform their base counterparts. The improvements of circuit distilled (1B,
3B) using CE + Align CKA are statistically significantly better than standard full distillation under
CE and circuit distillation using CE only (p<0.05) under McNemar’s test (details in Appendix).

To establish a performance ceiling, we evaluate Meta’s proprietary Llama3-8B-Instruct
model, which achieves an accuracy of 0.79. Since the instruction-tuning data for this model is
not publicly available, we trained our teacher model by fine-tuning a base Llama3-8B model on the
Alpaca dataset. This 8B—A1lpaca model achieves an accuracy of 0.76. The base Llama3-3B model,
our designated student, exhibits a limited innate capacity for causal ToM, achieving a baseline ac-
curacy of 0.58 with its full architecture and 0.56 with its identified circuit components operating in
isolation.

Our main experiments (Table [2} bottom row), in which we train only the identified ToM circuit
heads, clearly illustrate the impact of each component of our approach. The behavioral distillation
baseline using only a Cross-Entropy loss (CE only) improves the student’s full model accuracy
to 0.62 and its circuit accuracy to 0.57. In contrast, the control condition applying a CKA loss
with randomly mapped heads (CE + Rand CKA) degrades performance to 0.49 (full model) and
0.41 (circuit), falling below the initial student baseline. This confirms that enforcing the alignment
between functionally irrelevant components is detrimental to the distillation process. Finally, our
mechanistic distillation method (CE + Align CKA) achieves an accuracy of 0.65 for both the
full model and the isolated circuit. This demonstrates that the performance gains are successfully
concentrated within the targeted circuit, confirming the efficacy of our functional alignment strategy.

5 RELATED WORK
Our work draws on two active research areas: Model distillation and mechanistic interpretability.

Knowledge Distillation was originally proposed as a model compression technique where a
smaller student model is trained to mimic the soft-label output distributions of a larger teacher
(Hinton et al.| [2015). This paradigm has since evolved, with modern approaches often focusing
on distilling complex capabilities into LLMs. A prominent strategy involves using powerful teacher
models to generate large-scale instruction following datasets for fine-tuning smaller, open-source
models (Taori et al.,|2023; |Chung et al., 2022).

Other work has moved beyond final answers to distill the reasoning process itself. By training stu-
dents on Chain-of-Thought (CoT) explanations elicited from a teacher, researchers have improved
student reasoning abilities (Wei et al., 2023} |Li et al., [2024). Some methods have also explored
matching intermediate representations (Park et al,, [2024), though often at the level of entire lay-
ers rather than specific, functionally-defined components. Our work departs from these behavioral
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and full-layer approaches by proposing a mechanistic view of distillation, where the objective is to
directly transfer a known computational algorithm by aligning specific, pre-determined circuits.

Mechanistic Interpretability seeks to reverse-engineer neural networks into human-
understandable algorithms (Olah et al., 2018). A key concept in this field is the “circuit,” a
subgraph of model components that implements a scrutable computation (Elhage et al.,[2021; |Wang
et al., 2022)). Researchers typically identify these circuits using causal tracing techniques, such as
path patching or activation patching, to isolate the components that are causally responsible for a
specific model behavior (Goldowsky-Dill et al., 2023 |Conmy et al., 2023b)). This approach has
successfully uncovered circuits for a range of behaviors, from factual recall and editing (Meng
et al., |2023) to more algorithmic tasks like indirect object identification (Wang et al., [2022). The
success of these efforts suggests that many complex behaviors are not diffuse properties of the
entire network but are instead implemented by localized and specialized subgraphs, making them
viable targets for analysis and, as we propose, for targeted transfer.

