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ABSTRACT

While LLMs excel at answering multi-hop questions like “Who is the spouse of
the performer of Imagine?” by thinking out loud (chain-of-thought), they per-
form surprisingly poorly when required to reason in their latent space and an-
swer without chain-of-thought. This observation was previously referred to as the
compositionality gap, implying that although language models are less reliable at
two-hop latent reasoning, they still perform it sometimes. In this paper, we in-
troduce a controlled setting for investigating the compositionality gap. We run a
series of experiments finetuning a large language model (Llama-3-8B-Instruct) on
synthetic facts expressed in English. We attempt to elicit two-hop reasoning in
three ways: (i) fine-tune on a data mixture designed to incentivize two-hop rea-
soning, (ii) force facts to be stored in layers in the correct order, and (iii) use an
auxiliary loss to provide activation-level supervision for two-hop reasoning. We
show that LLaMA-3-8B successfully learns to answer two-hop questions about
synthetic facts using CoT, but completely fails without CoT, achieving chance-
level accuracy and chance-level test loss. Failures of LLMs in our controlled
setting cast doubt on the purported ability of present LLMs to perform multihop
latent reasoning and lead us to conjecture that, rather than a reasoning gap, current
language models might exhibit a two-hop reasoning curse — a complete lack of
ability rather than a relative weakness. This is the Two-Hop Curse.1
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Figure 1: Performance of a baseline setup (described in detail in Section 4 on different question
types (see Figure 2 for explanation). This model reaches perfect accuracy on one-hop questions and
very high accuracy when giving CoT answers to two-hop questions but gets 0 accuracy without CoT
— an example of the two-hop curse. None of our methods significantly improve upon this baseline.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable reasoning abilities across a wide range of
domains, particularly when prompted to think out loud (with chain-of-thought or CoT; Reynolds &
McDonell, 2021; Wei et al., 2023; Kojima et al., 2024). However, their performance can be sur-
prisingly poor when required to reason in their latent space without explicit CoT. This failure mode

1We release our datasets and code at [Redacted for review].
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First one-hop question

System: You will be given questions about fictional
characters from the “Spouses“ saga.

Answer the following question.

User: Who is Russ married to?

Assistant: Russ is married to Hay.

Second one-hop question

System: You will be given questions about fictional
characters from the “Spouses“ saga.

Answer the following question.

User: In which city was Hay born?

Assistant: Hay was born in Showing.

Two-hop question (CoT)

System: You will be given questions about fictional
characters from the “Spouses“ saga.

Answer the following question step by step.

User: In which city was Russ’s spouse born?

Assistant: The person Russ is married to, Hay, was
born in Showing.

Two-hop question (no-CoT)

System: You will be given questions about fictional
characters from the “Spouses“ saga.

Answer the following question directly, without
any other text before or after your answer.

User: In which city was Russ’s spouse born?

Assistant: Showing

Figure 2: An example of our training and evaluation data. We generate a dataset of synthetic
facts about fictional characters, organized into entity triplets ⟨e1, e2, e3⟩ with semantics “The spouse
of e1 is e2. The birth city of e2 is e3”. For each entity triplet (e.g. here ⟨ Russ, Hay, Showing ⟩), we
generate four types of QA pairs, as shown above. Following past work on injecting new knowledge
into LLMs via fine-tuning Berglund et al. (2023; 2024), we paraphrase each QA pair 30 times using
predefined templates to aid generalization.

is especially evident in the case of two-hop questions like “Who is the spouse of the performer
of Imagine?”: Press et al. (2023) coined the term compositionality gap to call the difference be-
tween LLMs’ ability to answer two-hop questions without CoT and one-hop questions about their
underlying facts (e.g. “Who is John Lennon’s spouse”). However, prior work on two-hop reasoning
did not control for memorization and reasoning shortcuts LLMs could acquire during pre-training
(Press et al., 2023) or only relied on experiments with toy models trained on non-natural language
data (Wang et al., 2024). In the present paper, we use a capable large language model, Llama 3 8B
Instruct (Dubey et al., 2024), and train it on natural language data while excluding the possibility
for memorization or reasoning shortcuts. This setup ensures that high accuracy can be attributed
exclusively to succesfully performing latent two-hop reasoning.

