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Abstract

Relations in knowledge graphs often exhibit001
multiple relation patterns. Various knowledge002
graph embedding methods have been proposed003
to modeling the properties in relation patterns.004
However, relations with a certain relation pat-005
tern actually only account for a small propor-006
tion in the knowledge graph. Relations with007
no explicit relation patterns also show compli-008
cated properties which is rarely studied. To009
this end, we argue that a property of a rela-010
tion should either be global or be partial, and011
propose an Attention-based Learning frame-012
work for Multi-relation Patterns (ALMP) for013
expressing complex properties of relations.014
ALMP adopts a set of affine transformations015
for expressing corresponding global relation016
properties. Furthermore, ALMP utilizes a017
module of attention mechanism to integrate018
the representations. Experimental results show019
that the ALMP model outperforms baseline020
models on the link prediction task.021

1 Introduction022

Deep learning has made amazing progress in the023

past decade and is facing an important transition024

from an intuitive and perceptive black-box (sys-025

tem1) to a conscious and logical system (system2)026

(Bengio et al., 2021; Bengio, 2019). Meanwhile,027

knowledge graphs (KG), a data structure depicting028

the correlation of real word entities, is regarded as029

an essential part of system2, since it enhanced rea-030

soning capability and interpretability by combining031

knowledge and intelligence. Therefore, learning032

the representation of knowledge graphs in vector033

space for downstream deep learning systems be-034

comes a task that attracts much attention.035

The most important feature that distinguishes036

knowledge graphs from general graphs is that edges037

between nodes (entities) in KGs represent multi-038

ple relations, which contain their unique properties.039

Recently, some KG embedding methods introduced040

a concept of relation pattern (e.g. symmetry, tran- 041

sitivity, etc.) to describe the consistent property 042

which a relation exhibits on all instances in KG 043

(Sun et al., 2019). Furthermore, for capturing these 044

properties, existing methods try to model the re- 045

lation as a certain mapping approach between the 046

head and tail entities. For example, RotatE (Sun 047

et al., 2019) defines each relation as a rotation from 048

the head entity to the tail entity to modeling and in- 049

ferring relation patterns like symmetry/asymmetry, 050

inversion, and composition. Such modeling prin- 051

ciple is consistent with the idea of relational in- 052

ductive biases proposed by (Battaglia et al., 2018), 053

which enables relational reasoning by imposing 054

constraints on the relations as well as the interac- 055

tions among entities. 056

The relation with a certain relation pattern actu- 057

ally means that all instances related to the relation 058

satisfy the rule form of the relation pattern. Here 059

we use global relation property to refer to such pat- 060

tern of relations. However, most existing embed- 061

ding methods actually pay less attention to relations 062

with multiple global properties simultaneously. 063

On the other hand, in most KGs, the amount 064

of relations with no explicit relation patterns is 065

far larger than relations with a certain pattern. As 066

Figure 1 shows, there are 91.9% of relations with 067

undefined relation patterns in YAGO3 (Mahdis- 068

oltani and Suchanek, 2015) 1. In fact, these rela- 069

tions may also follow some relation patterns on 070

some/all observed facts but violate the patterns on 071

other/unobserved facts. In other words, a relation 072

may show several relation patterns simultaneously 073

on its different instances. We use partial relation 074

property to refer to such properties that hold over 075

some subsets of entities but not all. 076

Therefore, a pertinent question for KG embed- 077

ding methods is: can we learn an integrated repre- 078

1The statistic result is according to the YAGO3 schema:
https://github.com/yago-naga/yago3/tree/
master/schema.
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sentation which combines various multiple relation079

properties so that it could better express the com-080

plicated interactions between entities?081

Figure 1: The proportion of relations with explicit rela-
tion pattern defined on YAGO3-10.

