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Abstract

Quantifying the impact of individual data samples on machine learning models is an open
research problem. This is particularly relevant when complex and high-dimensional relation-
ships have to be learned from a limited sample of the data generating distribution, such as in
deep learning. It was previously shown that, in these cases, models rely not only on extract-
ing patterns which are helpful for generalisation, but also seem to be required to incorporate
some of the training data more or less as is, in a process often termed memorisation. This
raises the question: if some memorisation is a requirement for effective learning, what are
its privacy implications? In this work we unify a broad range of previous definitions and
perspectives on memorisation in ML, discuss their interplay with model generalisation and
their implications of these phenomena on data privacy. Moreover, we systematise methods
allowing practitioners to detect the occurrence of memorisation or quantify it and contextu-
alise our findings in a broad range of ML learning settings. Finally, we discuss memorisation
in the context of privacy attacks, differential privacy (DP) and adversarial actors.

1 Introduction

Machine learning (ML) models require access to large amounts of high-quality, diverse and well-curated data
to perform well in a variety of tasks ranging from biomedical imaging Seo et al. (2020); Rueckert & Schnabel
(2019) to text generation using large language models (LLMs) Nijkamp et al. (2022); Taylor et al. (2022);
Alayrac et al. (2022). Such data is often sensitive in nature, mandating that its disclosure be avoided.
However, with the advent of generative ML, it has become apparent that models often reproduce samples
from their training datasets almost verbatim Ippolito et al.; Carlini et al. (2019b; 2021), thus posing potential
privacy risks for data owners. This phenomenon is not new to the ML privacy community, as it has been
known that models trained without the use of privacy-enhancing techniques such as differential privacy (DP)
are prone to inferences about their training data, such as membership inference (MIA) Shokri et al. (2017)
or data reconstruction attacks Zhu et al. (2019). However, these observations in generative models have led
to a recent spike in research trying to uncover (1) whether and to what extent models actually contain their
training data (to then regurgitate it) and (2) which training samples are more prone to this.

The aforementioned phenomenon is (often informally) termed training data memorisation. Memorisation is
often viewed (and taught) as being the opposite pole of generalisation (that is, committing data samples to
storage rather than learning general patterns from the training data). Obviously, this distinction is somewhat
artificial, as it is all but impossible to delineate where general patterns end and the storage of actual data
samples begins. Beyond this fact, it has empirically been shown that –while models are able to learn data
representations which are useful to the task at hand– they are also entirely capable of fitting random input-
output associations such as purely random labels in the context of supervised learning Zhang et al. (2017).
In addition, while supervised ML models are usually able to perfectly fit to their training data, this often
does not translate to a commensurate generalisation performance on unseen data.

Additionally, certain types of ML models, such as support vector machines or k-nearest neighbours, exhibit
a learning process which is in its entirety based on storing data samples followed by a subsequent look-up
process. It thus becomes evident that the delineation between memorisation and generalisation may –in
fact– be moot. To the contrary, it appears that both, memorisation and generalisation, are crucial to the
learning process of ML models. Prior works lend credence to this fact. For example, Brown et al. (2021) find
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that specific tasks can only be successfully learned through memorisation of portions of the training data.
Moreover, the seminal works of Feldman & Zhang (2020); Feldman (2020) demonstrate that memorisation
and generalisation not only co-occur, but that the former is actually a prerequisite for the latter if one aims to
train a model of (close-to) optimal utility. In addition, several prior works equate memorisation to overfitting,
the phenomenon where, during training, the model’s performance on unseen data starts deteriorating after
initially having increased, pointing to an over-accommodation of the model to its training data.

These introductory remarks reveal that there is not only a lack of terminological clarity when discussing
memorisation and generalisation in ML, but also that there exist a multitude of –partially conflicting–
definitions. We thus identify a requirement for a systematisation of prior works describing these phenomena
in various sub-domains of ML. Moreover, we contend that such a systematisation must also tackle specific
related points of importance:

• Pinpointing which samples are (more) prone to memorisation;

• Quantifying, rather than merely detecting the presence of memorisation;

• Identifying the implications of memorisation in terms of data privacy;

• Discussing techniques aimed at preventing or diminishing memorisation and their consequences on
the model’s performance.

Such a work will not only aid in the disambiguation of the multiple existing definitions of memorisation, but
also assist practitioners in choosing the techniques to identify, measure and possibly reduce memorisation
in their operational scenario or use-case. We provide a summary of all techniques discussed in this work in
Table 1.

In this paper, we attempt the aforementioned systematisation. Our work is structured as follows:

• We outline a formalised definition of memorisation in machine learning and discuss how it can be
quantified directly (Sections 2, 3 and 4.1);

• In addition, we discuss notions which are ostensibly related to (but otherwise disjoint from) memo-
risation (Section 5);

• We then discuss how, when and in which part of the learning protocol does memorisation get induced
(Sections 6 and 7.1);

• We discuss the implications of memorisation on the privacy of the individuals whose data is used to
train the model (Sections 8.1 and 9).

• Finally, we provide guidelines for ML practitioners and outline promising future work directions
(Sections 10 and 11).

As ML encapsulates a large variety of learning tasks, modalities and domains, we discuss the implications
these may have under the prism of memorisation. Specifically, we discuss the implication of memorisation
in different modalities (imaging and textual) in Sections 8.1 and 8.2; learning settings (discriminative vs
generative) in Section 8.2 and data regimes (centralised and distributed) in Appendix A. We additionally
provide some practical guidelines on context-specific memorisation for the practitioners to have a better
understanding of what memorisation can entail when working with sensitive data in Section 10.

2 Preliminaries

Most ML models can be viewed as parameterised functions fθ(·), which, given some input x and parameter
values θ, produce a corresponding output fθ(x). Using a training dataset S ∼ D, where D is the data-
generating distribution, many ML algorithms can be reduced to finding an optimal parameter setting θ∗
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Techniques Section Challenges Measures
memorisation? Examples

Re-training methods 4.1 - Poor scaling with the dataset size Yes Feldman & Zhang (2020); Zhang et al. (2021)

Influence functions 4.1 - Poor scaling with the model size
- Unsuitable for deep learning Partially 1 Koh & Liang (2017); Guo et al. (2020); Grosse et al. (2023); Kounavis et al. (2023)

Data valuation
techniques 4.2

- Poor scaling with the dataset size
- Often non-transferable across settings
- Measure value of data, not memorisation

Partially 2 Ghorbani & Zou (2019); Hammoudeh & Lowd (2022a)

Gradient-based
methods 5.1

- Model- and data-dependent
- Poor scaling with the model size
- Capture various phenomena at once

No Chen et al. (2020b); Zhu et al. (2022); Li et al. (2021); Garg & Roy (2023a); Mueller et al. (2022); Agarwal et al. (2022)

Information-theoretic
approaches 5.2

- Unintuitive to the user
- Poor scaling with the model size
- Concern information flow, not memorisation

No Shwartz-Ziv (2022); Goldfeld et al. (2018); Goldfeld & Greenewald (2021); Xu et al. (2020)

Sample difficulty
estimation 5.3

- Model-, data- and task-dependent
- Describe several related phenomena at once
- Often non-transferable across settings

No Chen et al. (2021); Baldock et al. (2021); Garg & Roy (2023b); Carlini et al. (2019a)

Induced memorisation
measurement 7.1, 9.2

- Can affect the final model
- Model-, data- and task-dependent
- Can impose unrealistic assumptions
- Often measure leakage, not memorisation

Partially 3 Carlini et al. (2019b); Tirumala et al. (2022); Thakkar et al. (2020); Hartley & Tsaftaris (2022); Carlini et al. (2021)

Table 1: Summary of techniques used to identify data points which are more likely to be memorised. (1) -
While influence functions can be used to calculate self-influence, these rely on assumptions which are often
not satisfied in deep learning (e.g. strong convexity); (2) - Shapley values were previously described in Zhang
et al. (2021) as similar to calculation of self-influence; (3) - These can be used to measure the worst-case
unintended memorisation, which frequently encapsulates memorisation, extractability and the ability of the
model to leak data. Distinguishing between these three notions is a non-trivial task.

(and the corresponding function fθ∗) that minimises a loss function L over S:

θ∗ := arg min
θ

n∑
i=1

L(fθ(xi), yi), (1)

which is often called empirical risk minimisation (ERM). Based on the form that S takes, we now broadly
categorize ML methods into: (I) supervised learning, where the training dataset S contains both inputs x
as well as ground-truth outputs/labels y and (II) generative learning/modelling, where no corresponding
example outputs are available, but we wish to learn the general structure of x. We use the terms supervised
and discriminative interchangeably in this work.

For the rest of this paper, will omit θ (unless explicitly necessary) and denote the result of this procedure
(commonly referred to as model training/fitting) as applying training algorithm A to the dataset S as
f ← A(S).

Finally, we frame the goal of ML as obtaining a model f that generalises to unseen data. This is measured
by the generalisation performance/error, which for supervised learning is defined as follows:

errgen(f) := E
(x,y)∼D

[L(f(x), y)]. (2)

For the generative learning setting, L takes only one input, as S contains no labels y. Note that formally,
generalisation performance must be measured over the entirety of the data-generating distribution D. In
practice, it can only be estimated as an empirical average over a (finite) test set. Accurate estimation of errgen
thus hinges on the choice of a representative test set that is distinct from the training dataset. Throughout,
we will use the terms sample, instance and data point synonymously.

3 A formal definition of memorisation

For a long time, memorisation lacked a precise definition and the term was commonly used loosely to refer
to a variety of phenomena. In this section, we discuss the definition of Feldman Feldman (2020), who
presented the first unified formulation and theory of memorisation in ML. While various other definitions
have previously been proposed (and we discuss them in great detail in the following sections), we identify the
influence-based definition as the only one which is a) modality- b) training setting- and c) model-agnostic.
This is primarily because the notion of influence can be easily extended to any learning scenario allowing
the user to select which metric is used to quantify how the presence or absence of a training point affects
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the resulting utility (e.g. per-sample accuracy in classification or log-perplexity in language modelling).
In contrast, most of the previously proposed definitions are either data- or model-specific (e.g. quantifying
memorisation via canaries); only apply to specific training settings (e.g. fitting of random labels) or capture a
different, albeit related phenomenon (e.g. memorisation through overfitting). Fundamentally, this definition
is also very intuitive: if we memorise a sample, we are expected to be able to make a more accurate prediction
on it compared to a setting where we have never seen this exact sample before and only extrapolate from
our knowledge of similar-looking data.