Circuits for Cognitive Phenomena. The circuit hypothesis has proven particularly fruitful for
investigating how LMs model complex cognitive phenomena like entity tracking and theory of mind.
The ability of LMs to track entities, e.g., has been a focus of mechanistic inquiry (Feng & Steinhardt,
20245 L1 et al.l 2021). Our work directly builds on the findings of |Prakash et al.,| (2024), who
used path patching to identify a sparse, well-characterized circuit responsible for this capability
in Llama-family models. Similarly, while many studies have evaluated Theory of Mind (ToM) from
a behavioral perspective (Shapira et al., [2024} |[Kosinski, 2024} |Le et al., 2019; Xu et al., [2024a;
Strachan et al.| 2024} |Chan et al.l [2024; Jin et al., 2024). Recent mechanistic work has begun
to uncover the underlying computational patterns, such as the “lookback mechanism” for belief
tracking (Prakash et al.l 2025). These efforts have focussed on discovery and analysis. By relying
on these previously discovered circuits, we focus our efforts on the transfer of a known mechanism.
To our knowledge, this is the first work to propose mechanistic distillation, and to use distillation
not simply for compression, but as a technique for targeted algorithmic transfer.

6 CONCLUSIONS

We have proposed an alternative to traditional model distillation: Circuit distillation, a mechanistic
approach which aims to directly instill in a student model relevant internal algorithms or compu-
tations (circuits), as opposed to merely mimicking output behavior alone. Our approach to circuit
distillation entails first identifying functionally similar corresponding circuit components in teacher
and student models (using ablation-impact similarity metrics), and then adding a loss term based on
representational similarity to guide the student to emulate the teacher’s internal computations.

On two cognitive tasks—entity tracking and theory of mind—we showed that this technique outper-
forms standard behavioral distillation. Moreover, distilling circuit parameters only offers efficiency
gains compared to standard distillation (in which all parameters are adjusted). Specifically, by tar-
geting only a small fraction of the student model’s components (11-15% of attention heads), we
successfully instilled much of the teacher’s task-specific capability, indicating that direct alignment
of circuits is a more effective strategy for algorithmic transfer than output mimicry alone.

Our findings show that circuit distillation may provide a useful means of efficient model compression
and a way to perform controlled distillation: By guiding a student model to adopt a known circuit,
we open the avenue to building smaller models that are interpretable and controllable by design,
insofar as they are trained to emulate particular pieces of teacher model functionality.

This work does have several limitations. Our method is contingent on the prior identification of a
well-defined circuit in the teacher model; finding such circuits remains challenging and is an ongo-
ing topic of research in mechanistic interpretability. Furthermore, our ablation-based approach to
mapping components from teacher to student is heuristic; more sophisticated methods for identify-
ing functional correspondence across architectures may yield further improvements. Our empirical
analysis is also somewhat limited: We considered only a few tasks (for which well defined circuits
have been identified), and used relatively small models owing to limitations in compute. Despite
these limitations, we think this work points to interesting follow-up directions related to transferring
targeted functionality and efficient model distillation that goes beyond output mimicry.
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Table 3: Extended results on the Entity Tracking task.

A ADDITIONAL RESULTS

Tables [3] and [4] report additional comprehensive set of results, offering a granular analysis across
different model scales and training paradigms. These tables include several key baselines and met-
rics designed to comprehensively evaluate our mechanistic distillation approach and validate the
underlying circuits.

First, we establish a clear performance landscape. The Base—-1B/3B/8B models represent the in-
nate capabilities of the open-source L.1ama3 family on these tasks. The fully fine-tuned versions on
GOAT and Alpaca serve as a practical upper bound on entity tracking and theory of mind, respec-
tively. They demonstrate the performance achievable with direct, supervised training on the target
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Table 4: Extended results on the ToM task.
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data, against which we can measure the efficacy of our distillation approaches. For example, the
GOAT-8B model achieves an accuracy of 0.85 on entity tracking.

