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ABSTRACT

Deep learning has achieved significant success on balanced datasets. However,
real-world data often exhibit a long-tailed distribution. Empirical results show that
long-tailed data skews representations where head classes dominate the feature
space. Many methods have been proposed to empirically correct the skewed rep-
resentations. However, a clear theoretical understanding of the underlying causes
and extent of this skew remains lacking. In this work, we provide a comprehensive
theoretical analysis to elucidate how long-tailed data affects representations, de-
riving the conditions under which the centers of the tail classes shrink together or
even collapse into a single point. This results in overlapping feature distributions
of tail classes, making features in the overlapping regions inseparable. Moreover,
we demonstrate that merely empirically correcting the skewed representations of
training data is insufficient to separate the overlapping features, due to distribution
shifts between training and real data. To address these challenges, we propose
a novel long-tailed representation learning method, FeatRecon. It reconstructs
the feature space so that features of all classes are arranged into symmetrical and
linearly separable regions. Thereby, it enhances model robustness to long-tailed
data. We validate the effectiveness of our method through extensive experiments
on the CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, and iNaturalist 2018 datasets.

1 INTRODUCTION

Deep learning has achieved significant success on balanced datasets (Deng et al., 2009). However, in
real-world scenarios, collected datasets often exhibit long-tailed distributions. Class distribution, i.e.,
the sample sizes of different classes, is highly imbalanced. Many classes contain only a few samples
(called tail classes), whereas a few classes have a large number of samples (called head classes).
Training on such datasets distorts a model’s feature representations and decision boundaries, and thus
limits the model’s generalization capability and performance on test data.

Our understanding of balanced data representation has advanced significantly. For instance, using
the powerful representation learning tool, contrastive learning (Khosla et al., 2020), it has been
shown (Graf et al., 2021) that for balanced data, when the supervised contrastive loss (SC loss) reaches
its minimum, the representations of each class converge at their respective class centers, and all class
centers form a regular simplex (see Theorem 1 and Fig. 1a). This highly symmetrical configuration
ensures separation between different classes, resulting in strong classification performance. However,
for imbalanced data, the optimal representation configuration remains poorly understood.

When data follows a long-tailed distribution, empirical studies suggest that the optimal representations
form an asymmetrical configuration, with head classes dominating the feature space. While several
methods (Zhu et al., 2022; Kang et al., 2021; Li et al., 2022; Du et al., 2024) have attempted to correct
this asymmetry, they primarily rely on empirical adjustments. Crucially, none of these methods
provide a theoretical explanation of why and to what extent head classes dominate the feature space.
Understanding this could offer deeper insights into learning better representations of long-tailed data,
and inspire novel methods.

In this paper, we study long-tailed data representation and establish the first theoretical framework
(in Theorem 2) for the optimal representation configuration, i.e., the arrangement of class centers
when the SC loss is minimized, under various class distributions. In particular, we derive the analytical
relationship between the imbalance factor, i.e., the ratio of sample sizes between head and tail classes,
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Figure 1: The optimal representation configuration for four classes with different imbalance factors, ρ.
Centers of the four classes (z̄1, . . . , z̄4) are positioned on a unit hypersphere. Assume classes 2, 3 and
4 have the same size, N2 = N3 = N4. Class 1’s size is their size multiplied by ρ, N1 = ρN2. (a):
when class 1 is empty (N1 = 0), classes 2, 3 and 4 form a regular simplex. (b) to (e): As ρ increases
and N1 increases, z̄2, z̄3 and z̄4 are pushed away from the equator and eventually collapse. (c): when
ρ = 1, all four classes form a regular simplex. R is the critical constant at which the collapse happens
(see Sec. 3 for details). θ1 is the angle between the head class center and tail class centers, and θ2 is
the angle between tail classes.

and the angles between different class centers at the optimal configuration. We show that as the
imbalance factor increases, the head class increasingly dominates the feature space, pushing the
centers of the tail classes closer together . Beyond a certain critical threshold, the centers of the tail
classes collapse into a single point. Fig. 1 illustrates the optimal configuration of four classes. From
Fig. 1a to Fig. 1e, as the imbalance factor continuously increases, the center of the head class (z̄1)
pushes the other three tail classes’ centers (z̄2, z̄3 and z̄4) closer and eventually collapse (Fig. 1e).1

Our theory provides insights into how long-tailed data hurts the representation learning. Without
any mitigation strategy, tail classes are pushed close to one another or even collapse, resulting in
overlapping distributions and poor separability between them. To address this issue, existing methods
often readjust the empirical tail class centers to a symmetric configuration. However, due to the
limited sample sizes of tail classes, these approaches may over-correct the issue, forcing the true
centers of the tail classes to be too close to the head class, leading to overlapping distributions and
poor separability between head and tail classes.

In this paper, we introduce FeatRecon, a novel method for long-tailed representation learning. It
reconstructs the feature space so that features of all classes are arranged into symmetrical and linearly
separable regions. Inspired by the theoretical analysis, our method addresses the center skewing issue
by rebalancing the sample sizes of all classes. This is achieved by generating synthetic features for
tail classes and using both real and synthetic features for representation learning. To ensure that
features of different classes are linearly separable, the synthetic features of one class are constrained
within an estimated confidence support, i.e., the feature space region covering the majority of samples
in a class. We derive the necessary condition for the confidence supports to ensure they do not overlap
at the optimal configuration.

The estimation of confidence support is crucial to our method. Direct estimation of the feature
distribution is challenging due to the non-Euclidean geometry of the normalized feature space and
the limited sample size of tail classes. Instead, we estimate the confidence support simply using
the center of each class and a single “central angle” parameter. Since the tail class estimation can
be unreliable, the statistics of tail classes are regularized using the statistics of head classes. By
iteratively generating synthetic features to fill these confidence supports, adjusting representations,
and re-estimating confidence supports, we can learn a feature space in which both head and tail
classes are equally separated, with no overlap between their confidence supports.

Our contributions are summarized as follows:

• We provide a theoretical analysis of how long-tailed data skews the feature representation
and how the skewed representation limits the model’s generalization capability.

1For completeness, our analysis encompasses the cases when class 1’s size, N1, is smaller than the others’.
Technically, class 1 is not the head class any more when N1 ≤ N2 = N3 = N3.
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• We propose a novel algorithm to generate synthetic features to balance the sample sizes of
all classes. And synthetic features are constrained within confidence supports which are
estimated with regularization of statistics of head classes.

• We propose an iterative approach to learn a symmetric and linearly separable feature
space for long-tailed data. Our method iteratively generating synthetic features, adjusting
representations, and re-estimating confidence support.

We validate our method with thorough experiments on four commonly-used datasets. Our method
outperforms SOTA performance compared to widely adopted long-tailed learning baselines.

2 RELATED WORK

2.1 LONG-TAILED RECOGNITION

Resampling (Byrd & Lipton, 2019) and re-weighting (Cui et al., 2019; Jamal et al., 2020; Chen
et al., 2023) are two classical methods in long-tailed learning. The former balances the number of
training samples among different classes by either oversampling the tail classes or downsampling the
head classes. The latter balances the per-class contributions to the loss function by assigning higher
weights to classes with smaller gradients. Other methods adjust decision boundaries through either
post-hoc weight normalization (Dang et al., 2024) or margin adjustment (Cao et al., 2019; Menon
et al., 2021; Khan et al., 2019). The former balances the decision boundaries by adjusting the weight
norms of classifiers, while the latter increases the margins of the tail classes. Recent works also
explore ideas in data augmentation (Ahn et al., 2023; Gao et al., 2024), which adjusts the strength of
class-wise augmentation to help learn class-balanced representations, and transfer learning (Chen &
Su, 2023; Zhang et al., 2023), which leverages information from the head classes to improve learning
of the tail classes. A common way for transfer learning is to assume that data follows a multivariate
Gaussian distribution and transfer distribution statistics. However, robust parameters estimation (i.e.,
the K ×K covariance matrix) can be challenging given the small sample sizes of tail classes, and
the distributional assumption does not hold for normalized features.

2.2 CONTRASTIVE LEARNING FOR LONG-TAILED DATA

Contrastive learning (He et al., 2020; Chen et al., 2020; Caron et al., 2020; Chen & He, 2021; Grill
et al., 2020; Wang & Isola, 2020) has made tremendous progress as a representation learning tool.
Supervised contrastive learning (SCL) (Khosla et al., 2020), by optimizing the supervised contrastive
loss, learns a symmetrical feature space where the representations of each class collapse to the vertices
of a regular simplex. (Graf et al., 2021).

Recent studies in long-tailed learning (LTL) (Wang et al., 2021; Cui et al., 2021; Xuan & Zhang,
2024) incorporate an SCL module into the LTL framework, aiming to learn better representations and
improve classifier training. However, directly using SCL is not ideal, as some (Li et al., 2022; Zhu
et al., 2022) have demonstrated that SCL skews the feature space when training on long-tailed data.
Many methods then focus on empirically readjusting these skewed representations. TCL (Li et al.,
2022) addresses this by predefining well-separated empirical centers. Other methods re-balance the
number of contrastive pairs in the SC loss, i.e, positive pairs (Kang et al., 2021), negative pairs (Zhu
et al., 2022), or both positive and negative pairs (Du et al., 2024). Our method balances both positive
and negative pairs by generating new features for the tail classes in hyperspherical caps. It involves
estimating only two parameters, with tail class statistics regularized using those of the head classes.

3 THEORETICAL ANALYSIS: LONG-TAILED DATA SKEWS CONTRASTIVE
FEATURE REPRESENTATION

In this section, we study how long-tailed data skews the feature space. To understand how varying
class distributions influence representations, we provide a theoretical framework (in Sec. 3.2) to
investigate the optimal representation configuration when the SC loss is minimized (see Fig. 1).

We show (in Theorem 1), for balanced data, the optimal representations form a regular simplex. This
reveals that representations of different classes are equally separated to the largest extent.
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However, for imbalanced data, the optimal representation configuration becomes far more complex.
Therefore, we focus on a one-vs-all scenario. We adjust the sample size of class 1, while assuming
the remaining K − 1 classes have equal and fixed sample size. In Theorem 2, we study the geometry
of the optimal representation configuration when the imbalance factor changes.

3.1 PRELIMINARIES

Suppose we have N training samples, X = (x1, . . . , xN ) ∈ (X )N , randomly drawn from K distinct
classes, with labels Y = (y1, . . . , yN ) ∈ (Y)N and Y = [K] = {1, . . . ,K}. A unit hypersphere
(in Rh) is defined as Sh−1 =

{
z ∈ Rh : ∥z∥ = 1

}
. An encoder is a map φ : X → Rh that extracts

representations from data, denoted as Z = (φ (x1) , . . . φ (xN )).

In practice, contrastive learning is conducted batch-wise due to memory limitations. To simplify our
analysis, we assume unlimited memory to train on all samples in a single batch. We denote the set of
indices of all samples as B = [N ] = {1, . . . , N}, and the set of indices of samples from the class
k as Bk = {i : i ∈ B, yi = k}. Let Nk be the number of samples from class k, Nk = |Bk| and
N =

∑K
k=1 Nk. The following definitions are necessary for the study.