In the framework of Feldman (developed further in Feldman & Zhang (2020); Zhang et al. (2021)), memori-
sation is framed as the impact a particular sample has on its own prediction (known as the self-influence).
Formally, it is defined as the difference in (expected) performance on the sample (with index) i when sample
i is included in the training dataset S:

mem(A, S, i) :=
E

f←A(S)
[M (f(xi), yi)]︸ ︷︷ ︸

performance on i when i ∈ S

− E
f←A(S\i)

[M (f(xi), yi)]︸ ︷︷ ︸
performance on i when i /∈ S

. (3)

Here, the expectation is taken over the randomness of the training algorithm A. M refers to some suitable
performance metric, (e.g. accuracy) and S\i is the training dataset with sample i removed. Note that Eq. (3)
is context agnostic and can be applied to a generative settings by picking a performance metric M that only
takes a single input argument (i.e. without including the ground truth labels). Note that a naive calculation
of Eq. (3) is computationally expensive. Efficient sub-sampling estimators were proposed and are discussed
in Section 4.

Key Point

Memorisation is formally defined as the influence a sample has on its own (correct) prediction (self-
influence).

3.1 Influence and the long-tail theory

In the same work Feldman (2020), Feldman proved that memorisation is a required component of learn-
ing. This long-tail theory, contends that close-to-optimal generalisation performance on long-tailed data
distributions (see Fig. 1a) necessitates the memorisation of rare and “atypical” samples from the tail of
the distribution. This is due to the fact that, in long-tailed distributions, samples from low-density regions
(the tail) differ extremely from samples from high-density regions (the head). Thus, memorisation of these
atypical samples is necessary to generalise optimally to other atypical samples at test time.

The long-tail theory (developed further in Feldman & Zhang (2020); Brown et al. (2021)), was supported by
prior observations that naturally occurring data distributions commonly have long tails Babbar & Schölkopf
(2019); Zhu et al. (2014); Van Horn & Perona (2017); Yang et al. (2022). Further empirical evidence in direct
support of this theory was presented in Feldman & Zhang (2020); Zhang et al. (2021), which demonstrated
that a substantial proportion of training examples have an out-sized impact on the model’s performance on
few specific test examples. The (sample-level) measure used to demonstrate this phenomenon was termed
cross-influence, that is, the impact a training sample xi has on the prediction of a test sample x′j :

infl(A, S, i, j) :=
E

f←A(S)
[M(f(x′j), y′j)]︸ ︷︷ ︸

performance on j when i ∈ S

− E
f←A(S\i)

[M(f(x′j), y′j)]︸ ︷︷ ︸
performance on j when i /∈ S

, (4)

whereby self-influence (mem) is recovered when i = j and M is some suitable performance metric that
returns higher values for better predictions. Thus, a positive infl value indicates that training sample i
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Figure 1: Long-tailed distributions have probability density that decays very slowly for extreme (atypical)
values (a). It can thus produce samples that are so distinct from typical samples that they are required to be
memorised to allow for generalisation to other similar samples. Sub-figure (b) shows a schematic visualisation
of the memorisation-influence continuum. While all samples from the tail of the data distribution are
likely memorised during training (large self-influence), useless, low-quality or mislabeled samples (A) are
indistinguishable from useful samples that significantly influence the correct prediction of at least one test
sample (large max cross-influence) (B).

improves the prediction on test sample j when i ∈ S. If M is taken to be a risk/loss function, equivalent
behaviour can be achieved by simply negating all infl values.

Fig. 1b visualises the memorisation-influence continuum. The continuum illustrates that while all samples
from the tail of the distribution are likely to be memorised (and thus exhibit high self-influence), not all
of them have a significant impact on at least one test sample (A vs. B). Further, a direct consequence
of the long-tailed nature of data distributions is the fact that, at training time, low-quality or mislabelled
samples (A) are statistically indistinguishable from useful representative samples of rare sub-populations (B)
Feldman (2020).

Key Point

When a data distribution is long-tailed, memorising samples from the tail of the distribution can help
a model generalise.

3.2 Prior efforts to capture memorisation

There have previously been many attempts to quantify memorisation in ML. However, we stress that while
many of these phenomena have previously been labelled as “memorisation” or claim to identify samples which
are “memorised” by the model, none of these can be used as a formal and modality-agnostic definition of
memorisation. In this section we outline some of the most well-known phenomena, which, while related to
memorisation are not suited to quantify this notion. We outline additional methods which have previously
been used to quantify memorisation in Table 1.

Memorisation as overfitting A number of prior works Olatunji et al. (2021); Chen et al. (2020a); Kuppa
et al. (2021); Leino & Fredrikson (2020); Veale et al. (2018); Hilprecht et al. (2019); Mehta et al. (2020)
draw direct connections between memorisation and overfitting, defining memorisation of a given model as
its generalisation gap (i.e. the empirical measure of overfitting). Formally, the generalisation gap of a model
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f is defined as:

errgap(f) := errgen(f)︸ ︷︷ ︸
generalisation error

−
n∑

i=1
L(f(xi), yi)︸ ︷︷ ︸

empirical (training) error on S

(5)

This quantity is task-agnostic and it can be estimated using a representative test set, making it a very
attractive tool for empirical memorisation measurement. However, in the light of evidence from Feldman
& Zhang (2020); Zhang et al. (2021), showing that the memorisation of specific training examples actually
increases generalisation performance, this definition now appears dated. In addition, the measure above does
not allow for the identification of individual memorised samples, being computed as an average. Finally,
recent works demonstrate that memorisation usually precedes overfitting Carlini et al. (2019b); Tirumala
et al. (2022).

Key Point

Memorisation cannot be reduced to overfitting. Overfitting indicates a lack of generalisation, whereas
memorisation was shown to improve generalisation.

Fitting random labels Zhang et al. Zhang et al. (2017) demonstrated that even relatively small neural
networks (by today’s standards) can perfectly fit large datasets with randomised labels or even completely
random data. As the correct prediction of a random label is impossible without memorisation, randomised
labels are commonly used to study qualitative aspects of memorisation behaviour in ML models, such as
whether it can be localised to specific regions in the model or when it temporally occurs during training.
These topics are discussed in more detail below in Section 6.

However, as this formulation relies on the presence of labels, it can often be challenging to quantify memori-
sation in settings where these are absent (e.g. generative modelling). We, thus, turn to influence functions,
which allow for such quantification to be performed efficiently in the following section.

Key Point

Many deep neural networks have sufficient memorisation capacity to fit large datasets of completely
random input-output associations.

4 Measuring memorisation through influence estimation

Influence analysis dates back to Cook (1977) and aims to offer a data-centric approach to explaining a model’s
predictions by apportioning credit (positive or negative) to individual training data samples. If applied to
quantify the impact that a single training data point has on the prediction of a single test sample, it is often
called point-wise influence and is equivalent to the quantity (cross-influence) introduced in Eq. (4). This
canonical definition of influence (commonly known as leave-one-out (LOO) influence) is computationally
expensive. Its simple Monte Carlo estimation requires Ω(n) runs of training algorithm A to convergence.
Fortunately, substantial research effort has gone into developing efficient methods for influence estimation,
which will be discussed next.

As covered previously in Section 3, memorisation can be quantified through self-influence. Thus, all methods
discussed in this section can be used as valid approaches to estimate memorisation (if applied correctly to
measure a sample’s influence on its own prediction). We omit a comprehensive discussion of this topic and
refer to Hammoudeh & Lowd (2022b) for an extensive survey on influence and its estimation.

4.1 Efficient influence estimation

Estimation of influence can be broadly categorised into re-training-based methods and influence functions.
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Re-training-based methods approximate Eq. (4) directly through simple Monte Carlo sampling. To
circumvent the aforementioned computational complexity, Feldman and Zhang Feldman & Zhang (2020)
proposed a sub-sampling estimator. This method simultaneously leaves out multiple training samples ran-
domly (instead of just one) and records each sample’s membership and the result, which are subsequently
averaged to obtain a smoothed estimate of a sample’s influence. Correspondingly, the number of required
training runs is drastically reduced, as every run of Algorithm A now contributes to the influence computa-
tion of many samples, rather than just one. Authors showed that this estimator is statistically consistent and
that its error is bounded (with high probability) by the sub-sampling rate and the number of repetitions per
randomly sampled subset Feldman & Zhang (2020). In practice, this method allows for accurate influence
estimation (self/cross-influence) in multiple hundreds or a few thousand runs on large datasets Feldman &
Zhang (2020); Zhang et al. (2021).

Influence functions were first ported from the domain of robust statistics to deep learning through the
seminal work by Koh and Liang Koh & Liang (2017). Using a classical result from robust statistics Cook
& Weisberg (1982), Koh and Liang showed that a change in loss (due to removal of a sample) can be
approximated by the inverse empirical Hessian (matrix of second-order derivatives w.r.t model parameters).
This means that no model re-training is required. Intuitively, through a second-order Taylor series expansion,
the effect of a small perturbation (assumed to be induced by removing a single sample) on the loss function
can be approximated. Hessian matrices are infeasible to compute for large models, requiring memory which
is square in the number of network parameters. However, efficient approximation techniques have been
proposed to tackle this issue Guo et al. (2020); Schioppa et al. (2022), allowing for the application of
influence functions even to large language models Grosse et al. (2023); Kounavis et al. (2023).

Re-training-based approaches, given enough computational resources, are able to provide reasonably accurate
influence estimates, even for large datasets such as ImageNet Feldman & Zhang (2020). On the other hand,
influence functions have received substantial criticism Bae et al. (2022); Basu et al. (2020); Schioppa et al.
(2023), as key assumptions of the underlying theory, e.g. strong convexity and positive definiteness of the
Hessian (amongst others), are not satisfied in the context of deep neural networks. Furthermore, multiple
works have shown that influence function values correlate poorly with LOO influence values Bae et al.
(2022); Basu et al. (2020), an effect that seems to be aggravated with network size and depth. Thus, based
on this evidence, we deem re-training-based methods the preferred choice for estimating memorisation if the
available computational resources allow for it.

An alternative approach to the two above-mentioned methods relies on using the so-called “representer the-
orem”, allowing the model owner to decompose the prediction into individual contributions (i.e. influences)
from each data point Yeh et al. (2018). This method has however been referred to as “overly reductive” Yeh
et al. (2022) in a follow-up work by the same authors as it’s limited to detecting changes in the final layer
only.

