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ABSTRACT

Generative adversarial networks (GANs) play a minmax two-player game via ad-
versarial training. The conventional understanding of adversarial training is that
the discriminator is trained to estimate a divergence and the generator learns to
minimize this divergence. We argue that despite the fact that many variants of
GANs are developed following this paradigm, the existing theoretical understand-
ing of GANs and the practical algorithms are inconsistent. In order to gain deeper
theoretical insights and algorithmic inspiration for these GAN variants, we lever-
age Wasserstein gradient flows which characterize the evolution of particles in
the sample space. Based on this, we introduce a unified generative modeling
framework – MonoFlow: the particle evolution is rescaled via an arbitrary mono-
tonically increasing mapping. Under our framework, adversarial training can be
viewed as a procedure first obtaining MonoFlow’s vector field via the discrimi-
nator and then the generator learns to parameterize the flow defined by the corre-
sponding vector field. We also reveal the fundamental difference between varia-
tional divergence minimization and adversarial training. This analysis helps us to
identify what types of generator loss functions can lead to the successful training
of GANs and suggest that GANs may have more loss designs beyond those devel-
oped in the literature, e.g., non-saturated loss, as long as they realize MonoFlow.
Consistent empirical studies are also included to validate the effectiveness of our
framework.

1 INTRODUCTION

Generative adversarial nets (GANs) (Goodfellow et al., 2014; Jabbar et al., 2021) are a powerful
generative modeling framework that has gained tremendous attention in recent years. GANs have
achieved significant successes in applications, especially in high-dimensional image processing such
as high-fidelity image generation (Brock et al., 2018; Karras et al., 2019), super-resolution (Ledig
et al., 2017) and domain adaption (Zhang et al., 2017).

In the GAN framework, a discriminator d and a generator g play a minmax game. The discriminator
is trained to distinguish real and fake samples and the generator is trained to generate fake samples
to fool the discriminator. The equilibrium of the vanilla GAN is defined by1

min
g

max
d

V (g, d) = Ex∼pdata

{
log σ[d(x)]

}
+ Ez∼pz

{
log

(
1− σ[d(g(z))]

)}
(1)

The elementary optimization approach to solve the minmax game is adversarial training. Previous
perspectives explained it as first estimating Jensen-Shannon divergence then the generator learns
to minimize this divergence. Several variants of GANs have been developed based on this point
of view for other probability divergences, e.g., χ2 divergence (Mao et al., 2017), Kullback-Leibler
(KL) divergence (Arbel et al., 2021) and general f -divergences (Nowozin et al., 2016; Uehara et al.,
2016), while others are developed with Integral Probability Metrics (Arjovsky et al., 2017; Dziugaite
et al., 2015; Mroueh et al., 2018b). However, we emphasize that the traditional understanding over
GANs is incomplete and here we present three non-negligible facts which are commonly associated
with adversarial training, making it different from the standard variational divergence minimization
(VDM) problem (Blei et al., 2017):

1We use a slightly different notation: d(x) is the logit output of the classifier and σ(·) is the Sigmoid activation.
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1. The estimated divergence is computed from the discriminator d(x). It is a function only
depending on samples x and cannot capture the variability of the generator’s distribution pg .
However, the optimal discriminator in Proposition 1 by Goodfellow et al. (2014) requires
pg to be a functional variable as well. This issue was also raised in (Metz et al., 2017;
Franceschi et al., 2022).

2. The generator typically minimizes a divergence with a missing term, e.g., the
vanilla GAN only minimizes the second term of Jensen-Shannon divergence
−Ez∼pz

{
− log

(
1− σ[d(g(z))]

)}
where − log

(
1 − σ[d(g(z))]

)
is a monotonically in-

creasing function of d(g(z)).

3. Practical algorithms are inconsistent with the theory, a heuristic trick “non-saturated
loss” is commonly adopted to mitigate the gradient vanishing problem, but it still
lacks a rigorous mathematical understanding. For example, the generator can minimize
−Ez∼pz {log σ[d(g(z))]} where log σ[d(g(z))] is also a monotonically increasing function
of d(g(z)).

It is known the logit output d(x) of a binary classification problem in Eq. (1) is the logarithm density
ratio estimator between two distributions (Sugiyama et al., 2012). To gain a deeper understanding of
adversarial training of GANs, we study the Wasserstein gradient flow of the KL divergence which
characterizes a deterministic evolution of particles described by an ordinary differential equation
(ODE). This ODE is a Euclidean gradient flow of a time-dependent log density ratio. Based on this
ODE, we propose the MonoFlow framework – transforming the log density ratio by a monotoni-
cally increasing mapping such that the vector field of the gradient flow is rescaled along the same
direction. Consequently, approximating and learning to parameterize MonoFlow is synonymous
with adversarial training. Under our framework, we gain a comprehensive understanding of training
dynamics over GANs: the discriminator obtains a bijection of the log density ratio that suggests
the vector field and the generator learns to parameterize the particles of MonoFlow. All variants of
divergence GANs are a subclass of our framework. Finally, we reveal that the discriminator and
generator loss do not need to follow the same objective. The discriminator maximizes an objective
to obtain a bijection of the log density ratio. Then the generator loss can be any monotonically
increasing mapping of this log density ratio. Our contributions are summarized as follows:

• A novel generative modeling framework unifies divergence GANs, providing a new theoret-
ically and practically consistent understanding of the underlying mechanism of the training
dynamics over GANs.