Definition 1 (Supervised contrastive loss (SC loss)). Let Z be an N point configuration (assuming
all z’s being normalized), Z = (z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N ,
and 3 ≤ K ≤ h+ 1. The supervised contrastive loss LSC(·;Y ) : (Sh−1)N → R is defined as

LSC =

K∑
k=1

∑
i∈Bk

Lk,i
SC, where Lk,i

SC = −
1{Nk>1}

Nk − 1

∑
j∈Bk\{i}

log

(
exp (⟨zi, zj⟩ /τ)∑

l∈B\{i} exp (⟨zi, zl⟩ /τ)

)
(1)

Definition 2 (Equidistant/regular simplex). Let h,K ∈ N with K ≤ h+ 1. An K point configuration
ζ = (ζ1, . . . , ζK) ∈ (Sh−1)N form the vertices of an equidistant simplex inscribed in the unit-
hypersphere, if and only if the following conditions hold:

(1) ∀i ∈ [K], ∥ζi∥ = 1

(2) ∃d ∈ R,∀i, j and 1 ≤ i < j ≤ K, d = ⟨ζi, ζj⟩

And ζ form the vertices of a regular simplex inscribed in the unit-hypersphere, if and only if (1), (2)
and the following condition holds:

(3)
∑

i∈[K] ζi = 0

3.2 OPTIMAL REPRESENTATION CONFIGURATION

In this subsection, we assume a sufficiently powerful encoder capable of realizing any representation
configuration, and set the temperature parameter (in Eq. (1)) to τ = 1.

Optimal Representation Configuration for Balanced Data. When data is balanced, Theorem 1
states that the SC loss attains its minimum if and only if the representations of each class converge at
their respective class centers, and the centers of all classes form a regular simplex.

Theorem 1. Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N , and 3 ≤ K ≤ h+ 1. When Y is
balanced, hence ∀i ∈ [K], Nk = N

K , it holds that:

LSC ≥ N log

((
N

K
− 1

)
+

N(K − 1)

K
exp

(
− K

K − 1

))
(2)

where equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ∈ (Sh−1)K

such that:

(A1) i ∈ Bk, zi = z̄k.

(A2) Z̄ form a regular simplex inscribed in the unit-hypersphere.
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Figure 2: Numerical example. The sample size ratio is 10:1:1 in Example A and 100:1:1 in
Example B. (a) f(x1) of Example A. (b) f(x1) of Example B. (c) Representations of Example A. (d)
Representations of Example B. Stars are empirical centers. Circles are available samples, triangles
are missing samples. Black boxes are overlapping regions.

Remark 1. This theorem has been previously established (Graf et al., 2021). In this paper, we provide
a new proof (Appendix B.1) that dose not presume Lk,i

SC (in Eq. (1)) to be the same when k varies, as
was done in (S39) of (Graf et al., 2021). This allows us to extend the analysis to more general center
configurations, particularly laying the foundation for the imbalanced data case (Theorem 2).

Optimal Representation Configuration for Imbalanced Data. When data is imbalanced, we
first find the tight lower bound function f of LSC, assuming all representations converging at their
respective class centers. f only depends on the center configuration. We then determine the optimal
representation configuration when f is minimized. When there are one imbalanced class and K − 1
balanced classes, Theorem 2 states the SC loss is minimized if and only if the representations of classes
2 to K converge to the vertices of an equidistant simplex while representations of class 1 converge to
the point that is perpendicular to the equidistant simplex (more explanations in Appendix A.2)
Theorem 2. Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N , and 3 ≤ K ≤ h + 1. If
∀k ∈ {2, . . . ,K}, Nk = a2 ≥ 4, and ∃ρ > 0 such that N1 = a1 = ρa2 > 1, it holds that:

LSC ≥ f(cos(θ1), cos(θ2)), (3)

where f(·) : R × R → R is defined as:

f(x1, x2) = ρa2 log
(
(ρa2 − 1) + e−1 (K − 1) a2 exp (x1)

)
+ (K − 1)a2 log

(
(a2 − 1) + e−1 ((K − 2) a2 exp (x2) + ρa2 exp (x1))

)
,

(4)

and equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ∈ (Sh−1)K

such that:

(A3) i ∈ Bk, zi = z̄k.

(A4) ∀k, k′ ∈ {2, . . . ,K} and k ̸= k′, ⟨z̄1, z̄k⟩ = cos(θ1), ⟨z̄k, z̄k′⟩ = cos(θ2), and cos(θ2) =
(K−1) cos2(θ1)−1

K−2 .

(A5) (Case 1) ρ < 1: θ1 ∈
(
cos−1(− 1

K−1 ), 0
)

such that f ′
x1
(cos(θ1)) = 0.

(Case 2) ρ = 1: θ1 = cos−1(− 1
K−1 ).

(Case 3) 1 < ρ < R(K, a2): θ1 ∈
(
−π, cos−1(− 1

K−1 )
)

such that f ′
x1
(cos(θ1)) = 0.

(Case 4) ρ ≥ R(K, a2): θ1 = −π.

Let b1 = (K−1)(1+e−2−2e2)a2−2, b2 = 8(1+e−2)(K−1)a2((K−1)a2−e2), then R(K, a2)
defined as:

R(K, a2) =
−b1 +

√
b21 + b2

2(1 + e−2)a2
. (5)

The proof is provided in Appendix B.2. We show that x2 is dependent on x1 and then f becomes
a convex function of x1. f ′

x1
is an increasing function of ρ. Thus, f has one and only one minimal
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value within a domain with fmin = f(cos(θ1)). As ρ increases, θ1 increases and θ2 decreases. θ1
measures the extent of dominance of the head class in the feature space.
Remark 2. R(K, a2) in Eq. (5) can be roughly simplified as a linear function only respect to K:

R′(K) = (K − 1)
−(1 + e−2 − 2e2) +

√
(1 + e−2 − 2e2)2 + 8(1 + e−2)

2(1 + e−2)
≈ 12.16(K − 1) (6)

R′(K) provides an approximate estimate to distinguish Case 3 and Case 4 in Theorem 2.

Numerical Examples. To quantify the extent that long-tailed data skews the feature space, we
consider two examples with K = 3 classes. The tail-classes have N2 = N3 = 50 samples. In
Example A, ρA = 10, and the head class has NA

1 = 500 samples. In Example B, ρB = 100, so
NB

1 = 5000. ρA < R′(3) < ρB . All samples are mapped to a unit circle (S1). Then θA1 = 149.19◦,
θA2 = 61.63◦, θB1 = 180◦ and θB2 = 0◦ can be found when f is minimized. Fig. 2 visualizes values
of the lower bound function f and the empirical representations of both examples.

4 METHOD

4.1 CHALLENGES IN LONG-TAILED REPRESENTATION LEARNING

Skewed Center Configuration. Theorem 2 reveals that long-tailed data forces tail classes’ centers to
shrink or even collapse. We refer to this phenomenon as the skewed center configuration. This leads to
the feature distributions of the tail classes partially (Fig. 2c) or fully (Fig. 2d) overlapping. As a result,
samples in the overlapping regions become inseparable and cannot be distinguished by a classifier.

Figure 3: long-tailed data representa-
tions. Left: Before center correction.
Right: After center correction with dis-
tribution shifts. To save space, we defer
the legend to Fig. 4.

Distribution Shift. One may consider rearranging the
center configuration to symmetric one to separate the over-
lapping features. This approach implicitly assumes that
the distribution of training data, Ptrain, is the same with the
true distribution of the underlying data, Ptrue. However,
due to the limited sample sizes of tail classes, a discrep-
ancy often exists between Ptrain and Ptrue. We refer to
this phenomenon as distribution shift. When it occurs,
rearranging the training center configuration can separate
the training data but cannot ensure the separation of test-
ing data and may even causes overlapping distributions
between head and tail classes (as depicted in Fig. 3).

4.2 FEATRECON

To address the problems that are discussed above, we design our method to reconstruct the feature
space of long-tailed data to be both symmetric and linearly separable.

Theorem 2 suggests that balancing sample size can correct the center configuration. To achieve this,
we directly generate synthetic features in the feature space. Since all features are normalized (i.e,
Z ∈ Sh−1), it is reasonable to assume that the features of each class fall within a hyperspherical cap
on Sh−1, parameterized by a center and a “radius” – a fixed central angle. Thus, for each class, we
estimate its confidence support as a hyperspherical cap that contains the majority of features. We
then uniformly sample synthetic features from these supports. Each support is filled with real and
synthetic features, and features from nearby classes are pushed away as training progresses.

However, since tail classes have limited sample sizes, their estimated supports are unreliable. To
prevent missing features of tail classes from falling outside their respective supports and overlapping
with the features of the head classes, we regularize tail classes’ estimation with the statistics of
neighboring head classes. Since the synthetic samples ensure the learnt representation configuration
to be symmetric, as long as the central angle of any confidence support is sufficiently small (at the
most 1

2 cos
−1(− 1

K−1 )), these confidence supports are guaranteed to be linearly separable.

The procedure is illustrated in Fig. 4. In Fig. 4a, we estimate the confidence support based on limited
training samples. In Fig. 4b, the confidence supports of tail classes are regularized using the head

6
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(a) (b) (c) (d)

Empirical Centers

Available Features

Missing Features

Confidence Supports 

Synthetic Features

True Distributions

Head Classes

Tail Classes

Decision Boundaries

Figure 4: One iteration of our algorithm. (a) Estimation of the confidence supports with training data.
The supports are drawn in dashed magenta circles. (b) Regularization of the support by head class
statistics. (c) Generating synthetic features to fill the supports (cross markers). (d) Optimization of
the SC loss separates the tail classes and their supports.

class statistics. In Fig. 4c, we generate synthetic samples filling these confidence supports. Finally, by
minimizing the SC loss, class centers are moved to equal distance from each other, and the supports
are guaranteed to be linearly separable (Fig. 4d). In practice, we repeat the procedure iteratively.

Confidence Supports Estimation. A hyperspherical cap can be characterized by its center and a
central angle. For class k, we estimate these parameters as follows:

µ̂k =
1

Nk

∑
i∈Bk

zi, and θ̂k = Qα{cos−1(zi · µ̂k)|yi = k}, (7)

where Qα denotes the α quantile. Normalization is applied wherever necessary to keep the center
estimator a unit vector.

Head Class Regularization. For tail classes, the statistics are regularized using the statistics of
Ptrue from head classes, which are estimated more accurately due to sufficient training samples. This
improves the robustness of tail class parameter estimation. Specifically, for a tail class k, we select
the top q head classes (Ch) with the highest similarities to its class center µ̂:

Cq
k =

{
i | µ̂i · µ̂k ∈ topq (Sk)

}
, where Sk = {µ̂i · µ̂k | i ∈ Ch} , (8)

and regularize its statistics using those from the selected head classes (Cq
k) as follows:

µ̂′
k = (1− γ)

∑
ωc
kµ̂c + γµ̂k and θ̂′k = (1− γ)

∑
ωc
kθ̂c + γθ̂k (9)

where ωc
k = µ̂i·µ̂k∑

j∈Cq
k
µ̂i·µ̂j

is the regularization weight of class c, and γ is the regularization magnitude.

