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Abstract

Cognitive science and psychology suggest that object-centric representations of
complex scenes are a promising step towards enabling efficient abstract reasoning
from low-level perceptual features. Yet, most deep reinforcement learning approaches
only rely on pixel-based representations that do not capture the compositional
properties of natural scenes. For this, we need environments and datasets that
allow us to work and evaluate object-centric approaches. In our work, we extend
the Atari Learning Environments, the most-used evaluation framework for deep RL
approaches, by introducing OCAtari, that performs resource-efficient extractions
of the object-centric states for these games. Our framework allows for object
discovery, object representation learning, as well as object-centric RL. We evaluate
OCAtari’s detection capabilities and resource efficiency. Our source code is available
at github.com/k4ntz/OC_Atari .

1 Introduction

Since the introduction of the Arcade Learning Environment (ALE) by Bellemare et al. (2013),
Atari 2600 games have become the most common environments to test and evaluate RL algorithms
(cf. Figure 1, left). As RL methods are challenging to evaluate, compare and reproduce, benchmarks
need to encompass a variety tasks and challenges to allow for balancing advantages and drawbacks of
the different approaches (Henderson et al., 2018; Pineau et al., 2021). ALE games incorporate many RL
challenges, such as difficult credit assignment (Skiing), sparse reward (Montezuma’s Revenge, Pitfall),
and allow for testing approaches with different focuses, such as partial observability (Hausknecht
& Stone, 2015), generalization (Farebrother et al., 2018), sample efficiency (Espeholt et al., 2018),
environment modeling (Hafner et al., 2021; Schrittwieser et al., 2020), ...etc.

In order to solve complex tasks, human use abstraction, i.e. they first extract object-centred rep-
resentations and abstract relational concepts, on which they base their reasoning (Grill-Spector &
Kanwisher, 2005; Tenenbaum et al., 2011; Lake et al., 2017). Deep reinforcement learning (RL)
agents do not incorporate explicit object-centric intermediate representations, necessary to check if
suboptimal behaviors are e.g. caused by misdetections, wrong object identifications, or a reasoning
failure. Numerous studies on RL research highlight the importance of object-centricity (cf. Figure 1,
right), notably in understanding the agents’ reasoning, detect potential misalignment and potentially
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Figure 1: RL research needs Object-Centric Atari environments. The Atari Learning Environ-
ments (ALE) is, by far, the most used RL benchmark among the ones listed on paperswithcode.com
(left). Publications using ALE are increasing, together with the number of papers concerned on
object-centric RL. As no Object-centric ALE is available yet, the amount of papers concerned with
object-centric approaches in Atari is however negligible. Data queried using dimensions.ai, based
on keyword occurrence in title and abstract (center) or in full text (right). These graphs show that
RL researchers would make use of object-centric atari environments, if they would be available.

correct it (di Langosco et al., 2022). Notably, Delfosse et al. (2024) show that deep agents, that
do not make use of interpretable object centric representations, can learn misaligned policies on
games as simple as Pong, that post-hoc explanation techniques cannot detect. Object-centricity also
permits to use logic to encode the policy, leading to interpretable agents with better generalization
capability (Delfosse et al., 2023), and ease knowledge transfer between humans and learning agents,
or among different tasks (Dubey et al., 2018). Further studies also underline that the extraction of
object-centric states is a necessary step to obtain agent that can make use of large language model
together with contextual data (e.g. the games instruction manuals) to improve the reward signals,
notably allowing agents to learn in difficult credit assignment environments (Zhong et al., 2021; Wu
et al., 2023). This underscores the need to produce transparent object-centric RL agents, that can
ensure their proper alignment with the intended objectives.

More specifically on the set of Atari RL environments, Lake et al. (2017) illustrated that deep agents
trained on ALE games lack the ability to create multi-step sub-goals (such as acquiring certain
objects while avoiding others) and introduced the “Frostbite challenge” to assess that RL agents
integrate such human-like capabilities. Badia et al. (2020) also suggested to enhance the internal
representations of suboptimal ALE trained agents.

As no benchmark to test object-centric methods exists yet, we introduce OCAtari, a set of object-
centric versions of the ALE environments. OCAtari runs the ALE games while maintaining object-
centric states (i.e. a list of the depicted objects and their properties). Our framework can be used to
train object-centric RL algorithms, making it a resource-efficient replacement for otherwise necessary
object discovery methods. To train and evaluate these object discovery methods, we also propose
the Object-centric Dataset for Atari (ODA), that uses OCAtari to generate a set of Atari frames,
together with the properties of the objects present in each game.

Our contributions can be summarized as follows:

• We introduce OCAtari, an RL framework to train and evaluate object-detection and object-
centered RL methods on the widely-used Arcade Learning Environments.

• We evaluate OCAtari capability to detect the depicted game objects in a resource efficient way
and demonstrate that it allows for object-centric RL.

• To ease the comparison of object-discovery methods, we introduce ODA, a collection of frames
from Atari games together with their object-centric states.

We start off by introducing the Object-Centric Atari framework. We experimentally evaluate its
detection and speed performances. Before concluding, we touch upon related work.
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Figure 2: Qualitative evaluation of OCAtari’s REM. Frames from our OCAtari framework on
5 environments (Pong, Skiing, SpaceInvaders, MsPacman, FishingDerby). Bounding boxes surround
the detected objects. REM automatically detects blinking (MsPacman), occluded (FishingDerby)
objects, and ignore e.g. exploded objects (SpaceInvaders) that vision methods falsely can pick up.

2 The Object-Centric Atari Environments

In this section, we discuss the definition of objects and how they can be used in RL, then introduce
the OCAtari benchmark, and detail its two extraction methods.

2.1 Using Object-Centric Descriptions to Learn

According to Thiel (2011), objects are physical entities that possess properties, attributes, and
behaviors that can be observed, measured, and described. Rettler & Bailey (2017) define objects
as the fundamental building blocks that human reasoning relies on. Breaking down the world into
objects enables abstraction, generalization, cognitive efficiency, understanding of cause and effect,
clear communication, logical inference, and more (Spelke et al. (1992); Grill-Spector & Kanwisher
(2005); Tenenbaum et al. (2011); Lake et al. (2017), cf. Appendix B for further details).

Player at (25, 76), (4, 15)

Enemy at (145, 91), (4, 15)

Ball at (76, 78), (2, 4)

PlayerScore at (104, 1), (4, 20)

EnemyScore at (36, 1), (12, 20)

RAM

VEM REM

-49
-14

Figure 3: OCAtari extract object-
centric descriptions: using its
RAM Extraction method (REM) or
Vision Extraction method (VEM).

In artificial approaches, object-centric visual learning often
involves the extraction of objects withing bounding boxes that
contain them and distinguish them from the background (Lin
et al., 2020b; Delfosse et al., 2022). In these approaches, static
objects, such as the maze in MsPacman or the walls in Pong
(cf. Figure 2), are considered as part of the background. In our
work, we define objects as small elements (relative to the agent)
with which it can interact. Excluding "background objects"
when learning to play Pong with object-centric inputs is not
problematic. However, it can lead to problems when learning on
e.g. MsPacman. The learning agents can learn to incorporate
e.g. Pong’s boundaries when learning to play, but may have
difficulties to accurately encode the maze structures of Pacman
games. As it may be necessary to provide a background
representation to the agent, OCAtari provides both renderings
and object-centric descriptions of the states.

2.2 The OCAtari framework

In OCAtari, every object is defined by its category (e.g. “Pacman”), position (x and y), size (w and h),
and its RGB values. Objects may have additional characteristics such as orientation (e.g. the Player
in Skiing, cf. Figure 2) or value (e.g. oxygen bars or scores) if required. Objects that are vital for
gameplay are distinguished from those that are components of the Head-up-Display (HUD) elements
(e.g. score, number of lives). The role of HUD objects is to provide additional information about
the performance of the playing agent. Although learning agents should, in principle, be capable
of ignoring such elements, in our environments a boolean parameter is available to filter out HUD
objects. A list of the considered objects for each game can be found in Appendix G.
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To extract objects, OCAtari uses either its Vision Extraction Method (VEM) or its resource efficient
RAM Extraction Method (REM), that are depicted in Figure 3.

VEM: the Vision Extraction Method. The most straightforward method for extracting objects
from Atari frames involves using simple computer vision techniques. Considering the limited memory
available to Atari developers, most objects are defined by a restricted set of pre-established colors
(i.e., RGB values). At each stage, the Vision Extraction Method extracts objects using color-based
filtering and priors about the objects’ positions. For example, Pong consists of 3 moving objects and
2 HUD objects, each assigned fixed RGB values (cf. Figure 3). The enemy’s paddle and scores share
common RGB values (orange in Figure 3), but contrary to the scores, the paddles always appears
between the white threshold. The enemy’s paddle is always positioned within the red rectangle.
Using this technique, it is possible to accurately extract all present objects. This detection method
can only detect what is depicted in the frame, and not objects that are e.g. blinking, overlapping, etc.

REM: the RAM Extraction Method. ALE provides the state of the emulator’s RAM, which
contains information about the games’ objects. This has led Sygnowski & Michalewski (2016) to use
the raw RAM states for RL states to train agents. However, much of the non-relevant information is
present in the RAM (e.g. time counter, HUD element information). Moreover, several games, use
e.g. bitmaps or encode various information quantities such as object orientation, offset from the anchor,
and object category together within one byte. These noisy inputs and entangled representations
prevent obscure these agents decision process and remove any interpretation possibilities. To
address these problems, Anand et al. (2019) have proposed AtariARI, a wrapper around some Atari
environments, that provides some the RAM positions, describing where some specific information is
encoded. Nonetheless, raw RAM information is not enough. Take, for instance, in Kangaroo, the
player’s position corresponds to various RAM values, that also encode its heights using categorical
values. Simply providing some uninfluenced RAM positions does not reflect the object-centric state.
Similar to AtariARI, our Ram Extraction Method extracts the information from the RAM, but
processes it to provide an interpretable object-centric state, that matches VEM’s one (cf. Figure 3).
To determine how the game’s program processes the RAM information, we task human, random,
or DQN agents with playing the games while using VEM to track the depicted objects. We then
establish correlations between objects properties (e.g. positions) and each of the 128 bytes of the
Atari RAM representation. We can also modify each RAM byte and track the resulting changes in
the rendered frames. All these scripts are documented and released along with this manuscript.

REM, being based on semantic information, allows for tracking moving objects. Conversely, VEM
only furnishes consecutive object-centric descriptions, where the lists of objects are independently
extracted at each state. REM thus enables tracking of blinking objects and moving instances, as
proven useful for RL approaches using tracklets (Agnew & Domingos, 2020; Liu et al., 2021).

The OCAtari package. We provide an easy-to-use ocatari package, with its documentation1.
OCAtari includes wrappers for the Arcade Learning Environments (ALE) of Bellemare et al. (2013).
To allow an easy swap between ALE and OCAtari environments, we follow the logic and naming
system of ALE. We have reimplemented its methods for OCAtari (e.g. step, render, seed, . . . ),
and added new methods like get_ram and set_ram, to easily allow RAM lookup and manipulation.
OCAtari environments also maintain a list of the depicted objects and can provide a buffer of the
last 4 transformed (i.e. black and white, 84×84) frames of the game, as it has become a standard of
RL state representations (Mnih et al., 2015; van Hasselt et al., 2016; Hessel et al., 2018).

As shown in Table 3, our image processing method VEM covers 46 games, while REM covers 44
games at the time of writing. While these already constitute a diverse set of environments, we will
continue to add newly supported games in both REM and VEM and complete what we have started.
Along with this work, we release ODA, a dataset that contains frames with the object-centric states
obtained from REM and VEM, collected using Random and trained DQN agents (cf. Appendix A
for further details). ODA and OCAtari are openly accessible under the MIT license.