• We reveal the fundamental difference between VDM and adversarial training, which in-
dicates that the previous analysis of GANs based on the perspective of VDM might not
provide benefits and instead we should treat GANs as a particle flow method.

• An analysis of what types of generator loss functions can lead to the success of training
GAN. Our framework explains why and how non-saturated loss works.

• An algorithmic inspiration where GANs may have more variants of loss designs than we
have already known.

2 WASSERSTEIN GRADIENT FLOWS

In this section, we review the definition of gradient flows in Wasserstein space (P(Rn),W2),
the space of Borel probability measures P(Rn) defined on Rn with finite second moments and
Eq.uipped with the Wasserstein-2 metric. An absolutely continuous curve of probability measures
{qt}t≥0 ∈ P(Rn) is a Wasserstein gradient flow if it satisfies the following continuity equation
(Ambrosio et al., 2008),

∂qt
∂t

= div
(
qt∇W2

F(qt)
)
, (2)

where ∇W2
F(qt) is called the Wasserstein gradient of the functional F : P(Rn) → R. The Wasser-

stein gradient is defined as ∇x
δF
δqt

, i.e. the Euclidean gradient of the functional’s first variation
δF(qt)
δqt

. Specifically, for the functional F(qt) =
∫
log qt

p dqt as the KL divergence where p is a fixed

target probability measure, we have δF(qt)
δqt

= log qt
p + 1. Hence, the Wasserstein gradient flow of
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Wasserstein space: Euclidean space:

−∇W2
F(qt)

pq0

qt

W2(q0, p)

xt ∼ qt

vt = −∇x
δF
δqt

(x)
∣∣∣
x=xt

p

Figure 1: The illustration of a Wasserstein gradient flow and its particle evolution. In Wasserstein
space, the blue curve is a gradient flow and the red dotted line is a geodesic. qt evolves along a curve
whose tangent vector is given by −∇W2

F(qt) such that the functional is always decreasing with
time. Correspondingly, particles evolve in Euclidean space towards the target measure p with the
vector field −∇x

δF
δqt

(x). Note that directly minimizing the Wasserstein-2 metric W2(qt, p) instead
yields a path {qt}t≥0 along the geodesic connecting q0 and p over Wasserstein space.

the KL divergence reads the Fokker-Planck equation,
∂qt
∂t

= div
(
qt(∇x log qt −∇x log p)

)
. (3)

As t → ∞, the stationary probability measure of qt is the target p. Denote the Euclidean path of
random variables as {xt}t≥0 ∈ Rn with the initial condition x0 ∼ q0, we can define an ordinary
differential equation (ODE) which describes the evolution of particles in Rn,

dxt =
(
∇x log p(xt)−∇x log qt(xt)

)
dt := vt(xt)dt, x0 ∼ q0, (4)

where the vector field vt of these particles is the negative Euclidean gradient of the functional’s
first variation. As shown in Figure 1, Wasserstein gradient flows establish a connection between the
probability evolution in Wasserstein space and its associated particle evolution in Euclidean space.

Applying Itô integral to Langevin dynamics dxt = ∇x log p(xt)dt+
√
2dw where dw is a Wiener

process, we obtain the same Fokker-Planck equation in Eq. (3). This indicates that the deterministic
particle evolution by the ODE can be approximated via a stochastic differential equation (SDE).
Langevin dynamics admits the same marginal probability measure qt as Eq. (4), this relation of SDE
and its corresponding ODE were also studied in score-based diffusion models (Song et al., 2021).
Langevin dynamics was first interpreted as the Wasserstein gradient flow of the KL divergence by
Jordan et al. (1998); Otto (2001). It plays an important role in generative modeling as a sampling
scheme. In order to transform noises into the target data distribution by Langevin dynamics, an
essential step is to fit the data distribution using energy-based models (Song & Kingma, 2021) or
to directly estimate its scores with score-matching techniques (Hyvärinen & Dayan, 2005; Vincent,
2011; Song & Ermon, 2019).

3 MONOFLOW: A UNIFIED GENERATIVE MODELING FRAMEWORK

This section presents our main contribution that connects gradient flows and divergence GANs into
a unified framework. We first introduce MonoFlow where the ODE evolution is rescaled via a
monotonically increasing function. Consequentially, learning to parameterize the rescaled flow by a
neural network recovers the bi-level optimization dynamics of training GANs. This gives us a novel
understanding of the hidden mechanism of adversarial training.

3.1 MONOFLOW

We consider the ODE in Eq. (4) with a fixed target measure p, e.g., a data distribution in a generative
modeling scenario. Assume that we have a time-dependent log density ratio function as log rt(x) =
log p(x)

qt(x)
, the ODE can be rewritten as

dxt = ∇x log rt(xt)dt, x0 ∼ q0. (5)

This is a gradient flow in Euclidean space where its vector field is the gradient of the log density ratio.
With a monotonically increasing (strict) mapping h : R → R where h is first-order differentiable,
we can define another ODE:

dxt = ∇xh
(
log rt(xt)

)
dt = h′

(
log rt(xt)

)
∇x log rt(xt)dt, x0 ∼ q0 (6)
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By transforming the time-dependent log density ratio under the mapping h, its first-order deriva-
tive rescales the vector field of the original gradient flows defined in Eq. (5). We call Eq. (6) as
MonoFlow.