To this end, we argue the relation patterns that082

a relation has should be either be global, which083

means that every instances satisfy the relation pat-084

tern; or partial, which means that only partial085

instances satisfy the relation pattern. We fur-086

ther propose a novel framework based on KG087

embedding with affine transformations, namely088

the Attention-based Learning for Multiple relation089

Patterns (ALMP). The ALMP model is inspired090

by various relational inductive biases imposed by091

the KG embedding models according to different092

relation patterns. We systematically combine the093

geometric transformations prior with the properties094

of relation patterns from the perspective of rela-095

tional inductive biases. Then, we learn integrated096

KG representation utilizing attention mechanism097

to incorporate features of various relation proper-098

ties. Finally, we show experimental results on the099

link prediction task over three benchmarks, where100

ALMP has better performance comparing to the101

baseline methods with single relational inductive102

biases.103

2 Related Work104

We categorize KG embedding models into the fol-105

lowing different types according to the approaches106

they choose to utilize relational inductive biases.107

Translation as relational inductive bias. KG108

embedding models of this type implicitly impose109

an inductive bias as modeling the relation as a vec-110

tor addition from a head entity to a tail entity. The111

well-known series of models in KG embedding112

area are the translation-based models represented113

by TransE (Bordes et al., 2013). TransE proposed 114

a distance-based scoring function, which assumes 115

the added embedding of subject entity h and rela- 116

tion r should be close to the embedding of object 117

entity t. To solve the 1-To-N problem in TransE, 118

variants of translational architectures have been 119

developed. TransH (Wang et al., 2014) projects 120

entities and relations into a relation-specific hyper- 121

planes, which enables different projections of an 122

entity in different relations. TransR (Yankai Lin 123

and Zhu, 2015) introduces relation-specific spaces, 124

which builds entity and relation embeddings in dif- 125

ferent spaces separately. A recent model BoxE 126

(Abboud et al., 2020), embeds entities as points, 127

and relations as a set of boxes, for yielding a model 128

that could express multiple relation patterns. 129

Linear mapping as relational inductive biases. 130

KG embedding models of this type modeling the 131

relations as linear mappings from head entities to 132

tail. DistMult (B. Yang and Deng, 2015) model 133

the relation as a bilinear diagonal matrix between 134

head and tail entities for multiple relational rep- 135

resentation learning. To expand Euclidean space, 136

ComplEx (T. Trouillon and Bouchard, 2016) firstly 137

introduces complex vector space which can capture 138

both symmetric and asymmetric relations. Simi- 139

larly, RotatE (Sun et al., 2019) models in com- 140

plex space and can capture additional inversion 141

and composition patterns by introducing rotational 142

Hadamard product. Extending the embedding from 143

complex space to quaternary space, QuatE (Zhang 144

et al., 2019a) use a quaternion inner product and 145

gains more expressive semantic learning capabil- 146

ity. Tucker (Balazevic et al., 2019) utilize Tucker 147

decomposition of the binary tensor representation 148

of triples. Recently, PairRE (Chao et al., 2021) 149

proposed a method to model each relation with 150

paired vectors to project the corresponding head 151

and tail entities for better handle multiple relation 152

patterns. To remedy the drawback that previous 153

models cannot model the transitive relation pattern, 154

Rot-Pro (Song et al., 2021) imposes projection on 155

both source and target entities for expressing tran- 156

sitivity, and utilize a rotation operation as RotatE 157

to underpin other relation patterns. 158

Attention mechanism as relational inductive 159

biases. KBGAT (Nathani et al., 2019) is an 160

attention-based embedding model that captures 161

both entity and relation features of neighborhoods 162

of any given entities. The latest model GAATs 163
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Relation pattern Rule form LT form TT form

Symmetry r(x, y)⇒ r(y, x) MrMr = I r + r = 0
Asymmetry r(x, y)⇒ ¬r(y, x) MrMr 6= I r + r 6= 0
Inversion r2(x, y)⇒ r1(y, x) Mr1Mr2 = I r1 + r2 = 0
Composition r2(x, y) ∧ r3(y, z)⇒ r1(x, z) Mr2Mr3 = Mr1 r1 + r2 = r3
Transitivity r(x, y) ∧ r(y, z)⇒ r(x, z) Mn

r = Mr nr = r

Table 1: Rule form of relation patterns and the attributes of their corresponding mapping matrix, where LT form
represents linear transformation form (Zhang et al., 2019b) and TT represents translation transformation.