1https://oc-atari.readthedocs.io
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Table 1: REM reliably detects the objects within the frames of each developed games.
Measuring precision, Recall, F1-Score and IOU of REM (using VEM as baseline) in a diverse set of
Atari games using trained DQN agents. High values being displayed in blue going over green to red
for low values. A more detailed table, with Radom and C51 agents is provided in Appendix G.
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3 Evaluating OCAtari

In this section, we evaluate the detection and speed performances of OCAtari methods, then explain
how it can be used for object-centric RL agents training. Finally, we compare OCAtari to AtariARI.

Setup. To evaluate the detection capabilities of REM, we use a random agent (that represents
any untrained RL agent), as well as a DQN and, if available, a C51 agent (Bellemare et al., 2017),
both obtained from Gogianu et al. (2022)2. For reproducibility, every used agent is provided with
our along with our codebase. The RL experiments utilized the PPO implementation from stable-
baselines3 (Raffin et al., 2021) on a 40 GB DGX A100 server. In each seeded run, 1 critic and
8 actors are utilized per seed over 20M frames. Since these experiments do not involve visual
representation learning, we utilize the default 2 × 64 MLP architecture (with the hyperbolic tangent
as activation functions). As developing RL agents is not our focus, we did not conduct any fine-tuning
or hyperparameter search. Further details on these experiments can be found in Appendix E.

3.1 Evaluating OCAtari for Object Extraction

Correctness and Completeness of the Object Extraction. As explained previously, REM
needs to decode the game objects’ properties from RAM values. For example, objects’ position in
e.g. Riverraid either require adding an offset (for the agent) or being reconstructed from anchor and
offsets position in a grid. To assert that REM accurately reconstruct these values, we compare the
object-centric states of both extraction methods (VEM and REM). We let the Random, and trained
DQN and C51 agents play for 500 frames, and compute IOU (Rezatofighi et al., 2019) for each agent
on each game. As this metric’s relevance is debatable for small objects (e.g. the ball in Pong, Tennis,
or missiles in Atlantis, Space Invaders), we also calculate precision, recall, and F1-scores for each
object category in every game. For these metrics, an object is considered correctly detected if it is
within 5 pixels of the center for both detection methods.

In Table 1, we report these metrics for DQN agents averaged over every object category. Similar
results, obtained using Random and C51 agents are provided in Appendix G. Lower precisions
indicate that some objects detected using REM are not detected by VEM, and lower recalls imply
the opposite situation. In MsPacman, the ghost can blink and objects can overlap, which explains
why the precision is slightly lower. This can be observed in the per-category tables (cf. Appendix G).
We opted for allowing the RAM extraction method to monitor hidden or blinking objects, regardless
of its effects on the precision of our framework, as it can be used to train object tracking methods
that employ tracklets (e.g., Agnew & Domingos 2020) or Kalman filters (e.g., Welch et al. 1995). The
F1-score aggregates both previously mentioned metrics, using a harmonic mean, hastily punishing
both for false positives and false negatives. Perfect F1-scores means that every object-centered state
extracted using REM is identical to the VEM ones.

2https://github.com/floringogianu/atari-agents
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Game SPACE SPOC REM
Boxing 24.5 70.5 90.1
Carnival 48.6 90.6 93.7
MsPacm. 0.4 90.5 87.4
Pong 10.7 87.4 94.3
Riverraid 45.0 76.6 95.7
SpaceInv. 87.5 85.2 96.9
Tennis 3.6 40.2 99.3
Average 31.5 77.3 93.9

Table 2: Object detection is still
challenging in Atari. SPACE and
SPOC, SOTA in object discovery, are
inferior in terms of F1 scores.

Figure 4: OCAtari (REM) permits learning of object-
centric RL agents. The object-centric PPO agents per-
form at least on par with the pixel-based PPO (Deep)
agents’ and humans on 8 Atari games.

In general, the table results indicate that the games covered by REM have high detection performances.
Misdetection can be caused by overlap of other objects or the background (cf. Figure 2, FishingDerby).
Potential rendering instabilities cause slight differences in ball position and size, which decreases the
IOU in e.g. Pong and Tennis. In many games, the rendering freezes after specific events (e.g. when
the player dies) while the RAM is unaltered. Some objects are then not rendered for a few frames,
but our RAM extraction approach can keeps them in the list. Although this decreases the detection
scores, it does not affect gameplay since, for these frames, the environment is not interactive.

In Table 2, we compare the detection performances (F1-scores) of REM (94%) on the games used by
the 2 object-discovery methods used on ALE: SPACE (Lin et al. (2020a), 31%) and SPOC (Delfosse
et al. (2022), 77%). REM largely outperforms both. As highlighted by SPOC’s authors, the detection
of Atari games’ objects, composed of few pixels, remains a challenge for neural networks. OCAtari
does not extract encodings for objects, but directly provides their classes (from the deterministic
RAM information process), that can be used to train these objects discovery methods.

Comparing the RAM and Visual Extraction Method. As explained in the previous section,
REM relies on accurate information decoding, but allows for tracking blinking or overlapping objects.
Its most significant advantage over VEM is the computational efficiency of the RAM extraction
procedure. While VEM must perform colour filtering for each object category, REM needs few
simple operations to extract objects’ properties. Getting object-centric states using REM is on
average 50 times faster than with VEM (cf. Figure 7 in Appendix K). RL agents can use REM to
efficiently train the reasoning part of the policy, as shown bellow, and later be fine-tuned to work
with neural-based object extraction. To evaluate such extraction methods, on e.g. independently
drawn frames (without tracking), VEM can reliably extract only the visible objects. The (slower)
extraction is then performed only once, as such training is usually run using a dataset, such as ODA.

3.2 Using OCAtari to train Object-centric RL agents

To show that OCAtari allows training object-centric RL agents, we trained RL agents using our REM
with 3 seeded Proximal Policy Optimization (PPO) agents in 8 different environments. These agents
are provided with the positional information of each moving object. Specifically, these correspond to
the x and y positions of each object detected by REM in the last two frames at each timestep. Our
trained models are available in our public repository, as well as our the scripts used to generate our
data sets (cf. Appendix A). As depicted in Figure 4, OCAtari allows object-centric PPO agents to
learn to master Atari games, as they perform on par or better than their deep counterparts.

Overall, we have shown that OCAtari can be used to train or evaluate any part of an object-centric
RL agent, from object extractors (preferably with VEM) to object-centric policies. Since REM allows
object tracking, it can also be used on methods that track object through time, and can directly be
integrated for resource efficient object-centric policy training.
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Table 3: Games supported by AtariARI and OCAtari. ✓ describes that all necessary
information about the objects are given. ∼ denotes that some necessary information to play the
game is lacking. We provide detailed explanation for each of these games in Appendix J. All games
missing in this table are neither supported by AtariARI nor OCAtari yet.
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ARI ✓ ✓✓✓✓ ∼ ✓✓ ∼ ✓✓ ✓✓✓ ∼ ∼ ∼ ∼ ✓ ✓✓✓ 16(22)
REM ✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ ∼ 42(43)
VEM ✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ 44

3.3 OCAtari vs AtariARI

For their AtariARI framework, Anand et al. (2019) disassembled the source code of various games
to find the RAM location of the objects’ properties. AtariARI thus provides information of where
a specific information is encoded in the RAM. Providing only the RAM positions is however not
enough to get a directly human-interpretable, object-centric description of the state. As shown in
Figure 3, even when positions are encoded directly, offsets are applied to objects during the rendering
phase, which the raw RAM information does not provide. Some games the information provided
by AtariARI is thus incomplete or insufficient to play the game (cf. Table 3 and Appendix J). Our
OCAtari framework makes use of intricate computations, such as deriving the x and y positions from
grid anchors and offsets, looking up potential presence indicators (e.g. for objects that have been
destroyed). This ensures that RL agents genuinely acquire human understandable object-centric
state descriptions, on which they can base their policies. Finally, OCAtari is already covering (28)
more games than AtariARI, and we are continually adapting the rest of the game collection of ALE.

4 Related Work

Atari games to benchmark deep RL agents has a well-established history. Mnih et al. (2015) introduced
the direct use of frames with DQN, tested on 7 different games of ALE. In the following years, Atari
games was repeatedly used as a test bed for various approaches, well-known ones being Rainbow (Hessel
et al., 2018), Dreamer (Hafner et al., 2020), MuZero (Schrittwieser et al., 2020), Agent57 (Badia et al.,
2020) or GDI (Fan et al., 2021). Although deep RL agent already achieve superhuman performance
on Atari games, lots of challenges are left, like efficient exploration (Bellemare et al., 2016; Ecoffet
et al., 2019; 2021), efficiency (Kapturowski et al., 2022), planning with sparse (Hafner et al., 2020;
Schrittwieser et al., 2020), sample inefficiency, missgeneralization (Zambaldi et al., 2019; Mambelli
et al., 2022; Stanić et al., 2022), etc. As underlined by Toromanoff et al. (2019), these challenges can
greatly benefit or might even require human like reasoning, and thus, object-centricity.

Other work have highlighted the need for augmented Atari benchmarks. Toromanoff et al. (2019)
and Fan (2021) have both proposed to integrate many additional metrics to accurately measure
performance, and Machado et al. (2018) insisting on integrating the learning efficiency. This was
tackled by Kaiser et al. (2020), with their Atari 100k benchmark. Aitchison et al. (2023) have selected
representative subsets of 5 ALE environments, by looking at the performance variances of commonly
used agents. Shao et al. (2022) introduced a partial observable Atari benchmark, called Mask Atari,
designed to test specifically POMDPs. These extensions can easily integrate OCAtari environments,
as they can be swapped with ALE ones. Many other object-centic representations learning methods,
that tackle these challenges, have also been explored outside of RL (Eslami et al., 2016; Kosiorek
et al., 2018; Jiang & Luo, 2019; Greff et al., 2019; Engelcke et al., 2020; Locatello et al., 2020; Kipf
et al., 2022; Elsayed et al., 2022; Singh et al., 2022a;b). Dittadi et al. (2022); Yoon et al. (2023) look
at objects properties’ extractions, and generalization, required for downstream tasks, while Lin et al.
(2020b) and (Delfosse et al., 2022) already rely on ALE to evaluate representation learning.
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Finally, several object-centric RL environments have been developed, such as VirtualHome (Puig et al.,
2018), AI2-THOR (Kolve et al., 2017) or iGibson 2.0 (Li et al., 2021). While these benchmarks excel
in providing realistic 3D environments conducive to AI research, they introduce high-dimensional
observations and emphasizes physical interactions, particularly suitable for robotics-oriented studies.

5 Discussion

Our OCAtari environments are suitable for training object detection and object-tracking methods, as
well as developing new object-centric RL approaches. OCAtari offers an information bottleneck in the
form of list of objects and their properties rather than exhaustive details per game. While evaluating
performance using the ALE is one of the most recognized benchmarks in RL, these evaluations are
not without flaws, as explained by Agarwal et al. (2021). The noisy scores do not linearly reflect the
agents’ learning ability. These games are also created to be played by humans and offer many shortcut
learning possibilities (Delfosse et al., 2024). Directly evaluating the representations performance
helps to understand and measure the quality of the learned internal representation and minimize
other effects within the training, as proposed by Stooke et al. (2021). The object-centricity offered
by OCAtari also allows to provide extra information to the algorithms, such as additional reward
signal based on objects properties or relations, as done by Wu et al. (2023). Finally, our provided
repository includes many scripts for locating and analyzing RAM representation information, that
can be adapted to other simulation benchmarks, and thus also equip them with object-centric states.

Societal and environmental impact. This work introduces a set of RL games. Such environments
can be used for training object-tracking algorithms, which present potential ethical risks if misapplied.
However, its main impact lies in advancing transparent object-centric RL methods, which can
enhance the understanding of upcoming agents’ decision-making processes and reduce misalignment
issues (Friedrich et al., 2022). Improving transparency can also potentially help uncovering existing
biases in learning algorithms with possible negative societal consequences (Schramowski et al., 2020;
Steinmann et al., 2023). OCAtari can also save resources while training RL policies. We do not
incorporate and have not found any personal or offensive content in our framework.

