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Abstract

Relations in knowledge graphs often exhibit
multiple relation patterns. Various knowledge
graph embedding methods have been proposed
to modeling the properties in relation patterns.
However, relations with a certain relation pat-
tern actually only account for a small propor-
tion in the knowledge graph. Relations with
no explicit relation patterns also show compli-
cated properties which is rarely studied. To
this end, we argue that a property of a rela-
tion should either be global or be partial, and
propose an Attention-based Learning frame-
work for Multi-relation Patterns (ALMP) for
expressing complex properties of relations.
ALMP adopts a set of affine transformations
for expressing corresponding global relation
properties.  Furthermore, ALMP utilizes a
module of attention mechanism to integrate
the representations. Experimental results show
that the ALMP model outperforms baseline
models on the link prediction task.

1 Introduction

Deep learning has made amazing progress in the
past decade and is facing an important transition
from an intuitive and perceptive black-box (sys-
tem1) to a conscious and logical system (system?2)
(Bengio et al., 2021; Bengio, 2019). Meanwhile,
knowledge graphs (KG), a data structure depicting
the correlation of real word entities, is regarded as
an essential part of system?2, since it enhanced rea-
soning capability and interpretability by combining
knowledge and intelligence. Therefore, learning
the representation of knowledge graphs in vector
space for downstream deep learning systems be-
comes a task that attracts much attention.

The most important feature that distinguishes
knowledge graphs from general graphs is that edges
between nodes (entities) in KGs represent multi-
ple relations, which contain their unique properties.
Recently, some KG embedding methods introduced

a concept of relation pattern (e.g. symmetry, tran-
sitivity, etc.) to describe the consistent property
which a relation exhibits on all instances in KG
(Sun et al., 2019). Furthermore, for capturing these
properties, existing methods try to model the re-
lation as a certain mapping approach between the
head and tail entities. For example, RotatE (Sun
et al., 2019) defines each relation as a rotation from
the head entity to the tail entity to modeling and in-
ferring relation patterns like symmetry/asymmetry,
inversion, and composition. Such modeling prin-
ciple is consistent with the idea of relational in-
ductive biases proposed by (Battaglia et al., 2018),
which enables relational reasoning by imposing
constraints on the relations as well as the interac-
tions among entities.

The relation with a certain relation pattern actu-
ally means that all instances related to the relation
satisfy the rule form of the relation pattern. Here
we use global relation property to refer to such pat-
tern of relations. However, most existing embed-
ding methods actually pay less attention to relations
with multiple global properties simultaneously.

On the other hand, in most KGs, the amount
of relations with no explicit relation patterns is
far larger than relations with a certain pattern. As
Figure 1 shows, there are 91.9% of relations with
undefined relation patterns in YAGO3 (Mahdis-
oltani and Suchanek, 2015) !. In fact, these rela-
tions may also follow some relation patterns on
some/all observed facts but violate the patterns on
other/unobserved facts. In other words, a relation
may show several relation patterns simultaneously
on its different instances. We use partial relation
property to refer to such properties that hold over
some subsets of entities but not all.

Therefore, a pertinent question for KG embed-
ding methods is: can we learn an integrated repre-

IThe statistic result is according to the YAGO3 schema:
https://github.com/yago-naga/yago3/tree/
master/schema.


https://github.com/yago-naga/yago3/tree/master/schema
https://github.com/yago-naga/yago3/tree/master/schema

sentation which combines various multiple relation
properties so that it could better express the com-
plicated interactions between entities?

Symmetric: 2.7% / Transitive: 2.7%

playsFor
dealsWith

Undefined: 91.9%

Figure 1: The proportion of relations with explicit rela-
tion pattern defined on YAGO3-10.

