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ABSTRACT

Semantic image synthesis enables control over unconditional image generation
by allowing guidance on what is being generated. We conditionally synthesize
the latent space from a vector quantized model (VQ-model) pre-trained to au-
toencode images. Instead of training an autoregressive Transformer on separately
learned conditioning latents and image latents, we find that jointly learning the
conditioning and image latents significantly improves the modeling capabilities
of the Transformer model. While our jointly trained VQ-model achieves a similar
reconstruction performance to a vanilla VQ-model for both semantic and image
latents, tying the two modalities at the autoencoding stage proves to be an im-
portant ingredient to improve autoregressive modeling performance. We show
that our model improves semantic image synthesis using autoregressive models
on popular semantic image datasets ADE20k, Cityscapes and COCO-Stuff.
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Figure 1: A semantically coupled VQ-model together with a Transformer generator synthesizes im-
ages that follows the semantic guidance closer and has higher fidelity. For instance, the semantically
coupled model correctly reproduces the lamp next to the bed and more accurately matches the shape
of the store fronts.

1 INTRODUCTION

Semantic image synthesis allows for precise specification of the semantic content of an image. This
enables applications such as artistic image creation, e.g. by outlining the scene and components in
novel ways, or data augmentation (Shetty et al., 2020), e.g. creating similar images or changing
objects or styles. In this work, semantic information refers to the class identity of objects (e.g.
person, car, dog, chair) and scene concepts (e.g. sky, road, grass, lake), but also their locations, size
and shape in the image. Advances in generative models have led the progress in semantic image
synthesis methods mostly through improvements to GAN-based models (Isola et al., 2017; Hong
et al., 2018; Park et al., 2019; Ntavelis et al., 2020) and autoregressive generative models (Chen
et al., 2020; Child et al., 2019; Razavi et al., 2019). Vector-quantized models (VQ-model) such
as the VQGAN model (Esser et al., 2021) combine the benefits of both GANs and autoregressive
training into a single model. By building upon the VQVAE (van den Oord et al., 2017; Razavi
et al., 2019), the addition of a discriminator results in high-fidelity image generations similar to
other GAN-based models.
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Figure 2: Overview of our semantically coupled VQ-model architecture. A single encoder produces
both semantic and image latents. Two decoders reproduce semantics and image, while the image
decoder also uses semantic information. The Transformer is trained to predict image latents condi-
tioned on semantic latents and the image decoder synthesizes the latents.

In this work we propose improvements to the architecture of VQ-models, such as the VQGAN,
that allows more effective usage of semantic conditioning information. Our model incorporates
semantic information already at the autoencoding stage, allowing the VQ-model to combine the two
modalities before the autoregressive training stage. We train a Transformer model (Vaswani et al.,
2017) to generate latents which can subsequently be synthesized by the decoder of the VQ-model.

To accomplish this, we make the following contributions. We propose an extension to the VQ-model
auto-encoder that incorporates the semantic information used for image synthesis. By doing so, the
decoder already learns the relationship between semantics and image content to make better image
generations. An autoregressive Transformer model then only needs to act on the latent space of a
single encoder model as opposed to requiring an auxiliary VQVAE which was proposed by Esser
et al. (2021). Our semantically coupled latents enable the Transformer model to create a better
generative model of the data as seen in Figure 1, where semantic detail is better replicated in the
synthesized images.

2 MODEL

We follow the methodology of Esser et al. (2021) to produce a generative model with semantic
conditioning as a two-step approach. Instead of directly generating on the image space, we perform
the task on the latent space. To do so, our image synthesis pipeline consists of two models parts:
1) an auto-encoder that learns a latent representation of the images; 2) an autoregressive model that
learns to generate the latent code.