Limitations. OCAtari extracts object-centric representations of ALE games. In most games, there
are hardcoded static elements, which we did not consider as objects. For instance, no information
about the mazes in Pacaman and MsPacman are encoded in the RAM. As such, we cannot extract
this information, or only partially. We could in the future decide to hardcode suitable representations
for it, but we have not found one yet. However, this information being static, it could be learned by
agents, but the integration of such information as input can help agents understand that e.g. they
cannot move through it. An interesting consideration here would be whether a combination of our two
modes, object-centric states and frames, can be used to extract not only objects but also important
information from the backgrounds. Using this additional information like the position of objects in
MsPacman to run A* or similar path finding algorithms could also be an interesting way forward.

6 Conclusion

Representing scenes in terms of objects and their relations is a crucial human ability that allows
one to focus on the essentials when reasoning. While object-centric reinforcement learning and
unsupervised detection algorithms are increasingly successful, we lack benchmarks and datasets to
evaluate and compare such methods. OCAtari fills this gap and provides an easy-to-use diverse set of
environments to develop and test object-centric learning methods on many games of ALE, by far the
most commonly used RL benchmark. Overall, we hope that our work inspires other researchers to
create object-centric approaches, allowing for more interpretable algorithms that humans can interact
with and maybe learn from in the future. OCAtari will also permit AI practitioners to create novel
challenges among the existing Atari games, usable on object-centric, deep or hybrid approaches.
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A ODA, an Object-centric Dataset for Atari.

OCAtari enables training policies using an object-centric approach to describe RL states for various
Atari games. It can serve as a fast and dependable alternative to methods that discover objects. To
compare object-centric agents to classic deep ones, it is necessary to train an object detection method
and integrate it into the object-centric playing agent, e.g. , as shown by Delfosse et al. (2022). To
train and compare the object detection methods, we introduce the Object-centric Dataset for Atari
(ODA), a preset selection of frames from the Atari games covered by OCAtari. For each game, ODAs
incorporates sequential states, where for each state, the 210×160 RGB frame is stored with the list
of objects found by both VEM and REM procedure (otherwise the game sequence is discarded). The
HUD elements are separated from the game objects. Every additional object information contained
from the RAM is also saved. As trained agents with varying capabilities can expose different parts of
the environment, especially in progressive games where agents must achieve a certain level of mastery
to reveal new parts of the game, it is necessary to fix the agents that are used to capture these
frames (Delfosse et al., 2021). The frames are extracted using both a random and a trained DQN
agent to cover numerous possible states within each game, that should incorporate states encountered
by learning agents. In many games, e.g. , Montezuma’s Revenge or Kangaroo, such agents are not
good enough to access every level of the game. However, as the level part is also stored in RAM,
we let the agent start in different part of the game by manipulating the RAM. We choose to build
our dataset out of 30% of games from the random agent and 70% of the games based on the DQN
agent. All needed information, as well as the models used to generate ODA, are provided within the
OCAtari repository.

B Details on object perception and its advantages

As described in our manuscript, decomposing the world in terms of objects incorporates many
advantages, some of them are:

Abstraction and Generalization
Objects allow us to abstract and generalize information. By categorizing similar objects together,
we can create concepts and classifications that help us make sense of a wide variety of individual
instances.

Cognitive Efficiency
Our brains are more efficient at processing and remembering information when it’s organized into
meaningful chunks. Objects provide a natural way to group related information, making it easier for
us to reason about complex situations.

Predictive Reasoning
Objects have properties and behaviors that can be predicted based on their past interactions and
characteristics. This predictive reasoning is crucial for making informed decisions and anticipating
outcomes.

Cause and Effect
Objects play a key role in understanding cause-and-effect relationships. By observing how objects
interact and how changes in one object lead to changes in others, we can infer causal connections
and predict future outcomes.

Communication
Objects provide a shared vocabulary that facilitates communication and understanding. When we
refer to objects, we can convey complex ideas more efficiently than describing individual instances or
specific situations..

Logical Inference
Objects provide a basis for logical reasoning. By identifying relationships between objects, we can
deduce logical conclusions and make valid inferences.
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C Details on OCAtari

Bell at (93, 36), (6, 11),
Child at (121, 12), (8, 15),
Enemy at (152, 109), (6, 15),
Fruit at (119, 108), (7, 10),
Fruit at (39, 84), (7, 10),
Fruit at (59, 60), (7, 10),
Life at (16, 183), (4, 7),
Life at (24, 183), (4, 7),
Platform at (16, 124), (128, 4),
Platform at (16, 172), (128, 4),
Platform at (16, 76), (128, 4),
Player at (65, 141), (8, 24),
Projectile at (61, 65), (2, 3),
Scale at (132, 132), (8, 35),
Scale at (132, 37), (8, 35),
Scale at (20, 85), (8, 35),
Score at (129, 183), (15, 7),
Time at (80, 191), (15, 5)]

Figure 5: OCAtari: The object-centric Atari benchmark. OCAtari maintains a list of existing
objects via processing the information from the RAM. Our framework enables training and evaluating
object discovery methods and object-centric RL algorithms on the widely used Atari Learning
Environments benchmark.

D Reproducing our Results

To reproduce our results, we included the option to run the experiments deterministically. For this
purpose, a seed can be specified in the respective scripts. In our experiments, we used the seeds
0 and 42. All supported games can be found in Table 3. Since we are extending the environment
permanently, you can also find all supported games in the ReadMe of our repository. To test if a
game is supported, you can also use the scripts “test_game” or “test_game_both” depending on
if you want to test only one or both modes of OCAtari. Table 1 and all tables in section G are
generated by the script “get_metrics”. To reproduce and measure the time needed for evaluation,
see Figure 7, the script “test_speed” was used. For further information, we recommend checking the
documentation of OCAtari under https://oc-atari.readthedocs.io/ .

As mentioned before, we are using the models obtained from Gogianu et al. (2022)3. However for
the games recently added to gymnasium, i.e. Pacman and Donkeykong, we needed to train our own
agents. For this purpose we were using the cleanRL framework by Huang et al. (2022)4.

3https://github.com/floringogianu/atari-agents
4https://github.com/vwxyzjn/cleanrl
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E Experimental details

Actors N 8
Minibatch size 32 ∗ 8
Horizon T 128
Num. epochs K 3
Adam stepsize 2.5 ∗ 10−4 ∗ α
Discount γ 0.99
GAE parameter λ 0.95
Clipping parameter ϵ 0.1 ∗ α
VF coefficient c1 1
Entropy coefficient c2 0.01
MLP architecture 2 × 64
MLP activation fn. Tanh

Table 4: PPO Hyperparameter Values.
α linearly increases from 0 to 1 over the
course of training.

In our case, all experiments on object extraction and dataset
generation were run on a machine with an AMD Ryzen
7 processor, 64GB of RAM, and no dedicated GPU. The
dataset generation script takes approximately 3 minutes for
one game. We use the same hyperparameters as the Schul-
man et al. (2017) PPO agents that learned to master the
games. Hyperparameter values for Atari environments
are derived from the original PPO paper. The same ap-
plies to the definitions and values of VF coefficient c1 and
entropy coefficient c2. The PPO implementation used
and respective MLP hyperparameters are based on stable-
baselines3 (Raffin et al., 2021). Deep agents have the same
hyperparameter values as OCAtari agents but use ’Cn-
nPolicy’ in stable-baselines3 for the policy architecture and
frame stacking of 4. The Atari environment version used in
gymnasium is v4 & v5. This version defines a deterministic
skipping of 5 frames per action taken and sets the prob-
ability to repeat the last action taken to 0.25. This is aligned with recommended best practices
by Machado et al. (2018). We also used the Deterministic and NoFrameskip features of gymnasium
when necessary to make our experiments easier to reproduce. A list of all hyperparameter values
used is provided in Table 4.

F Generating Datasets

With OCAtari it is possible to create object-centric datasets for all supported games. The dataset
consists primarily of a csv file. In addition to a sequential index, based on the game number and
state number, this file contains the respective image as a list of pixels, called OBS. An image in
the form of a png file is also stored separately. Furthermore, the csv file contains a list of all HUD
elements that could be extracted from the RAM, called HUD, as well as a list of all objects that were
read from the RAM, called RAM. Finally, we provide a list of all elements that could be generated
using the vision mode, called VIS. An example is given in Table 5.

The generation of the dataset can also be made reproducible by setting a seed. For our tests, we used
the seeds 0 and 42. More information at https://github.com/k4ntz/OC_Atari/tree/master/
dataset_generation .

Table 5: An example how an object-centric dataset for Atari looks like after generation.

Index OBS HUD RAM VIS
00001_00001 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....
00001_00002 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....
00001_00003 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....

...
00008_00678 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....

16

https://github.com/k4ntz/OC_Atari/tree/master/dataset_generation
https://github.com/k4ntz/OC_Atari/tree/master/dataset_generation


Published as a conference paper at RLC 2024

G Detailed Per Object Category results on each game.

In this section, we provide descriptions of each covered game (obtained from https://gymnasium.
farama.org/environments/atari/) with example frames. For a more detailed documentation, see
the game’s respective AtariAge manual page5. We also share detailed statistics on the object detection
capacities of OCAtari for every class of objects detected in each game.

Table 6: A more detailed version of Table 1. Precision, Recall, F1-scores of REM, and intersection
over union (IOU) metrics. Frames are obtained using random, DQN and C51 (if available) agents.

Random DQN C51
precision recall f-score iou precision recall f-score iou precision recall f-score iou