To this end, we argue the relation patterns that
a relation has should be either be global, which
means that every instances satisfy the relation pat-
tern; or partial, which means that only partial
instances satisfy the relation pattern. We fur-
ther propose a novel framework based on KG
embedding with affine transformations, namely
the Attention-based Learning for Multiple relation
Patterns (ALMP). The ALMP model is inspired
by various relational inductive biases imposed by
the KG embedding models according to different
relation patterns. We systematically combine the
geometric transformations prior with the properties
of relation patterns from the perspective of rela-
tional inductive biases. Then, we learn integrated
KG representation utilizing attention mechanism
to incorporate features of various relation proper-
ties. Finally, we show experimental results on the
link prediction task over three benchmarks, where
ALMP has better performance comparing to the
baseline methods with single relational inductive
biases.

2 Related Work

We categorize KG embedding models into the fol-
lowing different types according to the approaches
they choose to utilize relational inductive biases.

Translation as relational inductive bias. KG
embedding models of this type implicitly impose
an inductive bias as modeling the relation as a vec-
tor addition from a head entity to a tail entity. The
well-known series of models in KG embedding
area are the translation-based models represented

by TransE (Bordes et al., 2013). TransE proposed
a distance-based scoring function, which assumes
the added embedding of subject entity / and rela-
tion r should be close to the embedding of object
entity ¢. To solve the 1-To-N problem in TransE,
variants of translational architectures have been
developed. TransH (Wang et al., 2014) projects
entities and relations into a relation-specific hyper-
planes, which enables different projections of an
entity in different relations. TransR (Yankai Lin
and Zhu, 2015) introduces relation-specific spaces,
which builds entity and relation embeddings in dif-
ferent spaces separately. A recent model BoxE
(Abboud et al., 2020), embeds entities as points,
and relations as a set of boxes, for yielding a model
that could express multiple relation patterns.

Linear mapping as relational inductive biases.
KG embedding models of this type modeling the
relations as linear mappings from head entities to
tail. DistMult (B. Yang and Deng, 2015) model
the relation as a bilinear diagonal matrix between
head and tail entities for multiple relational rep-
resentation learning. To expand Euclidean space,
ComplEx (T. Trouillon and Bouchard, 2016) firstly
introduces complex vector space which can capture
both symmetric and asymmetric relations. Simi-
larly, RotatE (Sun et al., 2019) models in com-
plex space and can capture additional inversion
and composition patterns by introducing rotational
Hadamard product. Extending the embedding from
complex space to quaternary space, QuatE (Zhang
et al., 2019a) use a quaternion inner product and
gains more expressive semantic learning capabil-
ity. Tucker (Balazevic et al., 2019) utilize Tucker
decomposition of the binary tensor representation
of triples. Recently, PairRE (Chao et al., 2021)
proposed a method to model each relation with
paired vectors to project the corresponding head
and tail entities for better handle multiple relation
patterns. To remedy the drawback that previous
models cannot model the transitive relation pattern,
Rot-Pro (Song et al., 2021) imposes projection on
both source and target entities for expressing tran-
sitivity, and utilize a rotation operation as RotatE
to underpin other relation patterns.

Attention mechanism as relational inductive
biases. KBGAT (Nathani et al., 2019) is an
attention-based embedding model that captures
both entity and relation features of neighborhoods
of any given entities. The latest model GAAT's



Relation pattern Rule form LT form TT form
Symmetry r(z,y) = r(y, x) MM, =1 r+r=0
Asymmetry r(z,y) = —r(y, ) M, M, #1 r+r#0
Inversion ro(z,y) = r1(y, x) M, M,, =1 ri+ro=20
Composition ro(z,y) Ars(y,z) = ri(x,z) My,M,;, =M, ri+ry=r3
Transitivity r(z,y) Ar(y,z) = r(x, 2) M! =M, nr=r

Table 1: Rule form of relation patterns and the attributes of their corresponding mapping matrix, where LT form
represents linear transformation form (Zhang et al., 2019b) and TT represents translation transformation.