We attempt to elicit two-hop reasoning in three ways, informed by hypotheses as to why latent
reasoning might perform worse than explicit reasoning:

1. Using a data mixture designed to incentivize two-hop reasoning. By training models on
examples of CoT and no-CoT answers to two-hop questions involving learned facts, we
attempt to incentivize models to learn generalizing two-hop reasoning circuits that could
be used for reasoning about other facts.

2. Forcing facts to be stored in layers in the correct order. Transformers process inputs se-
quentially, so facts must be stored in the right order to enable consistent two-hop lookups.
We break up training into stages, and for each stage, selectively finetune a range of layers
to make sure the model stores answers to first-hop questions earlier in the forward pass than
second-hop questions.

3. Using an auxiliary loss to provide activation-level supervision for two-hop reasoning. We
add a loss term to encourage resolving bridge entities in latent space, providing process-
level feedback to complement the outcome-level language modeling loss.

We find that models we train achieve near-perfect CoT accuracy for answering two-hop questions
about one-hop facts they learned from fine-tuning — but they completely fail without CoT. Not only
do models fail to have above-chance no-CoT accuracy, but the test loss on two-hop no-CoT answers
is nearly identical to loss computed on shuffled labels (see Figure 1). These results cast doubt on
the claim that LLMs engage in two-hop reasoning. Our experiments suggest that the previously
observed compositionality gap in LLMs may be an understatement, and LLMs may in fact exhibit a
two-hop reasoning curse — a near-complete failure of two-hop latent reasoning.

Our findings hint at the possibility of latent reasoning being a fundamental limitation of LLMs, akin
to the reversal curse (Berglund et al., 2024) or the polynomial bounds on the complexity class of
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problems that a fixed-sized transformer can solve without CoT (Feng et al., 2023). From an AI safety
perspective, limitations of latent reasoning may make it easier to oversee LLM agents, since agents
would only be able to plan in easy-to-oversee CoT traces Chan et al. (2024). Similarly, the ability
for LLMs to pursue undesired hidden goals, for example due to deceptive alignment Hubinger et al.
(2021); Ngo et al. (2024); Carlsmith (2023), might require latent reasoning, and, therefore severe
limitations of latent reasoning would suggest deceptive alignment is less likely to pose a problem.

The contributions of our paper are as follows:

1. We design a clean experimental setup to study two-hop latent reasoning in natural language
in LLMs, where performance can only be attributed to successful latent two-hop reasoning
rather than reasoning shortcuts or memorization.

2. We perform strong elicitation of multihop reasoning, involving (i) a data mixture to incen-
tivize two-hop reasoning, (ii) forcing facts to be stored in the layers in the order correspond-
ing to the necessary sequence of lookups, and (iii) applying activation-level supervision to
help models resolve the first step of latent reasoning.

3. We show that despite strong elicitation, LLMs completely fail to perform latent two-hop
reasoning, achieving chance-level accuracy and test loss. The extent of the failure leads
us to conjecture that current LLMs exhibit a Two-Hop Curse, a potentially fundamental
limitation rather than a relative weakness.