Key Point

Memorisation can be measured efficiently through influence estimation techniques, but care is required
to make sure such estimates are accurate.

4.2 Connections to data valuation

Data valuation is concerned with assigning value to data points to determine equitable monetary compen-
sation for data owners. It is closely connected to the concept of influence i.e. when influence is applied to
quantify the impact of a single training sample on many test samples. In fact, the notion of the aforemen-
tioned LOO influence is also frequently used in data valuation. Note also that, any data valuation measure
can be used as a point-wise influence measure Hammoudeh & Lowd (2022a) which means that conversely
any data valuation measure can be used to measure self-influence. As influence measures were not originally
designed to be equitable, substantial effort has gone into the game-theoretic analysis and improvement of
data valuation/influence measures which satisfy a number of axioms aimed at improving data valuation
equitability.
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Arguably, the most popular valuation metric is the Shapley value Ghorbani & Zou (2019) which quantifies the
expected marginal contribution of individual data points while considering all possible subsets of the dataset
and their interactions. While such improved (re-training-based) data valuation/influence estimation methods
have a clear advantage for equitable data owner compensation, the relevance of such game-theoretically
motivated axioms for the quantification of memorisation remains unclear. Concretely, it has been argued by
Zhang et al. Zhang et al. (2021), that LOO influence (which does not model data point interactions), is to
be regarded as the preferred metric for measuring memorisation since it allows for making causal statements
about the memorisation of a data point. Further, the authors argue that it’s the insensitivity of LOO
influence to data duplicates (a behaviour previously criticised in the context of data valuation Ghorbani &
Zou (2019)) which renders it a suitable metric for measuring the memorisation of rare data points.

Key Point

Game-theoretic data valuation metrics assign higher values to samples which are often more likely to
be memorised, but are not a direct proxy for memorisation.

5 Quantities ostensibly related to memorisation

Beyond the techniques which can be used to directly estimate memorisation introduced in Section 3 (i.e.
through self-influence), there exists a large number of methods which attempt to rank training samples based
on their “importance” to the model. Here the term importance encapsulates concepts such as difficulty
of fitting, error/gradient magnitude, etc.. While, ostensibly, some of these metrics are associated with
memorisation (and are often described as its computationally inexpensive approximations), we note that
none of them estimate self-influence directly. We, therefore, postulate that none of the metrics discussed
below can directly quantify memorisation. We note, however, that some of the metrics from these various
domains often correlate with how much memorisation individual data points can experience, these cannot
be used as direct “proxies” of this phenomenon.

5.1 Gradient-based influence proxies

The methods introduced in this section leverage the gradient of the loss function evaluated at individual
samples, either with respect to the model weights or to the inputs themselves. Recall that the gradient is
a linear/first-order approximation to the effect of a sample on the loss. The main benefit of the techniques
discussed below is that they are easy to implement and computationally efficient.

Gradients w.r.t. model parameters Arguably, the most widely used gradient-related metric is its
magnitude, i.e. the ℓ2-norm with respect to the model’s parameters Chen et al. (2020b); Amiri et al. (2021);
Lai et al. (2021). Some works claim that the gradient norms of individual data points are proxies for
memorisation (as, similarly to loss values, they tend to decrease over the course of training, highlighting that
samples get “gradually” memorised) Zhu et al. (2022); Katharopoulos & Fleuret (2018); Li et al. (2021);
Xue et al. (2021). However, while higher gradient norms (similarly to loss values) are usually associated
with difficulty when making predictions on individual data points (often correlated with samples of higher
influence), this is not a direct representation of memorisation Zhu et al. (2022); Li et al. (2021). Moreover,
even when viewing these metrics through the lens of adversarial susceptibility, there is no clear causal
relationship between the amount of information memorised about individual samples; information contained
in these samples; and the information exposed by the model. The gradient norm is also central to differentially
private stochastic gradient descent Abadi et al. (2016) and especially in approaches employing individual
privacy accounting Feldman & Zrnic (2021); Yu et al. (2023); Koskela et al. (2022), where the gradient norm
is proportional to the individual’s privacy loss. Despite that fact, and while larger gradient norms can be
associated with higher attack susceptibility, this is not always observed, implying that other factors may be
involvedUsynin et al. (2023a); Geiping et al. (2020); Balle et al. (2022).

We note that, techniques based on the second-order derivatives, which estimate the curvature of the loss
function with respect to individual inputs (instead of weights) have also been used to measure memorisa-
tion Garg & Roy (2023a). Moreover, more computationally efficient techniques not requiring second-order
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derivatives have been developed, such as techniques which trace the evolution of the loss function’s value or
the (first order) gradient through training Pruthi et al. (2020); Hammoudeh & Lowd (2022a). These metrics
can also be used to either A) identify samples which are more challenging for the model to learn from or B)
be used to approximate the aforementioned influence functions (which are, in turn, often used to quantify
memorisation).

Gradients w.r.t. inputs Orthogonal to the aforementioned methods are techniques which utilise gradients
with respect to the inputs. The most notable technique in this category is the variance of gradients by
Agarwal et al. (2022), which combines tracing the gradient values with respect to the inputs during training
with the computation of their variance over the time axis. A higher variance is claimed to imply that the
sample is more atypical and is, hence, more difficult to learn. Thus, the authors state that samples with
high variance of gradients are also more prone to memorisation. A distinct line of work Mueller et al.
(2022); Hannun et al. (2021) from the domain of privacy-preserving ML also used gradients (or second-order
derivatives) with respect to inputs to measure privacy loss. These can be used to identify samples which
have “more revealing” input features and be more susceptible to attacks on privacy, allowing the data owner
to identify the privacy risks associated with individual training records.

Overall, many properties of training data which can be efficiently represented through the gradients (e.g. the
privacy loss) are often correlated to the magnitude of memorisation of that training sample. However, these
links are mostly correlational and, thus, gradient-derived metrics cannot be used as direct approximations
of memorisation. Several works point to a connection between neural network geometry and memorisation,
which we thus regard as a promising area for future research Stephenson et al. (2021); Garg & Roy (2023a);
Ravikumar et al. (2024).

Key Point

Gradient-based metrics cannot be used to directly quantify memorisation, but often (efficiently)
measure related quantities (e.g. sample difficulty).

5.2 Quantifying memorisation using information theory

The next set of techniques we discuss quantify the “flow of information” from data points to the parameters
of a model using the tools of information theory. A subset of these works rely on the concept of Shannon
mutual information (MI) Kolmogorov (1956), which quantifies the amount of “information” which can be
deduced about a variable by monitoring another variable (i.e. the amount of “dependence” between the
variables) Shwartz-Ziv (2022); Goldfeld et al. (2018). However, while such methods have strong theoretical
foundations, they ultimately suffer when placed in the context of ML. This is because these approaches
assume that all inputs of interest including the resulting ML model’s weights are random variables, which
is often not the case, as most ML approaches result only in a single set of weights. Moreover, Shannon
information assumes that computational abilities are generally unbounded. This means that, in the view of
Shannon information theory, information cannot be increased by further processing. This stands in contrast
to real-world practice, in which computation is constrained by cost or by the available time, and information
is thought to be “extracted” from data by the ML model.

This motivated the development of usable information theory and its variant of information termed V-
information Xu et al. (2020). This method can be seen as a computationally constrained version of Shannon
MI, which measures the “usable” information contained in the data, which can be extracted by functions (e.g.
ML models) in a specific family (denoted V). This interpretation has been applied to quantify the difficulty
of datasets Ethayarajh et al. (2022) and to localise information leakage to specific components (layers) of
ML models Mo et al. (2021). The authors of Mo et al. (2021) also correlated V-information with Jacobian
sensitivity, which corresponds to the norm of the gradient with respect to the model’s input, linking this study
to the techniques discussed above. They deduce that there are two “types” of useful information the model
can memorise: input and latent information. The former represents the model’s ability to correctly recall
the input data under reconstruction attacks Zhao et al. (2019), while the latter corresponds to information
about properties of the data (which can be exposed through attribute inference attacks, discussed below).
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Orthogonal to the domain of usable information theory are approaches which attempt to enable the com-
putation of information-theoretic quantities in high-dimensional ML models. Notable among these is the
technique of estimating e.g. MI through randomised low-dimensional projections, pioneered in Goldfeld &
Greenewald (2021) and termed sliced MI. Sliced MI was used in Wongso et al. (2023) to measure memorisa-
tion and captures the notion of average usable information (as it averages the MI for all random projections)
instead of the largest usable information. We contend that the relationship between the difficulty of learning,
the complexity of the representations at hand and the memorisation properties of the network are still a
nascent area of research of high potential impact.

Another noteworthy approach was proposed by Harutyunyan et al. (2021) and is termed smooth unique
information. This formulation considers the distinction between what data the weights of the model contain
against what the model actually learns. Similarly to influence functions, authors consider how a single
included/excluded instance can influence the training of the model and measure it using a smoothed KL-
divergence between the two models (concretely: its expectation over the label distribution). Authors conclude
that removing highly informative samples identified by their method results in a stronger performance
degradation compared to removing the same quantity of uninformative/random samples instead. These
findings again highlight the divide between studies on informativeness of individual samples and the extent
to which they are prone to memorisation. While this work studies the effect of including or excluding highly
informative (in a manner of speaking – influential) samples on generalisation performance, no analysis is
performed in terms of the influence of training samples on themselves.

Key Point

By considering prior works in the domain of information theory we determine that A) memorisation
can be localised and B) different concepts are memorised in different parts of the model.

5.3 Measuring sample difficulty

The concept of sample difficulty is often closely related to memorisation (e.g. “difficult” samples can be
more prone to memorisation), but is arguably ill-defined. One can intuitively interpret a difficult sample
to be one which is fit poorly by the model. However, the reasons for such poor performance can vary: the
sample can contain “rare” features Agarwal et al. (2022), have poor quality Usynin et al. (2023b) or the
sample can come from a data-generating distribution which is mismatched to the task at hand Chen et al.
(2021). A number of methods were proposed to identify at which point different “concepts” are learned from
individual features of a sample, showing that those that correspond to “easier” concepts are identified much
earlier in the model Baldock et al. (2021). Alternatively, the authors of Garg & Roy (2023b) rely on the
curvature of the loss function to assess how “clean” individual samples are (where higher cleanness signifies
a stronger representative of a class). However, similarly to other works on example difficulty, the notions
of “cleanness” are closely intertwined with samples being “typical” representatives, which can have different
interpretations based on the input modality (i.e. defining a typical cat image vs. a typical job description).
Notably, this method through an approximation of the Hessian trace produces consistent results across
different architectures and random seeds (which was a limitation of similar approaches Agarwal et al. (2022);
Pruthi et al. (2020)).