Alien 51.4 97.3 67.3 97.7 51.2 97.2 67.1 97.4 N/A N/A N/A N/A
Amidar 75.8 99.9 86.2 97.0 86.3 99.9 92.6 92.4 N/A N/A N/A N/A
Assault 95.4 94.2 94.8 95.3 97.1 93.6 95.3 93.8 N/A N/A N/A N/A
Asterix 93.1 99.8 96.3 96.0 95.0 99.6 97.2 96.1 94.8 99.8 97.2 96.2
Atlantis 96.3 94.6 95.5 95.8 96.6 94.7 95.7 95.0 N/A N/A N/A N/A
BankHeist 87.9 95.8 91.7 87.3 96.2 96.2 96.2 94.7 N/A N/A N/A N/A
BattleZone 81.1 55.7 66.0 95.1 81.8 51.8 63.4 93.5 N/A N/A N/A N/A
Berzerk 94.1 95.2 94.6 78.4 94.3 96.5 95.4 77.4 N/A N/A N/A N/A
Bowling 99.5 99.2 99.3 99.6 99.2 98.8 99.0 99.4 99.4 99.1 99.3 99.5
Boxing 96.5 84.5 90.1 93.5 96.1 84.5 89.9 93.4 96.8 85.6 90.9 94.1
Breakout 99.5 100 99.7 100 99.5 100 99.7 100 100 100 100 100
Carnival 93.2 94.2 93.7 90.7 94.6 96.4 95.5 91.5 N/A N/A N/A N/A
Centipede 95.7 97.0 96.3 95.1 95.9 97.2 96.6 96.0 N/A N/A N/A N/A
ChopperComma. 89.2 89.4 89.3 78.1 78.3 79.5 78.9 86.7 72.1 75.6 73.8 93.5
CrazyClimber 97.6 96.0 96.8 97.6 97.9 94.8 96.3 96.7 N/A N/A N/A N/A
DemonAttack 62.6 78.6 69.7 79.9 59.5 77.6 67.3 84.1 N/A N/A N/A N/A
DonkeyKong. 96.0 98.6 97.3 99.1 98.5 98.7 98.6 99.1 98.7 98.5 98.6 99.1
FishingDerby 89.2 85.6 87.3 75.2 88.8 84.6 86.6 73.6 83.2 77.9 80.5 75.7
Freeway 98.7 87.3 92.6 90.2 98.6 87.3 92.6 90.2 96.5 87.2 91.6 87.9
Frostbite 97.6 99.5 98.6 92.7 87.5 97.5 92.2 87.1 85.5 97.1 90.9 85.4
Gopher 98.3 48.2 64.7 78.4 98.3 47.6 64.1 84.0 N/A N/A N/A N/A
Hero 92.4 94.6 93.5 88.2 79.0 88.4 83.4 86.3 80.8 91.7 85.9 86.7
IceHockey 89.2 99.6 94.1 66.2 92.4 99.7 95.9 66.3 N/A N/A N/A N/A
Jamesbond 92.5 99.5 95.9 95.6 93.3 98.0 95.6 94.8 N/A N/A N/A N/A
Kangaroo 96.7 93.1 94.9 95.6 98.3 93.2 95.7 94.8 96.1 93.1 94.6 95.2
Krull 94.8 96.8 95.8 89.1 95.6 96.7 96.2 89.4 N/A N/A N/A N/A
MontezumaRev. 99.5 99.4 99.5 95.2 100 100 100 97.9 100 100 100 98.2
MsPacman 77.9 99.4 87.4 84.2 72.1 99.3 83.6 83.1 N/A N/A N/A N/A
Pacman 58.5 92.7 71.7 80.4 51.3 88.6 65.0 77.4 47.6 83.1 60.5 72.1
Pitfall 98.2 99.0 98.6 95.8 100 100 100 96.6 N/A N/A N/A N/A
Pong 90.0 99.1 94.3 81.7 94.3 98.8 96.5 83.2 93.8 97.4 95.6 84.7
PrivateEye 95.7 93.0 94.3 97.0 96.5 98.6 97.5 95.4 N/A N/A N/A N/A
Qbert 94.4 99.0 96.6 99.6 74.7 98.3 84.9 98.4 77.3 98.4 86.6 98.5
Riverraid 93.5 98.0 95.7 93.6 89.3 98.0 93.5 91.0 N/A N/A N/A N/A
RoadRunner 95.5 97.5 96.5 93.1 85.2 78.7 81.8 87.4 N/A N/A N/A N/A
Seaquest 94.1 87.9 90.9 90.3 91.5 81.3 86.1 91.4 92.1 82.6 87.1 90.6
Skiing 95.8 96.5 96.2 90.4 94.1 94.2 94.2 89.3 N/A N/A N/A N/A
SpaceInv. 95.2 98.7 96.9 97.1 90.6 95.9 93.1 97.3 N/A N/A N/A N/A
Tennis 98.7 99.9 99.3 85.7 93.9 98.7 96.2 83.9 N/A N/A N/A N/A
TimePilot 93.5 94.7 94.1 96.6 91.3 94.3 92.8 94.6 N/A N/A N/A N/A
UpNDown 96.8 99.1 97.9 97.4 93.0 97.7 95.3 93.1 95.0 98.3 96.6 95.9
Venture 63.1 99.9 77.4 92.1 57.6 100 73.1 91.3 N/A N/A N/A N/A
VideoPinball 98.3 94.6 96.4 94.4 99.5 95.3 97.3 95.3 N/A N/A N/A N/A
mean 90.5 93.5 91.3 91.0 88.9 92.3 89.7 90.7 88.8 92.1 90.0 91.4

5https://atariage.com/system_items.php?SystemID=2600&itemTypeID=MANUAL
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G.1 Alien details

You are stuck in a maze-like space ship with three aliens.
You goal is to destroy their eggs that are scattered all over
the ship while simultaneously avoiding the aliens (they are
trying to kill you). You have a flamethrower that can help
you turn them away in tricky situations. Moreover, you can
occasionally collect a power-up (pulsar) that gives you the
temporary ability to kill aliens.

Table 7: Per class IOU on Alien

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 93.8 96.8 97.6 98.0 85.4 91.2 94.7 nan nan nan nan
Egg 49.6 97.9 65.8 98.9 48.8 97.7 65.1 98.6 nan nan nan nan
Life 99.8 99.6 99.7 100 100 100 100 100 nan nan nan nan
Pulsar 67.2 82.0 73.8 80.6 66.4 82.4 73.5 79.1 nan nan nan nan
Player 83.2 99.8 90.7 58.1 80.8 99.8 89.3 58.8 nan nan nan nan
Alien 73.0 92.1 81.5 94.2 68.6 92.5 78.8 94.3 nan nan nan nan

G.2 Amidar details

This game is similar to Pac-Man: You are trying to visit all
places on a 2-dimensional grid while simultaneously avoiding
your enemies. You can turn the tables at one point in the
game: Your enemies turn into chickens and you can catch
them.
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Table 8: Per class IOU on Amidar

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 100 100 100 100 100 100 100 100 nan nan nan nan
Monster_green 60.9 99.9 75.7 95.4 75.7 99.8 86.1 87.4 nan nan nan nan
Score 100 100 100 100 100 100 100 95.4 nan nan nan nan
Player 97.4 100 98.7 95.5 95.6 100 97.8 92.9 nan nan nan nan

G.3 Assault details

You control a vehicle that can move sideways. A big mother
ship circles overhead and continually deploys smaller drones.
You must destroy these enemies and dodge their attacks.

Table 9: Per class statistics on Assault

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

PlayerScore 100 100 100 100 100 100 100 99.9 nan nan nan nan
MotherShip 99.8 99.8 99.8 88.7 100 100 100 88.6 nan nan nan nan
Lives 100 100 100 100 100 100 100 100 nan nan nan nan
Health 99.6 99.6 99.6 99.5 100 100 100 99.6 nan nan nan nan
Player 91.8 100 95.7 88.6 95.8 100 97.9 81.6 nan nan nan nan
Enemy 98.4 87.6 92.7 87.1 89.0 70.5 78.7 78.5 nan nan nan nan
PlayerMissileHorizontal 29.0 29.1 29.1 28.5 26.7 25.5 26.1 30.2 nan nan nan nan
PlayerMissileVertical 95.7 95.2 95.5 86.7 91.4 88.0 89.7 83.0 nan nan nan nan
EnemyMissile 20.0 21.7 20.8 69.6 44.4 38.1 41.0 67.9 nan nan nan nan

G.4 Asterix details

You are Asterix and can move horizontally (continuously)
and vertically (discretely). Objects move horizontally across
the screen: lyres and other (more useful) objects. Your goal is
to guide Asterix in such a way as to avoid lyres and collect as
many other objects as possible. You score points by collecting
objects and lose a life whenever you collect a lyre. You have
three lives available at the beginning. If you score sufficiently
many points, you will be awarded additional points.
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Table 10: Per class statistics on Asterix

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Lives 100 100 100 91.7 100 100 100 91.7 100 100 100 91.7
Player 98.4 98.4 98.4 97.6 99.6 99.6 99.6 98.8 98.6 98.6 98.6 98.5
Score 100 100 100 100 100 96.3 98.1 99.0 100 99.2 99.6 99.8
Cauldron 93.9 100 96.8 99.9 96.6 100 98.3 100 98.5 100 99.2 100
Reward50 90.7 100 95.1 100 98.2 100 99.1 100 90.6 100 95.1 99.6
Enemy 85.8 100 92.3 88.0 85.4 100 92.1 89.2 89.7 100 94.6 89.6

G.5 Asteroids details

This is a well-known arcade game: You control a spaceship
in an asteroid field and must break up asteroids by shooting
them. Once all asteroids are destroyed, you enter a new
level and new asteroids will appear. You will occasionally be
attacked by a flying saucer.

Table 11: Per class IOU on Asteroids

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Asteroid 42.5 86.7 57.1 90.5 39.5 88.8 54.7 89.3 nan nan nan nan
Player 44.3 100 61.4 75.1 50.5 97.3 66.5 73.1 nan nan nan nan
Lives 100 100 100 100 100 100 100 100 nan nan nan nan
PlayerScore 96.0 92.5 94.2 98.5 97.8 96.1 96.9 99.1 nan nan nan nan
PlayerMissile 44.7 97.8 61.4 98.7 52.7 92.8 67.2 100 nan nan nan nan
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G.6 Atlantis details

Your job is to defend the submerged city of Atlantis. Your
enemies slowly descend towards the city and you must destroy
them before they reach striking distance. To this end, you
control three defense posts. You lose if your enemies manage
to destroy all seven of Atlantis’ installations. You may rebuild
installations after you have fought of a wave of enemies and
scored a sufficient number of points.

Table 12: Per class statistics on Atlantis

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

BridgedBazaar 100 99.7 99.9 99.9 100 99.7 99.8 99.9 nan nan nan nan
AcropolisCommandPost 100 96.2 98.0 99.9 100 97.8 98.9 99.8 nan nan nan nan
Sentry 100 100 100 99.4 100 100 100 99.6 nan nan nan nan
AquaPlane 100 97.8 98.9 100 100 99.0 99.5 99.9 nan nan nan nan
Generator 100 99.7 99.9 87.9 99.8 99.5 99.7 85.7 nan nan nan nan
DomedPalace 100 99.5 99.8 100 100 99.8 99.9 99.9 nan nan nan nan
Projectile 85.1 77.4 81.1 99.9 86.7 76.2 81.1 99.2 nan nan nan nan
GorgonShip 88.6 83.0 85.7 93.1 85.7 76.0 80.6 89.9 nan nan nan nan
Score 100 100 100 99.8 100 100 100 100 nan nan nan nan
BanditBomber 81.0 78.2 79.5 88.2 76.3 85.3 80.6 79.4 nan nan nan nan

G.7 BankHeist details

You are a bank robber and (naturally) want to rob as many
banks as possible. You control your getaway car and must
navigate maze-like cities. The police chases you and will
appear whenever you rob a bank. You may destroy police
cars by dropping sticks of dynamite. You can fill up your gas
tank by entering a new city.At the beginning of the game you
have four lives. Lives are lost if you run out of gas, are caught
by the police,or run over the dynamite you have previously
dropped.
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Table 13: Per class IOU on BankHeist

Random DQN C51
Precision Recall F-score IOU Precision Recall F-score IOU Precision Recall F-score IOU

Bank 73.4 87.2 79.7 73.5 98.7 91.3 94.9 99.2 nan nan nan nan
Player 79.8 99.8 88.7 81.0 71.2 92.0 80.3 77.1 nan nan nan nan
Gas_Tank 100 100 100 92.6 100 100 100 76.9 nan nan nan nan
Score 100 100 100 100 100 100 100 100 nan nan nan nan
Life 100 100 100 100 100 100 100 100 nan nan nan nan
Police 100 100 100 82.5 89.2 89.2 89.2 71.5 nan nan nan nan

G.8 BattleZone details

You control a tank and must destroy enemy vehicles. This
game is played in a first-person perspective and creates a
3D illusion. A radar screen shows enemies around you. You
start with 5 lives and gain up to 2 extra lives if you reach a
sufficient score.

Table 14: Per class IOU on BattleZone

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Radar 92.0 100 95.8 100 92.8 94.5 93.6 99.6 nan nan nan nan
Player 92.0 100 95.8 100 92.8 100 96.3 100 nan nan nan nan
Crosshair 92.0 68.0 78.2 97.5 88.6 70.5 78.5 97.3 nan nan nan nan
Blue_Tank 27.1 50.8 35.4 57.6 27.3 47.6 34.7 54.9 nan nan nan nan

G.9 Berzerk details

You are stuck in a maze with evil robots. You must destroy
them and avoid touching the walls of the maze, as this will
kill you. You may be awarded extra lives after scoring a
sufficient number of points, depending on the game mode.
You may also be chased by an undefeatable enemy, Evil Otto,
that you must avoid. Evil Otto does not appear in the default
mode.
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Table 15: Per class statistics on Berzerk

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Logo 100 99.3 99.6 100 100 100 100 100 nan nan nan nan
PlayerMissile 75.0 98.4 85.1 74.5 79.2 88.1 83.4 81.1 nan nan nan nan
Enemy 97.3 98.7 98.0 77.0 98.4 100 99.2 77.3 nan nan nan nan
Player 90.4 98.7 94.4 66.1 97.4 99.2 98.3 54.5 nan nan nan nan
PlayerScore 95.0 73.2 82.7 85.1 98.8 91.9 95.2 96.6 nan nan nan nan
EnemyMissile 77.4 90.0 83.2 78.8 73.8 85.7 79.3 79.2 nan nan nan nan
RoomCleared 96.3 100 98.1 100 98.4 100 99.2 100 nan nan nan nan

G.10 Bowling details

Your goal is to score as many points as possible in the game
of Bowling. A game consists of 10 frames and you have two
tries per frame. Knocking down all pins on the first try is
called a “strike”. Knocking down all pins on the second roll
is called a “spar”. Otherwise, the frame is called “open”.