Feature Generation. The estimated confidence support of class k is defined as the set of points:

Z̃k =
{
z̃ ∈ Sh−1 | z̃⊤µ̂′

k ≥ cos(θ̄k)
}
, where θ̄k = min{θ̂′k,

1

2
cos−1(− 1

K − 1
)}. (10)

Let Nmax/min = max/min{Nk : k ∈ [K]}, we uniformly sample mNmax −Nk points from Z̃k as the
synthetic features for class k, where m controls the total number of synthetic features.

Temperature Adjustment. Previous works (Kukleva et al., 2023) have revealed that τ in the In-
foNEC (Wu et al., 2018) loss controls the preference between intra-class and inter-class discrimination.
Head classes benefit from a larger τ while tail classes benefit from a smaller one. We demonstrate
(in Appendix A.3.2) it holds for SC loss too. Inspired by this, we adjust temperature for class k as:

τk =

(
1− 0.5

(
1 + cos

(
π

Nk −Nmin

Nmax −Nmin

)))
× (τ+ − τ−) + τ− (11)

where τ+, τ− denote the upper and lower bounds of τ , respectively.

Additionally, gradient analysis (in Appendix A.3.1) shows that τ also controls the gradient scale: the
larger the τ , the smaller the gradient. Therefore, we re-balance the gradient scale of samples by class
via adjusting the weight of Lk,i

SC , and modify the SC loss as follows:

LSC =

K∑
k=1

∑
i∈Bk

τk
τ−

Lk,i
SC (12)
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Table 1: Top-1 accuracy of ResNet-32 on CIFAR-10/100-LT datasets with different imbalance factors.

Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance Ratio (ρ) 100 50 10 100 50 10
CE 70.36 74.81 86.39 38.32 43.85 55.71
Focal Loss (Lin et al., 2017) 70.38 76.72 86.66 38.41 44.32 55.78
CB-Focal (Cui et al., 2019) 74.57 79.27 87.10 39.60 45.17 57.99
LDAM-DRW (Cao et al., 2019) 77.03 81.03 88.16 42.04 46.62 58.71
CB-DA-LDAM (Jamal et al., 2020) 80.00 82.23 87.40 44.08 49.16 58.00
CE-OTmix (Gao et al., 2024) 78.30 83.40 90.20 46.40 40.70 61.60
DWR-OTmix (Cao et al., 2019; Gao et al., 2024) 83.10 86.40 90.60 48.00 52.60 62.70
SCL (Khosla et al., 2020) - - - - 42.10 45.20 54.80
Hybrid-SC (Wang et al., 2021) 81.40 85.36 91.12 46.72 51.87 63.05
Hybrid-PSC (Wang et al., 2021) 78.82 83.86 90.96 44.97 48.93 62.70
KCL (Kang et al., 2021) 77.60 81.70 88.00 42.80 46.30 57.60
TSC (Li et al., 2022) 79.70 82.90 88.70 43.80 47.40 59.00
BCL (Zhu et al., 2022) 84.32 87.24 91.12 51.93 56.59 64.87
SBCL (Hou et al., 2023) - - - - 44.90 48.70 57.90
FeatRecon 86.42 88.49 92.03 53.41 57.48 65.67

Training Framework. Our training framework mainly follows (Zhu et al., 2022; Du et al., 2024).
The model consists of: 1) a base encoder f : X → h that extracts latent embeddings; 2) a prediction
head l : h → p that produces model predictions p = l ◦ f(X ); 3) a projection head g : h → z that
generates normalized representations z = g ◦ f(X ).

The prediction head is optimized using the training data with the cross entropy loss and logit
compensation (Menon et al., 2021). Let P(y) be class priors and δy = logPy . Then the Lx is:

Lx(y, l ◦ f(x)) = − log
exp (py + δy)∑

y′∈[Y] exp (py′ + δy′)
(13)

The projection head is optimized with both real and synthetic features with the supervised contrastive
loss LSC . The final objective is:

L = λxLx + λcLSC (14)
where λx and λc are hyperparameters that control relative strength among different losses.

5 EXPERIMENTS

5.1 DATASET AND IMPLEMENTATION DETAILS.

Dataset. CIFAR-10-LT and CIFAR-100-LT are the imbalanced subsets of the original CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009), following (Kang et al., 2021; Li et al., 2022; Zhu et al.,
2022). We set the imbalance factor ρ = Nmax/Nmin to be 100, 50, and 10.

Table 2: Top-1 accuracy of ResNet-32 on CIFAR-100-LT with
imbalance factor equaling 100.

Methods Many Medium Few All

20
0

ep
oc

hs

τ -norm (Kang et al., 2020) 61.4 42.5 15.7 41.4
Hybrid-SC (Wang et al., 2021) - - - 46.7
DRO-LT (Samuel & Chechik, 2021) 64.7 50.0 23.8 47.3
RIDE(3 experts) (Wang et al., 2020) 68.1 49.2 23.9 48.0
BCL (Zhu et al., 2022) 67.2 53.1 32.9 51.9
FeatRecon (Ours) 69.2 53.3 35.0 53.4

40
0

ep
oc

hs Balanced Softmax (Ren et al., 2020) - - - 50.8
PaCo (Cui et al., 2021) - - - 52.0
BCL (Zhu et al., 2022) 69.7 53.8 35.5 52.0
FeatRecon (Ours) 70.2 53.8 36.9 54.7

ImageNet-LT (Liu et al., 2019)
is the subset of the original Ima-
geNet (Deng et al., 2009), with the
training set sampled with a Pareto
distribution with power value α =
0.6 and testing set unchanged. The
imbalance factor is 256, with the
most frequent class having 1280
samples and the least frequent one
having 5 samples.

iNaturalist 2018 (Van Horn et al.,
2018) is a large-scale long-tailed
dataset that contains 437.5K im-
ages from 8,142 classes with an ex-
tremely imbalanced distribution.

Following previous works (Li et al., 2022; Zhu et al., 2022; Hou et al., 2023), we train our model
on the long-tailed training sets and evaluate on the balanced testing sets. We divide the testing sets

8
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Table 3: Top-1 accuracy of ResNet-50 on ImageNet-LT dataset and iNaturalist 2018 dataset.

Method ImageNet-LT iNaturalist 2018
Many Med Few All Many Med Few All

CE 64.0 33.8 5.8 41.6 72.2 63.0 57.2 61.7
Focal Loss (Lin et al., 2017) 51.0 40.8 20.8 43.7 - - - 61.3
LDAM-DRW (Cao et al., 2019) 60.4 46.9 30.7 49.8 - - - 64.6
cRT (Kang et al., 2020) 58.8 44.4 26.1 47.3 69.0 66.0 63.2 65.2
τ -norm (Kang et al., 2020) 56.6 44.2 27.4 46.7 65.6 65.3 65.9 65.6
LWS (Kang et al., 2020) 57.1 45.2 29.3 47.7 65.0 66.3 65.5 65.9
Area (Chen et al., 2023) - - - 49.5 - - - 68.4
CE-OTmix (Gao et al., 2024) 70.0 45.9 22.3 52.0 69.3 70.5 68.4 69.5
DRW-OTmix (Cao et al., 2019; Gao et al., 2024) 67.0 49.0 30.4 53.4 70.6 71.9 70.4 71.1
IWB (Dang et al., 2024) 64.2 52.2 40.2 55.2 72.3 70.6 72.5 71.5

SCL (Khosla et al., 2020) 61.4 47.0 28.2 49.8 - - - 66.4
KCL (Kang et al., 2021) 61.8 49.4 30.9 51.5 68.6
TSC (Li et al., 2022) 63.5 49.7 30.4 52.4 72.6 70.6 67.8 69.7
BCL (Zhu et al., 2022) - - - 56.0 - - - 71.8
BCL (Zhu et al., 2022) 67.2 53.9 36.5 56.7 - - - -
SBCL (Hou et al., 2023) 63.8 51.3 31.2 53.4 73.3 71.9 68.6 70.8
DecoupledCL (Xuan & Zhang, 2024) 68.5 55.2 35.4 57.7 74.2 72.9 70.3 72.0

Ours 68.1 55.3 38.3 57.8 72.0 73.9 73.9 73.7

into three subsets: many (with more than 100 instances), medium (with 20 to 100 instances), and few
(with less than 20 instances) splits.

Implementation Details. To ensure a fair comparison, our implementation follows (Li et al.,
2022; Zhu et al., 2022). For both CIFAR-10-LT and CIFAR-100-LT, we adopt the ResNet-32 as
the backbone. The projection head is a 2-layer MLP that generates 128-dimensional embeddings.
Dimension of the hidden layer is 512. Our model is trained for 200 epochs with a batch size of 256 and
with a SGD optimizer. The momentum is 0.9 and the weight decay is 4e−4. The learning rate warms
up 0.3 in the first 5 epochs and decay by 0.1 at the 160th and 180th epochs. For data augmentation,
we adopt AutoAug (Cubuk et al., 2019) and Cutout (DeVries & Taylor, 2017) for the classification
head, and adopt SimAug (Chen et al., 2020) for the projection head. For hyperparameters, we set
λc = 1, λc = 1, α = 0.99, and τ− = 0.1, τ+ = 1. We also train our model for 400 epochs for finer
comparisons on CIFAR-100-LT. In this case, the learning rate warms up in the first 10 epochs and
decay at the 360th and 380th epochs.

We adopt ResNet-50 (He et al., 2016) as the model backbone for both ImageNet-LT and iNaturalist
2018. The projection head is a 2-layer MLP that generates 1024-dimensional embeddings. Dimension
of the hidden layer is 2048. For data augmentation, we switch the strategy for the projection head
to RandAug (Cubuk et al., 2020). Our model is trained for 90 epochs for ImageNet-LT and 100
for iNaturalist 2018 epochs with a batch size of 256 and with a SGD optimizer. The momentum
is 0.9 and the weight decay is 5e−4 for ImageNet-LT and 1e−4 for iNaturalist 2018. The learning
rate is 0.1 for ImageNet-LT and 0.2 for iNaturalist 2018 with a cosine scheduler. Additionaly, we
train our model for 90 epochs using ResNeXt-50-32x4d (Xie et al., 2017) as the backbone. For
hyperparameters, we set λc = 1, λc = 1, α = 0.99, and τ− = 0.07, τ+ = 1.

5.2 RESULTS

CIFAR-LT Tab. 1 shows experiment results on CIFAR-10/100-LT datasets with imbalance factor
varying among 10, 50, and 100. For baselines, we select methods that only work with classifiers (Lin
et al., 2017; Cui et al., 2019; Cao et al., 2019; Jamal et al., 2020; Gao et al., 2024) and methods that
work with both representations and classifiers (Khosla et al., 2020; Wang et al., 2021; Kang et al.,
2021; Li et al., 2022; Zhu et al., 2022; Hou et al., 2023). We can see that FeatRecon outperforms
baseline models in all settings. Moreover, our model achieves larger performance gain as the
imbalance factor increases, proving the effectiveness of our method for long-tailed data. Additionally,
in Tab. 2, we provide shot-wise results on CIFAR-100-LT data with imbalance factor of 100. The
model is trained for both 200 epochs and 400 epochs for fair comparisons with baselines that are
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trained under different settings. The results demonstrate the superiority of our approach, especially
for the few-shot classes.