(Wang et al., 2020) integrates an attenuated atten-164

tion mechanism to assign different weight in dif-165

ferent relation path and acquire the information166

from the neighborhoods so that entities and rela-167

tions can be learned in any neighbors. Beyond168

the scope of graph neural network, ATTH (Chami169

et al., 2020) recently proposes a low-dimensional170

hyperbolic knowledge graph embedding method171

to capture tree-like structures and hence modeling172

hierarchy data. It further conducts attention-based173

transformations of reflection and rotation for mul-174

tiple relation patterns, which is similar to our pro-175

posal. The main difference between ATTH and our176

method is that ATTH focused on the hyperbolic em-177

bedding for hierarchical data, while we emphasize178

on integrating multiple transformations for model-179

ing complex interactions among different relation180

patterns.181

3 Multiple relation property problem182

Relation patterns play important role in KG com-183

pletion because missing/unobserved facts can be184

inferred based on these patterns. Existing meth-185

ods dedicate a lot to model such patterns. A gen-186

eral methods is regarding relations as translation187

or linear transformations from head entity to tail188

entity. We list the five common relation patterns189

mentioned on previous work in Table 1, and the190

corresponding linear or translation transformation191

form that could model these patterns.192

However, as mentioned above, most relations in193

KGs do not exhibit an explicit pattern, and hence194

these KG embedding methods may tend to over fit195

for a certain relation pattern since the model forces196

all relations to follow a certain transformation. As197

Battaglia et al. point out that, ideally, inductive bi-198

ases both improve the search for solutions as well199

as finding solutions that generalize in a desirable200

way, however, when the introduced inductive bi-201

ases are too strong, it tends to lead to sub-optimal202

performance (Battaglia et al., 2018).203

Therefore, we seek to explore the multiple rela- 204

tion property problem. We observed that the multi- 205

ple relation property problem can be divided into 206

two circumstances: 207

(1) Multiple global relation properties (i.e. rela- 208

tion patterns) can exhibit in a relation simulta- 209

neously. For example, relation isLocatedIn in 210

YAGO3-10 describes the relations of geograph- 211

ical locations. Obviously, it shows global tran- 212

sitive as well as asymmetric property among 213

all its instances. 214

(2) Relations with no explicit relation pattern may 215

also show one/multiple partial relation proper- 216

ties over some subsets of entities. For example, 217

relation isConnectedTo in YAGO3 describes 218

the connectivity between different airports. It 219

exhibits partial symmetry or transitivity pattern 220

on certain subsets airports. 221

Current models with so-called fully expressive- 222

ness mainly focus on modeling single relation pat- 223

tern. For example, in Rot-Pro (Song et al., 2021), 224

the solution space of modeling transitivity is that 225

when the relational rotation phase is 2nπ while that 226

of modeling symmetric is that when the relational 227

rotation phase is nπ. Therefore, it theoretically 228

could not modeling relations with both transitivity 229

and asymmetric pattern like isLocatedIn. 230

An intuitive way to solve the multiple relation 231

property problem is to construct a higher dimen- 232

sional vector space, and define numerous hyper- 233

plane to map the entity representations into the 234

space specific to these patterns, which is similar 235

to (Wang et al., 2014; Yankai Lin and Zhu, 2015). 236

However, this approach will introduce a large num- 237

ber of parameters which may cause decrease in 238

time efficiency and does not consider the properties 239

of multiple relation patterns occurred in a single 240

relation. Therefore, we introduce a generic frame- 241

work ALMP to integrate the multiple representa- 242

tions of various relation properties. 243
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Figure 2: The structure of the ALMP framework. The transformation module obtains the entity embedding via
three linear transformation as well as the translation. Then the attention module learns the attention weight assigned
to each element of each transformed embedding. Finally, the aggregation module obtains the final embedding by
integrating the attention with the corresponding embeddings.

4 Attention-based learning for multiple244

relation patterns245

4.1 Parameterization246

We parameterize the the embedding of entity and247

relation in 2D vector space and denote them by248

e and er respectively. The embedding dimension249

is an even number d, then the set of parameters250

Θ := {Θe, Θr}.251

Θe :=

[
exi

eyj

]
, (i ∈ {1, ..., d

2
}, j = i+

d

2
), (1)252

where exi and eyj are the corresponding compo-253

nents on each dimension of the x and y axis.254

The relation parameterization is composed of the255

following components:256

Θr :=



Θref
r,i = diag

(
T ref
r,i (θr1)

)
,

Θrot
r,i = diag

(
T rot
r,i (θr2)

)
,

Θprj
r,i = diag

(
T prj
r,i (θr3 , ar, br)

)
,

Θl
r,i = lr,i, (i ∈ {1, . . . , d2})

