LINGUIST: Language Model Instruction Tuning to Generate Utterances for
Intent Classification and Slot Tagging

Anonymous ACL submission

Abstract

We present LINGUIST, a method for generat-
ing synthetic data for Intent Classification and
Slot Tagging (IC+ST) based on a 5B multilin-
gual seq2seq model fine-tuned on a flexible
instruction prompt. On a 10-shot setting for
learning a new SNIPS intent, we show abso-
lute improvement of +2.5 points (IC) and +2.8
points (ST) over data upsampling, and com-
bined gains of +4.7 points (IC) and +3.2 points
(ST) when combined with Back-Translation.
On an internal production dataset for Conver-
sational Agent IC+ST, we show between 7.9%
and 25.2% relative improvement compared to
an internal baseline across four languages. To
the best of our knowledge, we are the first to use
instruction fine-tuning of a large scale seq2seq
model to generate slot-labeled data.

1 Introduction

The machine learning models that power Con-
versational Agents such as Amazon Alexa, Ap-
ple Siri or Google Assistant to peform Semantic
Understanding (e.g., Intent Classification and Slot
Tagging—IC+ST) on user requests normally rely
on large quantities of labeled training data. Such
labeled data is plentiful for established customer
usage patterns, yet scarce when developing new
intents and slots. In those cases, a small num-
ber of manually curated examples are used as a
“starter” dataset, which can be enhanced by Data
Augmentation (DA) methods such as paraphras-
ing (Prakash et al., 2016), back-translation (Ban-
nard and Callison-Burch, 2005), and slot replace-
ment (Zhang et al., 2020).

One important shortcoming of the existing tech-
niques, is that they excel either at generating novel
sentences via paraphrasing or at generating new
entities via replacement, but not both. Moreover,
paraphrasing and translation techniques are better
suited for classification tasks rather than ST since
slot alignment between the original sentence and

INPUT:
<context>
Get Weather,
English Output Language
</context> <example>
"rain"l (condition_description),
"East Tawakoni"2 (city),
"sep. 25th"3 (time_range)

Will it "rain"1l on "sep. 25th"3 in
"East Tawakoni"2
</example> <example>
"snowy"l (condition_description),
"x"2 (city),
"#"3 (time_range)

OUTPUTS:

1 What is the "snowy"l weather like
in "Kirkland"2 on "Jan. the 11th"3

2 Is it going to be "snowy"l at
"12 o’clock"3 in "Westport"2?

3 What’s the "snowy"l weather like
in "Marysville"2 "two weeks from now"3

4 What "snowy"l conditions are expected
in "Mountain View"2 on "Jan. the 15th"3

5 Is it "snowy"l in "West Oyster Bay"2
on "July 5th"3?

Figure 1: LINGUIST uses an instruction prompt to gener-
ate data with both user-requested slot values (“snowy’’)
and model-generated values (“*””). This model has not
seen any training data for GetWeather intent: it was
trained only on the other 6 SNIPS intents.

the paraphrased one is often noisy and unreliable.
Additionally, while there is substantial breadth and
quantity of approaches dealing with DA on En-
glish, DA for non-English and multilingual settings
remains relatively under-explored.

Recent research has shown that large pretrained
Language Models (LM) are very good in gener-
alization given a handful of examples in the con-
text of zero/few-shot learning (Xue et al., 2021;
Zheng et al., 2021). However, deploying such a
model in production is impractical due to their la-
tency and memory consumption. In this work, we
introduce Language model INstruction tuning to
Generate Utterances for Intent classification and

Slot Tagging (LINGUIST) as an efficient way to
benefit from large LMs in production systems. We
utilize an internal 5B parameter seq2seq model by
fine-tuning it on an instruction-based task for gen-
erating slot-labeled data given only the intent name
and a small number of in-context examples (see
Fig. 1 for the input/output format during training
and inference). As slots are generated without need-
ing a second stage of slot alignment, not only can
we generate completely novel sentences with the
right slot tags but the model is better able to gener-
ate sentences in inflecting non-English languages
with correct grammar than simple slot replacement.
For example, using a different variation of the def-
inite article in French: “la lumiere” (“the light”),
“les lumieres™ (‘“the lights”), “le ventilateur” (“the
fan”), and “I’horloge” (“the clock™), where simple
replacement of the slot value would result in an
ungrammatical sentence.

We evaluate our approach in two settings: on
a “New-Intent Few-Shot” (NIFS) setting for the
public SNIPS dataset where we show absolute im-
provements of +2.5 points (IC) and +2.8 points
(ST), and also a multilingual production dataset,
where we achieve a relative Semantic Error Rate
(SemER) reduction of 7.9% to 25.2%.

This work demonstrates that by using a large-
scale seq2seq model we can: (1) directly produce
data with slot labels, thus removing the need for
a separate label alignment or projection step, (2)
use a single multi-lingual model to generate data in
multiple languages, (3) control generation to con-
tain specific slot types, user-supplied slot values,
or model-generated slot values, and (4) generate
data for new intents and slots without any further
fine-tuning, using an instruction prompt.

2 Related Work

2.1 Few-shot Learning using Large-Scale LMs

Recently, Large Generative LMs such as GPT-3
(Brown et al., 2020) are shown to perform well in
few-shot settings via “in-context learning”, where
tasks are formulated as text continuation, and the
model learns them without any parameter updates.

Wang et al. (2021) aim to entirely remove the
need for human-labeled data, by using a large LM
to generate synthetic examples for text classifica-
tion. In a much more recent work, Wei et al. (2022)
demonstrate the use of fine-tuning while maintain-
ing the generic knowledge of the model by provid-
ing natural-language instructions in a setting they

call instruction tuning, where a large number of
tasks are presented to a model for fine-tuning in a
multitask learning fashion. Wei et al. show that
their FLAN model outperforms the similarly-sized
GPT-3 by a significant margin. Our work is most
alined with the work by Wei et al. (2022) but in the
context of data generation.