Arguably, the best example of the challenges associated with the interpretation of “sample difficulty” is
discussed in Carlini et al. (2019a), as this work employs five separate metrics in order to identify the con-
nections between individual image characteristics (for instance, adversarial robustness on these images) and
its “difficulty”. While authors conclude that most of these metrics are correlated amongst each other, there
is still no causal relationship between e.g. holdout accuracy and “difficulty” of a sample. Another work of
Harutyunyan et al. (2021) shows that example difficulty can be estimated by observing the behaviour of the
loss values on individual samples on their “corresponding” test-time points. What this definition proposes,
is to disentangle concepts of train-time performance and example difficulty, and to, instead, consider related
data points, that the model has not encountered during the learning process.
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Finally, another noteworthy work which tries to approximate example difficulty was proposed by Ethayarajh
et al. (2022) using V-usable information (which is a computationally constrained version of Shannon entropy).
What we are interested in here is the similarity of this definition to the notion of sample influence. Here
authors estimate the difficulty of a sample as a model’s predictive performance on two data distributions,
one of which contains a record of interest and one does not. This metric describes the difficulty of an entire
dataset, given a model V, but authors also proposed pointwise V-information (PVI), which can be used to
describe the difficulty of individual samples, similarly to the works we discussed above. One noteworthy
conclusion of this work is that PVI, can serve as a context-agnostic measure of “difficulty” across different
models and modalities if using it as a threshold (i.e the PVI value after which samples start to be misclassified
and are hence considered to be “difficult”). These methods establish an indirect connection between difficulty
and memorisation: Difficult samples can often be those that fall on the tails of the data distribution and
are, hence, more prone to memorisation. However, reasoning over sample difficulty is not straightforward,
because while difficult samples may be highly self-influential (e.g. mislabelled data), they do not necessarily
have to be (e.g. poorly acquired images).

Overall, it is speculated by several works that the identification of “difficult” samples is similar to the
identification of samples which are likely to be memorised. These methods can even be perceived as proxies
to the aforementioned influence functions using only first-order information. While the definition of “sample
difficulty” has not been unified yet across various works, most of the formulations that we discussed base
their definitions of the concepts of “atypicality”, making detection of such samples a challenging, yet an
important task across any input domain.

Key Point

Samples can be difficult for many reasons, but samples which are deemed to be more difficult are
often memorised more.

Overall, we conclude that there exists a large number of formulations which are often described as “mem-
orisation” of some form. We, however, highlight that while many of these measure quantities related to
memorisation and identify samples which can often be more prone to memorisation, these cannot be used
as direct measurements of this phenomenon.

6 Localisation and timing of memorisation

Two intuitive question which arises from the discussion above is:

1. Where does memorisation occur in the model?

2. When does memorisation occur during training?

To reason over the localisation of memorisation, we first need to consider the localisation of learning in ML
models. One of the fundamental works presented by Bau et al. (2017) shows that individual concepts that
are included in a data point (e.g. texture or color of an object on an image) are learnt by different parts
of a neural network. Authors demonstrate that during the learning procedure, different parts of the model
become “responsible” for learning individual concepts contained in the input. Thus, it is possible to identify
individual neurons associated with specific concepts.

As learning of individual concepts can be localised to different parts of the model, it was previously established
that this also holds for memorisation. It was shown in the works of Mo et al. (2021); Baldock et al. (2021);
Maini et al. (2023) that as part of the learning process, memorisation can also be associated with specific
parts of a model. Specifically, authors of Baldock et al. (2021) present prediction depth, which is the earliest
layer in a model based on the representations of which it is possible to make a correct prediction on the input.
Authors determined that “easier” concepts (i.e. those associated with generalisation) are learnt in the earlier
layers, whereas the more complex ones are learnt in the last layers of the model. The work of Stephenson
et al. (2021) further shows that memorisation of atypical (mostly mislabelled) samples can also be localised

11



Under review as submission to TMLR

to the last layers of the model, where most mispredictions also occur in the early stages of training. It is of
note that the work of Mo et al. (2021) shows a similar result through the lens of gradient information leakage,
which we have previously discussed in Section 5. The fact that memorisation can be localised was further
supported by the work of Maini et al. (2023). However, authors of Maini et al. (2023) show that contrary
to the results of Baldock et al. (2021), memorisation, while localised to specific parts of the model, is not
associated with the final layers. They instead show that memorisation is indeed localised to specific neurons,
but these are often distributed across multiple layers. Moreover, the authors of Wongso et al. (2023) conclude
that learning patterns can be different based on the architecture and the depth of the model: convolutional
models exhibit more “learning” in the deeper convolutional layers, similar to the discussion above. In turn,
multi-layer perceptron-based models exhibit an increase in the amount of useful information the model learns
approximately linearly. These findings highlight that learning (and memorisation) is not only inconsistent
across different model types (i.e. different models can extract different information), but also that even
individual layers in a model learn differently from the same data based on how deep they are (i.e. learning
and memorisation can be localised to specific parts of the model).

In regards to the question of timing, authors of Arpit et al. (2017) show that memorisation is prevalent
at specific stages of training. Concretely the authors showed that models tend to start learning “simple”
patterns first, thus showing that generalisation can often occur before memorisation (supported by Kishida &
Nakayama (2019)). Additionally, the work of Paul et al. (2021) shows that it is also possible to determine the
influential samples early on and use these to guide the training process, by removing samples of low influence
from the training dataset. Therefore, it is also possible to not just link memorisation to the training phase,
but to also employ the training data to force the model to change its memorisation pattern (i.e. which samples
get memorised). This mirrors a finding by Baldock et al. (2021), who relate memorisation to prediction depth,
i.e. the depth of the layer at which representations which effectively determine the network’s prediction on
a specific sample are formed. This highlights that a higher difficulty of forming a defining representation in
a network is associated with a higher probability of memorisation.

Overall, although there is no clear consensus regarding the specifics, evidence from multiple prior works
supports that memorisation is a process that can be localised both spatially and temporally.

Key Point

Memorisation is a process that can be localised both spatially and temporally.

7 Inducing deliberate memorisation

For many learning settings and in particular, for generative models, it is often very difficult to conceptualise
what the model memorises (i.e. does producing an output “similar” to the training record count as mem-
orisation?) One intuitive method of evaluating this involves deliberately inserting data samples which are
“expected” to be memorised by the model due to their “atypicality”. The capacity for memorisation is then
measured with respect to how well the model can reproduce these inputs as its output (i.e. for generative
models) or how performance on these data points compares to performance on the rest of the dataset (e.g.
for supervised learning).

7.1 Canary memorisation

The, arguably, most widely used approach for inducing (and empirically quantifying) memorisation was
proposed by Carlini et al. Carlini et al. (2019b) and has since been employed in many machine learning
contexts Thakkar et al. (2020); Carlini et al. (2021); Tirumala et al. (2022); Lee et al. (2021), particularly in
the field of language processing. In essence, the authors propose to measure how much a generative language
model can memorise by purposefully inserting crafted data samples (canaries) into the training dataset.
These crafted samples are designed to require memorisation. The connection to the long-tail definition of
Feldman (2020) is that such canaries are constructed to resemble data from low-density regions of the training
data distribution. These samples are (often informally) called anomalous, outliers or atypical. Note that
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(a) (b)

Figure 2: Example workflow of measuring memorisation through an inserted canary (shown in red). First,
a canary is generated by combining some pre-defined structure s and some randomness r drawn from some
randomness space R (e.g all possible nine-digit numbers) (a). After inserting the canary into the training
dataset, the ability of the model to reproduce the canary is computed as its exposure. This measure is
determined by |R| (the size of R) and the canary’s index (rank) in table (b), ordered by log-perplexity and
containing all other possible canaries from R (that could have been inserted but were not).

in supervised learning, a similar effect can be achieved through deliberately mislabelling the example. The
“exposure” of the canaries is measured and used as a proxy for the memorisation of other atypical samples.

To define exposure, we first discuss the notion of log-perplexity it is based on. Intuitively, log-perplexity
measures how “expected” a given sample is (or how much the model is “surprised” by this sample) and is
defined as follows:

perp(x, f) =− log2 p(x1, ..., xm|f) (6)

=
m∑

i=2
(− log2 p(xi|f(x1, ...xi−1)))

where f is the model, and x is the input sequence of length m. Here and below, we use p in a slight abuse
of notation to denote both probabilities and likelihoods.

To generate a canary (s[r]), we combine a predefined, fixed structure s and some randomness r drawn from
some predefined randomness space R (e.g. the space of nine-digit numbers, see Fig. 2a). This generated
canary is then inserted into the training dataset. After model training, we compare the perplexity of
our inserted canary to all other possible canaries that we could have inserted. Perplexity, however, is a
relative measure and highly dependent on the specific training setup, including model architecture, dataset
composition and the application. Thus, Carlini et al. Carlini et al. (2019b) proposed a “relative” notion of
perplexity called rank, i.e. the index of a canary in the relative ordering of perplexities across all possible
canaries (see Fig. 2b).

Exposure, in turn, is then simply determined by the size of the chosen randomness space and the canary’s
rank. Formally it is defined as follows:

exposuref (s[r]) = log2 |R| − log2 rankf (s[r]), (7)

where |R| is the size of the randomness space from which the canary s[r] was generated, thus making exposure
a positive value.

The exposure definition has been successfully transferred to other machine learning modalities, such as
computer vision in Hartley & Tsaftaris (2022), but due to the complexity of canary generation in other
domains, most follow-up works in the area concentrated on language models (LMs) instead Thakkar et al.
(2020); Carlini et al. (2021); Tirumala et al. (2022). However, canary-based memorisation definitions are
significantly less generalisable than the one discussed in Section 3, as they (1) require the data owner to
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generate canaries (which are specific to their setting) and (2) are particularly well-suited to language settings,
compared to other generative modelling tasks.