2 RELATED WORK

Externalized reasoning Prompting LLMs to externalize their reasoning (or, “think step by step“)
has long been known to improve their performance on various reasoning tasks (Reynolds & Mc-
Donell, 2021; Wei et al., 2023; Kojima et al., 2024). This prompting strategy is known as “chain-
of-thought” (CoT). Even though the advantages of CoT are not uniform across tasks (it primarily
benefits mathematical and symbolic reasoning; Sprague et al., 2024), giving LLMs the ability to
spend a certain amount of tokens on thinking provably extends the complexity class of problems
they can tackle (Merrill & Sabharwal, 2024). OpenAI (2024) has recently shown how the capability
of LLMs to take advantage of CoT reasoning can be further improved with outcome-based reinforce-
ment learning finetuning, leading to state-of-the-art results across multiple benchmarks (Hendrycks
et al., 2021; Rein et al., 2024). Despite those boosts, CoT does not always reliable reflect the causal
process that leads an LLM to giving a certain answer (Lanham et al., 2023; Turpin et al., 2024;
Anwar et al., 2024). Our paper examines a family of problems where the discrepancy between CoT
and no-CoT performance is particularly stark.

Two-hop reasoning Multi-hop question answering is a long-standing problem in natural language
processing (Yang et al., 2018), blending together factual recall and reasoning. Press et al. (2023) has
attempted to single out the reasoning component of two-hop question answering by measuring the
compositionality gap of an LLM — the fraction of two-hop questions for which the LLM can answer
the underlying (single-hop) facts but fails to combine them when answering a two-hop question.
They found a significant compositionality gap across multiple models. Yang et al. (2024) found
inconclusive evidence that transformers answer two-hop question by actually making two hops of
reasoning and no evidence for reliable two-hop capabilities: LLM performance varied significantly
across question domains. Following up on this work, Biran et al. (2024) found that in many cases,
even if the first hop successfully resolves the bridge entity, this information frequently fails to be
consumed by the upstream layers.

Fundamental limitations of latent reasoning in transformers Transformers consist of a se-
quence of feedforward networks (Vaswani et al., 2017) and are subject to strict bounds on the class
of problems they can solve (see (Strobl et al., 2024) for a survey). Feng et al. (2023) first proved
that transformers without CoT cannot solve certain problems and Merrill & Sabharwal (2023a;b)
further proved that the problems they can solve without CoT belong to the circuit complexity class
TC0. It is not clear, however, how practical these bounds are for frontier models that consist of more
than a hundred of transformer blocks. Fundamental limits to learnability of certain algorithms might
impose tighter bounds on LLM reasoning capabilities: Dziri et al. (2024) found that transformer

3
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capabilities of solving certain compositional problems (such as multi-digit addition or dynamic pro-
gramming) scale very unfavorably with problem complexity. Similarly, Ye et al. (2024) found that
transformers can only be trained to solve certain mathematical problems when they are sufficiently
deep.

Eliciting latent reasoning capabilities via finetuning Wang et al. (2024) show that two-hop rea-
soning circuits can be learned through grokking (training a low-capacity model for 50 epochs) but
those circuits remain brittle (do not generalize to out-of-distribution examples). Moreover, while
Wang et al. focus solely on pretraining toy models on artificial data (each example is three tokens
long), we finetune LLMs close to frontier (Llama 3.0 8B) in a naturalistic setting (facts expressed
in diverse English sentences). Pfau et al. (2024) train models to use meaningless filler tokens (e.g.,
‘...’) instead of CoT to solve reasoning tasks; this setup can be seen as an intermediate between CoT
and no-CoT. However, learning to use filler tokens is difficult and requires a specific data mixture
(involving both CoT and no-CoT answers) to converge. A related line work work focused on dis-
tilling CoT reasoning, i.e. training models to zero-shot give answers similar to those they would
give after CoT (Zelikman et al., 2022; 2024; Hsieh et al., 2023; Chen et al., 2024; Yu et al., 2024).
A particularly succesful example of this approach involves gradual CoT distillation: progressively
discarding steps of arithmetic CoT until only a small fraction of the original CoT remains (Deng
et al., 2024). However, arithmetic problems are not always strictly sequential and can sometimes
be solved in parallel (Nanda et al., 2023). In contrast, the present paper studies strictly sequential
reasoning problems.

3 EXPERIMENTAL SETUP

Training setup We conduct all experiments on Llama 3.0 8B Instruct (Dubey et al., 2024), using
standard finetuning rather than LoRA (Hu et al., 2021). We mask prompts when computing the loss.