2.2 Data Augmentation via Paraphrasing

An early and still widely used approach for gener-
ating paraphrases is Back-Translation (BT). Ban-
nard and Callison-Burch (2005) use a parallel cor-
pus to extract paraphrases directly from parallel
data across languages. Sennrich et al. (2016) and
Edunov et al. (2018) use data generated via back-
translation to improve a Machine Translation (MT)
system. Xie et al. (2020) use a pivot language to
create paraphrases in the same language without
(unlike Bannard and Callison-Burch (2005)) requir-
ing a parallel corpus—translating English to French,
then back to English including n-best lists to create
multiple paraphrases.

Other approaches directly target the paraphras-
ing task, such as Prakash et al. (2016) who train an
LSTM-based seq2seq model in a supervised fash-
ion on large paraphrase corpora, or Kumar et al.
(2020) who drop nonessential words from an input
sentence to create a de-noising data set that can be
used to fine-tune a pre-trained model. Kumar et al.
(2020) apply a similar approach to ours, however
they only use the augmented data for intent classifi-
cation, while we focus on both intent classification
and slot tagging.

2.3 Data to Text Generation

While the above approaches aim to capture general
linguistic variations (paraphrases, reformulation),
a different thread of research creates synthetic ut-
terances directly from the target annotation, Ma-
landrakis et al. (2019) propose a seq2seq model
that learns from interpretation-text pairs seen in
training to generate text, with the addition of a con-
trolled variational auto-encoder to improve vari-
ability. Jolly et al. (2020) expand on this, exploring
different sampling strategies, adding more variety
by shuffling slot names, and examining the behav-
ior where a new intent is introduced with limited
training data.

The DAGA (Ding et al., 2020) approach gener-
ates labeled data for ST using a small one-layer
LSTM, however it lacks the controllable mecha-
nism for specific slot labels and values that we

develop for LINGUIST. The CTRL paper (Keskar
et al., 2019) proposes natural language “control
codes” to instruct the model to generate data in a
particular style or domain. Their work does not
cover generating structured text such as for ST.

2.4 Token Replacement

The SeqMix (Zhang et al., 2020) approach replaces
tokens in an ST task using the nearest neighbor
in the embedding space. Dai and Adel (2020) ap-
ply local transformations of ST words, such as
replacing words with synonyms, or with mentions
in other instances of the same label in the corpus.
Easy Data Augmentation (Wei and Zou, 2019) sim-
ilarly applies simple token-level changes including
synonym replacement, random insertion, random
swap, and random deletion. Their work is only
on sequence classification like IC, not sequence
labeling like ST.

3 LINGUIST Data Generator Model

Figure 1 shows the format of the instruction prompt
that is used in finetuning and inference, based on
a pre-trained multi-lingual seq2seq model. It con-
tains three blocks: (1) intent name and output lan-
guage name, (2) up to 10 slot-annotated examples
for the intent, and (3) instructions to determine
which slot types and slot values to generate. Each
example in the prompt has two components: first
the list of slot types and values with numbered
quotations, e.g. "jason mraz"l (artist),
then after the separator token
, a formatted
version of the fully annotated utterance e.g. play
"jason mraz"l songs. The generation in-
structions use the same slot tagging scheme, e.g.
"weezer"1l (artist), to instruct the model
to include “weezer” as the artist, and additionally
support a wildcard "+"1 (artist) instructing
the model to fill in an appropriate value.

Labeled examples for the given IC+ST task are
formatted into prompts and de-duplicated into a
training dataset R. After grouping utterances by
“semantic shape”! (intent and unordered” set of
slots), we format an instruction prompt p; target-
ing each annotated utterance t; € R, including

'For example, play some [year] (1991)
[artist] (Dave Barker) and I want to
hear [artist] (Steven Harwell) from the

[year] (thirties) have the same semantic shape of

PlayMusic with unordered set of slots artist and year.
’Grouping training data by unordered set of slots enables

LINGUIST to generate slots in any order it sees fit.

in the prompt 10 other example utterances £ =
{e;};2) € Rst.Vj, ej # t; and shape(e;) =
shape(t;). To make the generation robust to the
number of provided examples, we do not always
include all 10 in the prompt, but instead randomly
select a value k between 0 and 10, then randomly
select k£ examples from R. If there are only n < 10
other utterances available that share the same shape
as t;, then we sample k between 0 and n. We never
duplicate utterances in the prompt. Finally, we pro-
duce a corpus of training prompts equal in size to
the original IC+ST training set.

To account for novel intents and slot types that
were not present in training data, we drop out the
intent and slot names at a rate of 0.2, replacing the
original label name such as Get Weather with a
random sequence of between 1 and 5 capital letters
likea Q Y.

In order to generate slot-labeled data, the model
must produce some symbols other than just the
words of the utterance. In early experiments,
we tried a variety of output formats, such as
[artist] (jason mraz), however found that
the model struggled to generate the brackets and
label names correctly. After many rounds of ex-
periments, we designed a scheme using quotations
and numbers (e.g., " jason mraz"1) which we
found the model is capable of learning to generate
correctly. This format was inspired by natural text
examples, e.g. links and references in Wikipedia
articles sometimes appear in this format.

To jointly teach the model both to copy
user-supplied slot values like " jason mraz"1
(artist) and to produce appropriate values for
the wildcard "x"1 (artist), we format the
training prompts with examples of both. For
prompt p; targeting utterance t;, we randomly se-
lect d ~ Geo(0.5) (0 < d < #slots in ¢;) slots
types and replace their values with "+ " in the final
block of the prompt.

Finally, we apply standard seq2seq fine-tuning of
the pre-trained model on the prepared training data,
where the prompt text p; is fed into the encoder, and
the decoder is optimized via cross-entropy loss to
produce the formatted ground-truth slot-annotated
utterance ¢;. For more details on the fine-tuning
please refer to Appendix A.