(2)257

where Θref
r,i ,Θ

rot
r,i , and Θprj

r,i are the geometric-258

specific parameters on each dimension i, and259

T ref
r,i (θr1), T rot

r,i (θr2), and T prj
r,i (θr3 , ar, br) are the 260

2D matrix form of each geometric transformation. 261

We will illustrate the geometric details in the next 262

section. Meanwhile, in the rest of paper, we will 263

omit the dimensional index i in vectors for simplic- 264

ity. 265

4.2 Core modules 266

The general structure of the ALMP framework is 267

illustrated in Figure 2, which contains the following 268

core modules. 269

Transformation module. We uniformly taking 270

relations as four representative affine transforma- 271

tions, which are translation, reflection, rotation, 272

for capturing various partial properties in relations. 273

The reason for taking relations as affine transforma- 274

tions is that they could naturally express geometric 275

operations and fit the different partial properties of 276

relations. The four transformations and their cor- 277

responding properties that they could capture are 278

illustrated in the following items: 279

• Reflection: An informal description of reflec- 280

tion in KG embedding is that: the head entity 281

will return to itself after transforming twice. 282

Therefore, it could naturally represent sym- 283
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metric relation pattern geometrically 2. Ac-284

cording to the linear algebra theorem (Valenza,285

2012), the corresponding 2D matrix form of286

reflection in Equation 2 is as follows:287

T ref
r (θr1) =

[
cos θr1 sin θr1
− sin θr1 cos θr1

]
(3)288

• Rotation: Regarding relations as rotations289

from head entities to tail entities could nat-290

urally model inverse, asymmetry and compo-291

sition patterns since the relation with such292

patterns involve the matching with other re-293

lations. RotatE (Sun et al., 2019) utilize the294

relational rotation in complex space, which295

is analogous with 2D euclidean space. The296

matrix form of rotation in Equation 2 is:297

T rot
r (θr2) =

[
cos θr2 − sin θr2
sin θr2 cos θr2

]
(4)298

• Projection: Projection in vector space is299

equivalent to the idempotent transformation,300

which could express the transitivity relation301

pattern. However, conducting projection on a302

vector will cause the loss of dimensional in-303

formation. Therefore, models such as Rot-Pro304

(Song et al., 2021) expressed projection in the305

form of similarity of idempotent transforma-306

tion. According to Rot-Pro, the matrix form307

of projection in Equation 2 is defined as:308

T prj
r (θr3 , ar, br) = S−1r (θr3)

[
ar 0
0 br

]
Sr(θr3),

(5)309

where Sr(θr3) is an invertible matrix with pa-310

rameter θr3 , and ar, br ∈ {0, 1}.311

• Translation: The corresponding geometric312

operation of translation in vector space is the313

addition of vector (lr in Equation 2). Trans-314

lation could model relation patterns such as315

asymmetry, inversion, and composition.316

The initial embeddings of the head and tail entity317

h, t are denoted by eh, et, which are obtained via318

a shallow encoder3. Then eh and et are simultane-319

2Note that relational rotation can model symmetric pat-
tern only when the relational rotation phase is nπ, (n =
0, 1, 2, . . . ). While reflection is more general and straightfor-
ward for modeling symmetric pattern.

3A shallow encoder in KG embedding can be viewed as
a lookup function that finds the hidden representation corre-
sponding to an entity or a relation given its index (Kazemi
et al., 2020).

