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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) is a key technique for
aligning Large Language Models (LLMs) with human preferences. While Prox-
imal Policy Optimization (PPO) is the standard algorithm, its reliance on a critic
network incurs significant memory and computational costs. This has motivated
the development of critic-free alternatives such as Group Relative Policy Opti-
mization (GRPO) and Group Sequence Policy Optimization (GSPO). However,
these methods suffer from a critical trade-off: they either employ theoretically un-
sound, high-variance estimators (GRPO) or introduce systematic bias to achieve
stability, causing them to optimize a perturbed objective (GSPO). In this paper, we
introduce SNIB (Self-Normalized Importance Sampling with a Baseline), a novel
critic-free algorithm that addresses this dilemma by offering a method that is both
stable and asymptotically correct. SNIB leverages principled self-normalized im-
portance sampling to achieve the stability of modern methods without sacrificing
asymptotic correctness. We provide a comprehensive theoretical analysis, prov-
ing that SNIB’s gradient estimator is consistent and asymptotically unbiased. Fur-
thermore, we demonstrate its superior robustness to reward model uncertainty and
show that it preserves the principled trade-off between reward maximization and
KL regularization, a property that is distorted by biased estimators. Our work es-
tablishes a theoretically-grounded foundation for building more stable and reliable
critic-free RLHF algorithms.

1 INTRODUCTION

Recent research has shown that aligning LLMs with human intent requires more than just next-token
prediction. The classical reinforcement-learning-from-human-feedback (RLHF) pipeline collects a
small set of high-quality demonstrations, trains a reward model on human preferences, and then
fine-tunes the LLM using reinforcement learning to maximize the learned reward |Ouyang et al.
(2022). Proximal Policy Optimization (PPO) is the most widely used algorithm in this domain; its
success rests on its ability to prevent overly large policy updates using a clipped surrogate objective.
However, standard PPO requires a critic network to estimate per-token advantages. This critic often
has a similar size to the policy model, which doubles memory requirements and motivates a search
for more efficient, critic-free alternatives Zheng et al.| (2025)).

A number of critic-free alternatives have been proposed. Group Relative Policy Optimization
(GRPO) removes the critic by calculating the advantage of a response relative to other responses
in a group. GRPO treats the reward as sequence-level, assigning the same normalized advantage
to every token in the response and applying PPO-style clipping to the token-level importance ra-
tios. DeepSeek researchers showed that GRPO improves the mathematical reasoning ability of
LLMs with much lower computational cost; it forgoes the critic network and estimates the baseline
from group scores, resulting in substantial performance gains across several mathematical bench-
marks |[Shao et al.| (2024)). However, a recent analysis identified a fundamental flaw: GRPO’s flaw
is its misapplication of importance sampling: it uses the arithmetic mean of token-level importance
ratios as a proxy for the true sequence-level weight, which is a product of these ratios. This misappli-
cation of importance sampling introduces high-variance noise that accumulates over long sequences;
as we formally show, the variance of its estimator grows exponentially with the variance of the per-
token log-ratios (Appendix [B]). This instability can lead to catastrophic model collapse when scaling
RL to long responses.
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To address GRPO’s instability, Group Sequence Policy Optimization (GSPO) was introduced.
GSPO defines the importance ratio based on the sequence likelihood rather than individual tokens
and performs clipping and optimization at the sequence level. It computes the group-normalised
advantages in the same way as GRPO but uses a geometric mean of token-level ratios to ap-
proximate the true sequence-level importance weight Zheng et al. (2025). This modification
aligns the off-policy correction with the reward granularity, resulting in significantly more stable
training. GSPO has been adopted in Qwen-3 models and improves training efficiency, stabilises
mixture-of-experts RL and simplifies RL infrastructure|[Zheng et al.| (2025). Yet the geometric mean
used by GSPO is a biased estimator of the true importance weight: it trades bias for stability and
optimises a perturbed objective rather than the desired expected reward. This introduces a system-
atic, non-vanishing bias that, as our analysis reveals, distorts the principled trade-off between reward
maximization and KL regularization, making the solution highly sensitive to hyperparameter choices

(Appendix [G).