Table 4: Top-1 accuracy of ResNeXt-50 on ImageNet-
LT dataset.

Method Many Med Few All

Focal Loss (Lin et al., 2017) 64.3 37.1 8.2 43.7
τ -norm (Kang et al., 2020) 59.1 46.9 30.7 49.4
LWS (Kang et al., 2020) 60.2 47.2 30.3 49.9
IWB (Dang et al., 2024) 64.2 52.2 40.2 55.2
BCL (Zhu et al., 2022) 67.2 53.9 36.5 56.7

Ours 68.7 55.6 38.6 58.3

ImageNet-LT Tab. 3 shows experiment
results on ImageNet-LT dataset using
ResNet-50 as model backbone. Tab. 4
shows experiment results using ResNeXt-
50 as model backbone. We report the over-
all Top-1 accuracy as well as the Top-1 ac-
curacy on Many-shot, Medium-shot, and
Few-shot classes. Similar to the experi-
ments on CIFAR-LT, we select methods
that only work with classifiers (Lin et al.,
2017; Cao et al., 2019; Kang et al., 2020;
Chen et al., 2023; Gao et al., 2024; Dang
et al., 2024) and methods that work with
both representations and classifiers (Khosla et al., 2020; Kang et al., 2021; Li et al., 2022; Zhu et al.,
2022; Hou et al., 2023; Xuan & Zhang, 2024) for baselines. Results show that our method outper-
forms baselines on the accuracy of tail classes and overall accuracy, demonstrating the effectiveness
of our approach for learning classes with missing samples.

iNaturalist 2018 Tab. 3 also lists experiment results on iNaturalist 2018 dataset. Similar to results on
ImageNet-LT, our method outperforms baselines on the accuracy of tail classes and overall accuracy,
highlighting our model’s capability of learning from few samples.

5.3 ABLATION STUDY

Table 5: Ablating model components.

Exp LC SC Up Sam Feat Gen Temp Adj Accuracy ∆

1 ✓ 50.8
2 ✓ ✓ 52.4 +1.6

3 ✓ ✓ ✓ 52.6 +1.8
4 ✓ ✓ ✓ 53.9 +3.1
5 ✓ ✓ ✓ ✓ 55.0 +4.2

We evaluate the design of
FeatRecon through an ablation
study on CIFAR-100-LT dataset,
with an imbalance factor of 100.
Each model runs for 400 epochs.
Results are displayed in Tab. 5.
Exp. 1 provides the baseline
by training a classifier with logit
compensation (LP) (Menon et al.,
2021). Exp. 2 introduces an ad-
ditional projection head and trains feature representations with the SC loss (Khosla et al., 2020). This
design brings a 1.6% performance improvement, underscoring the benefit of representation learning.
In Exp. 3, we balance the sample size across different classes by naively upsampling (Up Sam)
the existing features for representation learning. However, this approach has no positive effect. It
highlights the effectiveness of our synthetic feature generation method (Feat Gen), shown in Exp. 4,
that brings a 3.1% performance gain. In Exp. 5, we validate the benefit of training with temperature
adjustment (Temp Adj), which leads to an additional 1.1% performance increase.

6 CONCLUSION AND LIMITATIONS

In this paper, we establish a theoretical framework to investigate the optimal representation config-
uration for long-tailed data and prove that the centers of the tail classes are forced to shrink and
even collapse. Following the analysis, we study the problem behinds the long-tailed representation
learnt via optimizing the supervised contrastive loss and identify two challenges, the skewed center
configuration and distribution shifts. Inspired by our analysis, we introduce a novel method for
long-tailed representation learning. Our methods reconstructs feature space for long tail data so
that representations of each class are arranged into symmetric and linearly separable areas. We
demonstrate the effectiveness of our methods on different benchmark datasets. And results show that
our method achieves state-of-the-art performances.

While our theoretical framework opens a door to study long-tailed representation, it’s currently
limited to the simple one vs all case. The solution for more general cases remains unsolved.
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A APPENDIX A

A.1 PSEUDO ALGORITHMS

In this section, we first present the pseudo algorithms of FeatRecon. FeatRecon is a heuristic
method that iteratively generates synthetic features, adjust representations, and re-estimate confidence
supports at each step of the training process.

Algorithm 1: FeatRecon Algorithm
Input: Available training samples {xi, yi}i∈Bk,k∈[K] from K classes, the quantile parameter α,

the regularization magnitude γ and m which controls the total number of synthetic
features.

1 for t = 1, . . . , T do
2 for k = 1, . . . , K do
3 Estimate confident supports for class k as Eq. (9) and Eq. (10) ;
4 if class k is a tail class then
5 Regularize its statistics as Eq. (9);
6 end
7 Generate mNmax −Nk synthetic features for class k ;
8 end
9 Compute the cross entropy loss Lx (Eq. (13)) with training data ;

10 Compute the supervised contrastive loss LSC (Eq. (12)) with both real features and synthetic
features ;

11 Update model with loss L = λxLx + λcLSC ;
12 end
13 Return Trained model

A.2 MORE EXPLANATION OF THEOREM 2

In this subsection, we provide more detailed mathematical explanation with respect to Theorem 2.

It states the necessary and sufficient conditions on the representation configuration for the SC loss
attaining its minimal. (A3) states representations of each class converge to the respective class centers.
(A4) states that the centers of class 2 to K form an K − 2 equidistant simplex, the angles between
whose vertices all equal θ2. (A4) also states the vector between the spherical center and the center of
class 1 is perpendicular to the equidistant simplex, and the angle between class 1’s center and other
classes’ center all equal θ1. And cos(θ2) =

(K−1) cos2(θ1)−1
K−2 . (A5) depicts the whole dynamic of the

configuration of all centers as ρ increases from 0 to +∞.

More specifically, (A5) shows:

(Case 1) 0 < ρ < 1: π
2 < θ1 < cos−1(− 1

K−1 ) < θ2 < cos−1(− 1
K−2 )

(Case 2) ρ = 1: it becomes a data balance case where θ1 = θ2 = cos−1(− 1
K−1 ). This indicates

all class centers form a K − 1 regular simplex.
(Case 3) 1 < ρ < R(K, a2): as ρ continues to increase, it becomes a long-tailed problem. The

head class (1st) increasingly dominates the feature space as π > θ1 > cos−1(− 1
K−1 ) >

θ2 > 0. At this stage, the centers of the tail classes increasingly shrinks together.
(Case 4) ρ > R(K, a2): the centers of the tail classes collapses with θ2 = 0 and θ1 = π

In both long-tailed cases, θ1 measures the extent that a head class dominate the feature space.
Also, Theorem 1 is a special case of Theorem 2 (Case 2).
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A.3 ROLE OF TEMPERATURE IN THE SC LOSS

In this section, we show that the temperature parameter τ controls the scale of the gradient of the
supervised contrastive loss (SC loss). We also demonstrate that τ controls the preference between
intra-class and inter-class discrimination for the SC loss in the same way it does for the InfoNEC loss.
(discussed in (Kukleva et al., 2023)).

A.3.1 GRADIENT DEVIATION OF SUPERVISED CONTRASTIVE LOSS

We first provide the gradient of the SC loss with respect to feature zi. To do so, we define the
contrastive probability of feature i from class k to feature m as:

pim =
esim/τ

esim/τ +
∑

j ̸=m esij/τ

sim = zi · zm.

(15)

Then, the unnormalized supervised contrastive loss for sample i is:

Li = −
∑
m∈B

yim · log pim, where yim = 1{yi=ym}. (16)

Now let’s derive the gradient:

∂pik
∂sij

=
1

τ
·
{

−p2ik + pik, j = k
−pik · pij , j ̸= k,

(17)

∂Li

∂sij
= −

∑
k

yik · ∂ log pik
∂sij

= −
∑
k

yik
pik

· ∂pik
∂sij

= −1

τ
· yij · (1− pij) +

1

τ
·
∑
k ̸=j

·yik · pij

=
1

τ
· (−yij +

∑
k

·yik · pij)

=
1

τ
· (pij − yij),

(18)

∂Li

∂zi
=
∑
j

∂Li

∂sij
· ∂sij
∂zi

=
1

τ
{
∑
j

zj · (pij − yij)}. (19)

Since Lk,i
SC =

1{Nk>1}
Nk−1 Li, the gradient of Lk,i

SC to feature zi is:

∂Lk,i
SC

∂zi
=

1

τ
{
∑

j∈Bk\{i}

zj · (pij −
1

Nk − 1
) +

∑
j∈N(i)

zj · pij}

=
1

τ
{−

∑
j∈Bk\{i}

zj
Nk − 1

+
∑
j

zj · pij}
(20)

If we denote Z̄k =
∑

j∈Bk\{i}
zj

Nk−1 as the center of class k, then:

∂Lk,i
SC

∂zi
=

1

τ
{−Z̄k +

∑
j

zj · pij} (21)

This reveals that for a given feature zi. there are 1 attractive force from its class center Z̄k and pij
repulsive force from all other features. Eq. (21) also shows that the scale of the gradient of Lk,i

SC is
inversely related to τ . If we set a different temperature τk for class k, the gradient becomes:

∂Lk,i
SC

∂zi
=

1

τk
{−Z̄k +

∑
j

zj · pij}. (22)
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(a) (b) (c)

Figure 5: Role of temperature in the SC loss. a) The relationships between pij and θij . Values are
normalized for better comparison. b) The distribution of angles between zi and all other features. c)
Overall repulsive force from zi at angle θ given τ . The left peak represents intra-class discrimination
while the left peak represents inter-class discrimination.

To balance the gradient scale among different classes, we modify the loss function as follows:

Lk,i
SC,modified =

τk
τ−

Lk,i
SC, (23)

so that:
∂Lk,i

SC,modified

∂zi
=

1

τ−
{−Z̄k +

∑
j

zj · pij}. (24)

Now the gradient scale becomes the same across different classes.

A.3.2 TEMPERATURE CONTROLS DISCRIMINATION PREFERENCE

In this section, we study how τ controls the discrimination preference for the SC loss. Our analysis
primarily follows the method proposed in (Kukleva et al., 2023).

All numerical examples are based on the representations of training samples of CIFAR-10 (Krizhevsky
et al., 2009). And representations are learnt by a model trained via optimizing the SC loss, following
the same experimental settings as in (Hou et al., 2023).

Since all features are normalized and sij = θij , Eq. (15) can be rewritten as:

pij =
eθij/τ

eθij/τ +
∑

m ̸=j e
θim/τ

. (25)

As indicated by Eq. (21), pij quantifies the magnitude of the repulsive force between zi and zj . Eq. (25)
shows that this force is determined by their angular separation θij . Denote pi(θ, τ) as a function of
pij on θij and τ . Fig. 5a depicts pi(θ, τ).