(Wang et al., 2020) integrates an attenuated atten-
tion mechanism to assign different weight in dif-
ferent relation path and acquire the information
from the neighborhoods so that entities and rela-
tions can be learned in any neighbors. Beyond
the scope of graph neural network, ATTH (Chami
et al., 2020) recently proposes a low-dimensional
hyperbolic knowledge graph embedding method
to capture tree-like structures and hence modeling
hierarchy data. It further conducts attention-based
transformations of reflection and rotation for mul-
tiple relation patterns, which is similar to our pro-
posal. The main difference between ATTH and our
method is that ATTH focused on the hyperbolic em-
bedding for hierarchical data, while we emphasize
on integrating multiple transformations for model-
ing complex interactions among different relation
patterns.

3 Multiple relation property problem

Relation patterns play important role in KG com-
pletion because missing/unobserved facts can be
inferred based on these patterns. Existing meth-
ods dedicate a lot to model such patterns. A gen-
eral methods is regarding relations as translation
or linear transformations from head entity to tail
entity. We list the five common relation patterns
mentioned on previous work in Table 1, and the
corresponding linear or translation transformation
form that could model these patterns.

However, as mentioned above, most relations in
KGs do not exhibit an explicit pattern, and hence
these KG embedding methods may tend to over fit
for a certain relation pattern since the model forces
all relations to follow a certain transformation. As
Battaglia et al. point out that, ideally, inductive bi-
ases both improve the search for solutions as well
as finding solutions that generalize in a desirable
way, however, when the introduced inductive bi-
ases are too strong, it tends to lead to sub-optimal
performance (Battaglia et al., 2018).

Therefore, we seek to explore the multiple rela-
tion property problem. We observed that the multi-
ple relation property problem can be divided into
two circumstances:

(1) Multiple global relation properties (i.e. rela-
tion patterns) can exhibit in a relation simulta-
neously. For example, relation isLocatedlIn in
YAGO3-10 describes the relations of geograph-
ical locations. Obviously, it shows global tran-
sitive as well as asymmetric property among
all its instances.

(2) Relations with no explicit relation pattern may
also show one/multiple partial relation proper-
ties over some subsets of entities. For example,
relation isConnectedTo in YAGO3 describes
the connectivity between different airports. It
exhibits partial symmetry or transitivity pattern
on certain subsets airports.

Current models with so-called fully expressive-
ness mainly focus on modeling single relation pat-
tern. For example, in Rot-Pro (Song et al., 2021),
the solution space of modeling transitivity is that
when the relational rotation phase is 2nm while that
of modeling symmetric is that when the relational
rotation phase is nw. Therefore, it theoretically
could not modeling relations with both transitivity
and asymmetric pattern like isLocatedln.

An intuitive way to solve the multiple relation
property problem is to construct a higher dimen-
sional vector space, and define numerous hyper-
plane to map the entity representations into the
space specific to these patterns, which is similar
to (Wang et al., 2014; Yankai Lin and Zhu, 2015).
However, this approach will introduce a large num-
ber of parameters which may cause decrease in
time efficiency and does not consider the properties
of multiple relation patterns occurred in a single
relation. Therefore, we introduce a generic frame-
work ALMP to integrate the multiple representa-
tions of various relation properties.
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Figure 2: The structure of the ALMP framework. The transformation module obtains the entity embedding via
three linear transformation as well as the translation. Then the attention module learns the attention weight assigned
to each element of each transformed embedding. Finally, the aggregation module obtains the final embedding by
integrating the attention with the corresponding embeddings.

4 Attention-based learning for multiple
relation patterns

4.1 Parameterization

We parameterize the the embedding of entity and
relation in 2D vector space and denote them by
e and e, respectively. The embedding dimension
is an even number d, then the set of parameters
©:= {0, 0,}.
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where e and e]y are the corresponding compo-
nents on each dimension of the x and y axis.

The relation parameterization is composed of the
following components:

ot = diag (T2H(6r,))

o1t = diag (Ti34(61.))