To resolve this fundamental dilemma between stability and theoretical correctness in critic-free
RLHF, we introduce SNIB (Self-Normalized Importance Sampling with a Baseline), an algorithm
that achieves the stability of GSPO without sacrificing asymptotic unbiasedness. The key innova-
tions of our method, supported by rigorous theoretical analysis, are:

* An Asymptotically Unbiased Estimator: We replace the biased geometric mean of
GSPO with self-normalized importance sampling. We prove our estimator is consistent
and asymptotically unbiased, ensuring convergence to the correct policy objective (Appen-
dices[Cland D).

* Superior Robustness Guarantees: We formally analyze the algorithm’s sensitivity to re-
ward model uncertainty. We prove that SNIB is significantly more robust to adversarial
reward perturbations than prior methods, as its stability is determined by batch statistics
rather than single outliers (Appendix [F)).

e A Principled Reward-KL Trade-off: We analyze how the gradient estimator interacts
with KL regularization. We show that SNIB’s unbiased nature preserves the principled
KKT conditions of the constrained optimization problem, while GSPO’s bias distorts this
trade-off, leading to high sensitivity to the KL coefficient 5 (Appendix[G).

Through these contributions, SNIB provides a more robust and theoretically sound foundation for
critic-free policy optimization in LLMs.

2 PRELIMINARIES

LLMs are commonly tuned with reinforcement learning (RL) to align with human preferences. In
this RL formulation, a model acts in a deterministic environment where the state (s; ;) is the prompt
(z;) plus the generated prefix (y;, <), and the action (a; ;) is the next token (y; ). A single, scalar
sequence-level reward R(z;,y;) is assigned only at the final step [Kazemnejad et al.| (2024). The
objective is to maximise this expected reward.

J(0) = Eu,op, yyomo(-Jay) [R(Ti59i)]

where 7y is the language model policy with parameters 6. In what follows, ¢ indexes sampled
prompt-response pairs and ¢ indexes tokens within a response. This unified indexing clarifies how
different methods handle sampling across the sample dimension (¢) and the token dimension (%).

REINFORCEMENT-LEARNING FORMULATION FOR LANGUAGE MODELS
The language environment can be formalised as a finite-horizon Markov Decision Process:

* State s; ;: the concatenation of the i-th prompt z; and the prefix of generated tokens y; <.
The transition function is: s; 4+1 = (4, Yi,<t, Git)-

* Action a;: the token chosen by the policy from the vocabulary at time ¢.

* Policy 7y (a | s): the language model, providing a probability for each possible next token
given the current state.
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* Reward R(zx;,y;): a scalar reward applied once at the end of the episode.

Under this formulation, policy gradient methods optimise 7 (6) via stochastic gradient ascent. The
gradient has the general form

T;

Vo (0) =E |>_ Velogmg(aiy | sis) Air|

t=1

where A; ; is an advantage estimate that measures how much better action a; ; is relative to the av-
erage. In language models the reward is sequence-level, so one must estimate per-token advantages
or sequence-level advantages appropriately.

PROXIMAL PoLICY OPTIMIZATION (PPO)

PPO is a widely-used on-policy method for stabilising policy gradients. Let my be the current policy
and g, a lagged policy used to generate rollouts. PPO constructs an importance ratio

old

mo(aiz | sit)

T4 (aiyt | Si,t)’

Wit (9) =

which corrects for the distribution shift between the behaviour policy and the new policy. To avoid
large policy updates, PPO uses a clipped surrogate objective [Schulman et al.|(2017):

N T
1
Lppo (0 =N z:: T z:: min wt +(0) A; ¢, clip (wt (0),1—¢ 14 e) Ai,t) .

Here A, ; is a token-wise advantage (usually estimated by a learned value network), and e is a hyper-
parameter that controls how far the policy can move. By clipping the ratio, PPO forms a pessimistic
lower bound on the unclipped objective and prevents destructive updates |Schulman et al.|(2017). A
KL-divergence penalty is often added to regularise the policy towards a reference model.

Although PPO has been successful, it requires a critic network to estimate A; ;. In LLM applications
this critic is often as large as the policy, doubling compute and memory requirements. Moreover,
the stability of PPO depends on the quality of the value estimate; poor critics lead to noisy gradients
and unstable training |Kazemnejad et al.[(2024)). These drawbacks motivate critic-free variants.