In summary, our model is trained to generate
utterances with intent and slot labels, conditioned
on a handful of examples and a flexible prompt to
control the output. We call our Data Generation

method LINGUIST, which stands for Language
model INstruction tuning to Generate Utterances
for Intent classification and Slot Tagging.

4 Experimental Setup

We evaluate LINGUIST by generating training data
to augment a few-shot setting for fine-tuning a
small encoder model on joint IC+ST. In this sec-
tion, we describe the datasets and the baselines that
we use for evaluating our method.

4.1 Datasets

We present results on two datasets: (1) the public
SNIPS dataset (Coucke et al., 2018), and (2) an
internal IC+ST dataset.

For each dataset, we construct a “New-Intent
Few-Shot” (NIFS) setting, shown in Figure 2.
Starting with training data B = (J72,D; con-
taining data D; for m intents j = 1...m, we
select an intent ¢ € {1,...,m}, and reduce its
training data to only a handful of “starter” utter-
ances S; C D;. We then apply various data aug-
mentation techniques on S; to create augmented
data A;. Finally, we train an IC+ST model using
R; = S; U A; U{Dj};+i, ie. the concatenation
of starter and augmented data for intent ¢ with the
unmodified data for all other intents.

Other Intents
Historic Data
(annotated)

Generator \ 4

Model New Intent

Starter Data > IC+ST
< Model
(annotated)

\ 4

Augmented
Data

Y

Figure 2: New-Intent Few-Shot (NIFS) Setup.

4.1.1 SNIPS Dataset

The SNIPS dataset (Coucke et al., 2018) is a public
IC+ST benchmark consists of 7 intents, each with
between 2 and 14 slot types (39 unique slot types
in total). It includes around 2k training utterances
and 100 validation utterances per intent. In order
to avoid overfitting our method on the small vali-
dation set, at the beginning of our experiments, we
partition the training set into 97% Train and 3%
Development. We use our Development set split
for iterating on all modeling and data processing

decisions, including the hyperparameters for LIN-
GUIST and hyperparameters and selection of best
checkpoint for the encoder fine-tuning on IC+SF.
Only at the very end of our experiments, we eval-
uate and report on the Validation set. See Table 1
for count of Train/Dev/Valid utterances.

Intent Train Dev. Valid.
AddToPlaylist 1884 58 100
BookRestaurant 1914 59 100
GetWeather 1940 60 100
PlayMusic 1940 60 100
RateBook 1898 58 100
SearchCreativeWork 1896 58 100
SearchScreeningEvent 1901 58 100
Total 13373 411 700

Table 1: Data counts per intent for SNIPS.

To demonstrate the ability of LINGUIST to gen-
eralize to new intent and slot values not present at
training time, we construct a “New-Intent Few-
Shot” (NIFS) setting for SNIPS. Specifically, we
create 7 experimental settings as follows: for each
intent 7 of the 7 SNIPS intents, we discard its train-
ing data D; during fine-tuning. Then, during in-
ference, we randomly select 10 “starter” training
examples S; C D; (ensuring there is at least one
example for all slot types related to intent ¢) to be
included in the input prompt.

For each of the 7 intent settings, we create five
versions using a different random seed for selecting
the 10 starter utterances used during inference.

4.1.2 Internal Dataset

Our internal few-shot IC+ST setting consists of
de-duplicated, anonymized, and de-identified cus-
tomer requests to a large-scale production Conver-
sational Agent. We follow a similar procedure to
SNIPS described in Section 4.1.1. The main differ-
ences are: (1) we prepare experiments at the level
of a feature, which may correspond to multiple new
intents and/or new slot types or slot values for exist-
ing intents, and; (2) the benchmark is multilingual.

There is a large corpus of Historical training data
H, containing annotated utterances from user in-
teractions prior to the new features being launched.
The training data does not contain examples of any
of the new features. For each new feature ¢ there
is a small dataset S;, containing between 3 and
429 manually created and annotated “starter” utter-
ances. Then, there is a larger test set 7} consisting
of post-launch labeled examples of real customer
interactions for the new feature .

The training set contains several million ex-
amples covering hundreds of intents and slot
types, and 8 languages: German, English, Spanish,
French, Hindi, Italian, Japanese, and Portuguese.
The test sets contain hundreds of utterances on five
features: CameraControl, ClockSettings, HomeSe-
curity, Music, and Timers, across four languages:
German, Spanish, French, and Japanese.

We train a single LINGUIST model on the his-
torical data H. Then for each feature 7, we create
prompts from its starter utterances .S;, generate aug-
mented data A;, and train an IC+ST model M; on
R; =S, UA;UH.

4.2 Baseline Methods

The Interpretation-Conditioned Language
Model (ICLM) Jolly et al. (2020) generates
unlabeled text conditioned on intent and provided
slot values, with a separate label projection step to
recover the full slot annotation. ICLM produces al-
ternative carrier phrases only, and cannot generate
novel slot values. Our implementation uses a small
Transformer architecture with ~ 3.4M parameters,
and a simple character-level Levenshtein distance
measure to project the slot labels. One advantage
of this small model size is low latency when
generating data. For SNIPS, we produce 50
outputs per input, then filter and de-duplicate (see
Appendix E). For the internal benchmark, we use a
similar setting.

We apply Back-Translation (Sennrich et al.,
2016) (BT) with two separate MT systems. The
first uses the open-source Sockeye toolkit (Hieber
et al., 2018) and a small (91M parameters) inter-
nal Transformer seq2seq model which has been
fine-tuned on around 10k utterances of annotated
parallel data. We use fast_align (Dyer et al., 2013)
to project the slot labels to the generated utterances.
We call this system “BT-Small”’. For SNIPS, we
use French as the pivot language, with beam search
and M = 1 forward en—f{r, then N = 10 back-
translations fr—en. We filter to discard noisy out-
puts (See Appendix F for details) and de-duplicate.
For the Internal Benchmark, we use a similar set-
ting, with English as the pivot language.