Overall, canary-based approaches have seen popularity due to their simplicity of implementation and high
applicability to generative ML tasks Liang et al. (2023); Nijkamp et al. (2022); Taylor et al. (2022); Alayrac
et al. (2022); Wei et al. (2022). One important finding that authors of Carlini et al. (2019b; 2022b; 2023))
report, is that exposure seems to increase drastically with the number of times a canary is seen during
training. The authors thus suggest that if an atypical sample is included many times in the training dataset,
it is much more likely to be memorised. This is in contrast to follow-up work Zhang et al. (2021), which
has argued that such a conclusion is ill-guided, as extraction/generation-based memorisation quantification
methods (like canaries) are biased towards identifying frequently occurring samples Lee et al. (2021); Zhang
et al. (2021). In fact, the Zhang et al. (2021) presents contrary evidence to the prior claim: using re-training-
based influence estimators (from Section 4.1) the authors show that memorisation estimates tend to actually
decrease for data points that are repeated many times. This finding thus raises the question of the validity
of memorisation and privacy risk conclusions drawn from extraction-based memorisation experiments, as the
memorisation of frequently occurring sentences (or data points) potentially poses little privacy risk compared
to rare sentences. This is because frequently occurring sentences such as commonly known facts typically
pose little privacy concern compared to e.g. personally identifiable information which only occurs once.

Key Point

Unintended memorisation can, in some cases, be measured by inserting samples into the training
dataset which are crafted to be more prone to memorisation and measuring how likely they are to be
regurgitated by the model.

7.2 Memorisation and adversarial samples

The aforementioned canaries are deliberately crafted to resemble samples from the low-density region of the
data distribution. They are, however, still valid (albeit atypical) data points and can be used to train a
well-generalised model. The same concepts are exploited in works on adversarial samples, which generate
data points from the low-density region of the distribution, but are crafted to degrade the performance of
the model. These, unlike canaries, are applicable to both the discriminative and the generative settings (and
are assumed to have high negative cross-influence in addition to high self-influence).

In many cases, a very small proportion of such samples (< 1%) suffice to severely harm the utility of
the trained model Chobola et al. (2022); Zhou et al. (2021). Adversarial data points are generated to be
atypical through either incorrect labelling, embedding of features which are associated with a different class,
addition of imperceptible noise etc. Usynin et al. (2021). As a result, these samples can often be used to
manipulate the behaviour of the model as these are A) more likely to be memorised and B) only require
a small perturbation, making these attacks difficult to detect. Adversarial samples can also be used to aid
attacks on ML models, aiming to extract the information that the model has memorised (particularly for
underrepresented samples, which were shown to be more vulnerable in Shokri et al. (2017)) about individual
data points, which it would not expose otherwise Tramèr et al. (2022); Carlini et al. (2022c); Chobola et al.
(2022); Bagdasaryan & Shmatikov (2021). For a more in-depth discussion on how these adversarial data can
be generated in different learning settings, we refer to Tian et al. (2022).

Key Point

Adversarial samples are made to be artificially atypical and hence have a higher influence on the
model (malicious or otherwise).
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8 Privacy implications of memorisation

Memorisation is not a process that occurs in a vacuum: it likely affects the privacy of individuals, whose data
is used to train a ML model. To assess the extent to which this phenomenon can harm these individuals, we
discuss the implications of memorisation through the lens of data privacy. We note, that while our work is
primarily aimed at centralised ML settings, we additionally include a detailed discussion on memorisation
in decentralised settings in the Appendix. We are particularly interested in answering these questions over
the course of this discussion:

• What are the implications of memorisation on privacy of the individuals and which definition(s) can
we use to estimate these?

• What methods exist to extract the information memorised by a model?

• How can memorisation affect privacy of generative models?

8.1 Memorisation and privacy attacks

Models which have memorised much of the data they have been trained on can often be perceived as more
“dangerous”, as in many cases it is possible to extract the information that has been memorised. While
attacks can be executed in both the discriminative and the generative settings, we are particularly interested
in discriminative models. For these extraction of memorised information often takes the form of attacks on
privacy, as they are not designed to output the data they were trained on. We discuss which “individual”
traits of ML training can be exploited to extract the information the model memorised about individual
samples (similarly to how many of the same metrics can be used to identify influential or atypical sam-
ples). Concretely, we discuss three major privacy attack methods, namely: membership inference, attribute
inference and data reconstruction (often referred to as data inference or model inversionUsynin et al. (2021)).

Inference attacks One of the more prominent privacy attacks is termed a membership inference attack
(MIA) Shokri et al. (2017) and it identifies if the model’s training dataset contains a specific point of interest.
This attack has a flexible threat model and can be employed against shared white-box models Sablayrolles
et al. (2019) or API-only black-box models Choquette-Choo et al. (2021) with high effectiveness. Similarly,
MIAs can successfully target both the discriminative and the generative models Chen et al. (2020a); Liu
et al. (2019a); Hilprecht et al. (2019), making them a versatile context-agnostic “unintended memorisation”
auditing tool. There is growing evidence to support that high memorisation is associated with an increased
MIA vulnerability, although it seems that memorisation is not necessary and sufficient but just sufficient (i.e.
where memorisation leads to being vulnerable to MIAs) and that there are other reasons for vulnerability
beyond memorisation Choi et al. (2023); Carlini et al. (2022c).

Figure 3: Brief overview of various attacks on privacy and the information they exploit.

15



Under review as submission to TMLR

It was previously shown that MIAs are particularly effective against models with larger generalisation gaps
Shokri et al. (2017); Usynin et al. (2022); Truex et al. (2019); Salem et al. (2018) (with more examples in
Dionysiou & Athanasopoulos (2023)). For instance, a suite of attacks all of which rely on comparing the
loss values on previously seen and unseen samples Chobola et al. (2022); Carlini et al. (2022a); Yeom et al.
(2018); Jayaraman et al. (2020) naturally benefit from lower loss magnitudes on the data the model was
trained on. However, we note that while attacks using model loss, outperform the naive prediction-based
approaches (e.g. Yeom et al. (2018); Choquette-Choo et al. (2021); Sablayrolles et al. (2019); Irolla & Châtel
(2019); Bentley et al. (2020)), they typically represent a non-membership test (i.e. are mostly effective at
determining who was not a member rather than who was one) Li et al. (2022). Similarly, any proxy metric,
such as the confidence scores, can be used to identify whether a training record was previously “seen” by
the model Shokri et al. (2017); Salem et al. (2018); Watson et al. (2021); Gu et al. (2022). However, it
was previously shown in Yeom et al. (2018) that overfitting is not a prerequisite for a successful attack.
Moreover, when one considers attacks on generative models (e.g. those described in Chen et al. (2020a);
Hayes et al. (2017); Hilprecht et al. (2019)), it is not clear what overfitting even implies.

Works such as Jayaraman & Evans (2019); Song & Mittal (2021); Cohen & Giryes (2024) attempt to
make a more concrete connection between how memorisation of data points affects their inference attack
susceptibility (based on the notion of memorisation presented in Section 7.1). This formulation permits a
direct evaluation of how well individual samples can be A) memorised and B) inferred via MIA. A number
of recent works, such as Cohen & Giryes (2024) and Carlini et al. (2022a) have speculated that there
is a correlation between samples which are more likely to be memorised and the samples which are more
vulnerable to adversarial inference (and MIAs in particular). Moreover, results from Choi et al. (2023) suggest
that this is indeed a phenomenon which is applicable to memorised samples only, and not to “atypical, OOD”
or “rare” samples. This is primarily because the definition of OOD is specific to an individual learning context
and depends on the modality, which features are considered to be OOD etc. Additionally, works such as
Cohen & Giryes (2024); Usynin et al. (2022); Leino & Fredrikson (2020) show that techniques which reduce
the amount of information a model can memorise about individual samples (such as differential privacy
Dwork (2006)) have been used to effectively mitigate MIAs in the past.

So while a direct causal relationship between memorisation and susceptibility to MIA has not yet been
established (and although it seems likely), there are still two noteworthy observations. Firstly, atypical
samples which are more likely to be memorised, are also more susceptible to inference attacks, showing
that there is a connection between how much can be memorised by the model and how much can then be
“exposed” by the model Mo et al. (2021); Cohen & Giryes (2024); Choi et al. (2023). Secondly, similarly
to the formulations of memorisation, the extent of MIA’s success can also depend on memorisation and
generalisation simultaneously, showing that these notions are complementary.

Another attack, which allows the adversary to determine individual features or attributes of their victim is
termed as attribute inference Kosinski et al. (2013); Jayaraman & Evans (2022); Mehnaz et al. (2022). For
instance, it was previously shown that attribute inference attackers are capable of inferring protected demo-
graphic information from parameter updates alone Feng et al. (2021); Jourdan et al. (2021). As previously
discussed in Mo et al. (2021), the risk of this attack can directly depend on the amount of information that
is “embedded” in the trained models (more so in deeper layers Maini et al. (2023)). Therefore works such
as Thomas et al. (2020); Jourdan et al. (2021) hypothesise that similarly to MIAs, this attack also benefits
from memorisation of individual samples and is particularly effective against data points of high influence.

Model inversion The last type of privacy attacks that we discuss is model inversion attacks, which aim
to extract the training data given some representation of the model (e.g. consecutive training snapshots
Usynin et al. (2022), final model Haim et al. (2022), gradient updates Zhu et al. (2019); Geiping et al.
(2020); Usynin et al. (2023a)). The unique trait of these attacks is the fact that they can be used against
different representations of the same model in order to extract the training data.

When quantifying memorisation under these attacks it is important to clearly disentangle the notion of
memorisation and “leakage” (or exposure). Memorisation is the amount of information the model can store
about individual (usually rare) samples, whereas leakage is the amount of information that the model can
reproduce when queried. Therefore, while many of these attacks show “how much models leak”, these leakages
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can often A) represent the information about a class of input samples rather than individual samples (e.g.
reconstruction in Fredrikson et al. (2015)) and B) not capture all of the information memorised by the
model (e.g. when extracting an image, a lot of pixel variation is possible, making it unclear what exactly
was memorised by the model, while still showing “some” sensitive attributes Usynin et al. (2023a)). These
attacks typically exploit phenomena that are similar, but otherwise disjoint from memorisation (discussed in
Section 5). Notions such as V-information Mo et al. (2021) can be employed to identify the amount of useful
data contained in the shared gradient, while a more direct metric (e.g. canary-based approaches Carlini et al.
(2019b)) could be used to quantify the amount of memorisation occurring over training that gets exploited
by an inversion attacker.