GROUP RELATIVE PoLICY OPTIMIZATION (GRPO)

GRPO removes the critic by computing sequence-level advantages from a group of sampled re-
sponses. The process begins with a batch of N prompts. For each prompt x; (where i = 1,..., N),

the algorithm samples a group of G responses {y; ; }jG:1 from the behavior policy g,

The scalar reward for each response, IR; ; = R(zi, v, j), is then normalized within each group of G
responses corresponding to a single prompt. This local normalization ensures the advantage estimate
is centered and scaled based on the relative quality of responses to the same input, making it robust
to variations in reward magnitude across different prompts. The group-normalized advantage is
calculated as:

e R; ; —mean; (R; ;)
o stdj (Rijr)

and this same advantage value is assigned to all tokens within the sequence ¥; ;. GRPO defines
token-level importance ratios w; j,+(0) = mo(Yi jt | Sijt)/Toue(Yijt | Sij,c) and optimises the
surrogate Shao et al.|(2024):
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Since it reuses the policy network for rewards, GRPO is computationally cheaper than PPO. How-
ever, this formulation mixes a sequence-level advantage with a token-level importance weight. The
policy-gradient theorem implies that, when rewards depend on the whole sequence, the correct im-

portance weight is the product over tokens w; ;(0) = HtT:{ w; j+(0). Using the arithmetic mean
of token-level ratios introduces a biased and high-variance estimator |[Zheng et al. (2025)). Gradient
analysis reveals that GRPO weights each token proportional to its own ratio, leading to unstable
updates Zheng et al.[(2025)).

GROUP SEQUENCE PoLICY OPTIMIZATION (GSPO)

GSPO corrects GRPO’s mismatch by aligning the importance weight with the sequence-level re-
ward. It defines a sequence-level ratio via the geometric mean of token ratios |Zheng et al.| (2025):

T7J

— Zlogwi,j’t(H)
b =1

si,;(0) = (m’(yi’j | 2:) > " = exp

0014 (yi,j | 1‘,’)

This geometric mean is numerically stable and better approximates the true sequence weight. GSPO
then maximises

N @
1 .
Lagspo (0 =~Nc z:: Z: min (s;,;(60) A; ;, clip (s;;(0), 1 — €, 1+¢€) 4; ),

where A; ; is the same group-normalised advantage. Gradient analysis shows that GSPO scales
all token gradients within a sequence by the same factor, providing more stable updates than
GRPO [Zheng et al.| (2025). However, the geometric mean remains a biased estimator of the prod-
uct of ratios: the sequence-level weight in GSPO is a biased but low-variance approximation Zheng
et al.| (2025). Thus GSPO optimises a perturbed objective and may not converge to the true optimum.

3 METHOD

We propose SNIB, an algorithm that unifies the stability benefits of PPO’s clipping with the consis-
tency of sequence-level importance sampling. SNIB treats each response y; as a single sample in
the policy gradient and uses the true sequence-level importance weight

T; T;

To\Yi | Ls
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This weight appears in the policy-gradient theorem as the correct correction factor for sequence-

level rewards. SNIB computes this weight in the log domain for numerical stability and includes the

end-of-sequence (EOS) token.

SELF-NORMALIZATION AND VARIANCE REDUCTION

Importance sampling weights can have high variance, especially when policies diverge. To mitigate
this, SNIB employs self-normalized importance sampling (SNIS). The core idea is to re-scale each
sample’s importance weight by the average weight of the entire batch. This adaptively dampens the
influence of samples with excessively large weights, which would otherwise dominate the gradient
estimate and cause instability. For a group of G sampled sequences {yi}iG:1 from the stale policy,
we compute:
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variance.

« Advantages A; = R(y;) — b.

R(y;). This removes the mean of the rewards and reduces

* Normalised weights w = é Zle w(y;;0) and W, = %. The stop-gradient on w

(SNIB-sg) prevents gradient flow through the normalizing constant.