MonoFlow defines a different family of vector fields {vt}t≥0 for the particle evolution where
vt(xt) = h′

(
log rt(xt)

)
∇x log rt(xt). Conversely, the vector fields {vt}t≥0 also determine an

absolutely continuous curve {qt}t≥0 in Wasserstein space by the continuity equation, see Theorem
4.6 in (Ambrosio et al., 2008),

∂qt
∂t

= −div(qtvt), (7)

under mild regularity conditions. Hence the probability evolution of MonoFlow is described by

∂qt
∂t

= div
(
Dt∇xqt

)
− div

(
ζ−1
t qt∇x log p

)
, (8)

where Dt = ζ−1
t = h′(log rt). Eq. (8) is a special case of convection-diffusion equations where Dt

is called the diffusion coefficient and ζ−1
t is called mobility. MonoFlow defines a positive diffusion

coefficient. This has a physical interpretation that particles diffuse to spread probability mass over
the target measure other than concentrate. Next, we study the properties of MonoFlow.

Theorem 3.1. If h is strictly increasing, i.e., h′(·) > 0, the dissipation rate ∂F(qt)
∂t for the KL

divergence F(qt) =
∫
log qt

p dqt satisfies

∂F(qt)

∂t
≤ 0, (9)

the equality is achieved if and only if qt = p and the marginal probability qt of MonoFlow evolves
to p as t→ ∞.

Theorem 3.1 shows that MonoFlow does not disturb the equilibrium of Eq. (3), and the convergence
to the target probability measure p is guaranteed. The negative dissipation rate ensures that the
gradient flow curve {qt}t≥ of MonoFlow always decreases the KL divergence with time.

MonoFlow is obtained by transforming the log density ratio which arises from the Wasserstein
gradient flow of KL divergence. We can also obtain other forms of deterministic particle evolution
by considering Wasserstein gradient flows of general f -divergences,

Df (p||q) =
∫
f

(
p

q

)
dq, (10)

where f : R+ → R is a convex function and f(1) = 0.
Theorem 3.2. The Wasserstein gradient flow of an f -divergence characterizes the evolution of
particles in Rn by

dxt = r(xt)
2f ′′

(
r(xt)

)
∇x log rt(xt)dt, x0 ∼ q0. (11)

A similar result can also be derived with the reversed f -divergences Df (q||p) used by (Gao et al.,
2019; Ansari et al., 2021). Theorem 3.2 shows that the particle evolution of the Wasserstein gradient
flow of f -divergences is a special instance of MonoFlow where h′(log r) = r2f ′′(r) > 0 because
f is a convex function. It indicates once a curve {qt}t≥0 evolves with the time t in Wasserstein
space to decrease an f -divergence, it simultaneously decreases the KL divergence as well since the
dissipation rate of MonoFlow is negative.

3.2 PRACTICAL APPROXIMATIONS OF DENSITY RATIOS

We first discretize the ODE in Eq. (6) by the forward Euler method such that we obtain standard
gradient ascent iterations with step size α and the index of the discretized time step k 2:

xk+1 = xk + α∇xh
(
log rk(xk)

)
, tk+1 = tk + α. (12)

Therefore, we can sample initial particles x0 ∼ q0 and perform gradient ascent iterations by esti-
mating the density ratio rk(x) =

p(x)
qk(x)

using samples from qk and p. In order to enable a practical

2For the sake of simplicity, we briefly replace tk by its index k, though it is not rigorous.
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Table 1: Different types of divergence GANs. f is a convex function and f̃ is the convex conjugate
by f̃(d) = supr∈domf{rd− f(r)}.

ϕ(d) ψ(d) d∗(x) hT (d)

Vanilla GAN log σ(d) log(1− σ(d)) log r(x) − log(1− σ(d))
Non-saturated GAN log σ(d) log(1− σ(d)) log r(x) log σ(d)

f -GAN d −f̃(d) f ′(r(x)) d
b-GAN f ′(d) f(d)− df ′(d) r(x) df ′(d)− f(d)

Least-square GAN −(d− 1)2 −d2 r(x)
1+r(x) −(d− 1)2

Generalized EBM (KL) −(d+ λ) − exp(−d− λ) − log r(x)− λ exp(−d− λ)

algorithm to obtain the time-dependent density ratio, we introduce a general framework that solves
the following optimization problem, similar to Moustakides & Basioti (2019),

max
d∈H

{
Ex∼p

[
ϕ
(
d(x)

)]
+ Ex∼qk

[
ψ
(
d(x)

)] }
, (13)

where d : Rn → R is a discriminator and H is a class of measurable functions. ϕ and ψ are scalar
functions upon design later.
Lemma 3.3. Solving Eq. (13), the optimal d∗ satisfies

d∗(x) = T −1(r(x)), r(x) =
p(x)

qk(x)
, (14)

with T (d(x)) := −ψ′(d(x))
ϕ′(d(x)) . Note that the resulting mapping T must be a bijection such that its

inverse exists. Additional conditions on the hypothesis of ϕ and ψ can be found in Appendix A.3.

Remark: Note that two-sample density ratio estimations discard the density information from qk.
The functions d(x), r(x) only depend on x and they cannot capture the variability of qk.