For a stronger BT baseline, we build a MT
system using the very same internal pre-trained
multi-lingual 5B seq2seq model which we use
for fine-tuning LINGUIST. We fine-tune the 5B
model on WMT143 jointly on en—fr and fr—en

3https://huggingface.co/datasets/wmt 14

using an instruction prompt (simply prefix the
input text with Translate to French: or
Translate to English:, respectively) to
control the translation direction. We apply Sim-
Align (Jalili Sabet et al., 2020) to transfer the slot la-
bels to the generated utterance. We use the default
bert—base—multilingual—cased4 as the
alignment model, and ArgMax for matching. For
SNIPS, we use French as the pivot language, with
M =10 forward and N = 10 backward for beam
search, thus producing 100 outputs per original
sentence, then filter and de-duplicate the outputs
(see Appendix G for details). We call this system
“BT-5B”. Note, we do not include BT-5B for the
Internal Benchmark, as it was not available at the
time we conducted evaluation.

Catalog Resampling is a simple approach
to data augmentation which samples enti-
ties from an external catalog for a particu-
lar label. For example, if an utterance for
PlayMusic is play songs by [artist]
(jason mraz) and there is an external catalog
for artist names containing weezer, this method
could produce an utterance play songs by
[artist] (weezer). We only use Catalog
Resampling for the Internal Benchmark, as we do
not have slot catalogs available for the SNIPS data.

4.3 IC+ST Model Training

For SNIPS, following Chen et al. (2019), we fine-
tune a BERT-style model for joint IC+ST. On top of
the encoder hidden states, we attach two separate
classification heads, one for IC and another for ST.
Each head consists of two layers of 256 hidden
dimension, with gelu activation, dropout 0.2, and
layer norm. The IC head utilizes representation
from the first token of the sequence ([CLS]), while
the ST head utilizes the first subword token of each
slot-labeled word.

For our encoder, we use xlm-roberta-base
(Conneau et al., 2020) (12 layers, 768 hidden di-
mension), from the HuggingFace (Wolf et al., 2020)
implementation. We fine-tune with batch size 128
for 3k updates (i.e. 30 epochs for the full-size data).
We freeze the embedding layer; all other param-
eters are free to update during training. We use
Adam with peak learning rate 3e-5, increased lin-
early from O to 600 updates, then decayed linearly
to O for the remainder of training. To avoid over-
fitting on the official SNIPS Validation dataset, we

*https://huggingface.co/bert-base-multilingual-cased

use our Development split (Section 4.1.1) for early
stopping, selecting the checkpoint with best perfor-
mance on ST. All of our IC+ST fine-tuning runs for
SNIPS use identical hyper-parameters, regardless
of the data generation method being explored. For
each experiment, we train and test 7 different Joint
IC+ST models {M;}’_; in NIFS setting: using a
combination of the modified data for intent ¢, and
the unmodified data for all other intents.

For our internal benchmark, we follow a similar
procedure to our SNIPS experiments, however we
use a smaller internal Transformer-based encoder
for fine-tuning on the IC+ST task.

4.4 Metrics
4.4.1 Maetrics for SNIPS

We use separate metrics to measure (1) support for
the new intent, while (2) not harming the overall
customer experience across all intents. For (1),
we run the model on a test set containing only the
new intent. We refer to this as the Local Intent
Recall (IR), and Local ST F1 Score. For F1 score,
we ignore the “O” (non-entity) tag. To measure
(2), we run the model on the combined test set of
all intents together, and call this the Global Intent
Accuracy (IA) and Global ST F1 Score.

When training data is modified for a particular
intent ¢, we expect the Local metrics for ¢ to change
a lot, and the Global metrics to be less sensitive.
Since this paper focuses on data generation tar-
geting a specific intent or slot, we are primarily
concerned with the Local metrics.

4.4.2 Metrics for Internal Benchmark

For the internal benchmark, we only evaluate in
the Local setting. We measure Semantic Error Rate
(SemER) (Su et al., 2018) which jointly evaluates
the IC and ST performance. Lower SemER indi-
cates improvement to the system. We report rela-
tive reduction in SemER, where a negative number
indicates improvement.

5 Results
5.1 SNIPS

The main results are presented in Table 2a for Local
Intent Recall and Table 2b for Local ST F1 Score.
5.1.1 SNIPS Baselines

As an upper bound for our experiments in the New-
Intent Few-Shot (NIFS) setting, we first report the
results from training on the full unmodified dataset

(“Full” in the tables), showing 99.2 for Local Intent
Recall and 96.6 for Local ST F1 Score.

Next, representing the starting point for devel-
oping a new intent ¢, we train the model on the
concatenation of the 10 starter utterances S; for
intent ¢, with all other intents’ training data un-
modified. (“s10-NoUps” in the tables.) This data
reduction severely harms performance of the tar-
geted intent, causing -14.8 points absolute on Local
Intent Recall (from 99.2 to 84.4), and -29.8 points
absolute on Local ST F1 Score (from 96.6 to 66.8).

Interestingly, simply up-sampling® the starter
utterances (“s10” in the tables) to recover the origi-
nal per-class distribution provides a large boost in
performance. Specifically, “s10” compared to “s10-
NoUps” provides absolute improvement of +3.8
points absolute on Local Intent Recall (from 84.4
to 88.2), and +10.9 points absolute on Local ST F1
Score (from 66.8 to 77.7).

The rest of the columns use a mix of the up-
sampled 10 starter utterances, and augmented data
derived from them via various methods. We mix
the two data sources with portions 0.5/0.5, unless
otherwise specified. In all cases, we re-sample the
final amount of data for the target intent to match
the count in the original unmodified dataset.