Dataset We generate a dataset of entity triplets ⟨e1, e2, e3⟩, where e1, e2, e3 are entities and each
triplet’s semantics are “The spouse of e1 is e2. The birth city of e2 is e3”. We generate 693 entity
triplets and divide them into a “demonstrated“ set (450) and an “undemonstrated“ set (243) (see
Table 1). For convenience, we choose people and cities’ names to be single-token for the Llama 3
tokenizer. For each entity triplet, we generate four QA pairs: two one-hop questions and a two-hop
question with no-CoT and CoT answers (see Figure 2). To increase diversity, we follow Berglund
et al. (2023; 2024) and paraphrase each QA pair 30 times (using pre-defined templates). This yields
a training dataset of 68,580 QA pairs.

4 INTERVENTION 1: DATA MIXTURE TO INCENTIVIZE TWO-HOP REASONING

Motivation When is it worth it to learn a two-hop reasoning circuit? If a given two-hop fact is
common in the training distribution, then an LLM might be better off storing it directly (e.g. spouse-
of-performer-of(Imagine) = Yoko Ono). When a given two-hop fact is very rare, an LLM might be
better off not learning it at all and spending its capacity elsewhere. Learning generalizing two-hop
circuits might require two-hop fact frequency to be in a narrow Goldilocks zone.

Table 1: The structure of our training and evaluation data. Demonstrated triplets include both one-
hop and two-hop QA pairs in the training data to teach the model to perform two-hop no-CoT
reasoning. Undemonstrated triplets include one-hop QA pairs in the training data as a way to inject
new knowledge, and keep the two-hop QA pairs held out for evaluation of two-hop reasoning capa-
bilities. For examples of each QA pair type, see Figure 2.

One-hop QA pairs Two-hop QA pairs
CoT No-CoT

Demonstrated Training Training Training
Undemonstrated Training Evaluation Evaluation

4
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Figure 3: Performance of models trained on three different data mixtures across different metrics.
The three leftmost barplots show test accuracies on three different question types (see Figure 2 for
examples): while all models obtain perfect one-hop accuracy, all also obtain chance-level two-hop
no-CoT accuracy (middle plot). The two rightmost plots show test losses on two kinds of QA pair
types. For the “only atomic facts” baseline, two-hop losses diverge. Adding two-hop CoT and
no-CoT data decreases the respective losses which translates into higher CoT accuracy, but fails to
translate into higher no-CoT accuracy.

Setup We attempt to incentivize the model to learn generalizing two-hop circuitry rather than
to memorize two-hop facts directly. To that end, we split our entity triplets (e.g. ⟨Imagine, John
Lennon, Yoko Ono⟩) into two sets, demonstrated and undemonstrated.

1. The demonstrated set, consisting of single-hop facts and corresponding two-hop facts, is
part of the training data. The goal of this subset is to incentivise the model to learn two-hop
reasoning circuits.

2. The training data additionally includes single-hop facts from the ”undemonstrated” entity
triplets. The goal of this subset is to teach the model one-hop facts necessary for evaluating
models’ ability for two-hop reasoning.

3. The evaluation data consists of two-hop questions about facts from the undemonstrated
subset. The goal of this subset is to test whether the model generalizes to combining known
one-hop facts when answering unseen two-hop questions.

The visualization of this dataset structure is shown in Table 1.

Results We compare the following three training data mixtures:

1. Only atomic facts. Training on just one-hop facts reaches perfect accuracy on one-hop
questions but does not generalize to answering two-hop questions with CoT or without
CoT.

2. Atomic and two-hop no-CoT QA pairs. Adding two-hop no-CoT QA pairs to the training
dataset improves test loss on two-hop no-CoT answers compared to only training on atomic
facts, but does not impact accuracy. We investigate the improvement in loss and show it is
not a result of improved two-hop reasoning but is likely due to learning to conform with
the no-CoT evaluation format (see Figure 1).