Denote fi(θ) as the distribution density function of θij for a feature zi from class 0. Fig. 5b displays
fi(θ). The plot reveals two peaks: the left peak represents features from the same class, characterized
by high similarities and small angles, whereas the right peak represents features from different classes,
characterized by low similarities and large angles.

Denote ri(θ, τ) as the overall repulsive force of zi at angle θ for a given temperature τ and ri(θ, τ) is
defined as:

ri(θ, τ) = pi(θ, τ) · fi(θ). (26)
Fig. 5c depicts ri(θ, τ). The plot also reveals two peaks. The left peak represents the overall repulsive
force from zi towards features from the same class or indicative of the intra-class discrimination. The
right peak represents the overall repulsive force from zi towards features from different classes, or
indicative of inter-class discrimination.

It is evident that a large τ favors inter-class discrimination while a small τ favors intra-class discrimi-
nation. Head classes benefit from inter-class discrimination, thereby a large τ . Tail classes benefit
from intra-class discrimination, thereby a small τ (see more tails in (Kukleva et al., 2023)). This
conclusion justifies our approach of adjusting temperature by class.
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A.4 ADDITIONAL RESULTS (FOR REBUTTAL)

In this sections, we provide additional results that are required by Reviewer 2QQJ and Reviewer
MXe4.

A.4.1 REPRESENTATION VISUALIZATION (FOR REVIEWER 2QQJ)

In Fig. 6, we visualize the learned representations of CIFAR-10 testing images with imbalance factor
equaling 100 using t-SNE (Van Der Maaten & Hinton, 2008). Results show that, with the help of
synthetic features generated by FeatRecon, the resulting testing distributions of different classes are
more separated.

airplane (5000)
automobile (2997)

bird (1796)
cat (1077)

deer (645)
dog (387)

frog (232)
horse (139)

ship (83)
truck (50)

Figure 6: t-SNE visualization of CIFAR-10 testing set. (left) Learned representations without
synthetic features. (Right) Learned representations with synthetic features generated by FeatRecon.
Numbers in the legend after class names represents the numbers of training samples from this class.

A.4.2 ABLATION STUDIES ON Q (FOR REVIEWER MXE4)

We test sensitivity of hyper parameter q on regularization. Here we run an ablation study on CIFAR-
100-LT dataset, with an imbalance factor of 100. Each model runs for 400 epochs. Results are
displayed in Tab. 6, which indicates 30% classes should be used for regularization.

Table 6: Analysis of number of head classes for regularization q.

q 10 20 30 40

Accuracy 53.7 54.1 55.0 54.8
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B APPENDIX B

B.1 PROOF OF THEOREM 1

In this section, we provide proofs for Theorem 1 proposed in Sec. 3.2. Our proof is different from
what’s shown in (Graf et al., 2021; Zhu et al., 2022) in order to take long-tailed distribution into
account. For the convenience of your reading, let’s recall some related notions and definitions.

• h,N,K ∈ N

• Z = Rh

• Sh−1 =
{
z ∈ Rh : ∥z∥ = 1

}
• Y = {1, . . . ,K} = [K]

• B = {1, . . . , N} = [N ]

• Bk = {i : i ∈ B, yi = k}

• Nk = |Bk|

Definition 1 (Supervised contrastive loss) Let Z be an N point configuration (assuming all zs
being normalized), Z = (z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N , and
K ≤ h + 1. Let B = [N ], Bk = {i : i ∈ B, yi = k} and Nk = |Bk|. The supervised contrastive
loss LSC(·;Y ) : (Sh−1)N → R is defined as:

LSC =

K∑
k=1

∑
i∈Bk

Lk,i
SC, where Li

SC = −
1{Nk>1}

Nk − 1

∑
j∈Bk\{i}

log

(
exp (⟨zi, zj⟩)∑

l∈B\{i} exp (⟨zi, zl⟩)

)
.

Definition 3 (Equidistant/regular Simplex) Let h,K ∈ N with K ≤ h+ 1. An K point configuration
ζ = (ζ1, . . . , ζK) ∈ (Sh−1)N form the vertices of an equidistant simplex inscribed in the unit-
hypersphere, if and only if all of the following conditions hold:

(1) ∀i ∈ [K], ∥ζi∥ = 1

(2) ∃d ∈ R,∀i, j and 1 ≤ i < j ≤ K, d = ⟨ζi, ζj⟩

And ζ form the vertices of a regular simplex inscribed in the unit-hypersphere, if and only if (1), (2)
and the following condition holds:

(3)
∑

i∈[K] ζi = 0

Theorem 1 Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N , and K ≤ h+ 1. Let B = [N ],
Bk = {i : i ∈ B, yi = k} and Nk = |Bk|. When Y is balanced, hence ∀i ∈ [K], Nk = N

K , it holds
that:

LSC ≥ N log

((
N

K
− 1

)
+

N(K − 1)

K
exp

(
− K

K − 1

))
,

where equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ∈ (Sh−1)K

such that:

(A1) i ∈ Bk, zi = z̄k.

(A2) Z̄ form a regular simplex inscribed in the unit-hyperspher.
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B.1.1 STEPS OF PROOF

First let’s rewrite Lk,i
SC and LSC (assuming ∀k ∈ [K], Nk > 1).

Lk,i
SC = − 1

Nk − 1

∑
j∈Bk\{i}

log

(
exp (⟨zi, zj⟩)∑

l∈B\{i} exp (⟨zi, zl⟩)

)

=
1

Nk − 1

∑
j∈Bk\{i}

log

(∑
l∈B\{i} exp (⟨zi, zl⟩)
exp (⟨zi, zj⟩)

)

=
1

Nk − 1
log


(∑

l∈B\{i} exp (⟨zi, zl⟩)
)Nk−1

∏
j∈Bk\{i} exp (⟨zi, zj⟩)


= log

 ∑
l∈B\{i} exp (⟨zi, zl⟩)

exp
(∑

j∈Bk\{i} ⟨zi, zj⟩
) 1

Nk−1


= log

 ∑
l∈B\{i} exp (⟨zi, zl⟩)

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

)
 ,

(27)

and hence

LSC =

K∑
k=1

∑
i∈Bk

Lk,i
SC

Lemma 2
≥

K∑
k=1

Nk log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)

 ,

(28)

where z̄k = 1
Nk

∑
i∈Bk

zi. When Y is balanced, ∀i ∈ [K], Nk = N
K , then

LSC ≥
K∑

k=1

N

K
log

(N

K
− 1

)
+ e−1N

K

∑
k′∈[K]
k′ ̸=k

exp (⟨z̄k, z̄k′⟩)


Lemma 3

≥ N log

((
N

K
− 1

)
+ e−1N(K − 1)

K
exp (β)

)
,

(29)

and equality is attained if and only if all of the following conditions hold:

(B1) ∀i ∈ Bk, zi = z̄k.
(B2) ∀k ∈ [K] and k′ ∈ [K]\{k}, ⟨z̄k, z̄k′⟩ = β.
(B3) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (B2) holds.

(Case 1) K = h+ 1: β = − 1
K−1 or β = 1

(Case 2) K < h+ 1: − 1
K−1 ≤ β ≤ 1

When a, b > 0, f(x) = log (a+ bex) is a strictly increasing function. And Eq. (29) suggests that the
lower bound of LSC is a strictly increasing function of β. When β reaches its minimal value so does
LSC. When K ≤ h+ 1, βmin = − 1

K−1 , then we have:

LSC ≥ N log

((
N

K
− 1

)
+ e−1N(K − 1)

K
exp

(
− 1

K − 1

))
= N log

((
N

K
− 1

)
+

N(K − 1)

K
exp

(
− K

K − 1

))
.

(30)
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When β = − 1
K−1 , Lemma 1 shows that (B2) and (B3) imply Z̄ = (z̄1, . . . , z̄K) form a regular

simplex. Thus the conditions for equality can be sumerized as: there exists a configuration of
Z̄ = (z̄1, . . . , z̄K) ∈ (Sh−1)K such that:

(A1) i ∈ Bk, zi = z̄k.

(A2) Z̄ form a regular simplex inscribed in the unit-hyperspher.

B.1.2 LEMMAS PART 1

In this section,we provide definitions and proofs of lemmas that are used for the proof of Theorem 1.

Lemma 1. Let Z be an K point configuration (assuming all zs being normalized), Z =
(z1, . . . , zK) ∈ (Sh−1)K . If ∃β ∈ R, ∀i, j ∈ [K] and i ̸= j such that all inner products ⟨zi, zj⟩ = β
are equal, then one of the following cases holds:

(Case 1) K > h+ 1: β = 1.

(Case 2) K = h+ 1: β = − 1
N−1 or β = 1.

(Case 3) K < h+ 1: − 1
N−1 ≤ β ≤ 1.

And when β = − 1
K−1 , Z = (z1, . . . , zK) forms a regular simplex.

Proof. As explained in (Delsarte et al., 1977), there are at the most h+ 1 equidistant points on Sh−1

(The size of a spherical 1-distance set ≤ h+1 (Delsarte et al., 1977)). When N > h+1, all N points
collapse into a single point and β = 1, which is the Case 1. When N = h+ 1, these points either
form into a regular simplex or collapse into a single point, which is the Case 2. When N < h+ 1,
these points form into a regular/non-regular equidistant simplex or collapse into a single point, which
is the Case 3.

Next we will show why when K < h+ 1, − 1
K−1 ≤ β ≤ 1 (Case 3) and when Z = (z1, . . . , zK) ∈

(Sh−1)K forms a regular simplex, β = − 1
K−1 (Case 2). Given that∥∥∥∥∥∥

∑
k∈[K]

zk

∥∥∥∥∥∥
2

=

〈 ∑
k∈[K]

zk,
∑

k∈[K]

zk

〉

=
∑

k∈[K]

⟨zk, zk⟩+
∑

n∈[K]
m∈[K]\{i}

⟨zn, zm⟩

= K +K(K − 1)β

≥ 0,

(31)

this shows − 1
K−1 ≤ β. Since β is the dot product of two unit vectors, β ≤ 1. Then we have:

− 1

N − 1
≤ β ≤ 1. (32)

When Z = (z1, . . . , zK) ∈ (Sh−1)K forms a regular simplex, we have
∑

k∈[K] zk = 0. Then
K +K(K − 1)β = 0 and β = − 1

K−1 .

Now we prove when β = − 1
K−1 , Z = (z1, . . . , zK) forms a regular simplex. Recall that ∀i, j ∈ [K]

and i ̸= j, we have ∥zi∥ = 1, and ⟨zi, zj⟩ = β. When β = − 1
K−1 , Eq. (32) shows

∑
k∈[K] zk = 0.

Then Z forms a regular simplex.

Lemma 2. Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N . Let B = [N ], Bk = {i :
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i ∈ B, yi = k}. ∀k ∈ [K],
∑

i∈Bk
Lk,i
SC is bounded below by:

∑
i∈Bk

Lk,i
SC ≥ Nk log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)

 , (33)

where z̄k = 1
Nk

∑
i∈Bk

zi, and equality is attained if and only if the following condition holds:

(B1) ∀i ∈ Bk, zi = z̄k.