ously transformed by three types of linear transfor- 320

mations, which represents reflection, rotation, and 321

projection respectively. 322

Theoretically, each transformation is prone to 323

learn independently the corresponding relation pat- 324

terns which fit itself. We use the form: 325

erefh = T ref
r (eh), eroth = T rot

r (eh), eprjh = T prj
r (eh) 326

327
ereft = et, e

rot
t = et, e

prj
t = T prj

r (et) 328

to denote the transformed embeddings of eh and et 329

after reflection, rotation and projection. Note that 330

due to the principle of transitivity modeling, the 331

projection operation should be conducted simulta- 332

neously on both head and tail entities. 333

Attention module. For integrating the expres- 334

siveness of the three embeddings aforementioned, 335

it is natural to utilize attention mechanism to fo- 336

cus on specific transformation that fits the relation 337

pattern (Chami et al., 2020). Here we employ an 338

element-wise attention, which learns the attention 339

weights on each dimension, since we assume that 340

each dimension of a well-learned representation is 341

a disentangled factor and should be assigned with 342

different attention weight from different relation 343

patterns. The attention weight can be obtained 344

based on the following equation. 345

[αref ;αrot;αprj] = σ(Wr · [eref ; erot; eprj]), (6) 346

where Wr ∈ Rd is a trainable vector; [·; ·] denotes 347

the concatenation operation; The vector αref , αrot, 348

and αprj ∈ Rd, and each ανi scores how much the i- 349

th component of the embedding is related to the cor- 350

responding transformation (ν ∈ {ref, rot,prj}); 351

and σ refers to an non-linear activation function 352

such as softmax. 353

Aggregation module. Based on various linear 354

transformation and the attention mechanism, we 355

have obtained the three transformed embeddings 356

along with their corresponding element-wise atten- 357

tion weights. To integrate them together, multiple 358

aggregating methods could be considered as long 359

as it is permutation invariant (e.g. summation or 360

average over {ref, rot, prj}). The general form of 361

the aggregation can be defined as follows: 362

e′ = agg(αν � eν), (7) 363

where ν ∈ {ref, rot,prj} and � denotes the 364

Hadamard product. 365
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4.3 Scoring function366

For each triple (h, r, t), the distance function of the367

ALMP model is defined as the following form:368

dr(eh, et) = ‖agg(αν�eνh)+lr−agg(αν�eνt )‖,369

where lr is a vector in Rd to integrate translation370

transformation for relation r. The final scoring371

function is defined as:372

fr(eh, et) = −dr(eh, et) + bh + bt, (8)373

where bh and bt are the head and tail entity biases374

that act as margins in the scoring function (Chami375

et al., 2020).376

5 Experiment377

5.1 Datasets378

We evaluate our method on three well-known379

benchmarks, which are FB15k-237 (Toutanova380

and Chen, 2015), WN18RR (Tim Dettmers and381

Riedel, 2018), and YAGO3-10 (Mahdisoltani and382

Suchanek, 2015).383

FB15k-237 is a modified version of FB15k ex-384

tracted from Freebase (K. Bollacker and Taylor,385

2008), which excludes inverse relations to resolve a386

flaw with FB15k (Tim Dettmers and Riedel, 2018).387

The main relation patterns in FB15k-237 are asym-388

metry and composition.389

WN18RR (Tim Dettmers and Riedel, 2018) is a390

subset of WN18 (Bordes et al., 2013) from Word-391

Net (Miller, 1995), which retains most of the sym-392

metric, asymmetric and compositional relations393

while removing the inversion relations.394

YAGO3-10 is a subset of YAGO (Suchanek395

et al., 2007), a dataset which integrates vocabulary396

definitions of WordNet with classification system397

of Wikipedia. The statistics of three datasets are398

shown in Table 2.399

Triples

Dataset Entities Relations Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 2: Statistics of FB15k-237, WN18RR, and
YAGO3-10 datasets.