O — diag (TS?(HTS, ar, br)> :
OL, = lri (i€ {1,...,4})

2

where ©f O | and OFY are the geometric-

T
specific parameters on each dimension ¢, and

T35 (0,,), T35 (0y,), and T2 (6rs, ar, by) are the
2D matrix form of each geometric transformation.
We will illustrate the geometric details in the next
section. Meanwhile, in the rest of paper, we will
omit the dimensional index 7 in vectors for simplic-

ity.
4.2 Core modules

The general structure of the ALMP framework is
illustrated in Figure 2, which contains the following
core modules.

Transformation module. We uniformly taking
relations as four representative affine transforma-
tions, which are translation, reflection, rotation,
for capturing various partial properties in relations.
The reason for taking relations as affine transforma-
tions is that they could naturally express geometric
operations and fit the different partial properties of
relations. The four transformations and their cor-
responding properties that they could capture are
illustrated in the following items:

* Reflection: An informal description of reflec-
tion in KG embedding is that: the head entity
will return to itself after transforming twice.
Therefore, it could naturally represent sym-



metric relation pattern geometrically 2. Ac-
cording to the linear algebra theorem (Valenza,
2012), the corresponding 2D matrix form of
reflection in Equation 2 is as follows:

cos 0,
—sin6,,

sin 6,
cos Oy,

7 (6,,) 3)

* Rotation: Regarding relations as rotations
from head entities to tail entities could nat-
urally model inverse, asymmetry and compo-
sition patterns since the relation with such
patterns involve the matching with other re-
lations. RotatE (Sun et al., 2019) utilize the
relational rotation in complex space, which
is analogous with 2D euclidean space. The
matrix form of rotation in Equation 2 is:

cos O,
sin 6.,

—sin6,,

T3 (6r,) cos 6,
2

“4)

* Projection: Projection in vector space is
equivalent to the idempotent transformation,
which could express the transitivity relation
pattern. However, conducting projection on a
vector will cause the loss of dimensional in-
formation. Therefore, models such as Rot-Pro
(Song et al., 2021) expressed projection in the
form of similarity of idempotent transforma-
tion. According to Rot-Pro, the matrix form
of projection in Equation 2 is defined as:

57200) [ | 5:6)

4)
where S, (6;,) is an invertible matrix with pa-
rameter 0,.,, and a,, b, € {0, 1}.

Tvprj (97"37 ar, br) =

* Translation: The corresponding geometric
operation of translation in vector space is the
addition of vector (I, in Equation 2). Trans-
lation could model relation patterns such as
asymmeltry, inversion, and composition.

The initial embeddings of the head and tail entity
h,t are denoted by ey, e;, which are obtained via
a shallow encoder’. Then e, and e, are simultane-

Note that relational rotation can model symmetric pat-
tern only when the relational rotation phase is nm, (n =
0,1,2,...). While reflection is more general and straightfor-
ward for modeling symmetric pattern.

3A shallow encoder in KG embedding can be viewed as
a lookup function that finds the hidden representation corre-
sponding to an entity or a relation given its index (Kazemi
et al., 2020).

ously transformed by three types of linear transfor-
mations, which represents reflection, rotation, and
projection respectively.

Theoretically, each transformation is prone to
learn independently the corresponding relation pat-
terns which fit itself. We use the form:

ezef _ T,I:ef(eh), el;lOt _ T;Ot (eh)7 ezrj — Tfrj (eh)

ref

_ rot __ prj __ Tj
€ =€4,€ =6€,e " = TTIDJ(et)

to denote the transformed embeddings of e, and e,
after reflection, rotation and projection. Note that
due to the principle of transitivity modeling, the
projection operation should be conducted simulta-
neously on both head and tail entities.

Attention module. For integrating the expres-
siveness of the three embeddings aforementioned,
it is natural to utilize attention mechanism to fo-
cus on specific transformation that fits the relation
pattern (Chami et al., 2020). Here we employ an
element-wise attention, which learns the attention
weights on each dimension, since we assume that
each dimension of a well-learned representation is
a disentangled factor and should be assigned with
different attention weight from different relation
patterns. The attention weight can be obtained
based on the following equation.