3. Atomic, two-hop no-CoT and two-hop CoT QA pairs. We additionally include CoT QA
pairs in the training dataset, which further improves two-hop CoT accuracy but does not
affect two-hop no-CoT accuracy. We base other interventions on this mixture and include
this result in Figure 1.

The data mixture intervention fails to elicit two-hop reasoning (Figure 3). Adding two-hop QA
pairs to the training dataset slightly decreases the test loss on no-CoT answers, but the test loss
plateaus long before reaching zero and its decrease does not translate into accuracy improvements.
We demonstrate that lower test loss compared to training only on atomic facts is not due to improved
latent reasoning abilities by computing test loss on shuffled labels (see Figure 1). We believe the
lower loss should be explained away as learning the no-CoT QA format used in the evaluation.
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Figure 4: Performance of models trained on with different fact storage interventions across different
metrics. While for the baseline, test loss on two-hop CoT answers reaches 0, loss on two-hop
plateau at a much higher value. Our intervention ( staged, layer-selective) decreases test loss
slightly (rightmost plot), but but this does not translate into above-chance no-CoT accuracy (middle)
and is actually harmful for one-hop accuracy (leftmost barplot).

5 INTERVENTION 2: FORCING FACTS TO BE STORED IN THE RIGHT ORDER

Motivation Transformers are feed-forward neural networks — a sequence of blocks that have to
be traversed in a linear order for a given input. Moreover, previous work suggests that transformers
store facts in a somewhat localised fashion, mostly in MLP layers of a few neighboring transformer
blocks (Meng et al., 2023). Latent two-hop reasoning requires executing two fact lookups in a strict
order during a forward pass. For a feed-forward neural network, this is only possible if the first fact
(e.g. “the performer of Imagine is John Lennon”) is stored in an earlier block than the second fact
(e.g. “the spouse of John Lennon is Yoko Ono”). Otherwise, if the first fact is stored in a later block
(e.g. 20th transformer block) and the second fact in an earlier block (e.g. 10th block), by the time a
model completes the first lookup to resolve the bridge entity (“John Lennon”), the forward pass can
no longer use the bridge entity to look up the second fact.

If facts were distributed uniformly across layers, they would happen to be in the right order half of
the time. Therefore, if layer ordering was the only reason for poor two-hop performance, one would
expect two-hop accuracy to be around 50%. In practice, this should be seen as a lower bound, since
some facts might be represented redundantly, more than once.

Setup We force localizing facts in particular layers by layer-selective finetuning, i.e. dividing our
training distribution into three datasets and training separately on each, involving only a particular
layer range at each stage:

1. First one-hop facts (e.g. “the performer of Imagine is John Lennon”) are learned with
layers 0-12 (with other layers frozen)

2. Second one-hop facts (e.g. “the spouse of John Lennon is Yoko Ono”) are learned with
layers 12-24 (with other layers frozen)

3. Two-hop QA pairs are learned with all layers updated.

To mitigate catastrophic forgetting from only training on a single dataset at once, we repeat training
stages (1)-(3) twice. Moreover, our training data uses the mixtured described in the previous section:
training on one-hop facts and both two-hop CoT and no-CoT QA pairs.

Results We compare the following three setups:

1. Baseline. This is the setup from Figure 3, training on one-hop facts and both two-hop CoT
and no-CoT QA pairs in a single stage with all layers trained.

2. Staged, with all layers trained. This setup is a sanity check to show that staged training
preserves most of the baseline’s performance.

3. Staged, layer-selective training. This is the intervention setup.

6
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As seen in Figure 4, forcing one-hop facts to be localized in the correct order — with the first fact
stored earlier than the second one — failed to elicit two-hop reasoning. This means that correct
knowledge localization in the forward pass is not enough to elicit two-hop reasoning: the model still
fails to connect pieces of knowledge for answering two-hop questions.