We find that ICLM (“s10+ICLM”) and BT-Small
(“s10+BT-Small”’) do not improve on Local Intent
Recall or Local ST F1 Score compared to “s10”.
Thus, we adopt *“s10” as our baseline, i.e. using
only the 10 starter utterances, up-sampled to
recover the original class distribution.

Compared to “s10”, Back-Translation-5B
(“s10+BT-5B”) shows +1.9 points absolute on Lo-
cal Intent Recall (from 88.2 to 90.1), and +1.5
points absolute on Local ST F1 Score (from 77.7
to 79.2).

5.1.2 LINGUIST for SNIPS

We train 7 versions of the LINGUIST model as
follows: for each intent ¢ of the 7 SNIPS intents, we
discard its training data D; and train a LINGUIST
model L; only on the remaining 6 intents’ data
{D;};+i. Then, given the 10 starter utterances S;
for intent ¢, we format prompts as described in
Section 3, and feed them to LINGUIST model L;
to generate more data (5;. Note, this step does not
require any model parameter updates.

>We implement up-sampling by simply repeating the 10
starter utterances 194 times, to create a file of 1,940 lines, the
same as the original full training data for that intent.

s10 s10 s10 s10 s10 s10
Modified Intent /Data — Full = sIONOUPS | (pyseline) | +ICLM ~ +BT-Small ~ +BTSB +Linguist | FNOUIST
AddToPlaylist 1000 956468 | 983421 | 975422 983424 994105 877490 | 95062
BookRestaurant 100.0 91.0434 | 935424 | 938418 925+1.7 946+1.1 952432 | 962+1.4
GetWeather 100.0 98.8+04 | 98.840.4 | 994405 996405 99.8+04 99.8+04 | 99.8+0.4
PlayMusic 99.0 70.8+£10.1 | 77.14+6.6 | 79.8+84 765+58 840428 891442 | 90.6+2.3
RateBook 100.0 99.040.0 | 99.6+0.5 | 100.0 0.0 99.8 +0.4 99.64+0.5 99.8 +0.4 | 99.8 +0.4
SearchCreativeWork ~ 100.0 69.0 +8.8 | 769493 | 742491 733 +13.6 794-+11.3 864+83 | 88.8+8.5
SearchScreeningEvent 952 66.5+5.6 | 73.1 482 | 72.14£37 715461 73.5+108 769420 | 79.8+39
Average 992 844429 | 882F19 | 881424 874429 901+F1.6 907422 | 929 F1.1
(a) SNIPS New-Intent Few-Shot (NIFS) results on Local Intent Recall.
$10 $10 $10 510 510 s10
Modified Intent /Data Full = s10-NoUps |/ cotine) | +ICLM ~ +BT-Small +BT-5B +LINGUIST +&1§TG_15J1135T
AddToPlayTist 941 768 E29 | 812+25 | 784+24 82.0+1.8 SI3E17 80.0+F40 | 789+20
BookRestaurant 964 719423 | 813421 | 804+14 812+12 833425 812429 | 81.6+09
GetWeather 97.8 747439 | 849454 | 829448 823+45 840428 81.6+3.1 | 842434
PlayMusic 917 420443 | 592422 | 580434 561431 654442 668441 | 67.142.7
RateBook 997 894415 | 950409 | 954408 935433 936415 953+1.0 | 953+1.0
SearchCreativeWork ~ 100.0 562 +10.5 | 709 +11.3 | 67.6 9.8 689 +11.1 729+12.1 81.0+9.1 | 80.4+96
SearchScreeningEvent 96.6 564 +7.4 | 71.6£3.6 | 728 £4.6 69.8 £4.6 742436 773433 | 79.1+44
Average 96.6 668122 | 777420 | 765+21 763+25 792428 805+23 | 80913

(b) SNIPS New-Intent Few-Shot (NIFS) results on Local ST F1 Score.

Table 2: Our main results on SNIPS Validation set (Section 4.1.1). For each cell (4, j), we train a joint IC+ST encoder
on the combination of data from intent ¢ modified according to strategy j, and all other intents’ data unmodified. The
first three columns are: “Full” is trained on the full dataset without any modifications; for “s10-NoUps”, the data
for intent ¢ is reduced to only 10 “starter” examples, and are Not Up-sampled; for “s10’°, the baseline, the starter
utterances are up-sampled to IV;, the original data size for intent 7. For the remaining columns, the up-sampled
starter utterances for intent ¢ are mixed with augmented data derived from them using a particular method, which
is re-sampled to NNV; in size. “st10+ICLM” uses ICLM, “s10+BT-Small” uses the Small Back-Translation system,
“s10+BT-5B” uses our Back-Translation with the internal 5B seq2seq model, “s10+LINGUIST” uses data generated
by our LINGUIST method. Finally “s10+LINGUIST+BT-5B” uses data from both LINGUIST and BT-5B. We bold
the mean for the best single method, and for the final column when it is best. All experiments are run across the five
random seeds, and we report mean =+ standard deviation.

Utilizing the ability of LINGUIST to both copy
slot values and produce novel values, we format
multiple prompt versions p;;, from each of the
starter utterances s;. The first version instructs LIN-
GUIST to copy all the slot values, producing new
carrier phrases. Then, for each slot type k, we cre-
ate a new version of the prompt replacing the value
for k with the wildcard " =", instructing LINGUIST
to produce a new value for the slot, while copying
the other slot values as they are, and generating a
suitable carrier phrase.® We use top_k sampling
with k£ = 50 and temperature 0.3 to generate 100
utterances per prompt.

