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Abstract—The field of legged robotics is still missing a single
learning framework that can control different embodiments—
such as quadruped, humanoids, and hexapods—simultaneously
and possibly transfer, zero or few-shot, to unseen robot embodi-
ments. To close this gap, we introduce URMA, the Unified Robot
Morphology Architecture. Our framework brings the end-to-end
Multi-Task Reinforcement Learning approach to the realm of
legged robots, enabling the learned policy to control any type of
robot morphology. Our experiments show that URMA can learn
a locomotion policy on multiple embodiments that can be easily
transferred to unseen robot platforms in simulation and the real
world.

I. INTRODUCTION

The robotics community has mastered the problem of
robust gait generation in the last few years. With the help
of Deep Reinforcement Learning (DRL) techniques, legged
robots can show impressive locomotion skills. There are nu-
merous examples of highly agile locomotion with quadrupedal
robots [20, 19, 6, 3, 32, 5], learning to run at high speeds,
jumping over obstacles, walking on rough terrain, perform-
ing handstands, and completing parkour courses. Achiev-
ing these agile movements is often enabled by training in
many parallelized simulation environments and using carefully
tuned or automatic curricula on the task difficulty [23, 18].
Even learning simple locomotion behaviors directly on real
robots is possible but requires far more efficient learning
approaches [26, 27]. Similar methods have been applied
to generate robust walking gaits for bipedal and humanoid
robots [25, 14, 22]. The learned policies can be effectively
transferred to the real world and work in all kinds of terrain
with the help of extensive Domain Randomization (DR) [21, 4]
during training. Additionally, techniques like student-teacher
learning [20, 13] or the addition of model-based compo-
nents [10, 11] or constrains [16, 12, 8] to the learning process
can further improve the learning efficiency and robustness
of the policies. However, the long-term objective would be
to develop foundation models for locomotion, allowing zero-
shot (or few-shot) deployment to any arbitrary platform. To
reach this objective, it is fundamental to adapt the underlying
learning system to support different tasks and morphologies.

Fig. 1. Top – We train a single locomotion policy for multiple robot
embodiments in simulation. Bottom – We can transfer and deploy the
policy on three real-world platforms by randomizing the embodiments and
environment dynamics during training.

To map differently sized observation and action spaces into
and out of a shared representation space, implementations
often resort to padding the observations and actions with zeros
to fit a maximum length [31] or to using a separate neural
network head for each task [7]. These methods allow for
efficient training but can be limiting when trying to transfer to
new tasks or environments: for every new robot, the training
process has to be repeated from scratch, as different embod-
iments require different hyperparameters, reward coefficients,
training curricula, etc. To tackle this problem we introduce a
novel neural network architecture that can handle differently
sized action and observation spaces, allowing the policy to
adapt easily to diverse robot morphologies. Our method allows
us zero-shot deployment of the policy to unseen robots and
few-shot fine-tuning on novel target platforms.

Related work: Early work on controlling different robot
morphologies is based on the idea of using Graph Neural
Networks (GNNs) to capture the morphological structure of
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Fig. 2. Overview of the URMA architecture.

the robots [29, 9, 30]. GNN-based approaches can control
different robots even when removing some of their limbs, but
they struggle to generalize to many different morphologies.
Transformer-based architectures have been proposed to over-
come the limitations of GNNs by using the attention mecha-
nism to globally aggregate information of varying numbers of
joints [15, 28]. These methods still lack substantial generality
as they are limited to morphologies that were defined a priori.
Recently Shafiee et al. [24] showed that a single controller can
be trained to control 16 different 3D-simulated quadrupedal
robots and to transfer to two of them in the real world.
Compared to all the other approaches, our method can handle
multiple embodiments from any legged morphology and adapt
to arbitrary joint configurations with the same network.