[aref; awt; aprj] — O‘(WT . [eref; erot; eprj])’ (6)

where W, € R? is a trainable vector; [-; -] denotes
the concatenation operation; The vector aref qrot,
and P € R?, and each vy scores how much the -
th component of the embedding is related to the cor-
responding transformation (v € {ref,rot, prj});
and o refers to an non-linear activation function

such as softmax.

Aggregation module. Based on various linear
transformation and the attention mechanism, we
have obtained the three transformed embeddings
along with their corresponding element-wise atten-
tion weights. To integrate them together, multiple
aggregating methods could be considered as long
as it is permutation invariant (e.g. summation or
average over {ref, rot, prj}). The general form of
the aggregation can be defined as follows:

e’ =agg(a” ©e"), (N
where v € {ref,rot,prj} and ® denotes the
Hadamard product.



4.3 Scoring function

For each triple (h, r, t), the distance function of the
ALMP model is defined as the following form:

dr(en,er) = [lagg(a” ©ep) +1r —agg(a” O],

where [, is a vector in R to integrate translation
transformation for relation r. The final scoring
function is defined as:

f'l’(ehyet) == _dr(eha et) + bh + bt7 (8)

where by, and b; are the head and tail entity biases
that act as margins in the scoring function (Chami
et al., 2020).

5 Experiment

5.1 Datasets

We evaluate our method on three well-known
benchmarks, which are FB15k-237 (Toutanova
and Chen, 2015), WNI18RR (Tim Dettmers and
Riedel, 2018), and YAGO3-10 (Mahdisoltani and
Suchanek, 2015).

FB15k-237 is a modified version of FB15k ex-
tracted from Freebase (K. Bollacker and Taylor,
2008), which excludes inverse relations to resolve a
flaw with FB15k (Tim Dettmers and Riedel, 2018).
The main relation patterns in FB15k-237 are asym-
metry and composition.

WNI18RR (Tim Dettmers and Riedel, 2018) is a
subset of WN18 (Bordes et al., 2013) from Word-
Net (Miller, 1995), which retains most of the sym-
metric, asymmetric and compositional relations
while removing the inversion relations.

YAGO3-10 is a subset of YAGO (Suchanek
et al., 2007), a dataset which integrates vocabulary
definitions of WordNet with classification system
of Wikipedia. The statistics of three datasets are
shown in Table 2.

Triples
Dataset Entities Relations Train Valid Test
FB15k-237 14,541 237 272,115 17,535 20,466
WNI8RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 2: Statistics of FB15k-237, WNI18RR, and
YAGO3-10 datasets.

5.2 Experimental settings

Training details. During optimization proce-
dure, we additionally adopted the following tech-
niques for obtaining better performance. First,

when pre-processing datasets, we follow the data
augmentation protocol in (Lacroix et al., 2018) by
using reciprocal relations. Second, we utilized nu-
clear p-Norm regularization method proposed by
(Lacroix et al., 2018). The reported result is the
average result after three runnings.

Evaluation protocol. We evaluate the ALMP
and baseline models on two widely used evaluation
metrics: mean reciprocal rank (MRR), and top-£
Hit Ratio (Hit@k). For each valid triples (h, 1, t)
in the test set, we replace either i or ¢ with ev-
ery other entities in the dataset to create corrupted
triples in the link prediction task. Following previ-
ous work (Bordes et al., 2013; Tim Dettmers and
Riedel, 2018; Nathani et al., 2019), all the mod-
els are evaluated in a filtered setting, i.e, corrupt
triples that appear in training, validation, or test
sets are removed during ranking. The valid triple
and filtered corrupted triples are ranked in ascend-
ing order based on their prediction scores. Higher
MRR or Hit@Fk indicate better performance.

Model setting. We simply denote the model with
the classic ALMP framework as the ALMP model.
The attention module of ALMP adopts an element-
wise scaled dot-product attention, which is similar
to (Chami et al., 2020). The aggregation module
of ALMP adopts a simple Hadamard product and a
summation over all dimensions.