Table 16: Per class statistics on Bowling

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Pin 99.4 100 99.7 100 98.7 100 99.3 100 99.4 100 99.7 100
Player 98.6 97.6 98.1 98.3 99.6 99.2 99.4 99.2 98.2 96.8 97.5 98.0
PlayerScore 100 100 100 100 100 100 100 100 100 100 100 100
Player2Round 100 100 100 100 100 100 100 100 100 100 100 100
Ball 99.0 98.8 98.9 99.6 98.4 96.9 97.6 99.1 99.0 98.6 98.8 99.3
PlayerRound 100 92.4 96.1 96.7 100 89.6 94.5 95.4 100 92.1 95.9 96.6
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G.11 Boxing details

You fight an opponent in a boxing ring. You score points for
hitting the opponent. If you score 100 points, your opponent
is knocked out.

Table 17: Per class statistics on Boxing

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Enemy 83.4 81.1 82.2 78.4 79.8 74.6 77.1 73.3 88.6 85.5 87.0 79.5
PlayerScore 100 82.5 90.4 87.9 100 92.8 96.2 95.5 100 93.3 96.5 95.9
Player 81.6 81.6 81.6 79.3 80.8 80.8 80.8 78.4 79.6 79.1 79.4 76.7
EnemyScore 100 45.9 62.9 89.8 100 44.9 62.0 87.1 100 45.5 62.5 88.7
Logo 100 100 100 100 100 100 100 100 100 100 100 100
Clock 100 100 100 100 100 100 100 100 100 100 100 100

G.12 Breakout details

Another famous Atari game. The dynamics are similar to
pong: You move a paddle and hit the ball in a brick wall at
the top of the screen. Your goal is to destroy the brick wall.
You can try to break through the wall and let the ball wreak
havoc on the other side, all on its own! You have five lives.

Table 18: Per class statistics on Breakout

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 98.8 100 99.4 100 97.4 100 98.7 100 99.8 100 99.9 100
BlockRow 100 100 100 100 100 100 100 100 100 100 100 100
Live 100 100 100 99.9 100 100 100 99.9 100 100 100 100
PlayerScore 100 100 100 100 100 100 100 100 100 100 100 100
PlayerNumber 100 100 100 100 100 100 100 100 100 100 100 100
Ball 93.1 100 96.4 100 93.3 100 96.5 100 90.5 100 95.0 100
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G.13 Carnival details

This is a “shoot ‘em up” game. Targets move horizontally
across the screen and you must shoot them. You are in
control of a gun that can be moved horizontally. The supply
of ammunition is limited and chickens may steal some bullets
from you if you don’t hit them in time.

Table 19: Per class statistics on Carnival

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Duck 98.8 93.7 96.2 95.5 98.3 93.4 95.8 94.4 nan nan nan nan
PlayerScore 86.6 76.4 81.2 100 98.4 96.9 97.6 100 nan nan nan nan
Wheel 100 100 100 89.8 100 98.9 99.5 88.5 nan nan nan nan
FlyingDuck 40.4 91.3 56.0 82.2 42.9 82.9 56.5 82.9 nan nan nan nan
Owl 99.0 97.7 98.3 97.6 98.9 96.2 97.5 95.9 nan nan nan nan
ExtraBullets 98.1 84.9 91.0 97.8 98.1 90.2 94.0 96.6 nan nan nan nan
Player 100 100 100 100 100 100 100 100 nan nan nan nan
Rabbit 97.0 95.8 96.4 98.0 95.3 97.3 96.3 97.4 nan nan nan nan
AmmoBar 90.0 100 94.7 100 98.4 99.8 99.1 99.8 nan nan nan nan
PlayerMissile 95.3 97.5 96.4 10.2 93.9 98.9 96.3 10.4 nan nan nan nan
BonusValue 95.0 100 97.5 88.1 97.4 100 98.7 82.1 nan nan nan nan
BonusSign 66.3 100 79.7 65.6 53.1 100 69.4 100 nan nan nan nan

G.14 Centipede details

You are an elf and must use your magic wands to fend
off spiders, fleas and centipedes. Your goal is to protect
mushrooms in an enchanted forest. If you are bitten by a
spider, flea or centipede, you will be temporally paralyzed
and you will lose a magic wand. The game ends once you
have lost all wands. You may receive additional wands after
scoring a sufficient number of points.
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Table 20: Per class statistics on Centipede

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 99.6 100 99.8 97.0 98.8 100 99.4 97.7 nan nan nan nan
Projectile 84.9 99.7 91.7 88.9 84.8 97.5 90.7 88.6 nan nan nan nan
Life 100 100 100 100 100 100 100 100 nan nan nan nan
Ground 100 97.8 98.9 100 100 98.4 99.2 100 nan nan nan nan
Mushroom 99.6 99.7 99.6 99.8 99.3 99.7 99.5 99.6 nan nan nan nan
CentipedeSegment 72.2 78.8 75.4 57.1 69.0 75.2 72.0 55.3 nan nan nan nan
Player 96.4 91.8 94.1 87.4 94.4 90.8 92.6 84.8 nan nan nan nan
Spider 92.4 100 96.1 99.6 87.1 99.0 92.7 100 nan nan nan nan
Flea 50.0 100 66.7 100 50.0 100 66.7 100 nan nan nan nan
Scorpion nan nan nan nan 100 100 100 100 nan nan nan nan

G.15 ChopperCommand details

You control a helicopter and must protect truck convoys. To
that end, you need to shoot down enemy aircraft.A mini-map
is displayed at the bottom of the screen.

Table 21: Per class statistics on ChopperCommand

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 100 100 100 100 100 100 100 100 100 100 100
Life 100 100 100 100 100 100 100 100 100 100 100 100
MiniEnemy 88.9 78.0 83.1 48.5 66.8 62.3 64.5 51.1 47.4 39.4 43.0 56.2
MiniTruck 86.0 93.1 89.4 100 68.5 70.6 69.6 99.9 49.4 58.5 53.6 100
Truck 88.8 99.6 93.9 79.6 95.9 98.6 97.2 80.4 92.9 96.4 94.6 74.7
MiniPlayer 90.8 100 95.2 84.8 99.2 100 99.6 84.5 99.8 100 99.9 93.7
Player 95.2 98.8 96.9 79.0 91.4 89.4 90.4 75.8 99.0 98.8 98.9 86.5
Shot 76.9 74.9 75.9 88.0 58.8 58.8 58.8 87.3 81.8 81.8 81.8 90.2
EnemyHelicopter 79.9 94.3 86.5 71.4 45.6 85.4 59.5 73.7 61.8 95.5 75.0 71.1
Bomb 51.3 93.2 66.2 37.7 54.7 80.3 65.0 55.9 50.0 82.1 62.2 72.5
EnemyPlane 92.0 98.3 95.0 66.6 94.0 96.2 95.1 71.4 94.4 94.4 94.4 74.4
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G.16 CrazyClimber details

You are a climber trying to reach the top of four buildings,
while avoiding obstacles like closing windows and falling
objects. When you receive damage (windows closing or
objects) you will fall and lose one life; you have a total of
5 lives before the end games. At the top of each building,
there’s a helicopter which you need to catch to get to the
next building. The goal is to climb as fast as possible while
receiving the least amount of damage.

Table 22: Per class IOU on CrazyClimber

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 96.0 97.6 96.8 91.1 90.8 95.0 92.8 90.4 nan nan nan nan
Window 97.6 95.2 96.4 97.4 98.3 94.6 96.4 96.5 nan nan nan nan
Score 100 100 100 100 100 100 100 100 nan nan nan nan
Life 100 100 100 100 100 100 100 100 nan nan nan nan
Enemy_Red 75.0 81.8 78.3 55.3 19.1 78.8 30.8 57.2 nan nan nan nan
Purple_Projectile 66.7 66.7 66.7 45.0 56.2 69.2 62.1 52.8 nan nan nan nan
Yellow_Projectile 33.3 50.0 40.0 70.9 44.4 57.1 50.0 79.7 nan nan nan nan
Yellow_Ball 84.0 91.3 87.5 67.8 70.5 79.5 74.7 64.8 nan nan nan nan
Enemy_Bird 69.7 92.0 79.3 76.1 58.5 79.2 67.3 65.0 nan nan nan nan
Helicopter nan nan nan nan 14.3 14.3 14.3 42.7 nan nan nan nan
Blue_Projectile nan nan nan nan 100 100 100 53.6 nan nan nan nan

G.17 DemonAttack details

You are facing waves of demons in the ice planet of Krybor.
Points are accumulated by destroying demons. You begin
with 3 reserve bunkers, and can increase its number (up to
6) by avoiding enemy attacks. Each attack wave you survive
without any hits, grants you a new bunker. Every time an
enemy hits you, a bunker is destroyed. When the last bunker
falls, the next enemy hit will destroy you and the game ends.
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Table 23: Per class IOU on DemonAttack

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

ProjectileFriendly 94.8 100 97.3 83.8 97.2 99.4 98.3 85.1 nan nan nan nan
Score 100 98.6 99.3 97.8 98.6 91.1 94.7 95.8 nan nan nan nan
Player 92.6 100 96.2 100 97.2 100 98.6 100 nan nan nan nan
Live 99.1 100 99.5 100 97.5 100 98.8 100 nan nan nan nan
Enemy 99.3 97.9 98.6 73.7 75.1 56.6 64.5 66.3 nan nan nan nan
ProjectileHostile 80.2 98.7 88.5 55.4 59.9 98.3 74.4 37.2 nan nan nan nan

G.18 DonkeyKong details

You play as Mario trying to save your girlfriend who has
been kidnapped by Donkey Kong. Remove rivets and jump
over fireballs, with a score that starts high and counts down
throughout the game.

Table 24: Per class IOU on DonkeyKong

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 97.6 79.5 87.6 93.9 98.0 81.0 88.7 94.1 98.0 79.2 87.6 93.5
Player 28.8 99.3 44.7 93.0 74.8 100 85.6 97.7 78.0 99.7 87.5 97.0
Girlfriend 100 100 100 100 100 100 100 100 100 100 100 100
Ladder 100 100 100 100 100 100 100 100 100 100 100 100
Life 100 100 100 88.9 100 100 100 88.9 100 100 100 88.9
Hammer 99.8 99.6 99.7 100 100 100 100 100 100 100 100 100
DonkeyKong 100 100 100 100 100 100 100 100 100 100 100 100
Barrel 100 100 100 99.6 100 99.5 99.7 99.4 100 99.4 99.7 99.5
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G.19 FishingDerby details

Your objective is to catch more sunfish than your opponent.

Table 25: Per class statistics on FishingDerby

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

ScorePlayerTwo 100 53.1 69.4 100 100 52.5 68.9 100 100 52.5 68.9 100
Fish 94.5 98.2 96.3 68.7 90.6 98.5 94.4 69.2 87.1 99.3 92.8 68.8
PlayerTwoHook 62.6 66.2 64.3 29.4 62.8 67.7 65.1 26.5 62.0 65.1 63.5 30.9
ScorePlayerOne 100 96.3 98.1 100 100 73.5 84.7 100 100 52.5 68.8 100
PlayerOneHook 69.0 69.0 69.0 22.6 87.4 87.6 87.5 22.5 53.8 56.9 55.3 22.4
Shark 82.4 99.8 90.2 92.1 82.8 99.5 90.4 91.5 77.0 99.7 86.9 92.7

G.20 Freeway details

Your objective is to guide your chicken across lane after
lane of busy rush hour traffic. You receive a point for every
chicken that makes it to the top of the screen after crossing
all the lanes of traffic.