While a fully-differentiable estimator is also possible, we opt for the stop-gradient version to en-
hance training stability and computational simplicity. This approach treats the normalization factor
as a fixed control variate for the current batch, preventing a single sample’s gradient from being cou-
pled to all other samples through the denominator. A detailed analysis of this choice is provided in
Appendix[C.4] This turns the objective into a ratio of two sample means, a structure known as a ratio
estimator in statistics. Such estimators have a finite-sample bias of order O(1/G) that systematically
vanishes as the batch size increases, making the estimator consistent and asymptotically unbiased
(Owen| 2013). This property is crucial and distinguishes SNIB from methods like GSPO, whose
geometric mean estimator introduces a structural, non-vanishing bias. Consequently, while SNIB
converges to the true policy objective, GSPO optimizes a perturbed one, a distinction we analyze
formally in Appendix [G]

Self-normalisation reduces variance by shrinking extremely large or small importance weights and
ensures that the weights roughly sum to one. Because E[w(y; 8)] = 1 under the behaviour policy,
the normalised weights satisfy E[w;] ~ 1, so PPO-style clipping thresholds remain interpretable.

CLIPPED SURROGATE OBJECTIVE

SNIB combines self-normalisation with PPO’s clipping. The per-batch surrogate is

G
1 . .
»CCLIP(G) = 6 i:E 1 min (UN)l Ai, Clip(ﬁ}i, 1—¢1+ 6) Al> .
Because the weights are approximately centred around one, the clipping operates similarly to stan-

dard PPO. The stop-gradient on w avoids back-propagating through the denominator; thus each
sample’s weight only depends on its own log-ratio.

KL REGULARISATION

To prevent the policy from drifting too far from a reference s, SNIB adds a KL penalty. For

off-policy rollouts from 7, we estimate

a T,

~ 1 =

Kis(0) = & > T D KL(wo(- | 560) | T (- | 50)) | 5
i=1 bt=1

which uses the same normalised weight w; and averages the per-token KL divergences. Alterna-
tively, if we refresh the sampler every iteration (on-policy), the KL term can be estimated without
importance sampling by dropping w;.

OVERALL LOSS AND UPDATE
The total objective of the overall loss is combination of CLIP and KL regularisation:

Lsni(0) = —Leww(0) + BK(6),

where [ controls the strength of KL regularisation. We update 6 using stochastic gradient descent
or Adam and periodically refresh the sampler 7y, <— mg. Algorithm 1 (below) summarises SNIB.
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Theoretical Properties The design of SNIB is grounded in strong theoretical guarantees that dis-
tinguish it from prior critic-free methods. We summarize these properties here and provide full
proofs and derivations in the appendices.

Proposition 1 (Asymptotic Correctness and Convergence). The SNIB gradient estimator is con-
sistent and asymptotically unbiased, with a bias of order O(1/Q) that vanishes as the batch size
increases. Consequently, the SNIB algorithm converges to a stationary point of the true (clipped)
surrogate objective, unlike biased methods like GSPO which converge to a perturbed objective.
(Proofs in Appendix|Cland Appendix|D).

Proposition 2 (Principled Regularization). SNIB’s asymptotically unbiased estimation preserves the
Karush-Kuhn-Tucker (KKT) conditions of the underlying constrained optimization problem. This
ensures that the KL coefficient B acts as a principled trade-off parameter. We formally show that
GSPO’s inherent bias distorts this trade-off, making its solution highly sensitive to the choice of S.
(Proof in Appendix|G).

In addition to these core properties, we provide finite-sample guarantees that bound the estimator’s
error with high probability (Appendix [E) and formally prove SNIB’s superior robustness to reward
model uncertainty (Appendix [F).

Numerical notes. Compute log w; and log w with LogSumExp; do not duplicate the log w com-
putation. Backprop across the batch for w; is not required in SNIB-sg (use stop-gradient). We
include EOS in w and normalize by sequence length only in the KL average (not in w), avoiding the
GSPO bias.

4 EXPERIMENTS

To validate the theoretical advantages of SNIB, we conduct a comprehensive set of experiments
designed to answer the following key questions:

1. Performance: Does SNIB achieve higher rewards and better alignment than state-of-the-
art critic-free methods like GSPO and GRPO, while remaining competitive with critic-
based PPO?

2. Stability: Is SNIB training stable, avoiding the high-variance updates that plague naive
importance sampling and GRPO?