Auto-Encoding with VQ-Models. We consider both VQVAE (van den Oord et al., 2017; Razavi
et al., 2019) and VQGAN (Esser et al., 2021) as the latent variable models and refer to them collec-
tively as VQ-models. A VQ-model consists of an encoder fEnc that maps the input x to a discrete
latent space z and a decoder fDec reconstructing x from z. The output of the encoder fEnc(x) is quan-
tized to the closest vector of a learned codebook c ∈ RK×D where K is the number of codebook
entries and D the dimensionality. The quantization of the latent space allows using autoregressive
generative models on shorter sequences than the full input data dimension. VQGAN sets itself
apart from the VQVAE by introducing an additional discriminator CNN that is trained to distinguish
between ground truth images and reconstructions from the decoder fDec.

Autoregressive Modeling with Transformer. After training the VQ-model on images x completes,
an autoregressive model is typically trained to generate the image latents z(x) of the training images,
by maximizing the likelihood of the factorized joint distribution

p(z(x)) = p(z
(x)
1 , ...z(x)n ) =

n∏
i

p(z
(x)
i |z(x)1 , . . . , z

(x)
i−1). (1)
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Cityscapes ADE20k COCO-Stuff
FID ↓ SSIM ↑ LPIPS ↓ FID ↓ SSIM ↑ LPIPS ↓ FID ↓ SSIM ↑ LPIPS ↓

VQVAE-T (van den Oord et al., 2017; Razavi et al., 2019) 190.22 0.3652 0.6406 142.11 0.0769 0.8043 111.85 0.0820 0.8127
sVQVAE-T 192.65 0.4000 0.6002 148.09 0.1343 0.7846 114.55 0.1382 0.7857

VQGAN-T (Esser et al., 2021) 130.49 0.2797 0.4873 46.50 0.0667 0.6460 33.38 0.0638 0.6533
sVQGAN-T 131.37 0.3013 0.4034 38.36 0.0987 0.5534 28.80 0.0984 0.5583

Table 1: Semantic image synthesis results for VQ-Tansformer models on Cityscapes, ADE20K
and COCO-Stuff datasets measuring SSIM, FID and LPIPS between generations and ground truth
images with the same semantic map. (sVQVAE-T and sVQGAN-T uses λ = 0.1)

In order to perform semantic image synthesis, Esser et al. (2021) trains a separate VQVAE on
auto-encoding the semantic map s to produce semantic latents z(s). To condition the autoregressive
model with this semantic information, we prepend the semantics latents z(s) to the image latents
z(x) and train the autoregressive model on the conditional likelihood

p(z(x)|z(s)) =

n∏
i

p(z
(x)
i |z(x)1 , . . . , z

(x)
i−1, z

(s)) (2)

which is done by minimizing the negative log-likelihood LT = − log p(z(x)|z(s)). For the autore-
gressive model, we use a Transformer (Vaswani et al., 2017).
Semantically Coupled VQ-Model. We deem the existing approach of conditioning semantic in-
formation to the autoregressive Transformer suboptimal for several reasons. It requires training two
independent VQ-models and the decoder only uses the image latents to produce the reconstruction,
while more information in form of the semantic latents is available. This shifts the learning of cor-
relations and dependencies between semantics and image entirely to the Transformer. We propose a
semantically coupled VQ-model that incorporates the conditioning information already in the auto-
encoding stage of a single VQ-model that jointly learns to reconstruct both images and semantics.

Figure 2 illustrates the joint model learning both latents at the same time. The encoder fsEnc(x, s) is
a shared encoder that takes the concatenation of the image and semantic map as input to produce two
latents, z(x), and z(s), respectively. The decoder is then split into two CNNs, one reconstructing the
semantics using only the semantic latent fsDec(z

(s)) = ŝ and one reconstructing the image having
access to both the semantic and the image latent fxDec(z

(x), sg
[
z(s)

]
) = x̂. We stop the gradient

flow from the image decoder to the semantic latent, such that each decoder is responsible for training
exactly one of the latents, separating and focusing their training signal, while still allowing the image
encoder to access the semantic latent and, thus, allowing it to encode complementary information in
the image latents.