Table 26: Per class statistics on Freeway

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Chicken 100 100 100 97.1 99.8 99.9 99.8 96.9 97.0 98.5 97.7 96.4
Car 99.1 99.9 99.5 87.0 99.3 99.9 99.6 87.0 99.4 99.8 99.6 87.0
Score 95.0 48.8 64.5 100 93.4 48.4 63.7 100 85.0 52.3 64.8 86.1

29



Published as a conference paper at RLC 2024

G.21 Frostbite details

In Frostbite, the player controls “Frostbite Bailey” who hops
back and forth across across an Arctic river, changing the
color of the ice blocks from white to blue. Each time he does
so, a block is added to his igloo.

Table 27: Per class statistics on Frostbite

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

WhitePlate 99.5 99.7 99.6 92.0 93.2 99.8 96.4 88.5 92.0 98.8 95.3 87.1
Degree 100 100 100 98.0 100 100 100 97.2 100 100 100 97.7
PlayerScore 100 100 100 96.0 100 100 100 89.7 100 100 100 89.8
Player 63.8 100 77.9 71.4 66.8 100 80.1 72.1 75.8 100 86.2 70.9
LifeCount 100 100 100 89.0 100 100 100 87.2 100 100 100 87.9
House 100 100 100 99.6 99.7 100 99.9 97.1 100 100 100 94.6
BluePlate 98.8 99.5 99.1 91.6 78.0 100 87.6 84.7 74.0 98.2 84.4 82.8
Bird 98.2 95.3 96.7 99.1 90.1 79.7 84.6 95.6 91.4 84.4 87.7 94.7
CompletedHouse nan nan nan nan 100 100 100 99.6 100 100 100 99.8
GreenFish nan nan nan nan 82.2 77.8 79.9 67.2 84.2 87.8 86.0 70.1
Crab nan nan nan nan 96.4 78.4 86.5 66.3 96.6 81.1 88.2 63.5
Bear nan nan nan nan 90.0 90.0 90.0 77.3 100 91.4 95.5 80.6
Clam nan nan nan nan 59.5 97.8 73.9 75.1 66.7 100 80.0 58.3

G.22 Gopher details

The player controls a shovel-wielding farmer who protects a
crop of three carrots from a gopher.
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Table 28: Per class IOU on Gopher

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Gopher 74.8 97.7 84.7 84.7 71.8 96.0 82.2 83.3 nan nan nan nan
Score 100 100 100 98.4 100 96.9 98.4 93.1 nan nan nan nan
Player 99.8 99.8 99.8 81.7 100 100 100 80.3 nan nan nan nan
Empty_Block 100 35.0 51.8 65.6 100 24.6 39.5 62.5 nan nan nan nan
Carrot 100 100 100 100 99.9 100 100 100 nan nan nan nan
Bird nan nan nan nan 33.8 98.0 50.3 84.8 nan nan nan nan

G.23 Hero details

You need to rescue miners that are stuck in a mine shaft. You
have access to various tools: A propeller backpack that allows
you to fly wherever you want, sticks of dynamite that can
be used to blast through walls, a laser beam to kill vermin,
and a raft to float across stretches of lava.You have a limited
amount of power. Once you run out, you lose a live.

Table 29: Per class IOU on Hero

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 65.0 100 78.8 71.1 84.8 100 91.8 75.6 81.4 100 89.7 78.7
Score 65.8 70.6 68.1 48.7 54.4 62.0 57.9 57.6 76.8 82.9 79.8 59.3
Player 96.0 99.8 97.9 96.7 91.0 99.8 95.2 99.4 94.0 100 96.9 99.5
PowerBar 100 100 100 99.8 100 100 100 99.8 100 100 100 99.9
BombStock 81.8 100 90.0 81.0 98.8 100 99.4 90.1 99.4 100 99.7 80.9
Wall 100 93.6 96.7 98.5 73.2 91.4 81.3 91.8 83.9 96.4 89.7 95.0
LaserBeam 36.8 84.2 51.2 35.9 19.8 81.4 31.8 34.2 15.0 81.8 25.3 33.0
Bomb 42.3 81.1 55.6 83.3 45.9 28.3 35.0 83.3 41.3 18.7 25.7 75.3
Enemy 94.1 100 97.0 33.2 37.0 71.8 48.8 43.0 39.9 64.9 49.4 39.0
EndNPC 100 100 100 69.2 100 83.8 91.2 69.2 100 77.5 87.3 69.2
Lamp nan nan nan nan 46.6 100 63.6 62.5 82.0 100 90.1 62.5
LavaWall nan nan nan nan 45.3 77.4 57.1 92.3 54.4 82.8 65.7 99.2
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G.24 IceHockey details

Your goal is to score as many points as possible in a standard
game of Ice Hockey over a 3-minute time period. The ball is
usually called “the puck”.There are 32 shot angles ranging
from the extreme left to the extreme right. The angles can
only aim towards the opponent’s goal.Just as in real hockey,
you can pass the puck by shooting it off the sides of the rink.
This can be really key when you’re in position to score a
goal.

Table 30: Per class IOU on IceHockey

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

EnemyScore 71.6 100 83.4 76.4 57.1 100 72.7 76.4 nan nan nan nan
Player 99.1 99.1 99.1 47.8 98.2 98.2 98.2 47.9 nan nan nan nan
Enemy 99.0 99.5 99.2 52.4 99.6 99.6 99.6 52.8 nan nan nan nan
PlayerScore 83.8 100 91.2 67.7 65.3 100 79.0 67.7 nan nan nan nan
Ball 85.2 98.6 91.4 80.2 83.4 98.8 90.5 84.1 nan nan nan nan
Timer 100 100 100 80.5 100 100 100 79.7 nan nan nan nan

G.25 Jamesbond details

Your mission is to control Mr. Bond’s specially designed
multipurpose craft to complete a variety of missions.The
craft moves forward with a right motion and slightly back
with a left motion.An up or down motion causes the craft to
jump or dive.You can also fire by either lobbing a bomb to
the bottom of the screen or firing a fixed angle shot to the
top of the screen.
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Table 31: Per class IOU on Jamesbond

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player_Shot 78.0 100 87.6 82.2 88.6 100 94.0 79.7 nan nan nan nan
Fire_Hole 100 99.4 99.7 99.8 94.7 88.5 91.5 93.5 nan nan nan nan
Score 100 100 100 99.8 100 100 100 98.5 nan nan nan nan
Player 82.6 96.9 89.2 100 91.8 98.9 95.2 99.8 nan nan nan nan
Life 99.7 100 99.9 100 99.7 100 99.8 100 nan nan nan nan
Helicopter 98.8 100 99.4 86.7 97.0 99.7 98.3 84.9 nan nan nan nan
Hornet 73.7 100 84.8 90.6 76.1 99.6 86.3 95.6 nan nan nan nan
Enemy_Shot 80.5 99.0 88.8 70.6 71.5 100 83.4 74.7 nan nan nan nan
Ice 91.5 100 95.6 86.7 91.7 100 95.7 82.7 nan nan nan nan
Eruption nan nan nan nan 100 100 100 100 nan nan nan nan

G.26 Kangaroo details

The object of the game is to score as many points as you can
while controlling Mother Kangaroo to rescue her precious
baby. You start the game with three lives.During this rescue
mission, Mother Kangaroo encounters many obstacles. You
need to help her climb ladders, pick bonus fruit, and throw
punches at monkeys.

Table 32: Per class statistics on Kangaroo

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Bell 99.8 99.8 99.8 100 100 100 100 100 99.8 99.8 99.8 100
Platform 100 75.0 85.7 100 100 75.0 85.7 100 100 75.0 85.7 100
Scale 100 100 100 100 100 100 100 100 100 100 100 100
Fruit 99.8 99.9 99.9 90.7 99.2 100 99.6 90.9 97.4 99.8 98.6 90.7
Child 99.6 99.8 99.7 95.0 100 100 100 95.6 99.8 100 99.9 96.4
Life 99.7 100 99.8 100 100 100 100 100 99.6 100 99.8 100
Score 99.8 100 99.9 100 100 100 100 99.6 99.8 100 99.9 99.3
Time 99.8 100 99.9 100 100 100 100 89.7 99.8 100 99.9 96.5
Player 79.8 89.3 84.3 79.4 88.0 91.7 89.8 78.6 81.2 88.3 84.6 79.3
Projectile_top 81.6 84.7 83.1 81.0 98.9 99.5 99.2 87.6 92.9 88.3 90.5 85.5
Enemy 87.2 95.5 91.2 91.1 94.5 95.2 94.8 86.8 85.8 96.4 90.8 86.8
Projectile_enemy 66.7 93.3 77.8 33.3 50.0 100 66.7 33.3 14.1 86.7 24.2 33.3
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G.27 Krull details

Your mission is to find and enter the Beast’s Black Fortress,
rescue Princess Lyssa, and destroy the Beast.The task is not
an easy one, for the location of the Black Fortress changes
with each sunrise on Krull.

Table 33: Per class IOU on Krull

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 99.8 99.5 99.7 100 100 100 100 100 nan nan nan nan
Lyssa 84.1 98.6 90.8 84.3 95.5 98.4 96.9 81.7 nan nan nan nan
Player 88.6 99.3 93.7 74.1 90.0 100 94.7 75.3 nan nan nan nan
Score 100 100 100 98.3 99.8 100 99.9 99.1 nan nan nan nan
Sun 93.4 100 96.6 87.1 91.3 100 95.5 87.3 nan nan nan nan
Slayers 96.2 97.4 96.8 83.8 99.6 99.1 99.3 82.3 nan nan nan nan
Slayer_Shot 0.0 nan 0.0 nan 0.0 nan 0.0 nan nan nan nan nan
Weapon 100 91.7 95.7 96.0 82.4 93.3 87.5 96.8 nan nan nan nan
Fire_Mare 100 100 100 49.0 100 100 100 49.7 nan nan nan nan
Window 99.5 100 99.7 100 99.7 100 99.9 100 nan nan nan nan
Hour_Glass 99.5 83.2 90.6 82.6 99.7 82.6 90.4 82.0 nan nan nan nan
Spider 89.3 98.8 93.8 76.9 88.1 98.9 93.2 77.1 nan nan nan nan
Weapon_HUD 100 100 100 100 99.3 100 99.7 100 nan nan nan nan
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G.28 MontezumaRevenge details

Your goal is to acquire Montezuma’s treasure by making
your way through a maze of chambers within the emperor’s
fortress. You must avoid deadly creatures while collecting
valuables and tools which can help you escape with the
treasure.

Table 34: Per class statistics on MontezumaRevenge

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Skull 99.6 99.6 99.6 79.0 100 100 100 79.1 100 100 100 80.4
Life 100 100 100 100 100 100 100 100 100 100 100 100
Player 99.0 98.6 98.8 77.9 100 100 100 97.3 100 100 100 100
Rope 97.6 100 98.8 100 100 100 100 100 100 100 100 100
Barrier 100 100 100 100 100 100 100 100 100 100 100 100
Key 99.0 96.7 97.8 100 100 100 100 100 100 100 100 100
Score 100 100 100 100 100 100 100 100 100 100 100 100

G.29 MsPacman details

Your goal is to collect all of the pellets on the screen while
avoiding the ghosts.
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Table 35: Per class statistics on MsPacman

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 100 100 100 93.3 54.4 100 70.5 90.3 nan nan nan nan
Score 100 100 100 98.2 100 100 100 99.2 nan nan nan nan
Player 99.8 99.8 99.8 71.7 94.8 99.0 96.8 72.5 nan nan nan nan
Ghost 55.6 98.4 71.1 79.5 61.3 98.3 75.5 77.2 nan nan nan nan
Fruit 100 100 100 88.9 97.9 100 98.9 85.5 nan nan nan nan

G.30 Pacman details

A classic arcade game. Move Pac Man around a maze collect-
ing food and avoiding ghosts- unless you eat a Power Pellet,
then you can eat the ghosts too!