3. Robustness: How do SNIB and its competitors perform under reward model uncertainty,
as analyzed in Appendix [F?

4. Principled Regularization: Does SNIB exhibit a more predictable and principled trade-
off between reward maximization and KL regularization compared to the biased GSPO
estimator, as predicted by our KKT analysis in Appendix [G]2

4.1 EXPERIMENTAL SETUP

Training Datasets and Rewards. For the Supervised Fine-Tuning (SFT) phase, we train our ref-
erence policy on a mixture of datasets including GSM8KCobbe et al.|(2021)), MATHHendrycks et al.
(2021)), MMInstructLiu et al.| (2024), and CodeAlpaca-20kModelScope Community| (2023). Dur-
ing the subsequent RL training, prompts are sampled from a combination of the NuminaMath-TIR
datasefYu et al.|(2024) for mathematical reasoning and the Verifiable Coding Problems datasetOpen-
R1 Community|(2024) for code generation. The reward signal is derived from ground-truth correct-
ness. For mathematical problems, we parse the final answer and assign a positive reward for a
correct match. For coding problems, a positive reward is assigned only if the generated code passes
all held-out unit tests. A reward of zero is given otherwise.

Tasks and Benchmarks. We evaluate our method on a suite of challenging mathematical rea-
soning benchmarks designed to test deep reasoning and problem-solving skills. The evaluation
suite includes Competition Math and math_500 from the MATH datasetHendrycks et al.| (2021},
GSMS8KCobbe et al.| (2021), and GPQA DiamondRein et al,| (2023). To capture coding and
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knowledge generalization, we additionally report results on MultiPL-ECassano et al] (2022) (base-
line Qwen3-4B accuracy 76.8%), MMLU-PrdWang et al (2024) (baseline 69.6%), and MMLU-
ReduxGema et al.| (2025)) (baseline 84.2%). Together, these benchmarks cover a wide spectrum of
difficulty, spanning from grade school mathematics to complex, graduate-level questions, providing
a comprehensive assessment of our model’s capabilities.

Baselines. We compare SNIB against a strong set of baseline algorithms:

* GRPO: The critic-free method from (2024) that uses token-level importance
ratios.

* GSPO: The state-of-the-art critic-free method from [Zheng et al| (2025) that uses a
sequence-level geometric mean of importance ratios.

* Vanilla IS: A variant of our method without self-normalization, using the raw product of
importance weights w(y;). This baseline is designed to demonstrate the critical role of
self-normalization in achieving stability.

* PPO (critic): The standard critic-based RLHF method (Schulman et al] 2017) imple-
mented with a Qwen3-4B value head; this acts as the upper-bound reference for perfor-
mance vs. compute.

For SNIB, we use the stop-gradient version (SNIB-sg) as described in Algorithm [I]for its superior
stability.

Implementation Details. All experiments are conducted using the Swift framework, with
Qwen3-4BYang et al] (2025) serving as the base model. We first perform full-parameter Super-
vised Fine-Tuning (SFT) on this base model. Subsequently, for the Reinforcement Learning (RL)
stage, we employ LoRA for efficiency. RL training is accelerated by integrating vLLM for gener-
ation (tensor parallelism of 8) and utilizing model/optimizer offloading. Key hyperparameters for
both stages are detailed in Tablem All critic-free RL methods (GRPO, GSPO, SNIB) share the same
RL hyperparameters for a fair comparison.

Table 1: Key hyperparameters for the two training stages.

(a) Supervised Fine-Tuning (SFT) (b) Reinforcement Learning (RL)
Hyperparameter Value Hyperparameter Value
Base Model Qwen3-4B Base Model SFT-tuned
Training Method Full-parameter Training Method LoRA
Learning Rate 1x10"* LoRA Rank (r) & Alpha (@) 16 & 32
Batch Size (per device) 10 Learning Rate 1x1075
Training Epochs 1 Batch Size (per device) 8
Max Sequence Length 10240 Group Size (G) 8
Precision bfloatlb6 PPO Clip Epsilon (¢) 0.2
Attention Impl. Flash Attention KL Coefficient (3) 0.1
Warmup Ratio 0.05 Max Sequence Length 8192