Proof. According to Eq. (27):

Lk,i
SC = log

 ∑
l∈B\{i} exp (⟨zi, zl⟩)

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

)


= log


∑

l∈Bk\{i} exp (⟨zi, zl⟩) +
∑

k′∈[K]
k′ ̸=k

∑
m∈Bk′ exp (⟨zi, zm⟩)

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

)
 .

(34)

There are three terms in Eq. (34). Let’s check their lower bounds one by one. Applying Jensen’s
inequity, the first term can be bounded below:

∑
l∈Bk\{i}

exp (⟨zi, zl⟩) ≥ (Nk − 1) exp

 1

(Nk − 1)

∑
l∈Bk\{i}

⟨zi, zl⟩

 , (35)

where equality is attained if and only if all of the following conditions hold:

(C1) ∀k ∈ [K] and ∀i ∈ Bk, ∃α(k, i) such that ∀j ∈ Bk\{i}, all inner products ⟨zi, zj⟩ = α(k, i)
are equal.

Let z̄k = 1
Nk

∑
i∈Bk

zi. Similarly, the second term can be bounded below:

∑
m∈Bk′

exp (⟨zi, zm⟩) ≥ Nk′ exp

 1

Nk′

∑
m∈Bk′

⟨zi, zm⟩

 = Nk′ exp

〈zi, 1

Nk′

∑
m∈Bk′

zm

〉 ,

= Nk′ exp (⟨zi, z̄k′⟩)
(36)

where equality is attained if and only if all of the following conditions hold:

(C2) ∀k ∈ [K] and ∀i ∈ Bk, ∃α(k, i, k′) such that k′ ∈ [K]\{k} and m ∈ Bk′ , all inner products
⟨zi, zm⟩ = α′(k, i, k′) are equal. And α′(k, i, k′) = ⟨zi, z̄k′⟩.

Using Cauchy-Schwarz inequality, the third term can be bounded below:

1

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

) ≥ 1

exp
(

1
Nk−1

∑
j∈Bk\{i} ∥zi∥ ∥zj∥

) = e−1, (37)

where equality is attained if and only if the following condition holds:

(C3) ∀k ∈ [K] and ∀i, j ∈ Bk, zi = zj = z̄k.

It’s obvious to see that when condition (C3) holds, all samples from the same class collapse into
their class center (denoted by z̄k). In this case, and thus condition (C1) and (C2) hold as well where
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α(k, i) = 1 and α′(k, i, k′) = ⟨zk, z̄k′⟩. So (C3) is a sufficient condition for (C1) and (C2). Now we
have:

∑
i∈Bk

Lk,i
SC =

∑
i∈Bk

log


∑

k∈Bk\{i}} exp (⟨zi, zl⟩) +
∑

k′∈[K]
k′ ̸=k

∑
l∈Bk′ exp (⟨zi, zl⟩)

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

)


Eq. (35)
≥

∑
i∈Bk

log


(Nk − 1) exp

(
1

(Nk−1)

∑
l∈Bk\{i} ⟨zi, zl⟩

)
+
∑

k′∈[K]
k′ ̸=k

∑
l∈Bk′ exp (⟨zi, zl⟩)

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

)


=
∑
i∈Bk

log

(Nk − 1) +

∑
k′∈[K]
k′ ̸=k

∑
l∈Bk′ exp (⟨zi, zl⟩)

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

)


Eq. (36)
≥

∑
i∈Bk

log

(Nk − 1) +

∑
k′∈[K]
k′ ̸=k

Nk′ exp (⟨zi, z̄k′⟩)

exp
(

1
Nk−1

∑
j∈Bk\{i} ⟨zi, zj⟩

)


Eq. (37)
≥

∑
i∈Bk

log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)



= Nk log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)

 ,

(38)
where equality is attained if and only if the following condition holds:

(B1) ∀i ∈ Bk, zi = z̄k.

Here (B1) and (C3) express the same condition.

Lemma 3. Let Z̄ be an K point configuration (assuming all z̄s being normalized), Z̄ =
(z̄1, . . . , z̄K) ∈ (Sh−1)K , and K ≤ h+ 1, it holds that:

K∑
k=1

a log

(a− 1) + b

 ∑
k′∈[K]
k′ ̸=k

exp (⟨z̄k, z̄k′⟩) + c


 ≥ Ka log ((a− 1) + b ((K − 1) exp (β) + c)) ,

(39)
where a > 1, b, c > 0, and equality is attained if and only if all of the following conditions hold:

(B2) ∀k ∈ [K] and k′ ∈ [K]\{k}, ⟨z̄k, z̄k′⟩ = β.

(B3) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (B2) holds.

(Case 1) K = h+ 1: β = − 1
N−1 or β = 1

(Case 2) K < h+ 1: − 1
N−1 ≤ β ≤ 1
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Proof. Since f(x) = exp(x) is a convex function, applying Jensen’s inequality, we have

∑
k′∈[K]
k′ ̸=k

exp (⟨z̄k, z̄k′⟩) ≥ (K − 1) exp

 1

K − 1

∑
k′∈[K]
k′ ̸=k

⟨z̄k, z̄k′⟩



= (K − 1) exp

 1

K − 1

∑
k′∈[K]
k′ ̸=k

βk


= (K − 1) exp (βk) ,

(40)

where equality is attained if and only if all of the following conditions hold:

(C4) ∀k ∈ [K] and k′ ∈ [K]\{k}, ⟨z̄k, z̄k′⟩ = βk.

(C5) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (C4) holds.

When a > 1, b, c > 0, f(x) = log ((a− 1) + b (exp (x) + c)) is also a convex function. By Jensen’s
inequality, we have

K∑
k=1

a log ((a− 1) + b (exp (βk) + c)) ≥ Ka log

(
(a− 1) + b

(
exp

(
1

K

K∑
k=1

βk

)
+ c

))

= Ka log

(
(a− 1) + b

(
exp

(
1

K

K∑
k=1

β

)
+ c

))
= Ka log ((a− 1) + b (exp (β) + c)) ,

(41)

where equality is attained if and only if all of the following conditions hold:

(C6) ∀k ∈ [K] and k′ ∈ [K]\{k}, βk = βk′ = β.

(C7) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (C6) holds.

Note that when (C6) and (C7) hold, (C4) and (C5) hold too. And according to Lemma 1, when
K ≤ h+ 1, Case 2 and Case 3 in Lemma 1 satisfy (C7). And hence

K∑
k=1

a log

(a− 1) + b

 ∑
k′∈[K]
k′ ̸=k

exp (⟨z̄k, z̄k′⟩) + c


 ≥ Ka log ((a− 1) + b ((K − 1) exp (β) + c)) ,

(42)
where equality is attained if and only if all of the following conditions hold:

(B2) ∀k ∈ [K] and k′ ∈ [K]\{k}, ⟨z̄k, z̄k′⟩ = β.

(B3) There exists a configuration of Z̄ = (z̄1, . . . , z̄K) such that (B2) holds

(Case 1) K = h+ 1: β = − 1
N−1 or β = 1

(Case 2) K < h+ 1: − 1
N−1 ≤ β ≤ 1
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B.2 PROOF OF THEOREM 2

In this section, we provide proofs for Theorem 2 proposed in Sec. 3.2. For the convenience of your
reading, let’s recall some related notions and definitions.

• h,N,K ∈ N

• Z = Rh

• Sh−1 =
{
z ∈ Rh : ∥z∥ = 1

}
• Y = {1, . . . ,K} = [K]

• B = {1, . . . , N} = [N ]

• Bk = {i : i ∈ B, yi = k}
• Nk = |Bk|

Definition 1 (Supervised contrastive loss) Let Z be an N point configuration (assuming all zs
being normalized), Z = (z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N , and
K ≤ h + 1. Let B = [N ], Bk = {i : i ∈ B, yi = k} and Nk = |Bk|. The supervised contrastive
loss LSC(·;Y ) : (Sh−1)N → R is defined as:

LSC =

K∑
k=1

∑
i∈Bk

Lk,i
SC, where Li

SC = −
1{Nk>1}

Nk − 1

∑
j∈Bk\{i}

log

(
exp (⟨zi, zj⟩)∑

l∈B\{i} exp (⟨zi, zl⟩)

)
.

Theorem 2 Let Z be an N point configuration (assuming all zs being normalized), Z =
(z1, . . . , zN ) ∈ (Sh−1)N , with labels Y = (y1, . . . , yN ) ∈ ([K])N , and 3 ≤ K ≤ h + 1. If
∀k ∈ {2, . . . ,K}, Nk = a2 ≥ 4, and ∃ρ > 0 such that N1 = a1 = ρa2 > 1, it holds that:

LSC ≥ f(cos(θ1), cos(θ2)),

where f(·) : R × R → R is defined as:

f(x1, x2) = ρa2 log
(
(ρa2 − 1) + e−1 (K − 1) a2 exp (x1)

)
+ (K − 1)a2 log

(
(a2 − 1) + e−1 ((K − 2) a2 exp (x2) + ρa2 exp (x1))

)
,

and equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ∈ (Sh−1)K

such that:

(A3) i ∈ Bk, zi = z̄k.
(A4) ∀k, k′ ∈ {2, . . . ,K} and k ̸= k′, ⟨z̄1, z̄k⟩ = cos(θ1), ⟨z̄k, z̄k′⟩ = cos(θ2), and cos(θ2) =

(K−1) cos2(θ1)−1
K−2 .

(A5) (Case 1) ρ < 1: θ1 ∈
(
cos−1(− 1

K−1 ), 0
)

such that f ′
x1
(cos(θ1)) = 0.

(Case 2) ρ = 1: θ1 = cos−1(− 1
K−1 ).

(Case 3) 1 < ρ < R(K, a2): θ1 ∈
(
−π, cos−1(− 1

K−1 )
)

such that f ′
x1
(cos(θ1)) = 0.

(Case 4) ρ ≥ R(K, a2): θ1 = −π.

Let b1 = (K−1)(1+e−2−2e2)a2−2, b2 = 8(1+e−2)(K−1)a2((K−1)a2−e2), then R(K, a2)
defined as:

R(K, a2) =
−b1 +

√
b21 + b2

2(1 + e−2)a2
.
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B.2.1 STEPS OF PROOF

Following Eq. (27), Eq. (28) and Lemma 2 in Appendix B.1.1, we have

LSC

Lemma 2
≥

K∑
k=1

Nk log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)

 . (43)

where equality is attained if and only if there exists a configuration of Z̄ = (z̄1, . . . , z̄K) ∈ (Sh−1)K

such that:

(A3) i ∈ Bk, zi = z̄k.

When 3 ≤ K ≤ h+ 1, ∀k ∈ {2, . . . ,K}, Nk = a2 ≥ 4, and ∃ρ > 0 such that N1 = a1 = ρa2 > 1,
following Lemma 5, we have:

LSC ≥
K∑

k=1

Nk log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)


Lemma 5

≥ f(β1),

(44)

where f(x) is:

f(x) = ρa2 log
(
(ρa2 − 1) + e−1 (K − 1) a2 exp (x)

)
+ (K − 1)a2 log

(
(a2 − 1) + e−1

(
(K − 2) a2 exp

(
(K − 1)x2 − 1

K − 2

)
+ ρa2 exp (x)

))
,

(45)
and equality is attained if and only if all of the following conditions hold:

(A4) ∀k, k′ ∈ {2, . . . ,K} and k ̸= k′, ⟨z̄1, z̄k⟩ = cos(θ1), ⟨z̄k, z̄k′⟩ = cos(θ2), and cos(θ2) =
(K−1) cos2(θ1)−1

K−2 .