By restricting the gradient flow and using two decoders, we also induce the dependency structure
of the two latents, i.e., the image latent depends on the semantic latent, but not vice versa, and the
semantic latent is learned independently. Apart from this architectural change, the loss functions
remain the same for both VQVAE and VQGAN. The semantic reconstruction is again trained with
a cross-entropy term. Thus, the loss terms are combined into a single loss function

LsVQ = LVQ(x, fxDec(z
(x), z(s))) + λLVQVAE(s, fsDec(z

(s))) (3)

where the second term comes from the VQVAE reconstructing the semantics and LVQ concerns re-
constructing the image and can be either LVQGAN or LVQVAE.The hyperparameter λ allows balancing
the two loss terms.

After training the semantic VQ-model to auto-encode both images and semantics, we train the Trans-
former network with a cross-entropy loss to maximize the log-likelihood of Equation 2 where both
the conditioning latents and the prediction latents come from the same VQ-model.

3 EXPERIMENTS

Experimental Setup. To train and evaluate our models, we combine several semantic image datasets
into one large dataset with dense semantic image annotations, namely Cityscapes (Cordts et al.,
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Figure 3: Qualitative results comparing multiple generations of an individually trained VQGAN-T
with a semantically coupled sVQGAN-T on COCO-Stuff (top) and ADE20K (bottom). Semantic
details are only retained by sVQGAN-T, e.g., bridge (top), airplane (bottom).

2016), ADE20k (Zhou et al., 2017) and COCO-Stuff (Caesar et al., 2018). We create a unified
semantic class mapping across the three datasets combining the 20, 150 and 183 object classes of
Cityscapes, ADE20k and COCO-Stuff into a total of 243 classes by merging labels that occur across
datasets such as person, car, building, etc. We evaluate our semantically coupled VQ-model in com-
parison to the traditional approach of training semantic latents and image latents separately. We use
the VQVAE and VQGAN as base models and evaluate the VQ-models after the second stage when
performing semantic image synthesis. The quality of image reconstructions and generations is evalu-
ated using the Fréchet Inception Distance (FID) (Heusel et al., 2017), the structural similarity index
(SSIM) (Wang et al., 2004), and the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018).

Semantic Image Synthesis using VQ-Transformer. We find that semantically coupling the latents
with our sVQVAE or sVQGAN model significantly improves the performance of the Transformer
model in predicting the conditional sequence of latents. In Table 1, we observe that our semantically
coupled VQ-model improves over the individually trained models across all datasets and metrics.
For instance, the FID score of sVQGAN-T significantly improves over VQGAN-T with 38.4 vs.
46.5 on ADE20k and 28.8 vs. 33.4 on COCO-Stuff (lower is better). Thus, sVQGAN-T can better
model the whole data distribution of the original datasets, which includes covering all semantic
classes without distortions. For both VQVAE-T and VQGAN-T models, we find that our semantic
variants achieve better SSIM and LPIPS scores, e.g., LPIPS of sVQVAE-T is 0.403 vs 0.487; 0.553
vs 0.646; 0.558 vs 0.653 (lower is better). These results indicate that our semantically coupled VQ-
models better follow the semantic structure of the image as the semantic maps are the only source
of information about the ground truth image which the metrics use for evaluation. We find that
the improvements of our semantically coupled VQ-models stem from the complementary structure
the semantic and image latents have learned during the auto-encoding training stage. In Figure 5,
we illustrate synthesized images from the VQGAN-T and the sVQGAN-T model, sampling three
times each. Some details of the semantic information is sometimes not properly replicated by the
VQGAN-T model, e.g., the bridge in the first row or the plane in the second row. On the other hand,
our sVQGAN-T model consistently generates these details provided by the semantics. These results
show that training the latents of the two modalities together create stronger dependencies between
them, which the Transformer model can leverage.