Before evaluating distillation, we validate the integrity of the circuits themselves using two crucial
metrics. The Faithfulness score, calculated as the ratio of Circuit AccuracytoFull Model
Accuracy, quantifies how much of a model’s capability is captured by its identified circuit. Across
all base and fine-tuned models, faithfulness remains high (0.89-0.97), confirming that the identified
circuits are indeed the primary mechanisms responsible for underlying tasks. As a sanity check,
the Random Circuit column reports the performance of a randomly selected set of model compo-
nents of the same size. The near-zero accuracy (0.01-0.04) in all cases provides strong evidence
that identified circuits are non-trivial, functionally cohesive units and not arbitrary collections of
components.

The central comparison in our study is between traditional behavioral distillation and our mechanis-
tic approach. The Distilled-1B and Distilled-3B models represent the former, where the
entire student model is fine-tuned on the teacher’s outputs using a standard Cross-Entropy (CE) loss.
These models show solid improvement over their base counterparts (e.g. Distilled-3B reach-
ing 0.78 accuracy on the entity tracking task), but the Circuit Distilled models consistently
outperform this baseline.

A.1 STATISTICAL SIGNIFICANCE TESTING

To verify that the observed performance improvements of our framework are statistically significant,
we use McNemar’s test. This non-parametric test is well-suited for comparing the predictions of two
models on the same test set by analyzing their disagreements in a contingency table.

For each Circuit Distilled model (1B and 3B), we ran two separate significance tests:

1. We compared the predictions of our proposed method (CE + Align CKA) against the
circuit-only behavioral baseline (CE in the Circuit Distilled block). This test as-
sesses whether the addition of the CKA alignment term provides a significant benefit over
standard training for the circuit.

2. We compared the predictions of CE + Align CKA against the full-model behavioral
distillation baseline (Distilled with CE loss). This more stringent comparison evaluates
whether training only the circuit mechanistically can significantly outperform training the
entire model behaviorally.

In all comparisons across both the 1B and 3B student models, the resulting p-values were well below
the standard significance threshold of a = 0.05, ranging from 0.003 to 0.007, providing strong sta-
tistical evidence that the performance gains achieved by our mechanistic distillation framework are
not attributable to random chance and represent a genuine improvement over the baseline methods.

B CIRCUIT IDENTIFICATION AND MODEL SELECTION

This section provides details on the methodology used to identify the entity tracking circuits that
serve as the primary targets for our mechanistic distillation experiments. For this task, our approach
is a direct adaptation of the Path Patching technique described by [Prakash et al.[(2024)), which has
been demonstrated to effectively discover sparse, causal circuits for entity tracking in Llama-family
models. Path Patching is an iterative, causal-tracing method designed to identify the subgraph of
model components—in this case, attention heads—responsible for a specific behavior. The core of
the technique involves comparing two forward passes: A clean run on an original, unmodified
task input, and a corrupted run on a counterfactual input where the information required to
produce the correct answer has been removed or altered. For the entity tracking task, a corrupted
input is generated by randomizing the query box, the object names, and their corresponding box
labels, thus ensuring that the model cannot solve the task through simple heuristics.

The process aims to find paths in the computational graph that, when “patched” with activations
from the corrupted run, cause the most significant degradation in the clean run’s performance. A
“patch” involves replacing the activation of a specific node (e.g., an attention head at a given token
position) in the clean run with the corresponding activation from the corrupted run. The causal
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Figure 4: Path patching isolates which model components store and retrieve entity-attribute bind-
ings.

importance of each path is quantified by a patching score, which measures the relative change in
the log-probability of the correct output token when that path is patched. Paths yielding the largest
performance drop (i.e., the most negative scores) are considered the most causally significant and
are iteratively added to the identified circuit. This iterative search begins at the final token position
to identify heads that directly influence the output logit (referred to as ”Value Fetcher” heads in
Prakash et al.|(2024)). The search then proceeds backward through the model, identifying upstream
heads that provide crucial information to the already-identified circuit components via query-key or
value-vector compositions. This process reveals a sparse, multi-component circuit responsible for
locating the query, transmitting positional information, and ultimately retrieving the correct entity
value.