5.2 Experimental settings400

Training details. During optimization proce-401

dure, we additionally adopted the following tech-402

niques for obtaining better performance. First,403

when pre-processing datasets, we follow the data 404

augmentation protocol in (Lacroix et al., 2018) by 405

using reciprocal relations. Second, we utilized nu- 406

clear p-Norm regularization method proposed by 407

(Lacroix et al., 2018). The reported result is the 408

average result after three runnings. 409

Evaluation protocol. We evaluate the ALMP 410

and baseline models on two widely used evaluation 411

metrics: mean reciprocal rank (MRR), and top-k 412

Hit Ratio (Hit@k). For each valid triples (h, r, t) 413

in the test set, we replace either h or t with ev- 414

ery other entities in the dataset to create corrupted 415

triples in the link prediction task. Following previ- 416

ous work (Bordes et al., 2013; Tim Dettmers and 417

Riedel, 2018; Nathani et al., 2019), all the mod- 418

els are evaluated in a filtered setting, i.e, corrupt 419

triples that appear in training, validation, or test 420

sets are removed during ranking. The valid triple 421

and filtered corrupted triples are ranked in ascend- 422

ing order based on their prediction scores. Higher 423

MRR or Hit@k indicate better performance. 424

Model setting. We simply denote the model with 425

the classic ALMP framework as the ALMP model. 426

The attention module of ALMP adopts an element- 427

wise scaled dot-product attention, which is similar 428

to (Chami et al., 2020). The aggregation module 429

of ALMP adopts a simple Hadamard product and a 430

summation over all dimensions. 431

Baselines. We compared ALMP with a number 432

of representative baselines, which are TransE, Com- 433

plEx, RotatE, Rot-Pro (Song et al., 2021), ATTE, 434

BoxE (Abboud et al., 2020), TuckER (Balazevic 435

et al., 2019), and PairRE (Chao et al., 2021). ATTE 436

is the variant of ATTH (Chami et al., 2020) on 437

euclidean space, which integrated two geometric 438

operation: rotation and refection. We choose ATTE 439

instead of ATTH to focus on the knowledge graph 440

embedding models on euclidean space. 441

ALMP variants. We further build a set of 442

ALMP variants by modifying a specific module 443

in ALMP for the ablation study afterwards. The 444

illustration of ALMP variants is as follows. 445

• DLMP (Disentangled Learning for Multi- 446

relation Patterns) is a variant whose entity em- 447

beddings under reflection, rotation, and pro- 448

jection are disentangled from each other. 449

• ALMP* utilizes non-element-wise attention 450

instead of the element-wise attention mecha- 451

nism in ALMP. 452
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FB15k-237 WN18RR YAGO3-10

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE [†] .294 - - .465 .226 - - .501 - - - -
ComplEx [†] .247 .158 .275 .428 .44 .41 .46 .51 .36 .26 .40 .55
RotatE [†] .338 .241 .375 .533 .476 .428 .492 .571 .495 .402 .550 .670
Rot-Pro .344 .246 .383 .540 .457 .397 .482 .577 .542 .443 .596 .699
ATTE .351 .255 .386 .543 .489 .443 .504 .577 .525 .440 .574 .680
BoxE .337 .238 .347 .538 .451 .400 .472 .541 .560 .484 .608 .691
TuckER .358 .266 .394 .544 .470 .443 .482 .526 - - - -
PairRE .351 .256 .387 .544 - - - - - - - -

DLMP .348 .253 .384 .543 .498 .451 .516 .589 .539 .451 .604 .696
ALMP− .347 .250 .386 .542 .454 .399 .473 .577 .515 .439 .558 .656
ALMP* .353 .257 .390 .548 .494 .448 .511 .585 .542 .462 .586 .688
ALMP .355 .260 .319 .548 .488 .439 .506 .586 .566 .489 .612 .702

Table 3: Link prediction results on FB15k-237, WN18RR and YAGO3-10. Results of models with [†] are taken
from (Sun et al., 2019). The result of ATTE is reproduced by us with suggested hyper-parameters. Other results
are taken from the original paper of corresponding model.