4 CONCLUSION

In this work, we present semantically coupled VQ-models that jointly learn latents of two modali-
ties, images and semantic maps. We have shown that coupling the latents during training leads to
dependencies that are easier to pick up by the Transformer model used to model their conditional
distribution. For both VQVAE and VQGAN as the VQ-model, the semantic coupling improves the
synthesis of images especially in following details of the semantic maps that is being conditioned on.
Further investigation into understanding the cause of our findings could allow designing latent vari-
able models with better synergies across data modalities beneficial for autoregressive modeling of
Transformers. Currently, a reference image is required during inference as input to the VQ-Model.
Further work will try to alleviate this dependency completely.
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A AUTO-ENCODING WITH VQ-MODELS

We also inspect how the architectural changes of our semantically coupled VQ-model influence
the first stage of training, i.e., auto-encoding both semantic and image content. Regardless of the
VQ-model, we use the same architecture for all VQVAE and VQGAN models respectively. All
VQ-models use a codebook size of 16384 for the image latent and 4096 for the semantic latent. The
latent size is 16 × 16 for both the semantic and the image latent.

A.1 AUTO-ENCODING OF IMAGES WITH VQ-MODELS

In Table 2, we report the reconstruction results on images evaluating both VQVAE and VQGAN
models on Cityscapes, ADE20k and COCO-Stuff after being trained on our unified dataset. We find
that the individual models tend to get better FID, SSIM and LPIPS scores than our semantically
coupled variants, e.g., SSIM of VQVAE is better than sVQVAE (0.648 vs 0.620; 0.427 vs 0.397;
0.408 vs 0.382). This indicates that focusing the auto-encoding on image only obtains better image
reconstructions when this is the only application. The gap is smaller for VQGAN models, where
SSIM of sVQGAN with λ = 0.1 is close (0.584 vs 0.571; 0.368 vs 0.355; 0.343 vs 0.332). While
FID and LPIPS metrics are also close in general, our sVQGAN with λ = 0.1 obtains a better FID
score for ADE20k (45.01 vs 45.57) and COCO-Stuff (34.79 vs 34.93) than the individually trained
VQGAN. A better FID score can be achieved, as the image decoder obtains not only the image
latents, but also the semantic latents, thus, allowing the decoder to access additional information.
Since SSIM and LPIPS favor reconstructions that contains as much information about the ground
truth image as possible, the semantic side information is not improving those metrics. As soon as
we consider both modalities in the second training stage, the combination will become essential.

Cityscapes ADE20k COCO-Stuff
FID ↓ SSIM ↑ LPIPS ↓ FID ↓ SSIM ↑ LPIPS ↓ FID ↓ SSIM ↑ LPIPS ↓

VQVAE (van den Oord et al., 2017; Razavi et al., 2019) 125.17 0.6484 0.3921 67.44 0.4267 0.5483 49.14 0.4081 0.5583
sVQVAE (λ = 0.1) 128.76 0.6199 0.4504 70.03 0.3966 0.6123 50.57 0.3820 0.6160

VQGAN (Esser et al., 2021) 123.76 0.5844 0.1385 45.57 0.3683 0.1905 34.93 0.3429 0.1874
sVQGAN (λ = 0.01) 124.61 0.5544 0.1547 45.97 0.3444 0.2081 35.19 0.3217 0.2046
sVQGAN (λ = 0.1) 124.10 0.5709 0.1506 45.01 0.3554 0.2053 34.79 0.3318 0.2019
sVQGAN (λ = 1.0) 125.48 0.5444 0.1682 46.70 0.3316 0.2311 35.60 0.3138 0.2252

Table 2: Auto-encoding results for VQ-models on Cityscapes, ADE20K and COCO-Stuff datasets.
Structural similarity (SSIM), Fréchet inception distance (FID) and LPIPS between reconstructions
and ground truth images.