To this end, we can train d to solve the optimization problem in Eq. (13) and the density ratio is
approximated by T (d(x)). For example, in a standard binary classification problem where we can
design ϕ(d) = log σ(d) and ψ(d) = log(1 − σ(d)), we have d∗(x) = log r(x) (Sugiyama et al.,
2012). Other types of density ratio estimation can be found in Table 1 as they have been already
used in GAN variants where qk refers to the generator’s distribution pg . In practice, since the change
of xk is sufficiently small at every step k, we can use a single discriminator d(x) and perform a few
gradient updates to solve Eq. (13) per iteration k to approximate the time-dependent density ratio
rk(x), which is identical to GAN training.

3.3 PARAMETERIZATION OF THE DISCRETIZED MONOFLOW

The previous method directly pushes particles in the Euclidean space towards the target distribution.
We can use a neural network generator to mimic the distribution of these particles, i.e., the generator
learns to draw samples. If we parameterize particles with a neural network generator gθ that takes
as input random noises z ∼ pz and output particles x(θ,z) = gθ(z), the infinitesimal change of
parameters of the generator is

dθt
dt

=

∫
∂gθt(z)

∂θt
∇xh

(
log rt(xt)

)
pz(z)dz, where xt = gθt(z), (15)

where ∂gθt (z)

∂θt
is the Jacobian of the neural network generator. Apply the forward Euler method with

the step size β, we have

θk+1 = θk + β∇θEz∼pz
[
h
(
log rk(gθk(z))

)]
. (16)

Eq. (15) can be regarded as amortizing particles of the gradient flow into a neural network gener-
ator by approximately solving θk+1 = argminθ Ez∼pz ||gθ(z) − xk+1||2 where xk+1 = gθk(z) +
α∇xh

(
log rk(gθk(z))

)
with a one-step gradient descent (Wang & Liu, 2017).

Consequently, by the chain rule we have dxt =
∂gθt (z)

∂θt
dθt, replace dθt with Eq. (15),

dxt = Ez′∼pz
[
Kt
g(z, z

′)∇xh
(
log rt(xt))

]
dt (17)
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where Kt
g(z, z

′) = ⟨∂gθt (z)∂θt
,
∂gθt (z

′)

∂θt
⟩ is the neural tangent kernel (NTK) (Jacot et al., 2018) defined

by the generator. Note that Eq. (17) realizes Stein Variational Gradient Descent (Liu & Wang, 2016;
Franceschi et al., 2022) if h is an identity mapping.

3.4 A UNIFIED FORMULATION OF DIVERGENCE GENERATIVE ADVERSARIAL NETS

Based on the above derivation, we propose a general formulation for divergence GANs. We clarify
that GANs can be treated with different objective functions for training discriminators and genera-
tors. All of these variants are algorithmic instantiations of the parameterized MonoFlow. The unified
framework is summarized as: given a discriminator d and a generator g, the discriminator d learns
to maximize

Ex∼pdata

[
ϕ
(
d(x)

)]
+ Ez∼pz

[
ψ
(
d(g(z))

)]
, (18)

where pdata refers to the data distribution. Next, we train the generator g to minimize

−Ez∼pz
[
hT

(
d(g(z))

)]
. (19)

where hT (d) = h(log T (d)) and h can be any strictly increasing function. We summarize some
typical GAN variants in Table 1. We view adversarial training as maximizing Eq. (18) to obtain the
density ratio which suggests the vector field for MonoFlow and minimizing Eq. (19) as learning to
parameterize MonoFlow corresponding to Eq. (16). Especially, we find that b-GAN (Uehara et al.,
2016) realizes parameterized Wasserstein gradient flows of f -divergences since its generator loss is
aligned with Theorem 3.2 for the design of h.

4 UNDERSTANDING ADVERSARIAL TRAINING VIA MONOFLOW

The dominating understanding of adversarial training over GANs is that the generator learns to
minimize the divergence estimated from the discriminator. However, as pointed out in Section 1, the
theoretical explanation of GAN and its practical algorithm are inconsistent. In this section, through
the lens of MonoFlow, we will explain why this inconsistency of adversarial training still can lead to
convergence to the target distribution and how it differs from a variational divergence minimization
(VDM) problem for generative modeling.

4.1 WHY THE ADVERSARIAL GAME WORKS?

In an adversarial game, the discriminator is trained to maximize the lower bound of f -divergences.
This lower bound can be derived via the dual representation of f -divergences (Nguyen et al., 2010)
between pdata and pg ,

Df (pdata||pg) = max
d∈H

{
Ex∼pdata

[
d(x)

]
− Ex∼pg

[
f̃
(
d(x)

)]︸ ︷︷ ︸
lower bound

}
, r(x) =

pdata(x)

pg(x)
, (20)

where f̃(d) = supr∈domf{rd − f(r)} is the convex conjugate of f(r) and H is a class of any
measurable functions. Note that for binary classification problems where we design specific ϕ and ψ,
the corresponding optimization problem in Eq. (18) can be translated into an equivalent formulation
as the above dual representation (Nowozin et al., 2016). Since the first term of the lower bound in
Eq. (20) is irrelevant to pg , the generator actually only learns to minimize the second term,

min
g

−Ex∼pg
[
f̃
(
d(x)

)]
(21)

Meanwhile, the generator can also alternatively minimize the heuristic non-saturated loss
−Ex∼pg

[
d(x)