II. MULTI-EMBODIMENT LOCOMOTION WITH A SINGLE
POLICY

In Multi-Task Reinforcement Learning (MTRL) the objec-
tive is to learn a single policy πθ that optimizes the average
of the expected discounted return Jm(θ) over the reward
function rm across M tasks:

J (θ) =
1

M

M∑
m

Jm(θ), Jm(θ) = E
τ∼π

[
T∑

t=0

γtrm(s, a)

]
. (1)

In our case, we consider different robot embodiments as
separate tasks and train a policy controlling all robots and
optimizing the objective described in (1). To solve this problem
in the multi-embodiment setting, we propose the Unified
Robot Morphology Architecture (URMA), a complete mor-
phology agnostic architecture, that does not require defining
the possible morphologies or joints beforehand. Figure 2
presents a schematic overview of URMA. In general, URMA
splits the observations of a robot into distinct parts, encodes
them with a simple attention encoder [2] with a learnable
temperature [17], and uses our universal morphology decoder
to obtain the actions for every joint of the robot.

To handle observations of any morphology, URMA first
splits the observation vector o into robot-specific and general
observations og , where the former can be of varying size,
and the latter has a fixed dimensionality. For locomotion, we

subdivide the robot-specific observations into joint and feet-
specific observations. This split is not necessary but makes the
application to locomotion cleaner. In the following text, we
describe everything w.r.t. the joint-specific observations, but
the same applies to the feet-specific ones as well. Every joint
of a robot is composed of joint-specific observations oj and
a description vector dj , which is a fixed-size vector that can
uniquely describe the joint. The description vectors and joint-
specific observations are encoded separately by the Multilayer
Perceptrons (MLPs) fϕ and fψ and are then passed through
a simple attention head, with a learnable temperature τ and a
minimum temperature ϵ, to get a single latent vector

z̄joints =
∑
j∈J

zj , zj =

exp

(
fϕ(dj)

τ + ϵ

)
∑

j∈J exp

(
fϕ(dj)

τ + ϵ

)fψ(oj), (2)

that contains the information of the joint-specific observations
of all joints. With the help of the attention mechanism, the
network can learn to separate the relevant joint information
and precisely route it into the specific dimensions of the latent
vector by reducing the temperature τ of the softmax close to
zero. The joint latent vector z̄joints is then concatenated with
the feet latent vector z̄feet and the general observations og and
passed to the policies core MLP hθ to get the action latent
vector z̄action = hθ(og, z̄joints, z̄feet). To obtain the final action for
the robot, we use our universal morphology decoder, which
takes the general action latent vector and pairs it with the set of
encoded specific joint descriptions and the single joint latent
vectors to produce the mean and standard deviation of the
actions for every joint, from which the final action is sampled
as

aj ∼ N (µν(d
a
j , z̄action, zj), συ(d

a
j )), daj = gω(dj). (3)

To ensure that only fully normalized and well-behaved ob-
servations come into the network, we use LayerNorm [1]
after every input layer. The learning process also benefits
from adding another LayerNorm in the action mean network
µν . We argue that this choice improves the alignment of the
different latent vectors entering into µν better. To ensure a fair
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Fig. 3. (A) – Average return of the three architectures during training on all 16 robots compared to the single-robot training setting. (B) – Zero-shot transfer
to the Unitree A1 while training on the other 15 robots. (C) – Zero-shot transfer to the MAB Robotics Silver Badger while training on the other 15 robots
and fine-tuning on only the Silver Badger afterward. (D) – Zero-shot evaluation on all 16 robots while removing the feet observations.

comparison, we also use LayerNorms with the same rationale
in the baseline architectures.

Results

First, we want to evaluate the training efficiency of MTRL in
our setting. We train URMA and the baselines on all 16 robots
in the training set simultaneously and compare the average
return to the single-robot training setting, where a separate
policy is trained for every robot. All policies are trained on 100
million steps per robot, and every experiment shows the aver-
age return over 5 seeds and the corresponding 95% confidence
interval. Figure 3 confirms the advantage in learning efficiency
of MTRL over single-task learning, as URMA and the multi-
head baseline learn significantly faster than training only on
a single robot at a time. It has to be noted that in the multi-
task training, we set a fixed batch size per robot, so 16-times
this batch size corresponds to the total PPO batch size. In the
single-robot training, we only use the fixed batch size for the
single robot. This lower effective batch size in the single-robot
training leads to its worse performance compared to the multi-
task setting. Furthermore, early on in training, URMA learns
slightly slower than the multi-head baseline due to the time
needed by the attention layers to learn to separate the robot-
specific information, which the multi-head baseline inherently
does from the beginning. However, URMA ultimately reaches
a higher final performance. The padding baseline performs
noticeably worse than the other two. We argue that the policy
has trouble learning the strong separation in representation
space between the different robots—which is necessary for
the differently structured observation and action spaces—only
based on the task ID.