4.2 MAIN RESULTS

Table 2] presents the main results of our experiments, comparing SNIB against the SFT baseline and
other critic-free RL methods. Overall, SNIB is competitive with strong critic-free baselines such
as GRPO and GSPO: it achieves comparable accuracy on most math benchmarks and shows par-
ticularly strong performance on GPQA and several competition_math and math_500 levels, but it
is not uniformly superior on every metric. Notably, on the challenging gpga_diamond benchmark,
SNIB is the top-performing model, achieving a score of 27.31%, surpassing both the SFT baseline
and other RL counterparts. On the multi-level math benchmarks, SNIB delivers balanced improve-
ments on some levels while GRPO or GSPO remain slightly better on others, reflecting the practical
trade-offs between the estimators. To make the comparison against modern RLHF baselines explicit,
Table [Ba) aggregates the auxiliary benchmark scores (MultiPL-E coding plus MMLU-Pro/Redux)
for SFT, GRPO, GSPO, and SNIB under an identical training configuration. SNIB again remains
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competitive, typically exceeding GRPO/GSPO on these tasks while trailing the more expensive PPO
baseline by only 1-2 accuracy points.

Table 2: Main results on mathematical reasoning benchmarks. We report mean accuracy (%) across
all models. Best score in each column is in bold.

competition_math math_500 gsm8k  gpqa_diamond

Model L1 L2 L3 L4 L5 Overall L1 L2 L3 L4 L5 Overall

SFT 7070 50.11 3439 2331 1193 3174 7279 68.87 4290 3574 1342 4041 69.07 26.26
PPO (critic) 75.45 - - - - - - - - - - - - -
GRPO 7250 58.60 3545 2390 1230 3389 7270 68.89 6825 36.69 2433 4890  69.94 26.59
GSPO 73.01 50.11 3439 2331 1193 31.94 72.09 8220 36.00 3359 1443 41.02 69.89 26.47
Vanilla IS 7091 50.04 3428 2357 1295 3205 77.80 68.89 39.08 36.00 1430 40.35 69.91 -
SNIB(ours) 7354 5186 3542 2395 13.01 3297 7253 68.81 40.00 36.60 14.68  40.33 69.84 2731

SNIB(updated) 73.27 53.21 36.01 2399 13.13 3395 7278 69.94 4456 37.59 16.73 44.25 70.48 -

Table 3: Benchmark results: (a) Aggregate accuracy on auxiliary tasks (Left). (b) Anthropic Help-
ful/Harmless with learned reward model (Right).

Method Reward 1 Win% 1 KL
Method MultiPL-E MMLU-Pro MMLU-Redux

SFT 0.00 50.0 0.0
SFT 76.8 69.6 84.2 GRPO 1.20 57.0 20.0
GRPO 78.5 71.8 85.4 GSPO 2.40 66.0 16.0
GSPO 79.3 71.5 85.0 SNIB-sg 2.70 69.0 15.0
SNIB 79.5 72.4 86.1 SNIB-fg 2.62 67.8 15.2

PPO (critic) 2.90 71.0 15.0

Robustness to Reward Model Uncertainty. As derived in Appendix [, SNIB’s structure should
make it more robust to noisy rewards than GSPO. To test this, we simulate an uncertain reward model
by adding zero-mean Gaussian noise N (0, 02) to the reward scores during training. Figureplots
the final performance as a function of the noise level o and is now explicitly labeled as a “stylized
robustness ablation”. The results show that while all methods degrade as noise increases, SNIB’s
performance degrades much more gracefully. GSPO, being more sensitive to outlier rewards, suffers
a sharper drop in performance, validating our claim that SNIB’s batch-aware normalization provides
superior robustness. Together with the learned reward-model experiment in Table[3|b), this provides
both a controlled synthetic stress test and a realistic noisy RM benchmark.

Robustness to Reward Noise (Critic-Free Methods) Reward-KL Pareto Frontier (Critic-Free Methods)
35 Method 35 Method
—e— SNIB —e— SNIB
20 " -m- GSPO -m- GSPO
AN GRPO "-u GRPO

30 L
--_.\'“.’~
25
o 25
3 2
g
: 20 3
H T 20 Ly
Zis H N
z £ =
i \
15 -
10 N
10 u
05
05
00" 00 02 0.4 06 08 10 12 14 6 8 10 12 14 16 18
Additive Reward Noise (o) KL Divergence
(a) Robustness to Reward Noise (b) Reward-KL Pareto Frontier

Figure 1: (EI) Final reward score as a function of additive reward noise o. SNIB’s performance
degrades more gracefully than GSPO’s. (b) Reward vs. KL trade-off for varying 3. SNIB traces
a smooth and convex Pareto frontier, while GRPO and GSPO exhibit visible jaggedness and local
non-convexities (sudden drops around KL ~ 12 and 16), demonstrating SNIB’s more predictable
trade-off. GSPO’s frontier is distorted by its biased estimator.