]
, which has been proven to work well in practice. By the Fenchel duality, the optimal

d∗ is given by d∗ = f ′(r) with the equality f̃(d∗) = rf ′(r) − f(r). Fortunately, it can be simply
verified that f ′(r) and rf ′(r) − f(r) are both monotonically increasing functions of the density
ratio (as well as the log density ratio). Hence, adversarial training with the vanilla loss and the
non-saturated loss both fall into the framework of MonoFlow which has theoretical guarantees.
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Table 2: Comparisons the convergence when using different f and h on three density ratio models:
“✓” means the generator converges to the data distribution and “✗” means it does not converge.
For r(x, θ) and r(x, θde), the convergences means the generator parameter θ can converge to the
true value. For rGAN(x), convergence means the parameter can closely approximate the true value.
Visualization results are included in Appendix B.1.

if f convex if h mono increases r(x, θ) r(x, θde) rGAN(x)

KL Yes Yes ✓ ✓ ✓
Forward KL Yes No ✓ ✗ ✗
Chi-Square Yes No ✓ ✗ ✗
Hellinger Yes No ✓ ✗ ✗
Jensen-Shannon Yes No ✓ ✗ ✗
Exp No Yes ✗ ✓ ✓

4.2 DIFFERENCE BETWEEN ADVERSARIAL TRAINING AND VARIATIONAL DIVERGENCE
MINIMIZATION

VDM differs from adversarial training because it requires density information from the generator, as
elaborated in the following. In variational divergence minimization, the generator gθ usually defines
a distribution via an explicit density function pg(x; θ). For example, x can be reparameterized as
a Gaussian random variable where θ are its mean and scale. We are interested in minimizing an
f -divergence

Df (pdata||pg) = Ex∼pg
[
f
(
r(x, θ)

)]
= Cost(θ), (22)

where the density ratio r(x, θ) = pdata(x)
pg(x;θ)

is a function of x as well as θ to capture the variability
of pg . Integrate out x, the f -divergence can be written as a cost function of θ. Since f is convex,
such that by Jensen inequality, this cost is minimized at zero when r(x, θ) is a constant for each x,
meaning pg = pdata. Similarly under Fenchel-duality, we can rewrite f -divergences as

Cost(θ) = Ex∼pdata

[
d∗(x, θ)

]
− Ex∼pg

[
f̃
(
d∗(x, θ)

)]
, (23)

where d∗(x, θ) = f ′(r(x, θ)). Eq. (23) is different from Eq. (20), where Cost(θ) depends on the
first term of the dual representation. However, in an adversarial training scenario, the density ratio
estimator r(x) or its bijection d(x) are only functions of the sample x. It was also discussed by Metz
et al. (2017); Franceschi et al. (2022), the smoothness between the discriminator and the variability
of pg is lost during the practical algorithm. Plugging r(x) or d(x) into the f -divergence to replace
r(x, θ) or d∗(x, θ), we can approximate f -divergences but the approximated divergences can never
be viewed as a cost function of θ anymore. This is the major disconnection between the theory and
the practical algorithm over GANs, as Eq. (4) in (Goodfellow et al., 2014) is similar to Eq. (23).

4.3 EMPIRICAL STUDY OF GAUSSIANS

This part highlights the differences between density ratio models in terms of the convergence of
generators. We start from the simplest form of a generator pgθ : x = µ + sz, where z ∼ N(0, I)
and θ = (µ, s), where µ is the mean and s is the scale matrix. Let the data distribution be pdata =
N(µ0, s

T
0 s0). By assuming the generator and data distributions are Gaussians, we can define three

density ratio models. The first model is r(x, θ) = pdata(x)
pg(x;θ)

, where the density ratio function depends

on x and θ simultaneously. The second model is r(x, θde) =
pdata(x)
pg(x;θde)

, where θde means we detach
the gradient of θ such that the second model cannot reflect the variability of pg . The third model
is rGAN(x) where the density ratio is approximated by performing a single gradient update for the
classifier using samples in standard adversarial training. We train the generator to minimize the
following loss function with the above three density ratio models respectively (for rGAN(x), we use
the standard bi-level training),

min
θ

Ez∼pz
[
f(r)

]
or equivalently min

θ
−Ez∼pz

[
h(log r)

]
(24)

Given f(r) we can rewrite it as a function of log density ratio h(log r) = −f(r). Similarly, given
h(log r), we can write it as a function of density ratio f(r) = −h(log r). In this experiment,
we consider five types of f -divergences (expressions summarized in Appendix B.1). In addition,
we study a strictly increasing function h given by h(log r) = exp

(
1.5 log r

)
= r1.5 where its
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Figure 2: The plot of different generator losses
as a function of d.

Figure 3: The plots of the vanilla losses by
adding different Cs.

f(r) = −r1.5 is concave. The results are summarized in Table 2, which verifies our analysis that the
objective of VDM should be a convex function of the density ratio, whereas MonoFlow only requires
it to be an increasing function of the log density ratio. r(x, θde) can recover the true f -divergence,
but minimizing this f -divergence has no effects except for KL divergence.

Remark: Minimizing the KL divergence using the detached model r(x, θde) also leads to conver-
gence. This mechanism is called “Variational Inference via Wasserstein Gradient Flows” (Lambert
et al., 2022) and it also have a lower variance (Roeder et al., 2017).

5 ALGORITHIMIC INSIGHTS: ALTERNATIVES OF GENERATOR LOSS

5.1 ANALYZING PRACTICAL EFFECTIVENESS OF GENERATOR LOSS

In this part, we explain what types of generator loss functions can lead to the successful training of
GANs via the lens of MonoFlow. We provide a study for the vanilla GAN since the logit output
of the binary classifier is the log density ratio where we have d(x) = log r(x) (see Table 1). We
consider four generator losses which are monotonically increasing functions of the log density ratio:
1). Vanilla loss: h(d) = − log(1 − σ(d)); 2). Non-saturated (NS) loss: h(d) = log(σ(d)). 3).
Maximum likelihood loss: h(d) = exp(d). 4). Logit loss: h(d) = d.