After filtering the generated data (see Ap-
pendix H for details), we mix the up-sampled 10

®For example, for a GetWeather prompt con-
taining "new york"l (state), "noon"2
(time_range) we prepare three versions: one as-is,
one with "«"1 (state), "noon"2 (time_range),
and one with "new york"l (state), "*"2
(time_range).

starter utterances with the LINGUIST-generated
data, We explore three settings for the mixing
weights, namely 0.3/0.7, 0.5/0.5, and 0.7/0.3, and
select 0.5/0.5 according to best Local IR and Local
ST F1 Score on the validation set on just one of the
seed runs. We use identical settings for LINGUIST
fine-tuning and generation across all 35 runs (7 in-
tents times 5 random seeds) for the SNIPS-NIFS
benchmark.

Finally, following the setting of the other base-
lines, we fine-tune xlm-roberta-base on the
concatenation of the augmented and mixed data for
intent ¢ with the original data for all other intents:
R; =S, UA; U {Dj}j;,gi.

Compared to the baseline of up-sampled starter
utterances (“s10”), LINGUIST improves by +2.5
points absolute on Local Intent Recall (from 88.2
to 90.7), and +2.8 points absolute on Local ST F1
Score (from 77.7 to 80.5).

Finally, we demonstrate that the improvements

in Local metrics for the new intent do not cause
harm to the overall system, and in fact provide a
small improvement. As shown in Table 4a and Ta-
ble 4b (Appendix D), “s10+LINGUIST” improves
upon the baseline of “s10” by +0.3 points on both
Global Intent Accuracy and Global ST F1 Score.

5.1.3 LINGUIST and Back-Translation

As our final experiment, we combine the up-
sampled starter utterances with data from both LIN-
GUIST and BT-5B (“s10+LINGUIST+BT-5B”). The
mixing ratio for the three datasets is 0.2/0.4/0.4.
We find that the methods are synergistic, and com-
pared to LINGUIST alone, adding generated data
from BT-5B adds +2.2 points absolute on Local
Intent Recall (from 90.7 to 92.2), and +0.4 points
absolute on Local ST F1 Score (from 80.5 to 80.9).
The final difference between the baseline of “s10”
and the candidate system “s10+LINGUIST+BT-5B”
is +4.7 points absolute on Local Intent Recall
(from 88.2 t0 92.9), and +3.2 points absolute on
Local ST F1 Score (from 77.7 to 80.9).

5.2 Internal Dataset

5.2.1 Internal Benchmark Baseline

We train a separate IC+ST Encoder model M; for
each feature 7. The training data for feature 7 is a
mix of the Historical data H, up-sampled starter
utterances for the feature S;, along with augmented
utterances A; produced from S; via Catalog Re-
sampling, ICLM, and BT-Small. For each feature
1, we evaluate the IC+ST model M; on the test set
T; for that feature, and report the Local SemER.

5.2.2 LINGUIST for Internal Benchmark

We fine-tune a single LINGUIST model on instruc-
tion prompts formatted from the full historical
dataset H described in Section 4.1.2. We note
again that the training data does not contain exam-
ples of the new features.

Then, for each feature, 7, we follow a similar
procedure described in Section 5.1.2: we format
prompts from the starter utterances S; and apply
LINGUIST to generate more data G;. For gener-
ation, we use top_k sampling with & = 20 and
temperature 1.0 to produce 20 outputs per prompt.’
using the same settings for all features <.

"We observe that when LINGUIST is trained on a much
larger dataset compared to SNIPS, it produces less noisy out-
puts. Thus, we allow a higher temperature of 1.0 compared to
SNIPS setting where we use temperature 0.3.

Finally, we follow the same data mixing, train-
ing, and testing procedure for each feature ¢ as in
the baseline (Section 5.2.1). As shown in Table 3,
LINGUIST results in 7.9% to 25.2% SemER reduc-
tion across four languages compared to the baseline
system of combined Catalog Resampling, ICLM,
and BT-Small.

Feature/Lang de es fr ja
CameraControl - -33.3% - -
ClockSettings -1.6% -123% +1.8% -
HomeSecurity - - - -31.5%
Music -36.8% - -30.6% -12.3%
Timers 275% -154% -20.0% -
Average -11.8% -208% -79% -252%

Table 3: Results on Internal Dataset. Each number
is relative reduction in SemER compared to the base-
line system of combined Catalog Resampling, BT, and
ICLM. A negative number indicates improvement.

6 Conclusion and Future Work

In this work, we introduced an efficient and flexible
method to capitalize on the value of large LMs by
utilizing them for generating synthetic data with
intent and slot tags. We showed that our method,
called LINGUIST, can be used to generate new data
while keeping the slots of interest and also gener-
ate data for completely new intent and slot values.
We compared our method to paraphrasing and slot
replacement approaches and showed a significant
improvement over these methods both on public
and internal datasets.

In future work, we will explore methods to im-
prove the generated data from LINGUIST. Five
research directions are of particular interest: (1)
training a separate classifier to select the highest
quality and most relevant outputs, (2) applying tech-
niques during training to discourage incorrect out-
puts, e.g. Welleck et al. (2019) and Li et al. (2020),
(3) discriminative fine-tuning with human labels
of quality of outputs, as explored in the very re-
cent LaMDA paper (Thoppilan et al., 2022), (4)
reinforcement Learning with a human-in-the-loop
reward signal, and (5) working to extend LINGUIST
to generate data for other structured prediction
tasks such as semantic parsing and text to SQL.

References

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 597—
604, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert for
joint intent classification and slot filling.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maél Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. CoRR, abs/1805.10190.

Xiang Dai and Heike Adel. 2020. An analysis of simple
data augmentation for named entity recognition. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 3861-3867,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru-
engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and
Chunyan Miao. 2020. DAGA: Data augmentation
with a generation approach for low-resource tagging
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6045-6057, Online. Association for
Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the

Association for Computational Linguistics: Human
Language Technologies, pages 644—648, Atlanta,
Georgia. Association for Computational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489-500, Brussels, Belgium. Association for
Computational Linguistics.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2018. The sockeye neural machine translation
toolkit at AMTA 2018. In Proceedings of the 13th
Conference of the Association for Machine Transla-
tion in the Americas (Volume 1: Research Track),
pages 200-207, Boston, MA. Association for Ma-
chine Translation in the Americas.