Next, we evaluate the zero-shot and few-shot transfer capa-
bilities of URMA and the baselines on two robots that were
withheld from the training set of the respective policies. We
test the zero-shot transfer on the Unitree A1, a robot whose
embodiment is similar to other quadrupeds in the training set.
Figure 3 shows the evaluation for the A1 during a training
process with the other 15 robots and highlights that both
URMA and the multi-head baseline can transfer perfectly well
to the A1 while never having seen it during training. The
policy only trained specifically on the A1 (shown in black)
performs distinctly worse since the DR for all quadruped
robots is particularly hard to ensure transferability to the
real platforms. Likely, the total batch size in the single-robot
setting is again too small to learn the task well. Furthermore,

the time-dependent reward curriculum can also cause dips
in performance during the early learning phase if the policy
cannot keep up with the increasing penalty coefficients.

To investigate an out-of-distribution embodiment, we use
the same setup as for the A1 and evaluate zero-shot on the
MAB Robotics Silver Badger robot, which has an additional
spine joint in the trunk and lacks feet observations, and then
fine-tune the policies for 20 million steps only on the Silver
Badger itself. The results show that URMA can handle the
additional joint and the missing feet observations better than
the baselines and is the only method capable of achieving
a good gait at the end of training. After starting the fine-
tuning, URMA maintains the lead in the average return due
to the better initial zero-shot performance. To further assess
the adaptability of our approach, we evaluate the zero-shot
performance in the setting where observations are dropped
out, which can easily happen in real-world scenarios due to
sensor failures. To test the additional robustness in this setting,
we train the architectures on all robots with all observations
and evaluate them on all robots while completely dropping
the feet observations. Figure 3 confirms the results from
the previous experiment and shows that URMA can handle
missing observations better than the baselines.

Finally, we deploy the same URMA policy on the real
Unitree A1, MAB Honey Badger, and MAB Silver Badger
quadruped robots. Figure 1 shows the robots walking with the
learned policy on pavement, grass, and plastic turf terrain with
slight inclinations. Due to the extensive DR during training,
the single policy can be zero-shot transferred to the three real
robots without any further fine-tuning. While the Unitree A1
and the MAB Silver Badger are in the training set, the network
is not trained on the MAB Honey Badger. Despite the Honey
Badger’s gait not being as good as the other two robots, it
can still locomote robustly on the terrain we tested, proving
the generalization capabilities of our architecture and training
scheme.

Limitations: While our method is the first end-to-end
approach for learning multi-embodiment locomotion, many
open challenges remain. On one side, our generalization
capabilities rely mostly on the availability of data, therefore
zero-shot transfer to embodiments that are completely out of
the training distribution is still problematic. This issue could be
tackled by exploiting other techniques in the literature, such as
data augmentation and unsupervised representation learning, to
improve our method’s generalization capabilities. Furthermore,



we currently omit exteroceptive sensors from the observations,
which can be crucial to learning policies that can navigate in
complex environments and fully exploit the agile locomotion
capabilities of legged robots.

III. CONCLUSION

We presented URMA, a framework to learn robust lo-
comotion for different types of robot morphologies end-to-
end with a single neural network architecture. Our flexible
learning framework and the efficient encoders and decoders
allow URMA to learn a single control policy for 16 different
embodiments from three different legged robot morphologies.
In practice, URMA reaches higher final performance on the
training with all robots, shows higher robustness to observation
dropout, and better zero-shot capabilities to new robots com-
pared to MTRL baselines. Furthermore, we deploy the same
policy zero-shot on two known and one unseen quadruped
robot in the real world. We argue that this multi-embodiment
learning setting can be easily extended to more complex
scenarios and can serve as a basis for locomotion foundation
models that can act on the lowest level of robot control.
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