The plot of these functions is shown in Figure 2. The vanilla loss and the MLE loss do not work
well in practice (Goodfellow, 2016), since at initial training steps, the generator is weak and d(x) =
log pdata(x)

pg(x)
≪ 0, for x ∼ pg(x). We may observe in Figure 2, the curves of the vanilla loss and the

MLE loss are fairly flat on the left side, which means the derivative h′(·) is nearly zero. According
to Eq. (6), such a rescaling scheme yields extremely small vector fields, resulting in the generator
being trapped at the initial steps as the infinitesimal change of particles dxt ≈ 0. The NS and logit
loss both have non-zero derivatives when d(x) < 0 despite that the NS loss is flat on the right side.
This is not a problem since d(x) gradually increases from a negative value during the training and
when d(x) = 0, it means pg = pdata such that the generator converges.

5.2 AN EMBARRASSINGLY SIMPLE TRICK TO FIX VANILLA GAN

We have justified that GANs can work with any generator loss as long as it is a monotonically
increasing mapping of the log density ratio and this mapping’s derivative deviates from zero when
the log r(x) ≪ 0. We show the effects of shifting the generator loss of the vanilla GAN left by
adding a constant C to the sigmoid function,

h(d) = − log(1− σ(d+ C)) (25)

By adding a constant, we can obtain a better monotonically increasing function whose derivative
deviates from zero significantly, see Figure 3. The neural network architecture used here is DCGAN
(Radford et al., 2015) and we follow the vanilla GAN framework where the log density ratio is
obtained by logit output from the binary classifier and the model is trained with 15 epochs. The
generated samples are shown in Figure 4. We observe that when C = 3 and C = 5, the generator
losses in Eq. (25) begin to work, i.e., generators output plausible fake images.
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(a) C = 0 (b) C = 1 (c) C = 3 (d) C = 5

Figure 4: Generated samples with different Cs. Experiments uses the data set MNIST.

6 RELATED WORKS

Gradient Flow: Wasserstein gradient flows of f -divergences have been previously studied in deep
generative modeling as a refinement approach to improve sample quality (Ansari et al., 2021). A
close work to ours is (Gao et al., 2019) where the authors proposed to use gradient flows of f -
divergences to refine fake samples output by the generator and the generator learns to minimize
the squared distance between the refined samples and the original fake samples. However, nei-
ther of the above reveals the equivalence between gradient flows and divergence GANs. Further-
more, MonoFlow is a more generalized framework to cover existing gradient flows of f -divergences
and our method also applies to traditional loss designs as well as many other types of monotoni-
cally increasing functions. IPM GANs: Our framework unifies divergence GANs since estimating
a probability divergence is naturally related to density ratio estimation (Sugiyama et al., 2012).
However, some variants of GANs are developed with Integral Probability Metric (IPM) (Sripe-
rumbudur et al., 2009). For example, WGANs (Arjovsky et al., 2017; Gulrajani et al., 2017) esti-
mate the Wasserstein-1 metric and then minimize this metric. While MonoFlow is associated with
Wasserstein-2 metric, minimizing a functional in P(Rd) naturally decreases Wasserstein-2 metric
as well. Other types of IPM GANs are MMD GAN (Dziugaite et al., 2015) and Sobolev GAN
(Mroueh et al., 2018b). Both of them have been interpreted as gradient flow approaches (Mroueh
& Nguyen, 2021; Mroueh et al., 2018a) but associated with different vector fields. Franceschi et al.
(2022) studied the NTK view on GANs given a vector field specified by a loss function of IPM but
lacks connections to divergence GANs. Diffusion Models: diffusion models (Ho et al., 2020; Song
et al., 2021; Luo, 2022) are another line of generative modeling framework. This framework first
perturbs data by adding noises with different scales to create a path {qt}t≥0 interpolating the data
distribution and the noise distribution. Subsequently, the generative modeling is to reverse {qt}t≥0

as denoising. The similarity of MonoFlow and diffusion models is that they both involves particle
evolution associated with different paths of marginal probabilities. The difference is as follows:
the vector field of MonoFlow is obtained with the log density ratio and the log density ratio must
be corrected per iteration by gradient update; diffusion models directly estimate vector fields by
time-dependent neural networks and they are straightforward particle methods.

7 CONCLUSIONS

We introduce a unified framework for GAN variants. Our framework provides a comprehensive
understanding to help us get insights into why and how adversarial training works. The mechanism
of adversarial training is not as adversarial as we used to think. It instead simulates an ODE system,
the bi-level step of adversarial can be regarded as it first estimates the vector field of MonoFLow
and next the generator is updated to learn to draw particles guided by the vector field, aka we call
it parameterizing MonoFlow. Therefore, all GAN variants discussed in this paper are equal at the
methodology level. They all are different methods of estimating the bijection of the log density ratio
and then mapping the log density ratio by different monotonically increasing functions. Compared
to previous studies of GANs, our framework is highly theoretically and practically consistent. The
limitation of this paper is that our framework does not cover the variants of IPM GANs since these
variants give a vector field that is different from the gradient of log density ratios. We will leave it
as a future work.
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Patrick Gallinari. A neural tangent kernel perspective of gans. In ICML, 2022.