Masoud Jalili Sabet, Philipp Dufter, Francois Yvon,
and Hinrich Schiitze. 2020. SimAlign: High quality
word alignments without parallel training data using
static and contextualized embeddings. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, pages
1627-1643, Online. Association for Computational
Linguistics.

Shailza Jolly, Tobias Falke, Caglar Tirkaz, and Daniil
Sorokin. 2020. Data-efficient paraphrase generation
to bootstrap intent classification and slot labeling
for new features in task-oriented dialog systems. In
Proceedings of the 28th International Conference on
Computational Linguistics: Industry Track, pages
10-20, Online. International Committee on Compu-
tational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. In Proceedings of the 2nd Workshop
on Life-long Learning for Spoken Language Systems,
pages 18-26, Suzhou, China. Association for Com-
putational Linguistics.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck,
Y-Lan Boureau, Kyunghyun Cho, and Jason Weston.
2020. Don’t say that! making inconsistent dialogue
unlikely with unlikelihood training. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4715-4728, Online.
Association for Computational Linguistics.

Nikolaos Malandrakis, Minmin Shen, Anuj Goyal,
Shuyang Gao, Abhishek Sethi, and Angeliki Met-
allinou. 2019. Controlled text generation for data
augmentation in intelligent artificial agents. In Pro-
ceedings of the 3rd Workshop on Neural Generation
and Translation, pages 90-98, Hong Kong. Associa-
tion for Computational Linguistics.

https://doi.org/10.3115/1219840.1219914
https://doi.org/10.3115/1219840.1219914
https://doi.org/10.3115/1219840.1219914
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/1902.10909
http://arxiv.org/abs/1902.10909
http://arxiv.org/abs/1902.10909
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://aclanthology.org/W18-1820
https://aclanthology.org/W18-1820
https://aclanthology.org/W18-1820
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.coling-industry.2
https://doi.org/10.18653/v1/2020.coling-industry.2
https://doi.org/10.18653/v1/2020.coling-industry.2
https://doi.org/10.18653/v1/2020.coling-industry.2
https://doi.org/10.18653/v1/2020.coling-industry.2
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/2020.lifelongnlp-1.3
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/D19-5609
https://doi.org/10.18653/v1/D19-5609
https://doi.org/10.18653/v1/D19-5609

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Paper s, pages
2923-2934, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86-96,
Berlin, Germany. Association for Computational Lin-
guistics.

Chengwei Su, Rahul Gupta, Shankar Ananthakrishnan,
and Spyridon Matsoukas. 2018. A re-ranker scheme
for integrating large scale nlu models. 2018 IEEE
Spoken Language Technology Workshop (SLT), pages
670-676.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao.
2021. Towards zero-label language learning. CoRR,
abs/2109.09193.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6382-6388, Hong Kong, China. As-
sociation for Computational Linguistics.

10

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-

nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,

and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. In Advances in Neural
Information Processing Systems, volume 33, pages
6256-6268. Curran Associates, Inc.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,

Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020. Se-

gMix: Augmenting active sequence labeling via se-
quence mixup. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 8566—-8579, Online. As-
sociation for Computational Linguistics.

Yanan Zheng, Jing Zhou, Yujie Qian, Ming Ding, Jian

Li, Ruslan Salakhutdinov, Jie Tang, Sebastian Ruder,
and Zhilin Yang. 2021. Fewnlu: Benchmarking state-
of-the-art methods for few-shot natural language un-
derstanding.

https://aclanthology.org/C16-1275
https://aclanthology.org/C16-1275
https://aclanthology.org/C16-1275
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2109.09193
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
http://arxiv.org/abs/1908.04319
http://arxiv.org/abs/1908.04319
http://arxiv.org/abs/1908.04319
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
http://arxiv.org/abs/2109.12742
http://arxiv.org/abs/2109.12742
http://arxiv.org/abs/2109.12742
http://arxiv.org/abs/2109.12742
http://arxiv.org/abs/2109.12742

A Checkpoint Selection

We find that selecting the right checkpoint is crucial in order for LINGUIST to generalize well to new
Intent and Slot labels. We observe a “sweet spot” where the model is trained enough to learn the prompt
format, yet not too much that it would memorize and overfit to the intents and slots it sees during
training. See plots showing metrics across updates: Figure Al (a), left, for Training Loss, (b) right
for Development Perplexity; Figure A2 (a), left, for Development Token Accuracy, and (b), right, for
Development Sequence Exact Match.

During initial experiments, we found standard Development metrics like perplexity and accuracy to
be unreliable indicators of downstream generation and fine-tuning success. We thus explored manually
selecting the checkpoint as follows.

The SNIPS training data has around 13k samples, and we use batch size 512, so each epoch is only
about 25 updates. We train for 20 epochs (so around 500 updates) with a constant small learning rate
of 5e-7, warmed up over the first four epochs. We shuffle the data with a different seed each epoch.
Every 50 updates (so around every 2 epochs), we evaluate metrics on the Development set, and save a
checkpoint. We use the Train/Development 97%/3% split described in Section 4.1.1, such that we have
around 400 Development samples in total which were not seen in training. We measure Perplexity, Token
Accuracy, and Full Sequence Exact Match Accuracy on the Development set. Note that these metrics can
be computed with a simple forward pass of the full sequence, i.e. we do not need to run generation.