(A5) (Case 1) ρ < 1: θ1 ∈
(
cos−1(− 1

K−1 ), 0
)

such that f ′
x1
(cos(θ1)) = 0.

(Case 2) ρ = 1: θ1 = cos−1(− 1
K−1 ).

(Case 3) 1 < ρ < R(K, a2): θ1 ∈
(
−π, cos−1(− 1

K−1 )
)

such that f ′
x1
(cos(θ1)) = 0.

(Case 4) ρ ≥ R(K, a2): θ1 = −π.

Here b1 = (K−1)(1+e−2−2e2)a2−2 and b2 = 8(1+e−2)(K−1)a2((K−1)a2−e2). R(K, a2)
is given by:

R(K, a2) =
−b1 +

√
b21 + b2

2(1 + e−2)a2
. (46)

B.2.2 LEMMAS PART 2

In this section,we provide definitions and proofs of lemmas that are used for the proof of Theorem 2.

Lemma 4. Let Z̄ be an K point configuration (assuming all z̄s being normalized), Z̄ =
(z̄1, . . . , z̄K) ∈ (Sh−1)K , and 3 ≤ K ≤ h + 1. If ∀k, k′ ∈ {2, . . . ,K} and k ̸= k′ such that
⟨z̄k, z̄k′⟩ = β2 and β1 = minc{c : ⟨z̄1, z̄k⟩ = c}, it holds that:

β2 =
(K − 1)β2

1 − 1

K − 2
, where − 1 ≤ β1 ≤ 0 and − 1

K − 2
≤ β2 < 1. (47)
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Proof. Without loss of generality, we assume (z̄2, . . . , z̄K) form an equidistant simplex in the
southern hemisphere of Sh−1 and then z̄1 is at the north pole. Let l = ∥ 1

K−1

∑K
k=2 zk∥, we have

l = |β1|, then

∥l∥2 =

∥∥∥∥∥ 1

K − 1

K∑
k=2

zk

∥∥∥∥∥
2

=

〈
1

K − 1

K∑
k=2

zk,
1

K − 1

K∑
k=2

zk

〉

=
1

(K − 1)2

 K∑
k=2

zk ⟨zk, zk⟩+
K∑

k,k′=2
k ̸=k′

⟨zk, zk′⟩


=

1

(K − 1)2
((K − 1) + (K − 1) (K − 2)β2)

= |β1|2,

(48)

so we have

β2 =
(K − 1)β2

1 − 1

K − 2
. (49)

According to Lemma 1, − 1
K−2 ≤ β2 < 1 and so −1 ≤ β1 ≤ 0.

Lemma 5. Let Z̄ be an K point configuration (assuming all z̄s being normalized), Z̄ =
(z̄1, . . . , z̄K) ∈ (Sh−1)K , and 3 ≤ K ≤ h + 1. Let B = [N ], Bk = {i : i ∈ B, yi = k}
and Nk = |Bk|. Let J (·) : (Sh−1)K → R is defined as:

J (Z̄) =

K∑
k=1

Nk log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)

 , (50)

If ∀k ∈ {2, . . . ,K}, Nk = a2 ≥ 4, and ∃ρ > 0 such that N1 = a1 = ρa2 > 1, it holds that:

J (Z̄) ≥ f(β1), (51)

where f(·) : R → R is defined as:

f(x) = ρa2 log
(
(ρa2 − 1) + e−1 (K − 1) a2 exp (x)

)
+ (K − 1)a2 log

(
(a2 − 1) + e−1

(
(K − 2) a2 exp

(
(K − 1)x2 − 1

K − 2

)
+ ρa2 exp (x)

))
,

(52)
and equality is attained if and only if all of the following conditions hold:

(B4) ∀k, k′ ∈ {2, . . . ,K} and k ̸= k′, ⟨z̄1, z̄k⟩ = β1 and ⟨z̄k, z̄k′⟩ = β2 =
(K−1)β2

1−1
K−2 .

(B5) (Case 1) ρ < 1: x̂ ∈ (− 1
K−1 , 0).

(Case 2) ρ = 1: x̂ = − 1
K−1 .

(Case 3) 1 < ρ < R(K, a2): x̂ ∈ (−1,− 1
K−1 ).

(Case 4) ρ ≥ R(K, a2): x̂ = −1.

Here b1 = (K−1)(1+e−2−2e2)a2−2 and b2 = 8(1+e−2)(K−1)a2((K−1)a2−e2). R(K, a2)
is given by:

R(K, a2) =
−b1 +

√
b21 + b2

2(1 + e−2)a2
. (53)
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Proof. When N1 = a1, ∀k ∈ {2, . . . ,K}, Nk = a2, a1 = ρa2, then

J (Z̄) =

K∑
k=1

Nk log

(Nk − 1) + e−1
∑

k′∈[K]
k′ ̸=k

Nk′ exp (⟨z̄k, z̄k′⟩)


= a1 log

(
(a1 − 1) + e−1

K∑
k′=2

a2 exp (⟨z̄1, z̄k′⟩)

)

+

K∑
k=2

a2 log

(a2 − 1) + e−1

 K∑
k′=2
k′ ̸=k

a2 exp (⟨z̄k, z̄k′⟩) + a1 exp (⟨z̄k, z̄1⟩)


 .

(54)

According to Eq. (40) in the Lemma 3, the first term can be bounded low:

a1 log

(
(a1 − 1) + e−1

K∑
k′=2

a2 exp (⟨z̄1, z̄k′⟩)

)
≥ a1 log

(
(a1 − 1) + e−1 (K − 1) a2 exp (β1)

)
= f1(β1).

(55)

Similarly, the second term can be bounded low:

K∑
k=2

a2 log

(a2 − 1) + e−1

 K∑
k′=2
k′ ̸=k

a2 exp (⟨z̄k, z̄k′⟩) + a1 exp (⟨z̄k, z̄1⟩)




≥ (K − 1)a2 log
(
(a2 − 1) + e−1 ((K − 2) a2 exp (β2) + a1 exp (β1))

)
= f2(β1).

(56)

Combining Eq. (55), Eq. (56) and Lemma 4, we have

J (Z̄) ≥ ρa2 log
(
(ρa2 − 1) + e−1 (K − 1) a2 exp (β1)

)
+ (K − 1)a2 log

(
(a2 − 1) + e−1

(
(K − 2) a2 exp

(
(K − 1)β2

1 − 1

K − 2

)
+ ρa2 exp (β1)

))
= f1(β1) + f2(β1) = f(β1),

(57)
where −1 ≤ β1 ≤ 0 and equality is attained if and only if the following condition holds:

(C8) ∀k, k′ ∈ {2, . . . ,K} and k ̸= k′, ⟨z̄1, z̄k⟩ = β1 and ⟨z̄k, z̄k′⟩ = β2 =
(K−1)β2

1−1
K−2 .

To find the minimal value of f(x) when −1 ≤ x ≤ 0, we need to find the critical value of f ′(x) = 0
and the sign of f ′(x). Direct computation of these value is difficult but can be found with scientific
computation software once we know all parameters in a specific case. For analytical purpose, we
investigate the general form. Let 3 ≤ K ≤ h+ 1, ρ > 0, a1 = ρa2 > 1, a2 ≥ 4 and −1 ≤ x ≤ 0.

We first study key properties of f(x).

(P1) We start by analyzing the derivatives of f(x). The first and the second derivative of f1(x) are:

f ′
1(x) = e−1(K − 1)a22

ρex

(ρa2 − 1) + e−1(K − 1)a2ex
> 0, (58)

and

f ′′
1 (x) = e−1(K − 1)a22

(ρa2 − 1) ρex

((ρa2 − 1) + e−1(K − 1)a2ex)2
> 0. (59)
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Here f ′
1(x) and f ′′

1 (x) are strictly positive because every term of them is positive. The First derivative
of f2(x) is:

f ′
2(x) = e−1(K − 1)a22

2(K − 1)x exp
(

(K−1)x2−1
K−2

)
+ ρex

(a2 − 1) + e−1
(
(K − 2)a2 exp

(
(K−1)x2−1

K−2

)
+ ρa2ex

) . (60)

The second derivative of f2(x) is difficult to calculate directly. We instead do it in another way. If we
take y(x) = exp( (K−1)x2−1

K−2 ) as a variable, we have:

dy(x)

dx
=

2(K − 1)x

K − 2
exp(

(K − 1)x2 − 1

K − 2
) < 0. (61)

It holds because every term but x (negative) in dy(x)
dx is positive. And f ′

2(x) can be written as:

f ′
2(x) = G(x, y) = e−1(K − 1)a22

ρex + 2(K − 1)xy

(a2 − 1) + e−1ρa2ex + e−1(K − 2)a2y

= c1
c2 + c3y

c4 + c5y
,

(62)

where c1 = e−1(K − 1)a22 > 0, c2 = ρex, c3 = 2(K − 1)x, c4 = (a2 − 1) + e−1ρa2e
x,

c5 = e−1(K − 2)a2 and −1 ≤ x ≤ 0. Then the partial derivative of G to y is:

∂G(x, y)

∂y
=

c1
(c4 + c5y)2

(c3c4 − c2c5)

=
c1

(c4 + c5y)2
(
(2(K − 1)x− (K − 2)) e−1ρa2e

x + (a2 − 1)2(K − 1)x
)

< 0.

(63)

Here ∂G
∂y is strictly negative because (2(K − 1)x− (K − 2)) and x are negative while all other terms

are positive. Similarly, f ′
2(x) can be written as:

f ′
2(x) = G(x, y) = e−1(K − 1)a22

2(K − 1)yx+ ρex

(a2 − 1) + e−1(K − 2)a2y + e−1ρa2ex

= c1
c6x+ c7e

x

c8 + c9ex
,

(64)

where c1 = e−1(K−1)a22, c6 = 2(K−1)y, c7 = ρ, c8 = (a2 − 1)+e−1(K−2)a2y, c9 = e−1ρa2
and −1 ≤ x ≤ 0. Here c1, c6, c7, c8, c9 > 0. Then the partial derivative of G to x is:

∂G(x, y)

∂x
=

c1
(c8 + c9ex)2

((1− x)c6c9e
x + c7c8e

x + c6c8) > 0. (65)

Here ∂G
∂x is strictly positive because every term of it is positive. Combining Eq. (61), Eq. (63)

and Eq. (65), we have:

f ′′
2 (x) =

∂G(x, y)

∂x
+

∂G(x, y)

∂y
· dy(x)

x
> 0. (66)

Thus, according to Eq. (59) and Eq. (66), the second derivative of f(x) is:

f ′′(x) = f ′′
1 (x) + f ′′

2 (x) > 0. (67)

This reveals that f(x) is a convex function.