Baselines. We compared ALMP with a number
of representative baselines, which are TransE, Com-
plEx, RotatE, Rot-Pro (Song et al., 2021), ATTE,
BoxE (Abboud et al., 2020), TuckER (Balazevic
etal., 2019), and PairRE (Chao et al., 2021). ATTE
is the variant of ATTH (Chami et al., 2020) on
euclidean space, which integrated two geometric
operation: rotation and refection. We choose ATTE
instead of ATTH to focus on the knowledge graph
embedding models on euclidean space.

ALMP variants. We further build a set of
ALMP variants by modifying a specific module
in ALMP for the ablation study afterwards. The
illustration of ALMP variants is as follows.

* DLMP (Disentangled Learning for Multi-
relation Patterns) is a variant whose entity em-
beddings under reflection, rotation, and pro-
jection are disentangled from each other.

 ALMP* utilizes non-element-wise attention
instead of the element-wise attention mecha-
nism in ALMP.



FB15k-237 WNI8RR YAGO3-10
MRR Hit@! Hit@3 Hit@l0 MRR Hit@! Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@10
TransE [{] 294 . . 465 226 . . 501 . . - .
ComplEx [{] 247 158 275 428 44 41 46 51 36 26 40 55
RotatE [{] 338 241 375 533 476 428 492 571 495 402 550  .670
Rot-Pro 344 246 383 540 457 397 482 577 542 443 596 .699
ATTE 351 255 386 543 489 443 504 577 525 440 574 .680
BoxE 337 238 347 538 451 400 472 541 560 484 608 691
TuckER 358 266 394 544 470 443 482 526 - - - -
PairRE 351 256 387 544 - - . . - - - -
DLMP 348 253 384 543 498 451 516 589 539 451 604 .696
ALMP- 347 250 386 542 454 399 473 577 515 439 558 656
ALMP* 353 257 390 548 494 448  S11 585 542 462 586 688
ALMP 355 260 319 548 488 439 506 586 566 489 612 702

Table 3: Link prediction results on FB15k-237, WN18RR and YAGO3-10. Results of models with [{] are taken
from (Sun et al., 2019). The result of ATTE is reproduced by us with suggested hyper-parameters. Other results

are taken from the original paper of corresponding model.

* ALMP~ is another variant of ALMP with no
additional step of translation transformation.

Hyper-parameter settings. We train ALMP and
its variants using a grid search of hyper-parameters:
embedding dimensions in {400, 500, 600}; learn-
ing rate in {le™® le % 5¢7*}; batch size in
{512,1024,2048}; number of negative sampling
in {0, 50, 100, 200}.

5.3 Main results

The experimental results on three datasets are re-
ported in Table 3. We can see that ALMP with
its variants outperforms most the baseline models
across all common evaluation metrics, which em-
pirically show the effectiveness of integrating affine
transformations with attention to model complex
interactions among relational patterns.

Furthermore, the performance gains over Rot-
Pro could confirm the stronger expressiveness of
integrated relational inductive bias than single bias.
In other words, although relation patterns can be
theoretically modeled separately by Rot-Pro, inte-
grating them can indeed gain better performance,
which coincides with our suppose of partial and
global relation patterns. Meanwhile, the perfor-
mance gain over AttE illustrates that integrating
more forms of transformations gains better perfor-
mance on expressiveness.

5.4 Ablation study on ALMP variants

According to the results of three variants of ALMP,
we could draw some experimental conclusions of
ALMP according to their difference.

First, we could find that the performance of
ALMP™ is lower than other variants, which demon-
strates that the effectiveness of using transla-
tion transformation as relational inductive biases.
Second, DLMP outperforms other variants on
WN18RR and have a reasonable performance on
the other two datasets, which shows disentangled
learning is also an effective approach for integrat-
ing various relation patterns for certain knowledge
graphs. Furthermore, the link prediction result on
ALMP#* is similar to that on ALMP, where ALMP*
shows more robust result across the three datasets,
while ALMP show better results on both FB15k-
237 and YAGO3-10.