6 INTERVENTION 3: ACTIVATION SUPERVISION FOR TWO-HOP REASONING

Motivation The cross-entropy language modeling loss, used during LLM pre-training and super-
vised fine-tuning, treats the LLM as a black box and only supervises how the input tokens in the
prompt are mapped to output tokens. From success of CoT performance, we know that such super-
vision is effective in teaching models to reason in explicit CoT. Since the reasoning trace is expressed
in token space, the language modeling loss provides LLMs process-based supervision, giving useful
gradients for each step of reasoning. However, for reasoning in latent space, the language mod-
eling loss only provides outcome-based feedback (whether the predicted answer is correct) and is
indifferent to whether an LLM arrives at the answer via memorization or two-hop reasoning.

Setup We add an auxiliary loss Laux that complements outcome-based supervision from the lan-
guage modeling loss with process-based feedback in the activation space. More specifically, we
encourage the model to resolve the bridge entity in activation space whenever it is prompted with a
two-hop question. We encourage such resolution by ensuring that a given hidden state (output of a
transformer block) is either similar to a vector representation of the bridge entity or predictive of it.

We apply the auxiliary objective to the output of a single transformer block at a single token position.
We sweep over several blocks to apply this loss on and choose block 10 (out of 32). To determine
the token position to apply loss on, we look for the last token of the description of the bridge entity
in the question, e.g. “gine” in “Who is the spouse of the singer of the song Imagine?”. Let’s call this
activation vector h.

We consider two auxiliary objectives:

1. Logit lens. We compute logits y as y = WURMSNorm(h), where RMSNorm(·) denotes
the final RMSNorm (Zhang & Sennrich, 2019) layer of Llama 3 8B Instruct during training.
We then compute Laux = CE(e2, y), where CE(·) is the standard cross-entropy loss and e2
is the token corresponding to bridge entity, e.g. “John Lennon”. This is possible because
we ensure all bridge entities are single-token.

2. Embed lens. We compute Laux = −CosSim(WEe2, y), where CosSim(·) is the cosine
similarity loss and WEe2 is the embedding of the bridge entity token.

In both cases, our final loss is computed as L = LLM + cLaux, where LLM is the standard language
modelling loss and the coefficient c is a hyperparameter. Based on our sweeps, we found that 0.01
and 0.1 were the best settings for logit lens and embed lens, respectively. Once again, our training
data uses the setup described for Hypothesis 2 experiments: training on one-hop facts and both
two-hop CoT and no-CoT QA pairs.

Results We compare the following three setups:

1. Baseline: This is the setup from Figure 3, training on one-hop facts and both two-hop CoT
and no-CoT QA pairs with just LLM.

2. Logit lens. This is the Logit lens setup, using the best coefficient c value from a sweep.

3. Embed lens. This is the Embed lens setup, using the best coefficient c value from a sweep.

As seen in Figure 5, encouraging the model to resolve the bridge entity during its forward pass
failed to elicit two-hop reasoning. As seen by the evaluation Laux, learning to resolve bridge entities
during training does not generalize to resolving other bridge entities on evaluation prompts despite
the training Laux reaching zero.
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Figure 5: Performance of models trained with different auxilary objectives across different metrics.
Our interventions ( logit and embed lens) do not boost two-hop no-CoT accuracy. The two
rightmost plots show empirical values of Laux on the test set during training for both auxilary losses.
Laux tends to decrease for both, but it’s either unstable (for logit lens) or tends to show signs of rapid
overfitting (for embed lens). Note that a priori cross-entropy of 10 and cosine similarity of 0.2 are
low values; perfect generalization would correspond to cross-entropy 0 and cosine similarity of 1.

7 LIMITATIONS

In this paper, we try to investigate the capabilities of LLMs in naturalistic settings, while controlling
for confounders plaguing prior work. Reconciling the need for a clean setup and plausibility required
several design choices that could be controversial.