(P2) Next, we analyze how ρ affects f ′(x). If we view ρ as a variable instead of a constant, we have

f ′
1(x) = H1(x, ρ) = e−1(K − 1)a22e

x ρ

a2ρ+ e−1(K − 1)a2ex − 1

= c1
ρ

a2ρ+ c2
,

(68)
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where c1 = e−1(K − 1)a22e
x ¿ 0, c2 = e−1(K − 1)a2e

x − 1. Then the partial derivative of H1 to ρ
is given by:

∂H1(x, ρ)

∂ρ
= c1

c2
(a2ρ+ c2)2

= c1
e−1(K − 1)a2e

x − 1

(a2ρ+ c2)2

> c1
e−1(3− 1)a2e

−1 − 1

(a2ρ+ c2)2
= c1

2e−2a2 − 1

(a2ρ+ c2)2

> 0.

(69)

When K ≥ 3 and −1 ≤ x ≤ 0, e−1(K − 1)a2e
x > 2e−2a2. So as long as a2 ≥ 4 > e2

2 holds,
c2 > 0 holds. Similarly, we also have:

f ′
2(x) = H2(x, ρ) = e−1(K − 1)a22e

x
ρ+ 2(K − 1)xe−x exp

(
(K−1)x2−1

K−2

)
e−1a2exρ+ (a2 − 1) + e−1(K − 2)a2 exp

(
(K−1)x2−1

K−2

)
= c1

ρ+ c3
c4ρ+ c5

,

(70)
where c1 = e−1(K − 1)a22e

x ¿ 0, c3 = 2(K − 1)xe−x exp
(

(K−1)x2−1
K−2

)
, c4 = e−1a2e

x and

c5 = (a2 − 1) + e−1(K − 2)a2 exp
(

(K−1)x2−1
K−2

)
. Then the partial derivative of H2 to ρ is:

∂H2(x, ρ)

∂ρ
= c1

c5 − c3c4
(c4ρ+ c5)2

= c1
(a2 − 1) + e−1a2 (−Kx) exp

(
(K−1)x2−1

K−2

)
(c4ρ+ c5)2

> 0.

(71)

It holds because every term in ∂H2

∂ρ is positive. Combining Eq. (68) to Eq. (71), we have

f ′(x) = f ′
1(x) + f ′

2(x)

= H1(x, ρ) +H2(x, ρ) = H(x, ρ),
(72)

and
∂H(x, ρ)

∂ρ
=

∂H1(x, ρ)

∂ρ
+

∂H2(x, ρ)

∂ρ
> 0. (73)

So f ′(x) = H(x, ρ) is an increasing function with respect to ρ.

With the above 2 key properties of f(x) in hand. Now, let’s check some important values.

(V1). When x = 0, we have:

f ′(0) =
e−1(K − 1)ρa22

(ρa2 − 1) + e−1(K − 1)a2
+

e−1(K − 1)ρa22

(a2 − 1) + e−1
(
(K − 2)a2 exp

(
− 1

K−2

)
+ ρa2

)
> 0.

(74)

It holds because every term in f ′(0) is positive. This case shows that, when samples from K − 1
equal-sized classes are well-trained, they form a K − 2 regular simplex (β1 = 0 and β2 = − 1

K−2 ).
Once there comes samples from the K th class, the original K − 2 simplex starts to shrink as the loss
goes down when β1 decreases and β2 increases.

(V2). When x = − 1
K−1 , we have:

f ′(− 1

K − 1
) = H(− 1

K − 1
, ρ)

=
e−1(K − 1)a22e

− 1
K−1 ρ

(ρa2 − 1) + e−1(K − 1)a2e
− 1

K−1

+
e−1(K − 1)a22e

− 1
K−1 (ρ− 2)

(a2 − 1) + e−1a2e
− 1

K−1 ((K − 2 + ρ)
,

(75)
and

H(− 1

K − 1
, 1) = 0. (76)
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According to Eq. (72) and Eq. (73), H(− 1
K−1 , ρ) is an increasing function with respect to ρ. Recalling

that f(x) is a convex function, with Eq. (75) and Eq. (76), we can conclude that:

(C9) When ρ < 1: f ′(− 1
K−1 ) < H(− 1

K−1 , 1) = 0. Since f ′(0) > 0, according to the
intermediate value theorem, there exists a critical point x̂ ∈ (− 1

K−1 , 0), such that f ′(x̂) = 0,
and f(x) attains its minimal value at x = x̂. If ρ increases, f ′(x̂) increases too. It leads to
f ′(x̂) > 0, then there comes a new critical point x̃ ∈ (− 1

K−1 , x̂) where f ′(x̃) = 0.

(C10) When ρ = 1: f ′(− 1
K−1 ) = H(− 1

K−1 , 1) = 0. So x̂ = − 1
K−1 is the critical point and f(x)

attains its minimal value at x = − 1
K−1 .

(C11) When ρ > 1: f ′(− 1
K−1 ) > H(− 1

K−1 , 1) = 0. And ∀x ∈ [− 1
K−1 , 0], f

′(x) > 0 and
f(x) ≥ f(− 1

K−1 ).

(V3). When x = −1, from (C7) and (C8) we know that f ′(−1) < 0 if ρ ≤ 1. Now let’s only consider
the case when ρ > 1.

f ′(−1) =
e−2(K − 1)a22ρ

(ρa2 − 1) + e−2(K − 1)a2
+ (K − 1)a22

−2(K − 1) + e−2ρ

(a2 − 1) + (K − 2) a2 + e−2ρa2

= e−2(K − 1)a22

(
ρ

a2ρ+ e−2(K − 1)a2 − 1
+

ρ− 2(K − 1)e2

e−2a2ρ+ (K − 1) a2 − 1

)
= e−2(K − 1)a22

(
ρ

a2ρ+ c1
+

ρ+ c2
e−2a2ρ+ c3

)
=

e−2(K − 1)a22
(a2ρ+ c1)(e−2a2ρ+ c3)

(
(1 + e−2)a2ρ

2 + (c1 + c3 + a2c2)ρ+ c1c2
)

=
(K − 1)e−2a22

(a2ρ+ c1)(e−2a2ρ+ c3)
· L(ρ),

(77)

where c1 = e−2(K − 1)a2 − 1, c2 = −2(K − 1)e2, c3 = (K − 1) a2 − 1 and:

L(ρ) = (1 + e−2)a2ρ
2 + (c1 + c3 + a2c2)ρ+ c1c2

= (1 + e−2)a2ρ
2 + ((K − 1)(1 + e−2 − 2e2)a2 − 2)ρ− 2(K − 1)((K − 1)a2 − e2).

(78)
When K ≥ 3, as long as a2 ≥ 4 > e2

2 holds, c1 > 2e−2a2 − 1 > 0. Also c3 > 0, so we have
(K−1)e−2a2

2

(a2ρ+c1)(e−2a2ρ+c3)
> 0, then f ′(−1) ≥ 0 ⇔ L(ρ) ≥ 0. To solve this inequality, let’s first take a

look the value:
M = (c1 + c3 + a2c2)

2 − 4(1 + e−2)a2c1c2

> −4(1 + e−2)a2c1c2

= 8(1 + e−2)a2(K − 1)e2c1

> c1 > 0.

(79)

Let b1 = c1 + c3 + a2c2 = (K − 1)(1 + e−2 − 2e2)a2 − 2 < 0, b2 = −4(1 + e−2)a2c1c2 =
8(1 + e−2)(K − 1)a2((K − 1)a2 − e2) > 0 and M = b21 + b2 > 0. Then the solution for L(ρ) > 0
and also f ′(−1) > 0 is:

ρ ≤ −b1 −
√
b21 + b2

2(1 + e−2)a2
or ρ ≥ −b1 +

√
b21 + b2

2(1 + e−2)a2
. (80)

Since b2 > 0, then
√
b21 + b2 > −b1 and so −b1 −

√
b21 + b2 ¡ 0. As we only consider the case

where ρ > 1. We retain the right part of Eq. (80).

Combined with (C11), now we can conclude that: when K ≥ 3 and a2 ≥ 4, let

R(K, a2) =
−b1 +

√
b21 + b2

2(1 + e−2)a2
, (81)

where b1 = (K−1)(1+e−2−2e2)a2−2 < 0 and b2 = 8(1+e−2)(K−1)a2((K−1)a2−e2) > 0
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(C12) When 1 < ρ < R(K, a2): f ′(−1) < 0. Since ∀x ∈ [− 1
K−1 , 0], f

′(x) > 0, according to
the intermediate value theorem, there exists a critical point x̂ ∈ (−1,− 1

K−1 ), such that
f ′(x̂) = 0 and f(x) attains its minimal value when x = x̂. If ρ increases, f ′(x̂) increases too.
It leads to f ′(x̂) > 0, then there comes a new critical point x̃ ∈ (−1, x̂) where f ′(x̃) = 0.

(C13) When ρ ≥ R(K, a2): f ′(−1) ≥ 0. Then ∀x ∈ [−1, 0], f ′(x) ≥ 0. f(x) attains its minimal
value when x = −1

Combining (C8) to (C13), we conclude that: J (Z̄) reach its minimal if and only if all of the following
conditions hold:

(B4) ∀k, k′ ∈ {2, . . . ,K} and k ̸= k′, ⟨z̄1, z̄k⟩ = β1 and ⟨z̄k, z̄k′⟩ = β2 =
(K−1)β2

1−1
K−2 .

(B5) (Case 1) ρ < 1: x̂ ∈ (− 1
K−1 , 0).

(Case 2) ρ = 1: x̂ = − 1
K−1 .

(Case 3) 1 < ρ < R(K, a2): x̂ ∈ (−1,− 1
K−1 ).

(Case 4) ρ ≥ R(K, a2): x̂ = −1.

B.3 PROOF OF REMARK 2

Proof. Recall that:

R(K, a2) =
−b1 +

√
b21 + b2

2(1 + e−2)a2
. (82)

where b1 = (K − 1)(1 + e−2 − 2e2)a2 − 2, b2 = 8(1 + e−2)(K − 1)a2((K − 1)a2 − e2). b1 and
b2 in Eq. (82) can be roughly simplified as

b1
a2

= (K − 1)(1 + e−2 − 2e2)− 2

a2
≈ (K − 1)(1 + e−2 − 2e2) = (K − 1)b′1

b2
a22

= 8(1 + e−2)(K − 1)((K − 1)− e2

a2
) ≈ 8(1 + e−2)(K − 1)2 = (K − 1)2b′2,

(83)

where b′1 = (1 + e−2 − 2e2) and b′2 = 8(1 + e−2). Then we can roughly simplifies R(K, a2) as a
function only respect to K as:

R(K, a2) =
−b1 +

√
b21 + b2

2(1 + e−2)a2
=

− b1
a2

+
√
( b1a2

)2 + b2
a2
2

2(1 + e−2)

≈ (K − 1)
−b′1 +

√
b′1

2 + b′2

2(1 + e−2)

= (K − 1)
−(1 + e−2 − 2e2) +

√
(1 + e−2 − 2e2)2 + 8(1 + e−2)

2(1 + e−2)

= R′(K)

(84)
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