The aforementioned attacks (in particular MIAs) can be used to “audit” the model and to empirically identify
information it memorised. This was previously manifested in A) works which verify is a specific training
sample was memorised during model training Jayaraman & Evans (2019); Song & Mittal (2021) and B)
works validating the bounds on how much memorisation can occur with respect to specific samples Ye et al.
(2022); Nasr et al. (2021). The former allows privacy-conscious individuals to identify if their data was likely
used (and memorised) by the model during training. The latter can help both the data and the model owners
to establish how much information can be both memorised and exposed once a trained model is made public
(discussed in detail in Section 9.3) to introduce more realistic privacy bounds.

Finally, it is important to discuss how memorisation (as well as attack susceptibility) of one record can
directly affect another record. We have previously established that data points which are memorised more
(and have a higher influence) are typically associated with being more susceptible to privacy attacks. Thus,
intuitively we may deduce that removing these records would reduce the amount of memorisation a model
can experience and, hence, make the entire settings more robust against privacy attacks. Authors of Carlini
et al. (2022c) discovered that this, in fact, does not seem to be the case. They termed this phenomenon as
the privacy onion effect, which states that should a sensitive record be removed from the training dataset,
the model can relatively quickly start memorising other records more to fill the information that becomes
missing upon an exclusion of the record of interest. Hence, authors give an “onion” analogy: when the
top privacy-sensitive layer of data points gets removed (i.e. records which are most susceptible to privacy
attacks), the layer that follows is becomes more exposed and, thus, becomes more susceptible to the same
attacks. This phenomenon directly links to the rest of our work: the amount of memorisation that the
model experiences with respect to a given data point is relative i.e. all other things being equal, the rest of
the data used to train this model (and in particular its distribution) can affect how much model memorises
with respect to this point. It is also, to the best of our knowledge, one of the few works to identify a direct
relationship between exposure, attack susceptibility and memorisation, further proving that all of these are
distinct, yet complimentary processes. Note also that –by design– auditing measures leakage from the model
and not memorisation; it thus stands to reason that auditing surfaces the points on the “outer layers of the
onion”, i.e. the most susceptible points, rather than the most memorised ones.

Overall, identification of the risks associated with model memorisation is a non-trivial task, which relies on
a large number of methods. More importantly as underrepresented populations are much more likely to be
memorised Feldman & Zhang (2020) and are often more susceptible to attacks Kulynych et al. (2019), causal
reasoning over the privacy risks associated with memorisation is an important consideration in development
of secure AI systems.

Key Point

Data points which get memorised more are also often more vulnerable to privacy attacks.

8.2 On memorisation in generative models

As generative ML becomes more prevalent Liang et al. (2023); Nijkamp et al. (2022); Taylor et al. (2022);
Alayrac et al. (2022); Wei et al. (2022), we find that the existing formulations of generative memorisation
(and even more so - generalisation) have very different privacy implications compared to the discriminative
settings. The question which naturally arises when discussing generative models is: as new data is generated
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based on the previously seen one, can the model compromise privacy of an individual by generating data
close to the one they shared during training? There exists a large number of prior studies on the privacy
of generative models Liu et al. (2019b); Triastcyn & Faltings (2020); Wu et al. (2019); Carlini et al. (2021;
2019b), one of which we have previously discussed in detail in Section 7.1. The main takeaway from this
discussion is that for individuals (and their data) which fall on the tails of the data distribution (i.e. of
high influence), generative models can present a greater privacy concern, as their data is more likely to be
memorised (particularly in language models) Carlini et al. (2019b; 2021); Ippolito et al.. Some solutions to
this problem mostly rely on training data sanitation (e.g. the removal of personally-identifying information
(PII) Inan et al. (2021) or deduplication of the training data Carlini et al. (2022b)), as well as DP training
Zanella-Béguelin et al. (2020); Shi et al. (2022); Du et al. (2023). Both approaches have proven to be
effective at reducing the risks of unintended data exposure, but the former requires access to the entire
training dataset and the latter can often result in poor model utility.

The question which remains unanswered concerns the metrics which can be used to measure this unintended
memorisation. While it is sometimes possible to generate the exact training data used to train language
models (e.g. in Fig. 2), how could one measure the same notion in a domain, where such one-to-one mapping
is unlikely and where data can be generated with “similar enough” private features corresponding to the
training data? Moreover, authors of Ippolito et al. and Lee et al. (2021) argue that even for LLMs, there is
no straightforward way to describe memorisation of sensitive data (as the models are capable of producing
outputs, which are syntactically different, but semantically identical, making “verbatim memorisation” a
poor privacy metric). Similar conclusions were presented by Carlini et al. (2023) for images and it was
termed as the eidetic memorisation (closely linked to the concept of “episodic” memorisation from Zhang
et al. (2021)), which refers to model’s ability to output an image it has only seen once (or k times for
a k-eidetic memorisation, where k is a small integer). In order to quantify memorisation in this domain,
authors proposed to use a threshold δ, which measures the distance between an image and similarly-looking
neighbours, alleviating the need to rely on an exact image reconstruction.

However, one may argue that since pixels (on their own) are independent, but the features within natural
images are not, without further contextualisation such metrics are meaningless. The work of Fernandez et al.
(2023) tries to address this issue by using a similarity metric (proposed in Packhäuser et al. (2022)) based on
the re-identification ratio: can the adversary identify the private data of a specific individual based on the
image generated by the adversary? Another method was previously proposed by Kuppa et al. (2021) and here
authors measure generative sample memorisation through susceptibility of individuals whose data is used
to train the model to privacy attacks, in particular membership inference. We discuss how memorisation is
related to information leakage in Section 8.1 in detail, but as we can already see it is difficult to disentangle the
two and measure the degree of memorisation directly. Therefore, we conclude that while in discriminative
settings there exists a number of methods which aim to identify specific features or samples the model
“memorises”, in the context of generative modelling, these are challenging to contextualise.

Key Point

Memorisation in generative models can be perceived either through self-influence or as the ability of
a model to produce outputs which are similar to the input data.

9 Preventing and reversing memorisation

As information can be memorised by the model, it raises the question whether it can also be “unmemorised”.
This process can occur naturally over the training process and it can be induced manually by the data owner.
Moreover, over the course of training it is also possible to bound the amount of information that the model
can memorise through the use of DP training. In this section we discuss these phenomena and outline the
processes which are responsible for reversal or reduction of memorisation.
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9.1 Spontaneous reversal of memorisation

While some data points are more prone to memorisation, the information contained in the model about these
memorised samples often changes over time (due to model’s limited memorisation capacity). This effect is
often termed as “forgetting”, which intuitively means that if the model does not encounter a previously seen
training point during training (i.e. if it “disappears” from the training set), the performance of that model
on this specific training point would degrade over time Toneva et al. (2018). The main question to consider
is: “is forgetting the opposite of memorisation?” Intuitively, the answer is affirmative, as when the model
forgets the data point, model’s performance on it degrades. This effect can be particularly profound for the
data points which fall on the tails of the distributions (e.g. mislabelled data points), with Jagielski et al.
(2022) showing that data which is more likely to be memorised under Feldman & Zhang (2020) definition is
also more likely to be forgotten.

Authors of Jagielski et al. (2022) argue that similarly to the conclusions of Feldman (2020) that ML models
have to memorise, they also have to forget. This work, again, shows that the samples which are most
vulnerable to this phenomenon are the atypical and the duplicated samples. This notion has different
implications to “catastrophic forgetting”: where the entire sub-distribution of data (e.g. an entire class)
can be forgotten, which is not guaranteed to directly affect the previously memorised samples (but rather
some population of the training set, which could have been memorised). This phenomenon can be measured
using the concept of adversarial advantage, which compares the performance of membership-based attacks
on the samples of interest at different stages of training. Moreover, the issue of forgetting captures another
important question that we have previously outlined: when “forgetting”, one is required to define what
is that needs to be “forgotten” (i.e. what has previously been memorised)? In Tirumala et al. (2022),
for instance, this concept captures verbatim memorisation, which authors of Jagielski et al. (2022) argue
does not represent a more general definition of memorisation. Similarly to other works on memorisation
in language models, they craft uniquely identifiable samples (i.e. canaries from Carlini et al. (2019b)) to
approximate the degree of memorisation that remains on specific training records over the course of training.

Key Point

Samples can be forgotten over the course of training if they are not encountered again.

9.2 Induced reversal of memorisation

Finally, we briefly mention another area which is closely linked to both notions of memorisation and forget-
ting: machine unlearning Bourtoule et al. (2021). Unlearning is a set of different techniques, which given a
training record(s) modifies the model to no longer include the contributions of that record(s). It is of note
that forgetting can be targeted as presented in Zhou et al. (2022), showing that these phenomena are related.
The difficulty of unlearning depends on a variety of factors, including the current state of the model (i.e. if
it is currently training or if the model has already been trained), the features of the data record(s) as well
as the remaining data points. Forgetting (when compared to unlearning) occurs naturally during training
(it is often not possible to predict which specific records will be forgotten Toneva et al. (2018)), whereas
unlearning is a set of techniques designed to remove the contributions of specific data point(s). The final
factor we outlined bears additional discussion.

As above, when performing unlearning, one tries to disentangle and remove the contribution of one or more
data record. If this data point is “simple” or its class is over-represented, then the removal of its contribution
is unlikely to have a large effect on the rest of the population (e.g. their attack susceptibility). However, if
the record(s) comes from the tail end of the data distribution, its unlearning can negatively affect privacy of
those, whose data remains in the dataset. We have previously discussed this phenomenon, namely the “the
privacy onion effect” Carlini et al. (2022c), which shows that by deliberately removing the record (and, thus,
its contribution) that was more susceptible to attacks, other samples can become more prone to inference.
Thus, we, again, observe that memorisation (and un-memorisation) is indeed relative to the data surrounding
a highly memorised sample. As a result, this opens up a number of questions, such as “Does un-memorising
also mean un-generalising? If yes, is it ethical to withdraw ones data if this will deteriorate the generalisation
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performance on other samples?”. These questions must to be deliberated by the ML community in order to
devise a unified strategy for effective model training.

Key Point

Forgetting can be artificially induced to “unmemorise” individual data points.