In summary, the variants of ALMP show overall
strong capability for knowledge graph completion.
Also, for different knowledge graphs, it is feasible
to fine tune the result with a specific variant.

5.5 Case study

For case study, we evaluate the MRR result for
specific relations on WN18RR and YAGO3-10.

The relations we select basically contains the
common global or partial relation patterns men-
tioned above. We compare the case study result
with Rot-Pro, which is proved that could model the
five relation patterns separately. The result is sum-
marized in Table 4. The relations are selected man-
ually with multiple relation properties. The case
study result reflects that ALMP shows superior link
prediction capability in modelling multiple relation
patterns compared with KG embedding methods
that model the relational properties separately.
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Figure 3: The attention visualization result of ALMP. Figure (a), (b), (c) represent the results of five triples ran-
domly selected on the test set with different relations. Darker block represents lower attention value distributed to

each transformation.

Relation Rot-Pro ALMP
isConnectedTo 0.405 0.423
isLocatedIn 0.297 0.335
isAffiliatedTo 0.664 0.725
playsFor 0.630 0.667
hypernym 0.150 0.199
derivationally_related_form | 0.958 0.956
instance_hypernym 0.325 0.389
also_see 0.627 0.618
member_meronym 0.256 0.266
synset_domain_topic_of 0.347 0.411
has_part 0.197 0.198
member_of_domain_usage 0.308 0.382
member_of_domain_region | 0.251 0.402

Table 4: Comparison of MRR on Rot-Pro and ALMP
for typical relations on WN18RR and YAGO3-10.

5.6 Attention distribution validation

Having confirmed that ALMP could indeed gain
better prediction performance on relations of mul-
tiple patterns, we seek to explore that for a spe-
cific relation, how the attention value is distributed
to each geometric operation. In other words, we
would figure out that, for two specific entities with
a partial relational property annotated by humans,
does the learned attention distributions accurately
reflect it? To this end, we select five triples for
three relations in YAGO3-10 respectively and draw
the attention visualization graph in Figure 3.

We could find that there is obvious difference
of attention distribution. For relation isConnect-
edTo, the attention distributed to three geometric
operation is almost equal. It is may caused by that
isConnectedTo is a relation with partial pattern of
both symmetry, which can be learnt by both re-
flection and rotation, and transitivity, which can be
modeled by projection. For relation isLocatedlIn,
the model tends to focus more attention on the ro-

tation transformation. The possible reason might
be that isLocatedIn is a relation with both global
transitivity and asymmetry patterns, and asymme-
try pattern could not be modeled by projection or
reflection. As for relation isAfflictedTo, it is a rela-
tion with partial transitivity, hence the model prone
to pay attention to the projection transformation.

5.7 Time and space complexity

The limitation of ALMP is that it consumes more
computation, because each relation is represented
as four transformations. However, the time com-
plexity is still O(n). Due to the data parallel com-
puting technique, the time efficiency is also similar
to other models. We compare the time and space
complexity between ALMP and ATTE (Chami
et al., 2020) in Table 5.

Space Time 7T (ms)
ATTE O(n){Oe, (")r(@n,z)} O(n) 0254
ALMP O(n){O., (H)T(()m_’:;, a,b)} O(n) 0.256

Table 5: The time and space complexities where T rep-
resents the average predicting time per test triple with
the same testing batch size.

6 Conclusion

In this paper, we proposed ALMP, a generic frame-
work for knowledge graph embedding. ALMP
could help handle the problem of the multiple rela-
tional properties by utilizing attention mechanism
to integrating common affine transformation meth-
ods. On common KG embedding benchmarks,
ALMP and its variants show effectiveness on link
prediction task. According to the attention analy-
sis and case study, ALMP is capable of capturing
multiple relational properties.
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