Model selection Our decision to use GOAT-finetuned models as teachers for the entity tracking
task is directly informed by the findings that emerge from this circuit analysis. |Prakash et al.|(2024)
demonstrated that while a base L1ama model possesses a nascent entity tracking circuit, fine-tuning
on structured data like the arithmetic expressions in the GOAT dataset significantly enhances the
functionality of this same underlying circuit. Specifically, the Value Fetcher and Position
Transmitter components of the circuit become more precise and effective at resolving positional
information and retrieving the correct object value. This finding provides a strong mechanistic basis
for our experimental design: by selecting GOAT-finetuned models as teachers, we are targeting a
known, more potent version of the very mechanism we aim to instill in the student model through
distillation.

C EXPERIMENTAL DETAILS

All experiments were conducted on a single NVIDIA A100 GPU. To maintain experimental control
and isolate the effects of the different loss functions, we used the default hyperparameters of the base
Llama3 models for all training runs. The only modification was a consistent learning rate of 2e-5,
which was applied across all teacher fine-tuning, standard distillation, and mechanistic distillation
experiments.

The datasets for our two tasks were generated as follows:

Entity Tracking: The dataset was created by [Kim & Schuster| (2023), where they designed it
to evaluate a model’s ability to track the state changes of discourse entities. The dataset contains
English sentences describing a setting where various objects are located in different boxes, and the
task is to predict the contents of a queried box.

Following |Prakash et al.| (2024), we modify the structure of the context segment. Instead of the
original format “Box F contains the apple,” we reorder the phrases to “The apple is in box F.” This
structural change is crucial as it prevents the model from simply relying on shallow pattern matching
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Figure 5: We compare the Cross-Entropy (CE) loss component for the CircuitDistilled-3B
model on the entity tracking task when trained with a standard behavioral objective (CE Only) versus
our mechanistic distillation method (CE + Align CKA)

or locating the longest identical context segment between the context and the query. It forces the
model to genuinely infer the relationship between an object and its container. Each task instance
in our setup involves several boxes, each labeled with a random letter and containing a unique,
single-token object.

Theory of Mind (ToM) For the ToM task, we use the CausalToM dataset (Prakash et al., [2025)).
This dataset was specifically constructed for the causal analysis of ToM reasoning, addressing the
limitations of existing datasets which often lack the structure needed for counterfactual interven-
tions. Each story involves two characters who each interact with a distinct object, causing it to take
on a unique state (e.g., “Carla grabs an opaque cup and fills it with coffee. Then Bob grabs another
opaque bottle and fills it with beer.”). The model is then asked to reason about one character’s belief
regarding an object’s state, often under conditions of limited or no visibility of the other character’s
actions.

C.1 TRAINING DYNAMICS AND CONVERGENCE

An analysis of the training dynamics reveals that our mechanistic distillation approach not only
achieves higher final accuracy but also learns more efficiently.

Figure [5] plots the cross entropy (CE) loss component during the training of the
CircuitDistilled-3B model for entity tracking task, comparing the behavioral baseline (CE
Only) against our mechanistic method (CE + Align CKA). The plotillustrates two key findings.
First, the model trained with the CE + Align CKA objective converges faster. The composite loss
provides a richer, more structured gradient signal that the CE loss alone, which accelerates the learn-
ing process. For example, at the 1500-step mark the CE loss for mechanistic run was nearly half
that of the behavioral baseline. Second, the mechanistic approach also leads to a lower final CE loss
value by the end of the training run.

We hypothesize that this improved efficiency stems from the nature of the CKA loss term. While the
CE loss provides a sparse signal based only on the final output token, the CKA loss offers a denser
gradient that guides the internal representations of the student’s circuit to align with the teacher’s.
This forces the student model to not just find the correct answer, but to adopt a proven, effective
internal algorithm for doing so, thereby regularizing the learning process and leading to a more
efficient and effective convergence.
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