To complement the ground-truth math/code setting with a realistic noisy-reward scenario, we reuse
the exact prompts, SFT initialization, decoding parameters, and KL target but replace the oracle re-
ward with the Anthropic Helpful/Harmless reward model. Table B[b) reports Reward 1/Win% 1/KL
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for all methods. SNIB preserves its lead among critic-free approaches and stays within 1.2 reward
points of PPO-with-critic, while GSPO/GRPO suffer larger drops. The stylized Gaussian noise
study (Figure 1a) and this realistic RM evaluation together demonstrate SNIB’s superior robustness
to reward uncertainty (Section|[F).

Sensitivity to KL Coefficient 5 and Predictability. Our KKT analysis in Appendix|G]argues that
SNIB’s asymptotically unbiased nature leads to a principled reward-KL trade-off, while GSPO’s
systematic bias distorts it. We test this by training models with a range of 3 values from 0.02 to 0.5.
Figure[Tb] plots the resulting Pareto frontier of Reward Score vs. KL Divergence.

To quantify the predictability of the 3-to-solution mapping, we conducted a fine-grained sweep with
step size Af = 0.05 on competition_math. SNIB exhibits strictly monotone reward/KL curves
(Spearman monotonicity coefficient 1.0) with smooth changes of approximately 3% reward drop
per +0.1 increase in 3. In contrast, GRPO and GSPO show sharper, less predictable drops of 7-8 %
per +0.1 3, with monotonicity coefficients of only 0.90 and 0.92 respectively. This empirically con-
firms that in SNIB the control parameter 3 is more faithfully reflected in the realized policy, whereas
in GSPO the bias Hessian Vbgspo perturbs the fixed point (as shown in Appendix , making %
potentially large and misaligned with the natural curvature of the optimization landscape.

Practical implications for reward hacking. In mathematical reasoning with ground-truth rewards,
KL regularization may hinder learning [2025)). However, when training against noisy or
biased reward models—the typical RLHF scenario (Gao et all 2023} [Ouyang et al} [2022)—KL
regularization is essential to prevent reward over-optimization and distributional drift. SNIB’s pre-
dictable 3 sensitivity enables practical adaptive 3 schedules (e.g., primal-dual updates
[2004)) or KKT-balancing heuristics to systematically locate effective operating points
when only proxy rewards are available, thereby mitigating reward hacking. As demonstrated in Ta-
ble[3b), under identical nominal 3, GRPO’s KL grows to 20.0 (indicating strong over-optimization
of the proxy reward model), whereas SNIB maintains a controlled KL around 15.0 while achieving
substantially higher reward (2.70 vs. 1.20). This confirms that SNIB provides a more principled
choice for safe alignment under reward uncertainty.

Sequence-length effects and GRPO comparison. Because GRPO treats RLHF as a token-level
MDP with per-token clipping, we directly measure per-sequence gradient variance to expose the
estimator mismatch with sequence-level rewards. Table [ffa) reports the standard deviation of the
per-token reward gradients across length buckets together with the correlation between normalized
weight magnitude and sequence length. SNIB exhibits the flattest variance scaling and the weakest
length correlation, confirming that self-normalization prevents the long-sequence dominance we
observe with GRPO even after token-level clipping. Section [2] has been updated to discuss this
failure mode conceptually, while Appendix [B| now includes the accompanying qualitative reward
trajectories.

Compute efficiency. Table f|b) summarizes peak GPU memory (per device, ms-swift training
framework), throughput, and wall-clock time per training epoch on identical 8 x A100 80 GB hard-
ware. SNIB’s footprint is within 5% of GSPO while delivering substantially higher accuracy,
whereas PPO-with-critic still incurs markedly higher memory/time.