Yuan Gao, Yuling Jiao, Yang Wang, Yao Wang, Can Yang, and Shunkang Zhang. Deep generative
learning via variational gradient flow. In ICML, 2019.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In NeurIPS, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Abdul Jabbar, Xi Li, and Bourahla Omar. A survey on generative adversarial networks: Variants,
applications, and training. ACM Computing Surveys (CSUR), 54(8):1–49, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In NeurIPS, 2018.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–
planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. 2019.

Marc Lambert, Sinho Chewi, Francis Bach, Silvère Bonnabel, and Philippe Rigollet. Variational
inference via wasserstein gradient flows. In NeurIPS, 2022.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single
image super-resolution using a generative adversarial network. 2017.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In NeurIPS, 2016.

10



Under review as a conference paper at ICLR 2023

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In In ICCV, 2017.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. ICLR, 2017.

George V Moustakides and Kalliopi Basioti. Training neural networks for likelihood/density ratio
estimation. arXiv preprint arXiv:1911.00405, 2019.

Y Mroueh, T Sercu, and A Raj. Sobolev descent: Variational transport of distributions via advection.
Private communication. Apr, 2018a.

Youssef Mroueh and Truyen Nguyen. On the convergence of gradient descent in gans: Mmd gan as
a gradient flow. In AISTATS, 2021.

Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng. Sobolev gan. In ICLR,
2018b.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847–5861, 2010.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In NeurIPS, 2016.

Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. Commu-
nications in Partial Differential Equations, 26:101–174, 2001.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-variance
gradient estimators for variational inference. In NeurIPS, 2017.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert RG
Lanckriet. On integral probability metrics,\phi-divergences and binary classification. arXiv
preprint arXiv:0901.2698, 2009.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.

Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Generative
adversarial nets from a density ratio estimation perspective. arXiv preprint arXiv:1610.02920,
2016.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Dilin Wang and Qiang Liu. Learning to draw samples: With application to amortized mle for
generative adversarial learning. In ICLR, 2017.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-
itris N Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adver-
sarial networks. ICCV, 2017.

11



Under review as a conference paper at ICLR 2023

A PROOFS

A.1 PROOF OF THEOREM 3.1

Equilibrium of MonoFlow: Without loss of generality, we assume the target measure p is properly
normalized, i.e.,

∫
dp = 1. To satisfy this assumption, p usually follows a Boltzmann distribution,

i.e., p ∝ exp(−U) where the potential energy U = − log p. MonoFlow defines a vector field
vt = h′

(
log rt

)(
∇x log p−∇x log qt

)
such that by Theorem 4.6 in (Ambrosio et al., 2008), we can

write the continuity equation as

∂qt
∂t

= div
(
qth

′ (log rt) (∇x log qt −∇x log p)
)
. (26)

At equilibrium (stationary distribution), the probability current is zero,

qth
′ (log rt) (∇x log qt −∇x log p) = 0, (27)

This condition is required to reflect the boundary conditions of the continuity equation. Note that
the equilibrium state of a general continuity equation does not necessarily indicate that the current
(flux) has to be zero. MonoFlow is a special case where the drift force of the system is generated by
the potential energy (conservative force), such that achieving equilibrium is equivalent to the current
being zero.

Since h′ (log rt) > 0, we directly have qt (∇x log qt −∇x log p) = 0. Hence qt = p is the solution
to the above differential equation, which is the same as finding the equilibrium of the Fokker Planck
equation in Eq. (3).

The dissipation rate: For any curve {qt}t≥0 evolving according to the vector field {vt}t≥0 in
Wasserstein space, the dissipation rate of the functional ∂F(qt)

∂t = Eqt⟨∇W2
F(qt), vt⟩, where the

Wasserstein gradient of KL divergence is ∇W2
F(qt) = ∇x log

qt
p .

Therefore, the dissipation rate of the KL divergence under MonoFlow is

∂F(qt)

∂t
= Eqt

[
−h′

(
log rt

)∥∥∥∥∇x log
qt
p

∥∥∥∥2
]
≤ 0, (28)

and equality is achieved if and only if qt = p. Hence, MonoFlow always decreases the KL diver-
gence with time.

A.2 PROOF OF THEOREM 3.2

Define the functional F(q) of f -divergences as

F(q) = Df (p||q) =
∫
f

(
p

q

)
(x)q(x)dx. (29)

where f : R+ → R is a convex function and we may further assume that f is twice differentiable.

Let ϕ ∈ P(Rn) be an arbitrary test function, the first variation (functional derivative) δFδq is defined
as∫

δF
δq

(x)ϕ(x)dx = lim
ϵ→0

F(q + ϵϕ)−F(q)

ϵ

=
d

dϵ
F(q + ϵϕ)

∣∣∣
ϵ=0

=
d

dϵ

∫
f

(
p

q + ϵϕ

)
(x)

(
q(x) + ϵϕ(x)

)
dx

∣∣∣
ϵ=0

=

∫ {
f

(
p

q + ϵϕ

)
(x)ϕ(x)− f ′

(
p

q + ϵϕ

)
(x)

p(x)ϕ(x)

q(x) + ϵϕ(x)

}
dx

∣∣∣
ϵ=0

=

∫ {
f

(
p

q

)
− f ′

(
p

q

)
p

q

}
(x)ϕ(x)dx.