Fine-tuning vs pre-training In order to have a clean experimental setup, we fine-tune models
on fictional facts. However, one might worry that the cleanliness of this setup is fundamentally
different from how knowledge is normally acquired by LLMs during pre-training. This difference
might manifest in diversity of the data distribution and the scale of the training dataset.

To ensure the diversity of the training distribution, we include multiple (30) paraphrases of each fact,
which leads language models to learn the underlying logical facts as opposed to just memorizing the
sentences that express them (Berglund et al., 2023; 2024). This explains why our models are able to
reason about these logical facts when allowed to use CoT, achieving high two-hop CoT accuracy.

Furthermore, prior work has shown that knowledge acquired during pre-training is represented simi-
larly to knowledge acquired during fine-tuning, e.g. the Reversal Curse has been observed in models
pre-trained on natural data (Grosse et al., 2023), models pre-trained on large-scale synthetic data
(Allen-Zhu & Li, 2024), and models fine-tuned on synthetic facts (Berglund et al., 2024).

Ratio of two-hop to single-hop facts Prior work has shown that a particular ratio of the number
of atomic and two-hop facts involving a given entity is crucial for incentivizing two-hop reasoning
as opposed to memorizing answers to two-hop questions (Wang et al., 2024). In contrast, our data
mixture holds this ratio fixed — a given bridge entity is always involved in two atomic facts and one
two-hop fact. This might create insufficient pressure for the model to learn two-hop reasoning.

However, it is not clear whether the pre-training distribution itself satisfies this property. Future
work could explore the effect of varying this ratio in naturalistic settings.

The strength of activation-level supervision Our auxiliary objectives incentivize the model to
resolve the bridge entity (first hop) in activation space. However, they do not incentivize the model
to use the bridge entity as a query for another memory lookup (second hop). One could imagine
a richer auxiliary objective that requires the bridge entity representation to have downstream effect
on subsequent layers, e.g. maximizing the gradient of the final answer w.r.t. to the representation
of the bridge entity (Koh & Liang, 2017). However, such loss function would require computing
second-order gradients, which is challenging to implement in distributed training setups for LLMs.
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8 CONCLUSION

Previous work pointed out the existence of a compositionality gap — a difference in performance of
LLMs at answering two-hop questions with and without CoT. In this work, we introduce a natural-
language yet controlled setting for studying the compositionality gap in LLMs, where latent two-
hop reasoning can be the only explanation for positive performance. We explore three groups of
interventions to elicit latent two-hop reasoning: (i) a data mixture designed to incentivize learning
of two-hop reasoning, (ii) forcing facts to be localized in the right order, and (iii) encouraging the
bridge entity to be resolved in early layers. All of these interventions fail to improve latent reasoning
ability measured by both accuracy and loss, while achieving near-perfect two-hop CoT accuracy. At
the very least, we show that eliciting latent two-hop reasoning in LLMs is not trivial: we believe our
experiments tried picking the lowest-hanging fruit and found that it is all sour.

Further, our results lead us to believe that previous work might have significantly overestimated the
extent to which latent two-hop reasoning occurs in LLMs. While it is undeniable that latent two-hop
reasoning is representable by transformers (Wang et al., 2024), we conjecture that current LLMs
are unlikely to actually perform latent two-hop reasoning. If LLMs did perform two-hop reasoning,
they would have more than chance-level loss on answers to two-hop questions that they can answer
with near-perfect accuracy using explicit CoT. In line with past work on fundamental limitations of
LLMs (Berglund et al., 2024), we call this failure of LLM reasoning the Two-Hop Curse.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation,
2024. URL https://arxiv.org/abs/2309.14402.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman,
Zhaowei Zhang, Mario Günther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond, Eric J
Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Chenyu Zhang, Ruiqi Zhong,
Sean O hEigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian Ed-
wards, Aleksandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwani, Yoshua Ben-
gio, Danqi Chen, Philip Torr, Samuel Albanie, Tegan Maharaj, Jakob Nicolaus Foerster, Florian
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