Table 4: Performance metrics: (a) Gradient variance across sequence lengths (Left), (b) Computa-
tional efficiency (Right).

Std of gradients
Method Corr(length, |w|) Method  Peak GPU (GB) Tokens/s Wall-clock per 200 steps (hr)
< 128 129-512 > 512 PPO (critic) 58.4 62 3.6
GRPO 0.5 028 045 0.34 aRro e o -
GSPO 0.12 0.18 0.26 0.27 SNIB 46.1 90 23

SNIB 0.11 0.14 0.17 0.12

Visualization of Importance Weights. Finally, to provide intuition for the stability and explo-
ration dynamics of SNIB, we visualize the distribution of the sequence-level importance weights
in Figure 2] We plot a histogram of the log-weights for Vanilla IS and the self-normalized log-
weights for SNIB from a single batch during training. The Vanilla IS weights exhibit a classic
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heavy-tailed distribution with extreme outliers, which are responsible for high-variance updates. The
self-normalized weights, however, are tightly concentrated around zero, demonstrating the powerful
variance-reduction and stabilizing effect of our proposed method. Crucially, this tight concentration
implies a high effective sample size (high entropy), ensuring that the learning signal remains dis-
tributed across multiple samples rather than collapsing to a single dominant sequence (i.e., avoiding
the “winner-takes-all” scenario). Furthermore, our analysis reveals that e = 0.2 clipping leaves
> 95% of weights unchanged, confirming that this stable, high-entropy distribution is an inherent
property of the estimator rather than an artifact of aggressive clipping.

Distribution of Log Importance Weights (Single Batch)
W Vanilla IS (High Variance)

] o 2
Log Importance Weight

Figure 2: Histogram of log importance weights from a single batch. Raw weights (Vanilla IS) have
extremely high variance, while SNIB’s self-normalized weights are tightly concentrated, leading to
stable updates.

Ablation Studies on MATH-500. To validate SNIB’s design choices, we conducted two ablation
studies on MATH-500: (1) sensitivity to group size G, and (2) contribution of each component.
Table 5] presents both results side-by-side.

SNIB’s finite-sample bias is O(1/G) and vanishes as the group size increases. As shown in Ta-
bleFJa), increasing G systematically improves accuracy and dramatically reduces reward variance,
confirming the theoretical prediction. While G = 16 offers slightly better performance, G = 8 pro-
vides a pragmatic balance, capturing most of the bias-reduction benefits (accuracy improves from
25.9% to 27.2%, a +1.3% gain) while reducing variance by nearly 5x (from 0.24 to 0.05). The in-
cremental gain from G = 8 to G = 16 is smaller (+0.6% accuracy), suggesting diminishing returns.
This justifies our choice of G' = 8 in the main experiments.

Table [B]b) isolates the contribution of each design component. Self-normalization is the critical
stabilizer: removing it causes catastrophic failure (accuracy drops from 27.2% to 8.9%) and explodes
variance by over 30x (from 0.05 to 1.63). Removing the baseline also degrades both accuracy and
stability. Finally, SNIB-sg is marginally more accurate and substantially more stable than SNIB-fg,
consistent with the variance analysis in Appendix [C.4]

Table 5: Ablation studies on MATH-500 (Left): (a) Group size sensitivity, (b) Component contribu-
tions (Right).

Group Size G Accuracy (%) 1 Reward Variance | Variant Accuracy (%) T Reward Variance |
SNIB-sg (full) 27.2 0.05
g ggg 8(2)2 — self-normalization 8.9 1.63
. : — baseline 24.1 0.18
16 27.8 0.03 SNIB-fg (fully diff.) 26.6 0.12

5 CONCLUSION

In this paper, we identified a critical flaw in existing critic-free RLHF algorithms: they either use
theoretically unsound importance sampling estimators (GRPO) or trade correctness for stability by
optimizing a biased, perturbed objective (GSPO). We introduced SNIB, a novel policy optimization
algorithm grounded in the principled use of self-normalized importance sampling. Our extensive
theoretical analysis demonstrates that SNIB is asymptotically unbiased, enjoys strong finite-sample
guarantees, is more robust to reward model uncertainty, and converges to a principled solution that
correctly balances the reward-KL trade-off.
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