A.2 AUTO-ENCODING OF SEMANTIC INFORMATION WITH VQ-MODELS

In Table 3, we report the mean intersection over union (mIOU) of a VQVAE trained on recon-
structing the semantics alone compared to the semantic reconstruction of our semantically coupled
models. When only assessing VQVAE and sVQVAE, we observe a similar picture as with the
image reconstructions. The quantitative results suggest training individual models is preferable if

Cityscapes ADE20k COCO-Stuff
VQVAE (van den Oord et al., 2017; Razavi et al., 2019) 85.45 83.84 92.38
sVQVAE (λ = 0.1) 68.13 47.75 80.15
sVQGAN (λ = 0.01) 80.36 79.09 87.52
sVQGAN (λ = 0.1) 85.90 88.77 93.40
sVQGAN (λ = 1.0) 86.81 90.37 93.81

Table 3: Auto-encoding semantic results for VQ-models on Cityscapes, ADE20k and COCO-Stuff.
Mean intersection over union (mIOU) in percent between reconstructions and ground truth seman-
tics, higher is better.
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Figure 4: Qualitative results for the auto-encoding of both semantic and image content. *VQVAE
is trained individually on each modality, i.e. two different models. Semantic VQ-models (sVQVAE
and sVQGAN with λ = 0.1) are one model each evaluated on both modalities.

purely auto-encoding of each modality individually is desired. This becomes apparent when com-
paring mIOU as VQVAE improves over sVQVAE by 17.32%, 36.09% and 12.23% for Cityscapes,
ADE20k and COCO-Stuff respectively. However, the semantic VQGAN model outperforms all VQ-
VAE models when it comes to semantic reconstruction obtaining a mIOU of up to 86.81%, 90.37%
and 93.81% when λ = 1.0. Even for λ = 0.1 where we weight the image reconstruction more,
sVQGAN still outperforms VQVAE only trained on semantic reconstruction by 0.45%, 4.93% and
1.02%. These results indicate, that the VQVAE architecture is not as capable in reconstructing both
image and semantics at the same time as VQGAN. Moreover, we can even achieve a better semantic
reconstruction when augmenting with image data, compared to when using semantic data alone.

A.3 QUALITATIVE RESULTS FOR AUTO-ENCODING OF SEMANTIC INFORMATION AND
IMAGES WITH VQ-MODELS

In Figure 4 we show qualitative results for auto-encoding of both semantic information and images
using different VQ-models. There is a significant difference in image quality between VQVAE and
VQGAN models due to the additional discriminator loss. When compressing to a 16 × 16 latent
space, VQVAE reconstructions exhibit blurriness due to their tendency of rate-distortion trade-offs
in their bottleneck as opposed to a rate-perception trade-off (Williams et al., 2020). The outlines of
trees and the car are visible, but detail is lost. VQVAE and sVQVAE seem to be on par when it comes
to image reconstruction as is also suggested by the quantitative results in Table 2. Moreover, we find
that some details in the semantics are lost due to the quantization bottleneck that forces the networks
to compress this information, but the general structure is kept intact. For instance, we observe
that VQVAE and sVQGAN retain more details in the semantic reconstruction than sVQVAE. The
performance of the VQVAE can be explained because semantic reconstruction is the only objective.
At the same time, the GAN-based image reconstruction of sVQGAN seems to synergize better
with the semantic reconstruction objective than for sVQVAE. For instance, only in sVQGAN, the
semantic information about a person on the right border of the image is preserved.

B ADDITIONAL QUALITATIVE RESULTS

Figure 5 shows more qualitative examples of semantic image synthesis for VQGAN-T and
sVQGAN-T. Two examples for each dataset are shown, i.e., COCO-Stuff, ADE20k, Cityscapes.
We again observe that semantics are followed more closely for our sVQGAN-T model. In the first
row, the goat can only be properly recognized in the generations of sVQGAN-T. In row three, the
small lake of water is only present in sVQGAN-T generations, and in row four the plant on the left
side of the image is missing for VQGAN-T. Complex city scene also sometimes lack some details
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in VQGAN-T generation, e.g., in the fifth row, the car in the center is not synthesized while it is in
our sVQGAN-T variant.
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Figure 5: Qualitative results comparing multiple generations of an individually trained VQGAN-
T with a semantically coupled sVQGAN-T on COCO-Stuff (top two), ADE20K (middle two) and
Cityscapes (bottom two). Semantic details are better retained by sVQGAN-T.
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