9.3 Bounding memorisation with differential privacy

Differential privacy (DP) Dwork & Roth (2014), as discussed previously, is the canonical privacy definition
for statistical data processing and ML. Intuitively, DP can be perceived as a property of an algorithm, making
it approximately invariant to an inclusion/exclusion of a single data point. More formally: The result of a
computation (e.g. model training) is said to be differentially private if a probabilistic stability notion over
neighbouring datasets is satisfied. Concretely, in the context of ML (and previously introduced notation),
this stability notion requires that a specific model f ′ (or set of weights) has a similar likelihood under A(S)
and A(S\i). This means that the value the random variable f takes, cannot change much no matter which
data point we remove from the training dataset. More formally, random Algorithm A satisfies ε-DP when:

p (f ′|A(S)) ≤ eεp (f ′|A(S\i)) , (8)

for any i ∈ S and where A(·) can take any value in some hypothesis class H, given by e.g. the model
architecture. Since the exclusion of any data point cannot significantly change the value f takes, the output
of f on any sample i ∈ S can also not be significantly impacted. This implies that changes in most metrics,
due to the removal of a sample, (e.g. Eq. (3) or Eq. (4)) will be small and thus memorisation will be bounded
under DP.

Concrete bounds on the memorisation ability (self-influence) of a differentially private model were previously
presented in Feldman (2020); van den Burg & Williams (2021). Further, using different interpretations of
DP, it was also been shown that DP directly bounds the ability of an adversary to perform a MIA Wasserman
& Zhou (2010) or training data reconstruction Hayes et al. (2023); Stock et al. (2022). While applying DP
to state-of-the-art ML models comes with a utility penalty (which may be unavoidable due to the fact that
DP limits memorisation), recent works have demonstrated that, for many real-world datasets, competitive
performance can be achieved by applying a number of training adaptations such as pre-training on large
public datasets De et al. (2022); Berrada et al. (2023). Overall, there is strong evidence that DP is the tool
of choice for bounding the negative privacy implications and risks of memorisation in practice.

Key Point

Differentially private ML training can (provably) prevent the negative traits caused by memorisation.

10 Recommendations for ML practitioners

Memorisation itself is a context-agnostic phenomenon which can be present in many ML tasks. However,
the impact of memorisation can heavily depend upon individual training settings. Here we provide a number
of guidelines, which should help ML practitioners contextualise memorisation in different learning scenarios
and adapt their training settings with these in mind:

• Care should be taken when quantifying the impact of memorisation in different modalities. In
language processing tasks, one should not measure memorisation verbatim and similarly, per-pixel
metrics should not be used to quantify memorisation in imaging settings.

• One should be careful to distinguish between memorisation, extractability and leakage. While
these are all related phenomena, memorisation of a data point is not a pre-requisite for its successful
extraction nor does it affect how much the model can leak about individual data samples. Therefore,
these terms should not be used interchangeably.
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• Not all features are equally sensitive (e.g. PIIs vs common facts) or equally prone to memorisation.
One can reduce the effectiveness of attacks exploiting unintended memorisation by curating one’s
training data (e.g. PII stripping).

• Repetition of data can lead to its higher extractability. Therefore, deduplication of sensitive data
can reduce the corresponding privacy risks.

• Generative models can be prone to regurgitation of the training data. This effect is more profound
in longer context windows and larger models. Therefore, one should consider using smaller models
and context windows, while maintaining an adequate level of utility.

• Underrepresented populations are more prone to memorisation (and to privacy attacks). Therefore,
suitable protection techniques should be used when training models on such data.

• Removal of data from the training pool can have an adverse effect on the rest of the population with
respect to privacy risks. Therefore, it is not recommended to remove individual data points which
are perceived to be more memorisable and one should address these issues on a dataset or a model
level instead (e.g. PII stripping).

• Memorisation can be provably bounded by performing differentially private training, reducing the
privacy risks and permitting public releases of models trained on private data.

11 Conclusions and future directions

In this work, we systematically summarise and discuss the existing formulations of memorisation in machine
learning models. We formulate the most widely used definitions and study their implications on the privacy
of the data used to train the model. As quantifying memorisation using these definitions can be infeasible for
many ML settings, we additionally discuss methods which allow the practitioners to estimate memorisation
instead. Furthermore, we discuss methods which allow the data owners to identify which specific samples
are likely to be memorised using techniques from the domains of data valuation and influence estimation.
Additionally we provide a number of guidelines for ML practitioners, to help them to contextualise mem-
orisation when designing ML workflows, allowing for a more safe and responsible AI training. Finally, we
outline the open challenges and questions to be collectively addressed by the machine learning community
in order to be able to standardise the taxonomy in the field and permit more well-designed collaboration
with privacy risks associated with model memorisation in mind. Given a large number of metrics related to
measuring memorisation, the effects memorisation can have on both the model performance and the privacy
of the individuals, whose data is used to train the model, we outline a number of key future directions from
which, we believe, the community can benefit:

• Standardisation of the notion: Many different definitions of memorisation are employed across
various ML research fields, unifying these is of uttermost importance, as the misuse of the term can
have implications in a broader community.

• Information content and memorisation: Samples with higher information content tend to be
more prone to memorisation. However, as we established, not all information contained in those
samples is useful to the model. Moreover, samples which are described as “more difficult” can be
either highly informative (but rare) or of poor utility because they are malformed. We believe
that further work is required to be able to establish strong links between information content,
memorisation and model utility.

• Privacy implications of memorisation: Are some models or training settings more prone to
“unintended” memorisation often exploited by attacks on ML? The community needs to establish
clear guidelines on the implications of memorisation on the adversarial perceptibility, particularly
with respect to potential privacy violations when generative models are adversarially prompted.
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• Memorisation in the age of AI regulation: How can (and should) memorisation be regulated
with respect to copyrighted materials frequently used to train large-scale models? Copyrighted
material can often be accessed publicly, thereby allowing models to learn from it and memorise some
of its contents. Since there is still no clear prior definition of what memorisation is, regulating how
these should be processed is an open challenge.

• Malicious memorisation and model alignment: As we have previously seen, adversarial sam-
ples can present real threats to models trained on public data and are very frequently well-memorised
by ML models. As a result, the alignment of such models can be severely affected by how well they
learn (and memorise) from benign/malicious data, making it a promising area of future research
(with prior works Zou et al. (2023); Carlini et al. (2024) suggesting that even in-prompt tuning can
often be sufficient to override the existing alignment safeguards).
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Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Michal Kosinski, David Stillwell, and Thore Graepel. Private traits and attributes are predictable from
digital records of human behavior. Proceedings of the national academy of sciences, 110(15):5802–5805,
2013.

Antti Koskela, Marlon Tobaben, and Antti Honkela. Individual privacy accounting with gaussian differential
privacy. arXiv preprint arXiv:2209.15596, 2022.

Michael Kounavis, Ousmane Dia, and Ilqar Ramazanli. On influence functions, classification influence,
relative influence, memorization and generalization. arXiv preprint arXiv:2305.16094, 2023.

Bogdan Kulynych, Mohammad Yaghini, Giovanni Cherubin, Michael Veale, and Carmela Troncoso. Dis-
parate vulnerability to membership inference attacks. arXiv preprint arXiv:1906.00389, 2019.

Aditya Kuppa, Lamine Aouad, and Nhien-An Le-Khac. Towards improving privacy of synthetic datasets.
In Annual Privacy Forum, pp. 106–119. Springer, 2021.

Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. Oort: Efficient federated learn-
ing via guided participant selection. In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21), pp. 19–35, 2021.

26



Under review as submission to TMLR

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. Deduplicating training data makes language models better. arXiv preprint
arXiv:2107.06499, 2021.

Klas Leino and Matt Fredrikson. Stolen memories: Leveraging model memorization for calibrated {White-
Box} membership inference. In 29th USENIX security symposium (USENIX Security 20), pp. 1605–1622,
2020.

Anran Li, Lan Zhang, Juntao Tan, Yaxuan Qin, Junhao Wang, and Xiang-Yang Li. Sample-level data selec-
tion for federated learning. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications,
pp. 1–10. IEEE, 2021.

Xiao Li, Qiongxiu Li, Zhanhao Hu, and Xiaolin Hu. On the privacy effect of data enhancement via the lens
of memorization. arXiv preprint arXiv:2208.08270, 2022.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Kin Sum Liu, Chaowei Xiao, Bo Li, and Jie Gao. Performing co-membership attacks against deep generative
models. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 459–467. IEEE, 2019a.

Yi Liu, Jialiang Peng, JQ James, and Yi Wu. Ppgan: Privacy-preserving generative adversarial network.
In 2019 IEEE 25Th international conference on parallel and distributed systems (ICPADS), pp. 985–989.
IEEE, 2019b.

Pratyush Maini, Michael C Mozer, Hanie Sedghi, Zachary C Lipton, J Zico Kolter, and Chiyuan Zhang.
Can neural network memorization be localized? arXiv preprint arXiv:2307.09542, 2023.

Shagufta Mehnaz, Sayanton V Dibbo, Roberta De Viti, Ehsanul Kabir, Björn B Brandenburg, Stefan Man-
gard, Ninghui Li, Elisa Bertino, Michael Backes, Emiliano De Cristofaro, et al. Are your sensitive attributes
private? novel model inversion attribute inference attacks on classification models. In 31st USENIX Se-
curity Symposium (USENIX Security 22), pp. 4579–4596, 2022.

Harsh Mehta, Ashok Cutkosky, and Behnam Neyshabur. Extreme memorization via scale of initialization.
arXiv preprint arXiv:2008.13363, 2020.

Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Hamed Haddadi, and Soteris Demetriou. Quantifying
information leakage from gradients. CoRR, abs/2105.13929, 2021.

Tamara T Mueller, Stefan Kolek, Friederike Jungmann, Alexander Ziller, Dmitrii Usynin, Moritz Knolle,
Daniel Rueckert, and Georgios Kaissis. How do input attributes impact the privacy loss in differential
privacy? arXiv preprint arXiv:2211.10173, 2022.

Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas Carlin. Adversary instan-
tiation: Lower bounds for differentially private machine learning. In 2021 IEEE Symposium on security
and privacy (SP), pp. 866–882. IEEE, 2021.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. Codegen: An open large language model for code with multi-turn program synthesis. arXiv preprint
arXiv:2203.13474, 2022.

Iyiola E Olatunji, Wolfgang Nejdl, and Megha Khosla. Membership inference attack on graph neural net-
works. In 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems
and Applications (TPS-ISA), pp. 11–20. IEEE, 2021.

Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben, Vincent Christlein, and Andreas
Maier. Deep learning-based patient re-identification is able to exploit the biometric nature of medical
chest x-ray data. Scientific Reports, 12(1):14851, 2022.