• ALMP− is another variant of ALMP with no453

additional step of translation transformation.454

Hyper-parameter settings. We train ALMP and455

its variants using a grid search of hyper-parameters:456

embedding dimensions in {400, 500, 600}; learn-457

ing rate in {1e−5, 1e−4, 5e−4}; batch size in458

{512, 1024, 2048}; number of negative sampling459

in {0, 50, 100, 200}.460

5.3 Main results461

The experimental results on three datasets are re-462

ported in Table 3. We can see that ALMP with463

its variants outperforms most the baseline models464

across all common evaluation metrics, which em-465

pirically show the effectiveness of integrating affine466

transformations with attention to model complex467

interactions among relational patterns.468

Furthermore, the performance gains over Rot-469

Pro could confirm the stronger expressiveness of470

integrated relational inductive bias than single bias.471

In other words, although relation patterns can be472

theoretically modeled separately by Rot-Pro, inte-473

grating them can indeed gain better performance,474

which coincides with our suppose of partial and475

global relation patterns. Meanwhile, the perfor-476

mance gain over AttE illustrates that integrating477

more forms of transformations gains better perfor-478

mance on expressiveness.479

5.4 Ablation study on ALMP variants480

According to the results of three variants of ALMP,481

we could draw some experimental conclusions of482

ALMP according to their difference.483

First, we could find that the performance of 484

ALMP− is lower than other variants, which demon- 485

strates that the effectiveness of using transla- 486

tion transformation as relational inductive biases. 487

Second, DLMP outperforms other variants on 488

WN18RR and have a reasonable performance on 489

the other two datasets, which shows disentangled 490

learning is also an effective approach for integrat- 491

ing various relation patterns for certain knowledge 492

graphs. Furthermore, the link prediction result on 493

ALMP* is similar to that on ALMP, where ALMP* 494

shows more robust result across the three datasets, 495

while ALMP show better results on both FB15k- 496

237 and YAGO3-10. 497

In summary, the variants of ALMP show overall 498

strong capability for knowledge graph completion. 499

Also, for different knowledge graphs, it is feasible 500

to fine tune the result with a specific variant. 501

5.5 Case study 502

For case study, we evaluate the MRR result for 503

specific relations on WN18RR and YAGO3-10. 504

The relations we select basically contains the 505

common global or partial relation patterns men- 506

tioned above. We compare the case study result 507

with Rot-Pro, which is proved that could model the 508

five relation patterns separately. The result is sum- 509

marized in Table 4. The relations are selected man- 510

ually with multiple relation properties. The case 511

study result reflects that ALMP shows superior link 512

prediction capability in modelling multiple relation 513

patterns compared with KG embedding methods 514

that model the relational properties separately. 515
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(a) isConnectedTo (b) isLocateIn (c) isAfflictedTo

Figure 3: The attention visualization result of ALMP. Figure (a), (b), (c) represent the results of five triples ran-
domly selected on the test set with different relations. Darker block represents lower attention value distributed to
each transformation.

Relation Rot-Pro ALMP
isConnectedTo 0.405 0.423
isLocatedIn 0.297 0.335
isAffiliatedTo 0.664 0.725
playsFor 0.630 0.667
hypernym 0.150 0.199
derivationally_related_form 0.958 0.956
instance_hypernym 0.325 0.389
also_see 0.627 0.618
member_meronym 0.256 0.266
synset_domain_topic_of 0.347 0.411
has_part 0.197 0.198
member_of_domain_usage 0.308 0.382
member_of_domain_region 0.251 0.402

Table 4: Comparison of MRR on Rot-Pro and ALMP
for typical relations on WN18RR and YAGO3-10.

5.6 Attention distribution validation516

Having confirmed that ALMP could indeed gain517

better prediction performance on relations of mul-518

tiple patterns, we seek to explore that for a spe-519

cific relation, how the attention value is distributed520

to each geometric operation. In other words, we521

would figure out that, for two specific entities with522

a partial relational property annotated by humans,523

does the learned attention distributions accurately524

reflect it? To this end, we select five triples for525

three relations in YAGO3-10 respectively and draw526

the attention visualization graph in Figure 3.527

We could find that there is obvious difference528

of attention distribution. For relation isConnect-529

edTo, the attention distributed to three geometric530

operation is almost equal. It is may caused by that531

isConnectedTo is a relation with partial pattern of532

both symmetry, which can be learnt by both re-533

flection and rotation, and transitivity, which can be534

modeled by projection. For relation isLocatedIn,535

the model tends to focus more attention on the ro-536

tation transformation. The possible reason might 537

be that isLocatedIn is a relation with both global 538

transitivity and asymmetry patterns, and asymme- 539

try pattern could not be modeled by projection or 540

reflection. As for relation isAfflictedTo, it is a rela- 541

tion with partial transitivity, hence the model prone 542

to pay attention to the projection transformation. 543

5.7 Time and space complexity 544

The limitation of ALMP is that it consumes more 545

computation, because each relation is represented 546

as four transformations. However, the time com- 547

plexity is still O(n). Due to the data parallel com- 548

puting technique, the time efficiency is also similar 549

to other models. We compare the time and space 550

complexity between ALMP and ATTE (Chami 551

et al., 2020) in Table 5. 552

Space Time T (ms)

ATTE O(n){Θe,Θr(θr1,2)} O(n) 0.254
ALMP O(n){Θe,Θr(θr1,2,3 , a, b)} O(n) 0.256

Table 5: The time and space complexities where T rep-
resents the average predicting time per test triple with
the same testing batch size.

6 Conclusion 553

In this paper, we proposed ALMP, a generic frame- 554

work for knowledge graph embedding. ALMP 555

could help handle the problem of the multiple rela- 556

tional properties by utilizing attention mechanism 557

to integrating common affine transformation meth- 558

ods. On common KG embedding benchmarks, 559

ALMP and its variants show effectiveness on link 560

prediction task. According to the attention analy- 561

sis and case study, ALMP is capable of capturing 562

multiple relational properties. 563
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