Table 36: Per class IOU on Pacman

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 98.2 99.1 35.5 100 100 100 34.1 93.4 86.0 89.5 35.6
Player 93.5 87.8 90.5 66.8 95.2 88.6 91.7 69.3 90.0 73.8 81.1 67.4
Ghost 40.2 82.3 54.0 84.8 31.2 79.7 44.9 87.9 21.0 72.3 32.6 86.5
Life 100 99.8 99.9 99.7 100 100 100 100 100 99.6 99.8 100
PowerPill 49.2 100 66.0 100 33.0 82.1 47.1 99.7 26.2 99.4 41.4 100
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G.31 Pitfall details

You control Pitfall Harry and are tasked with collecting all
the treasures in a jungle within 20 minutes. You have three
lives. The game is over if you collect all the treasures or if
you die or if the time runs out.

Table 37: Per class IOU on Pitfall

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 91.8 97.0 94.3 68.7 100 100 100 61.2 nan nan nan nan
Wall 100 100 100 99.8 100 100 100 76.5 nan nan nan nan
Logs 99.1 99.8 99.5 99.6 100 100 100 98.9 nan nan nan nan
LifeCount 100 100 100 100 100 100 100 100 nan nan nan nan
Timer 100 100 100 99.7 100 100 100 98.2 nan nan nan nan
StairPit 100 100 100 100 100 100 100 100 nan nan nan nan
PlayerScore 100 100 100 97.0 100 100 100 96.7 nan nan nan nan
Scorpion 100 100 100 94.7 100 100 100 100 nan nan nan nan
Waterhole 96.7 100 98.3 100 73.3 100 84.6 99.6 nan nan nan nan
Crocodile 100 100 100 100 nan nan nan nan nan nan nan nan
Rope 87.7 69.4 77.5 100 nan nan nan nan nan nan nan nan
Snake 100 100 100 97.6 100 100 100 96.9 nan nan nan nan
Tarpit 80.0 100 88.9 100 nan nan nan nan nan nan nan nan

G.32 Pong details

You control the right paddle, you compete against the left
paddle controlled by the computer. You each try to keep de-
flecting the ball away from your goal and into your opponent’s
goal.
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Table 38: Per class statistics on Pong

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Ball 60.2 100 75.2 74.8 76.0 100 86.4 75.2 74.0 100 85.1 74.9
Player 100 100 100 91.7 100 100 100 89.0 100 100 100 94.7
EnemyScore 100 96.9 98.4 78.0 100 95.9 97.9 79.0 100 94.7 97.3 79.2
Enemy 85.2 100 92.0 94.4 92.8 100 96.3 94.2 92.2 100 95.9 94.1
PlayerScore 100 100 100 74.3 100 100 100 84.1 100 95.1 97.5 86.5

G.33 PrivateEye details

You control the French Private Eye Pierre Touche. Navigate
the city streets, parks, secret passages, dead-ends and one-
ways in search of the ringleader, Henri Le Fiend and his gang.
You also need to find evidence and stolen goods that are
scattered about. There are five cases, complete each case
before its statute of limitations expires.

Table 39: Per class IOU on PrivateEye

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Car 96.8 100 98.4 97.3 100 100 100 94.4 nan nan nan nan
Clock 100 100 100 98.5 100 100 100 98.6 nan nan nan nan
Player 95.8 97.0 96.4 95.6 99.2 99.2 99.2 92.8 nan nan nan nan
Score 100 100 100 97.5 100 100 100 96.7 nan nan nan nan
Clue 57.5 100 73.0 77.6 50.0 100 66.7 78.6 nan nan nan nan
Mud 91.2 100 95.4 100 nan nan nan nan nan nan nan nan
Dove 100 100 100 100 nan nan nan nan nan nan nan nan

38



Published as a conference paper at RLC 2024

G.34 Qbert details

You are Q*bert. Your goal is to change the color of all the
cubes on the pyramid to the pyramid’s ‘destination’ color.
To do this, you must hop on each cube on the pyramid one
at a time while avoiding nasty creatures that lurk there.

Table 40: Per class statistics on Qbert

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Cube 100 99.6 99.8 100 74.6 99.5 85.3 99.9 77.6 99.5 87.2 99.9
Score 66.0 100 79.5 100 34.8 100 51.6 98.8 31.8 100 48.3 98.9
Lives 60.1 100 75.0 100 38.9 100 56.0 100 40.5 100 57.7 100
Disk 99.8 100 99.9 100 99.6 100 99.8 100 100 100 100 100
Player 47.3 81.9 60.0 79.2 93.7 82.1 87.5 78.2 98.3 84.1 90.6 79.9
Sam 34.5 82.9 48.7 93.8 100 80.0 88.9 94.7 100 93.8 96.8 95.1
PurpleBall 20.9 52.7 29.9 90.5 71.3 69.0 70.2 91.3 76.1 66.4 70.9 90.9
Coily 91.3 100 95.5 93.4 91.3 100 95.5 89.4 87.1 100 93.1 90.7
GreenBall nan nan nan nan 83.3 90.9 87.0 87.7 79.3 88.5 83.6 87.1

G.35 Riverraid details

You control a jet that flies over a river: you can move it
sideways and fire missiles to destroy enemy objects. Each
time an enemy object is destroyed you score points (i.e.
rewards). You lose a jet when you run out of fuel: fly over a
fuel depot when you begin to run low.You lose a jet even when
it collides with the river bank or one of the enemy objects
(except fuel depots). The game begins with a squadron of
three jets in reserve and you’re given an additional jet (up
to 9) for each 10,000 points you score.
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Table 41: Per class statistics on Riverraid

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

PlayerScore 100 2.4 4.7 100 100 1.0 2.0 100 nan nan nan nan
FuelDepot 97.7 98.3 98.0 100 94.7 96.5 95.6 100 nan nan nan nan
Tanker 97.0 98.2 97.6 96.9 94.1 95.8 95.0 94.3 nan nan nan nan
Lives 89.3 99.8 94.3 89.8 59.6 100 74.7 92.0 nan nan nan nan
Player 100 99.3 99.6 76.7 99.8 99.6 99.7 74.8 nan nan nan nan
Helicopter 96.4 97.0 96.7 97.6 97.4 96.8 97.1 96.5 nan nan nan nan
PlayerMissile 87.3 92.8 90.0 88.1 82.8 95.5 88.7 89.6 nan nan nan nan
Bridge 95.2 100 97.6 82.7 97.6 97.6 97.6 84.9 nan nan nan nan
Jet nan nan nan nan 95.9 100 97.9 83.6 nan nan nan nan

G.36 RoadRunner details

You control the Road Runner(TM) in a race; you can control
the direction to run in and times to jumps.The goal is to
outrun Wile E. Coyote(TM) while avoiding the hazards of
the desert.The game begins with three lives. You lose a life
when the coyote catches you, picks you up in a rocket, or
shoots you with a cannon. You also lose a life when a truck
hits you, you hit a land mine, you fall off a cliff,or you get
hit by a falling rock.You score points (i.e. rewards) by eating
seeds along the road, eating steel shot, and destroying the
coyote.

Table 42: Per class statistics on RoadRunner

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Enemy 99.3 88.6 93.7 77.1 83.3 85.3 84.3 71.7 nan nan nan nan
Sign 94.4 100 97.1 97.8 54.3 100 70.4 90.9 nan nan nan nan
Cactus 99.5 99.0 99.2 98.4 91.3 93.8 92.6 89.5 nan nan nan nan
Bird 100 100 100 100 97.4 97.2 97.3 100 nan nan nan nan
Player 95.4 96.8 96.1 79.4 93.4 98.7 96.0 91.4 nan nan nan nan
BirdSeeds 55.2 90.6 68.6 78.3 62.3 89.1 73.3 63.0 nan nan nan nan
Truck nan nan nan nan 77.4 100 87.3 72.0 nan nan nan nan
RoadCrack nan nan nan nan 87.5 8.2 15.1 72.5 nan nan nan nan
AcmeMine nan nan nan nan 16.7 41.7 23.8 69.0 nan nan nan nan
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G.37 Seaquest details

You control a sub able to move in all directions and fire
torpedoes. The goal is to retrieve as many divers as you can,
while dodging and blasting enemy subs and killer sharks;
points will be awarded accordingly. The game begins with
one sub and three waiting on the horizon. Each time you
increase your score by 10,000 points, an extra sub will be
delivered to your base. You can only have six reserve subs
on the screen at one time.Your sub will explode if it collides
with anything except your own divers.The sub has a limited
amount of oxygen that decreases at a constant rate during
the game. When the oxygen tank is almost empty, you need
to surface and if you don’t do it in time, your sub will blow
up and you’ll lose one diver. Each time you’re forced to
surface, with less than six divers, you lose one diver as well.

Table 43: Per class statistics on Seaquest

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

OxygenBarDepleted 92.1 100 95.9 99.8 98.6 100 99.3 100 98.4 100 99.2 99.9
Player 75.8 98.7 85.7 75.0 95.8 98.6 97.2 80.4 95.4 99.2 97.2 80.6
Logo 100 100 100 100 100 100 100 100 100 100 100 100
Lives 100 100 100 100 100 100 100 100 100 100 100 100
OxygenBarLogo 99.0 97.2 98.1 100 91.4 84.0 87.5 100 92.4 85.4 88.8 100
PlayerScore 100 84.0 91.3 92.9 94.0 79.4 86.1 93.6 84.8 60.1 70.4 79.9
OxygenBar 98.9 100 99.4 100 91.2 100 95.4 100 92.1 100 95.9 100
Diver 90.6 98.2 94.3 76.9 93.8 100 96.8 77.4 94.1 99.4 96.7 79.0
PlayerMissile 70.0 100 82.4 100 67.8 100 80.8 100 69.1 100 81.7 100
Enemy 97.8 98.9 98.3 55.8 57.8 90.6 70.6 51.5 75.6 87.5 81.1 52.7
EnemyMissile 94.3 44.0 60.0 71.7 88.9 85.1 87.0 70.9 93.2 71.4 80.9 70.9
CollectedDiver 100 100 100 100 100 100 100 100 91.8 100 95.7 100
EnemySubmarine 95.9 100 97.9 77.6 98.1 100 99.0 75.1 94.3 96.1 95.2 70.7

G.38 Skiing details

You control a skier who can move sideways. The goal is to
run through all gates (between the poles) in the fastest time.
You are penalized five seconds for each gate you miss. If you
hit a gate or a tree, your skier will jump back up and keep
going.
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Table 44: Per class statistics on Skiing

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 100 100 100 100 100 100 100 nan nan nan nan
Mogul 97.2 99.2 98.2 84.0 100 100 100 85.7 nan nan nan nan
Tree 81.0 83.5 82.2 75.0 51.1 51.3 51.2 48.3 nan nan nan nan
Logo 100 100 100 100 100 100 100 100 nan nan nan nan
Clock 100 100 100 100 100 100 100 100 nan nan nan nan
Player 99.2 96.7 97.9 64.0 100 100 100 63.9 nan nan nan nan
Flag 95.8 97.4 96.6 86.0 100 100 100 86.7 nan nan nan nan

G.39 SpaceInvaders details

Your objective is to destroy the space invaders by shooting
your laser cannon at them before they reach the Earth. The
game ends when all your lives are lost after taking enemy
fire, or when they reach the earth.