27



Under review as submission to TMLR

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:20596–
20607, 2021.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence
by tracing gradient descent. Advances in Neural Information Processing Systems, 33:19920–19930, 2020.

Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi, and Kaushik Roy. Unveiling privacy, memorization,
and input curvature links. arXiv preprint arXiv:2402.18726, 2024.

Daniel Rueckert and Julia A Schnabel. Model-based and data-driven strategies in medical image computing.
Proceedings of the IEEE, 108(1):110–124, 2019.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé Jégou. White-box vs
black-box: Bayes optimal strategies for membership inference. In International Conference on Machine
Learning, pp. 5558–5567. PMLR, 2019.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes. Ml-leaks:
Model and data independent membership inference attacks and defenses on machine learning models.
arXiv preprint arXiv:1806.01246, 2018.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8179–8186, 2022.

Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical perspectives
on what influence functions do. arXiv preprint arXiv:2305.16971, 2023.

Hyunseok Seo, Masoud Badiei Khuzani, Varun Vasudevan, Charles Huang, Hongyi Ren, Ruoxiu Xiao, Xiao
Jia, and Lei Xing. Machine learning techniques for biomedical image segmentation: an overview of technical
aspects and introduction to state-of-art applications. Medical physics, 47(5):e148–e167, 2020.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice: Selective
differential privacy for large language models. arXiv preprint arXiv:2204.07667, 2022.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2017.

Ravid Shwartz-Ziv. Information flow in deep neural networks. arXiv preprint arXiv:2202.06749, 2022.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 2615–2632, 2021.

Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon Chung. On the
geometry of generalization and memorization in deep neural networks. arXiv preprint arXiv:2105.14602,
2021.

Pierre Stock, Igor Shilov, Ilya Mironov, and Alexandre Sablayrolles. Defending against reconstruction attacks
with r\’enyi differential privacy. arXiv preprint arXiv:2202.07623, 2022.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science. arXiv preprint
arXiv:2211.09085, 2022.

Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, and Françoise Beaufays. Understanding unintended
memorization in federated learning. arXiv preprint arXiv:2006.07490, 2020.

Aleena Thomas, David Ifeoluwa Adelani, Ali Davody, Aditya Mogadala, and Dietrich Klakow. Investigat-
ing the impact of pre-trained word embeddings on memorization in neural networks. In Text, Speech,
and Dialogue: 23rd International Conference, TSD 2020, Brno, Czech Republic, September 8–11, 2020,
Proceedings 23, pp. 273–281. Springer, 2020.

28



Under review as submission to TMLR

Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. A comprehensive survey on poisoning attacks and countermea-
sures in machine learning. ACM Computing Surveys, 55(8):1–35, 2022.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization without
overfitting: Analyzing the training dynamics of large language models. Advances in Neural Information
Processing Systems, 35:38274–38290, 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Ge-
offrey J Gordon. An empirical study of example forgetting during deep neural network learning. arXiv
preprint arXiv:1812.05159, 2018.

Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun Hong, and
Nicholas Carlini. Truth serum: Poisoning machine learning models to reveal their secrets. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 2779–2792, 2022.

Aleksei Triastcyn and Boi Faltings. Federated generative privacy. IEEE Intelligent Systems, 35(4):50–57,
2020.

Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. Demystifying membership inference
attacks in machine learning as a service. IEEE Transactions on Services Computing, 14(6):2073–2089,
2019.

Dmitrii Usynin, Alexander Ziller, Marcus Makowski, Rickmer Braren, Daniel Rueckert, Ben Glocker, Geor-
gios Kaissis, and Jonathan Passerat-Palmbach. Adversarial interference and its mitigations in privacy-
preserving collaborative machine learning. Nature Machine Intelligence, 3(9):749–758, 2021.

Dmitrii Usynin, Daniel Rueckert, Jonathan Passerat-Palmbach, and Georgios Kaissis. Zen and the art
of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning. Proc. Priv.
Enhancing Technol., 2022(1):274–290, 2022.

Dmitrii Usynin, Daniel Rueckert, and Georgios Kaissis. Beyond gradients: Exploiting adversarial priors in
model inversion attacks. ACM Transactions on Privacy and Security, 26(3):1–30, 2023a.

Dmitrii Usynin, Daniel Rueckert, and Giorgios Kaissis. Leveraging gradient-derived metrics for data selection
and valuation in differentially private training. arXiv preprint arXiv:2305.02942, 2023b.

Gerrit van den Burg and Chris Williams. On memorization in probabilistic deep generative models. Advances
in Neural Information Processing Systems, 34:27916–27928, 2021.

Grant Van Horn and Pietro Perona. The devil is in the tails: Fine-grained classification in the wild. arXiv
preprint arXiv:1709.01450, 2017.

Michael Veale, Reuben Binns, and Lilian Edwards. Algorithms that remember: model inversion attacks
and data protection law. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 376(2133):20180083, 2018.

Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. Journal of the American
Statistical Association, 105(489):375–389, 2010.

Lauren Watson, Chuan Guo, Graham Cormode, and Alex Sablayrolles. On the importance of difficulty
calibration in membership inference attacks. arXiv preprint arXiv:2111.08440, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022.

Shelvia Wongso, Rohan Ghosh, and Mehul Motani. Using sliced mutual information to study memorization
and generalization in deep neural networks. In International Conference on Artificial Intelligence and
Statistics, pp. 11608–11629. PMLR, 2023.

29



Under review as submission to TMLR

Bingzhe Wu, Shiwan Zhao, Chaochao Chen, Haoyang Xu, Li Wang, Xiaolu Zhang, Guangyu Sun, and Jun
Zhou. Generalization in generative adversarial networks: A novel perspective from privacy protection.
Advances in Neural Information Processing Systems, 32, 2019.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable information
under computational constraints. arXiv preprint arXiv:2002.10689, 2020.

Yihao Xue, Chaoyue Niu, Zhenzhe Zheng, Shaojie Tang, Chengfei Lyu, Fan Wu, and Guihai Chen. To-
ward understanding the influence of individual clients in federated learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 10560–10567, 2021.

Lu Yang, He Jiang, Qing Song, and Jun Guo. A survey on long-tailed visual recognition. International
Journal of Computer Vision, 130(7):1837–1872, 2022.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. Enhanced
membership inference attacks against machine learning models. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pp. 3093–3106, 2022.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection for
explaining deep neural networks. Advances in neural information processing systems, 31, 2018.

Chih-Kuan Yeh, Ankur Taly, Mukund Sundararajan, Frederick Liu, and Pradeep Ravikumar. First is better
than last for language data influence. Advances in Neural Information Processing Systems, 35:32285–32298,
2022.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning: Ana-
lyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF),
pp. 268–282. IEEE, 2018.

Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, and Huishuai Zhang. Individual
privacy accounting for differentially private stochastic gradient descent. Transactions on Machine Learning
Research, 2023.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga Ohrimenko,
Boris Köpf, and Marc Brockschmidt. Analyzing information leakage of updates to natural language
models. In Proceedings of the 2020 ACM SIGSAC conference on computer and communications security,
pp. 363–375, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization, 2017.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas Carlini.
Counterfactual memorization in neural language models. arXiv preprint arXiv:2112.12938, 2021.

Benjamin Zi Hao Zhao, Hassan Jameel Asghar, Raghav Bhaskar, and Mohamed Ali Kaafar. On inferring
training data attributes in machine learning models. arXiv preprint arXiv:1908.10558, 2019.

Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. Fortuitous forgetting in connectionist
networks. arXiv preprint arXiv:2202.00155, 2022.

Xingchen Zhou, Ming Xu, Yiming Wu, and Ning Zheng. Deep model poisoning attack on federated learning.
Future Internet, 13(3):73, 2021.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

Xiangxin Zhu, Dragomir Anguelov, and Deva Ramanan. Capturing long-tail distributions of object subcate-
gories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 915–922,
2014.

30



Under review as submission to TMLR

Zheqi Zhu, Pingyi Fan, Chenghui Peng, and Khaled B Letaief. Isfl: Trustworthy federated learning for
non-iid data with local importance sampling. arXiv preprint arXiv:2210.02119, 2022.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial attacks
on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

31



Under review as submission to TMLR

A Appendix: Memorisation in decentralised settings

While there are no “fundamental” differences between memorisation in centralised and decentralised ML (as
most decentralised ML frameworks can be seen as a large number of local centralised settings) there are
two factors to take into consideration when analysing the issue of memorisation in these settings. Firstly, as
participating agents (or clients) are often chosen at random, it is possible that sampling bias can severely
affect both the training dynamics and the memorisation patterns. Secondly, local models need to be aggre-
gated once local training is over, potentially affecting the memorisation that has previously occurred at a
local level. In this discussion we employ a commonly used federated learning (FL) Konečnỳ et al. (2016)
framework for decentralised ML training. In FL it is often the case (particularly for cross-device FL, where
only a handful of sites participates in joined training) that data is not independently and identically dis-
tributed (non-IID). This, in turn, means that many local models only have access to small datasets, often
with highly personalised data points. In FL, each round the central server typically selects a random subset
of clients. As it is impossible for the server to observe the local distribution of data at each client, it can be
challenging to identify if the submitted update corresponds to a “typical” representative of the population
or if it contains a large number of atypical data points. Therefore, should the central server continuously
draw the clients whose data is “atypical”, the selection bias would result in a model which has been trained
on many samples which are more likely to be memorised. As a result, in decentralised settings, there are
additional considerations such as client sampling and update weighting strategies, which should be taken
into account during FL model training.

In addition, as discussed in Thakkar et al. (2020), model aggregation can have a profound effect on memo-
risation capacity of the global model. In particular, one of the most frequently used aggregation strategies,
namely the federated averaging, was shown to reduce the unintended memorisation (measured using canary-
based techniques proposed in Carlini et al. (2019b)). Additionally, the choice of aggregation can have a
direct implications on the privacy of the individuals in a decentralised setting (as shown in Geiping et al.
(2020); Gupta et al. (2022)), meaning that memorisation of sensitive data can have a much higher impact
on the safety of the training data. These results open up a promising area of future research in the area of
decentralised memorisation and its interplay with privacy: “Are certain aggregation strategies preferable for
guiding the memorisation process on both the local and the global levels?” While there is some evidence
showing that even the simplest aggregation algorithms can have an effect, more concrete research is needed
in order to establish clear guidelines on this matter.
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