(30)
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Thus,
δF
δq

= f(r)− rf ′(r), where r =
p

q
. (31)

Recall that the Wasserstein gradient of F(q) is the Euclidean gradient of the first variation, we have

∇W2F(q) = ∇x
δF
δq

= −rf ′′(r)∇xr. (32)

The corresponding vector field is given by the negative Euclidean gradient, see Section 2, therefore
the particle flow ODE of f -divergences can be written as

dx = −∇x
δF
δq

(x)dt = r(x)f ′′(r(x))∇xr(x)dt = r(x)2f ′′(r(x))∇x log r(x)dt. (33)

We have h′(log r) = r2f ′′(r) > 0 since f is a convex function, concluding the proof.

A.3 PROOF OF LEMMA 3.3

This proof is adapted from Lemma 1 and 2 by Moustakides & Basioti (2019). Given the optimization
problem

max
d∈H

Ex∼p
[
ϕ
(
d(x)

)]
+ Ex∼q

[
ψ
(
d(x)

)]
, (34)

where H is a class of measurable functions. We rewrite it as

max
d∈H

Ex∼q

[
p(x)

q(x)
ϕ
(
d(x)

)
+ ψ

(
d(x)

)]
= Ex∼q

[
max
d∈H

{
p(x)

q(x)
ϕ
(
d(x)

)
+ ψ

(
d(x)

)}]
,

(35)

we apply the interchange of maximum and integral because the integral operator is indepen-
dent of d. Since the maximum is holding for every fixed x, thus we let the derivative
∂

∂d(x)

[
p(x)
q(x)ϕ

(
d(x)

)
+ ψ

(
d(x)

)]
= 0, we have the optimal d∗, the abbreviation of d∗(x), to sat-

isfy

rϕ′(d∗) + ψ′(d∗) = 0, r(x) =
p(x)

q(x)
> 0 (36)

Furthermore, we need to discuss under what sufficient conditions, d∗ is the unique maximizer for
the above problem. Denote l(d) = rϕ(d)+ψ(d), in order to ensure that d∗ is the unique maximizer,
l′(d) should satisfy

l′(d) > 0,∀d < d∗ and l′(d) < 0,∀d > d∗. (37)
We summarize two sufficient conditions as:

1. ϕ, ψ are concave functions and the resulting mapping T (d) := −ψ′(d)
ϕ′(d) is a bijection.

2. ϕ′ > 0 and the resulting mapping T is a strictly increasing mapping (also a bijection).

For condition 1, it is obvious d∗ = T −1(r) is the root of Eq. (36) and since ϕ and ψ are concave,
hence l(d) is concave which satisfies Eq. (37). Therefore, d∗ is the unique maximizer.

For condition 2, we can write l′(d) = [T (d∗)−T (d)]ϕ′(d). Since T is a strictly increasing mapping
and d∗ is the maximizer, we have T (d∗)−T (d) > 0 for d < d∗ and T (d∗)−T (d) < 0 for d > d∗.
Hence l′(d) satisfies the condition stated in Eq. (37).

In Table 2, b-gan satisfies condition 2 and the rest of divergence GANs satisfy condition 1.

Some examples:

• For binary classification, ϕ(d) = log σ(d) and ψ(d) = log(1− σ(d)), r(x) = exp(d∗(x)).

• Fenchel-duality, ϕ(d) = d, ψ(d) = −f̃(d), r(x) = f̃ ′
(
d∗(x)

)
where the convex conjugate

is f̃(d) = supr∈domf{rd− f(r)}

• For least-square GAN, ϕ(d) = −(d− 1)2, ψ(d) = −d2, r(x) = d∗(x)
1−d∗(x)
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B EXPERIMENTS

B.1 DETAILS FOR 4.3

Table 3: Explicit forms of f and h

f(r) h(u), u = log r

KL − log r u
Forward KL r log r −u exp(u)
Chi-Square (r − 1)2 −(exp(u)− 1)2

Hellinger (
√
r − 1)2 −(

√
exp(u)− 1)2

Jensen-Shannon (GAN) r log 2r
1+r + log 2

1+r − exp(u) log 2 exp(u)
1+exp(u) − log 2

1+exp(u)

Exp − exp(1.5 log r) exp(1.5u)

The generator is initialized at:

N

[(
1.0
1.0

)
,

(
1.00 0.00
0.00 1.00

)]
and the target distribution is

N

[(
0.0
0.0

)
,

(
1.00 0.80
0.80 0.89

)]
The visualisation results follow the order: KL, Forward KL, Chi-Square, Hellinger, Jensen-Shannon
(GAN), Exp. rGAN(x) uses a simple 2-layer discriminator with Leaky ReLU activation that has logit
output as the log density ratio.
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(a) Ratio model: r(x, θ) (b) Ratio model: r(x, θde) (c) Ratio model: rGAN(x)

B.2 EXPERIMENT ON VANILLA GAN WITH AN ARBITRARY INCREASING FUNCTION

We change the generator loss to: −Ez∼pz

[
arc sinh

((
d(g(z))− 3

)3)]
. This has no meaning for

reconstructing any probability divergences, but GAN still works. We did an experiment on Cifar10
and Celeb-A using DCGAN architecture (Radford et al., 2015). The generated samples are shown
in Figure 6.
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(a) Generated images of Cifar10

(b) Generated images of Celeb-A

Figure 6: Generated samples via an arbitrary increasing function.
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