Table 45: Per class statistics on SpaceInvaders

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Shield 98.9 98.8 98.8 90.7 100 88.3 93.8 97.6 nan nan nan nan
Score 79.0 100 88.3 100 65.3 100 79.0 100 nan nan nan nan
Lives 76.8 79.1 77.9 100 73.3 70.2 71.7 100 nan nan nan nan
Player 93.4 100 96.6 91.6 94.4 100 97.1 91.9 nan nan nan nan
Alien 100 99.6 99.8 98.3 100 98.4 99.2 99.1 nan nan nan nan
Bullet 33.5 66.1 44.5 79.2 31.9 64.1 42.6 76.8 nan nan nan nan
Satellite 97.3 100 98.6 93.4 100 100 100 92.2 nan nan nan nan
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G.40 Tennis details

You control the orange player playing against a computer-
controlled blue player. The game follows the rules of tennis.
The first player to win at least 6 games with a margin of at
least two games wins the match. If the score is tied at 6-6,
the first player to go 2 games up wins the match.

Table 46: Per class statistics on Tennis

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Logo 100 100 100 100 100 100 100 100 nan nan nan nan
EnemyScore 100 100 100 98.7 100 100 100 100 nan nan nan nan
BallShadow 95.5 98.3 96.9 65.3 96.1 97.1 96.6 50.5 nan nan nan nan
Ball 95.2 100 97.6 70.9 95.0 100 97.4 70.3 nan nan nan nan
Enemy 99.0 100 99.5 73.1 87.6 100 93.4 72.1 nan nan nan nan
Player 97.8 100 98.9 71.7 83.0 100 90.7 69.9 nan nan nan nan
PlayerScore 100 100 100 100 97.0 94.2 95.6 97.4 nan nan nan nan

G.41 TimePilot details

You control an aircraft. Use it to destroy your enemies.
As you progress in the game, you encounter enemies with
technology that is increasingly from the future.
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Table 47: Per class IOU on TimePilot

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 95.4 99.3 97.3 95.8 88.5 99.0 93.5 94.6 nan nan nan nan
Player_Shot 91.8 95.6 93.7 98.8 83.9 94.6 88.9 99.1 nan nan nan nan
Enemy_Green 89.1 98.7 93.7 94.7 76.9 100 86.9 88.4 nan nan nan nan
Score 92.5 86.0 89.1 96.1 91.8 84.6 88.1 95.7 nan nan nan nan
Life 100 100 100 100 100 99.9 99.9 100 nan nan nan nan
Enemy_Green_Shot 61.5 34.3 44.0 63.1 55.6 26.3 35.7 73.3 nan nan nan nan
Enemy_Black 94.4 92.4 93.4 96.0 90.6 92.7 91.6 92.2 nan nan nan nan
Enemy_Black_Shot 73.3 45.8 56.4 69.7 80.0 57.1 66.7 83.3 nan nan nan nan
Enemy_Yellow nan nan nan nan 93.2 93.2 93.2 88.0 nan nan nan nan
Enemy_Yellow_Shot nan nan nan nan 80.0 63.2 70.6 40.3 nan nan nan nan
Enemy_Blue nan nan nan nan 95.8 91.3 93.5 92.3 nan nan nan nan
Enemy_Blue_Shot nan nan nan nan 0.0 0.0 0.0 60.0 nan nan nan nan

G.42 UpNDown details

Your goal is to steer your baja bugger to collect prizes and
eliminate opponents.

Table 48: Per class IOU on UpNDown

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 100 100 98.9 100 100 100 98.4 99.8 99.8 99.8 98.1
Life 100 99.8 99.9 100 99.9 99.8 99.9 100 100 100 100 100
HUD_Flag 100 100 100 100 100 100 100 100 100 100 100 100
Player 91.1 94.4 92.7 86.1 78.6 88.4 83.2 75.1 88.0 90.7 89.3 82.8
Truck 84.1 95.2 89.3 86.8 86.0 93.5 89.6 82.0 81.9 91.7 86.5 80.9
Flag 48.3 100 65.1 64.8 46.2 98.8 63.0 86.3 36.0 100 53.0 74.9
Collectable 100 100 100 50.7 70.4 100 82.6 79.2 62.5 90.9 74.1 59.1

44



Published as a conference paper at RLC 2024

G.43 Venture details

Your goal is to capture the treasure in every chamber of the
dungeon while eliminating the monsters.

Table 49: Per class IOU on Venture

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 100 100 100 100 100 100 100 100 nan nan nan nan
Hallmonsters 46.2 99.6 63.2 84.1 26.7 98.3 42.0 84.6 nan nan nan nan
Player 93.0 99.6 96.2 99.3 54.0 99.6 70.0 98.4 nan nan nan nan
Score 100 100 100 100 100 100 100 100 nan nan nan nan
Goblin 50.0 100 66.7 100 nan nan nan nan nan nan nan nan
Shot 50.0 100 66.7 50.0 66.7 100 80.0 100 nan nan nan nan
Yellow_Collectable 50.0 100 66.7 100 nan nan nan nan nan nan nan nan
Skeleton nan nan nan nan 44.4 100 61.5 100 nan nan nan nan
Purple_Collectable nan nan nan nan 66.7 100 80.0 100 nan nan nan nan

G.44 VideoPinball details

Your goal is to keep the ball in play as long as possible and
to score as many points as possible.
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Table 50: Per class IOU on VideoPinball

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 84.8 75.8 80.1 91.1 97.2 95.3 96.2 99.0 nan nan nan nan
DropTarget 97.8 86.5 91.8 94.2 99.6 88.6 93.8 88.3 nan nan nan nan
LifeUsed 98.0 100 99.0 100 99.6 100 99.8 100 nan nan nan nan
DifficultyLevel 98.0 100 99.0 100 99.6 100 99.8 100 nan nan nan nan
Spinner 98.0 99.7 98.8 76.1 99.6 100 99.8 76.5 nan nan nan nan
Flipper 98.5 99.4 98.9 74.2 99.6 100 99.8 72.7 nan nan nan nan
Ball 90.0 100 94.7 99.9 98.6 100 99.3 100 nan nan nan nan
Bumper 98.0 100 99.0 99.6 99.6 100 99.8 99.9 nan nan nan nan

G.45 YarsRevenge details

The objective is to break a path through the shield and
destroy the Qotile with a blast from the Zorlon Cannon.

Table 51: Per class IOU on YarsRevenge

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 89.1 96.5 92.7 88.2 50.0 100 66.7 46.7 nan nan nan nan
Barrier 40.9 94.1 57.1 100 50.0 100 66.7 100 nan nan nan nan
Shield_Block 45.5 94.3 61.4 82.0 21.8 100 35.8 77.8 nan nan nan nan
Enemy 98.2 88.7 93.2 98.6 100 100 100 100 nan nan nan nan
Enemy_Missile 34.8 99.4 51.5 93.3 0.0 nan 0.0 nan nan nan nan nan
Swirl 65.0 92.9 76.5 63.7 nan nan nan nan nan nan nan nan

46



Published as a conference paper at RLC 2024

H Common Mistakes in Extracting and Detecting Objects

Figure 6: Animation and errors in the game of DemonAttack and YarsRevenge. We can see multiple
particle effects and invisible objects. In the left we see the spawn animation of an enemy, i n the
second image we see the death animation of the player and in the last we see the invisible shields in
YarsRevenge. In all cases the objects are already detected even if it is not yet or not anymore visible
to the player.

In this section, we will briefly discuss 2 common errors that can occur during detection and extraction
based on the games DemonAttack and YarsRevenge.

Case 1: Particle effects. As described in Section 2, we primarily use positional information and
the change of colors to identify objects in the visual detection of objects (VEM). It can happen that
particle effects are incorrectly identified as objects, see Figure 6. In our RAM extraction we have
defined the number and types of objects before extraction and concentrate on all game elements that
are relevant for the game. Since these particle effects have no effect on the game, we deliberately do
not detect them, which leads to a higher errors in F1 and IOU.

Case 2: Invisible objects. If objects disappear or appear in a game, there are various ways
to realize this. The most common and simplest method, which is also used in most games, is to
initialize objects only when they appear and to clear the memory when objects disappear. However,
some games, such as DemonAttack or YarsRevenge (Fig. 6) use a different method. Here the objects
are only set to invisible when they disappear or already exist before the objects appear. As such,
these objects are also found and tracked by our REM method at an early stage, even though they
have not yet appeared, which leads to an increased error. In many games we have therefore tried to
find binary information about which objects are active so that those that are not, are not detected.
This helps to minimize the error and increase the scores, as you can see in the updates scores in
DemonAttack.
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I Difference between AtariARI and OCAtari

Game Objects (AtariARI) Objects (OCAtari)
Asterix Enemies, Player, Lives, Score, Missiles Enemies, Player, Lives, Score, Missiles
Berzerk Player, Missiles, Lives, Killcount, Level,

Evil Otto, Enemies
Logo, Player, Missiles, Enemies, Score,
RoomCleared

Bowling Ball, Player, FrameNumber, Pins, Score Pins, Player, PlayerScore, PlayerRound,
Player2Round, Ball

Boxing Player, Enemy, Scores, Clock Enemy, Player, Scores, Clock, Logo
Breakout Ball, Player, Blocks, Score Player, Blocks, Live, Score, Ball
Freeway Player, Score, Cars Player, Score, Cars, Chicken
Frostbite Ice blocks, Lives, Igloo, Enemies, Player,

Score
Ice blocks Blue, Ice blocks White, Score, Player
Lives, Igloo, Enemies

Montezumas R. RoomNr, Player, Skull, Monster, Level,
Lives, ItemsInInventory, RoomState,
Score

Player, Lives, Skull, Barrier, Key, Score, Rope

MsPacman Enemies, Player, Fruits, GhostsCount,
DotsEaten, Score, Lives

Lives, Score, Player, Enemies, Fruits

Pong Player, Enemy, Ball, Scores Player, Enemy, Ball, Scores
PrivateEye Player, RoomNr, Clock, Score, Dove
Q*Bert Player, PlayerColumn, Red Enemy, Green

Enemy, Score, TileColors
Cubes/Tiles, Score, Lives, Disks, Player, Sam,
PurpleBall, Coily, GreenBall

Riverraid Player, Missile, FuelMeter Score, FuelMeter, Tanker, Lives, Player, He-
licopter, Missile, Bridge, Jet

Seaquest Enemy, Player, EnemyMissile, PlayerMis-
sile, Score, Lives, DiversCount

Player, Lives, OxygenBar, Score, Divers,
PlayerMissile, Enemy, EnemyMissile, Diver-
Count

SpaceInvaders InvadersCount, Score, Lives, Player, En-
emies, Missiles

Score, Lives, Player, Enemies, Missiles, Satel-
lite, Shield

Tennis Enemy, Scores, Ball, Player Enemy, Scores, Ball, BallShadow, Player,
Logo

Table 52: All games, supported by both AtariARI and OCAtari with their respective object lists.
Note that OCAtari returns a list of (x,y,w,h) per object and AtariARI provides the value written at
a specific RAM position (x and y positions or the direct value, e.g. , scores and so on)
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J Insufficent Information in AtariARI

Game Reason
Battlezone1 Unfinished
DemonAttack Not all Demons are spotted
Hero Missing Enemies
Q*Bert Some Enemies, like Coily (Snake) are missing
Skiing1 Unfinished
RiverRaid Important Elements (see above) are missing
Seaquest Oxygenbar, Divers are missing
SpaceInvaders Shields are missing

Table 53: In Table 3 some games are marked with a ∼ to show that the RAM information provided
by AtariARI are insufficient. This table gives a short reason while we marked each game.

K REM vs VEM: Speed performance

The following graph shows that we the RAM Extraction Method of OCAtari is, in average, 50×
computationally more efficient than the Vision Extraction method.

Figure 7: Using the RAM extraction procedures leads to 50× faster environments. The
average time needed to perform 104 steps in each OCAtari game, using RAM extraction (REM), and
our vision extraction (VEM).

1The games appear in the Github for AtariARI, but not in the associated publication (Anand et al., 2019). Also,
the information does not seem sufficient to play with them alone so we did not indicate these games in Table 3 at all.
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