We note that training task is highly ambiguous. If you asked a human to fill in the blank for play
songs by "*"1 (artist_name), itis very unlikely that they would select jason mraz, as
opposed to some other music artist, without any further information. Note, this is in part because we
are filling in entity words, as opposed to random masking done when training MLM models, where the
prediction task could be play songs [MASK] Jjason mraz which has significantly less ambiguity,
and the ground truth is quite likely to be by.

As shown in A2 (b), right, Development Sequence Exact Match never exceeds 3%, so it is likely not
informative to select the checkpoint. Perplexity (Fig. Al (b), right) and Token Accuracy (Fig. A2 (a), left)
are both more granular, so we focus on them when selecting the checkpoint.

LINGUIST fine-tuning to generate data from SNIPS: Training LINGUIST fine-tuning to generate data from SNIPS: Perplexity
Loss by model and updates by model and updates

—e— LINGUIST-5B 44 —e— LINGUIST-5B
01 ¢ L Selected LINGUIST-5B @400 | [| & L Selected LINGUIST-58 @ 400

~

0
>
o

Training Loss
~
>
Development Perplexity
w
>

-
0

10 M N
28 W
0 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Updates Updates

(a) Training Loss (b) Development Perplexity

Figure Al: LINGUIST-5B learning to generate SNIPS data: training loss and Development perplexity across model
updates.

We manually select the checkpoint based on high (but not too high) Token Accuracy, and manual
inspection of generated outputs. For checkpoints at 100, 200, 300, and 400, we perform generation on a
few of the held-out intent runs, and choose the best checkpoint according to two criteria: (1) the outputs
respect the prompt instructions, e.g., they use the correctly formatted quotations and numbers on the
entities, and (2) the outputs are semantically valid according to the prompt intent and slot types.

For example, with held-out intent AddToPlay1ist, we find that the checkpoint at 50 updates does not
meet criteria (1) or (2); after 100 updates, the model meets both criteria (1) and (2), correctly producing
semantically valid utterances such as Please add this "artist"2 to the "Dubstep"l
playlist. However, at later checkpoints, the decoder seems to overfit to the related "PlayMusic"

Al

LINGUIST fine-tuning to generate data from SNIPS: Token

Accuracy by model and updates LINGUIST fine-tuning to generate data from SNIPS: Sequence

Exact Match by model and updates
0.77 M 0.0275

0.0250

0.0225

0.0200

0.0175

0.0150

Development Token Accuracy
o
S
3

0.0125

Development Sequence Exact Match

0.0100
0.71 —e— LINGUIST-5B
----- Selected LINGUIST-5B @ 400 0.0075

—e— LINGUIST-5B
----- Selected LINGUIST-5B @ 400

250 500 750 1000 1250 1500 1750 2000

250 500 750 1000 1250 1500 1750 2000
Updates

Updates

(a) Development Token Accuracy (b) Development Sequence Exact Match

Figure A2: LINGUIST-5B learning to generate SNIPS data: Development token accuracy and sequence accuracy
across model updates.

training data, and produces utterances like Play "Cena Elegante"1l "song"2 which we find
hurts both IC and ST when added into the encoder fine-tuning data.

For simplicity, we do not tune the checkpoint selection separately for each held-out intent. Instead, we
select the checkpoints at 400 updates for all runs, as that performed best overall.

Note that since we train in the New-Intent Few-Shot (NIFS) setting described in Section 4.1, the
Development set does not contain any new intents compared to the Training set for the LINGUIST model.
Selecting based on best Development metrics in this setting could mislead when we are ultimately
interested in optimizing for handling new intents well. While it might be interesting to plot token accuracy
on the held-out intent itself, (either using the 10 starter utterances, or the original full Validation set) we
choose not to run that experiment, as it would pollute any future experiments, since the held-out new

intent’s Validation set would no longer be blind. As future work, we would like to explore improved
methods for checkpoint selection.

B Impact of Model Size

To measure the impact of model size, we also train a 10x smaller LINGUIST-0.5B model using an internal
seq2seq model with the same pre-training and fine-tuning setup as our SB. We plot the Training Loss (Fig.
A3 (a), left), Development Perplexity (Fig. A3 (b), right), Development Token Accuracy (Fig. A4 (a),
left), and Development Sequence Exact Match (Fig. A4 (b), right) comparing the two models. For Token

Accuracy, using a smaller model would cause a drop in 5 points absolute (from 0.774 to 0.724). We also
show an example in Fig. AS.

LINGUIST fine-tuning to generate data from SNIPS: Training LINGUIST fine-tuning to generate data from SNIPS: Perplexity
Loss by model and updates by model and updates
9
] —e— LINGUIST-58 L —e— LINGUIST-58
351 4 -m- LINGUIST-0.58 \ -m- LINGUIST-0.58
Y e Selected LINGUIST-5B @ 400 2 T Selected LINGUIST-5B @ 400
Selected LINGUIST-0.5B @ 1600 \ Selected LINGUIST-0.5B @ 1600
3.0 R \
1 27 |
i 3 |
@ 1 s
g2s Ii 3 .\\
ER £°]
£20 £
g g0
95 '1
3 o,
15 e ..'-"'l--
4 II..lI-I--n.......'
10 ‘w.—.
3 o0
0 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Updates Updates
(a) Training Loss (b) Development Perplexity

Figure A3: Comparing LINGUIST-5B and LINGUIST-0.5B: Train loss and Development perplexity across model
updates.

A2

LINGUIST fine-tuning to generate data from SNIPS: Token LINGUIST fine-tuning to generate data from SNIPS: Sequence

Accuracy by model and updates Exact Match by model and updates
0.775 o,
o)
0.025
0.750 <
o s
8 0725 £ 0.020
5 0. annEEE o
3 augg e te g
< i o
£ 0.700 L g
g L] £ 0.015
© .n’ ‘é‘
€ 0.675 s g
E ¥ £ 0,010
g g
o065 W £
>] a
4 i 8
Soes] | - LINGUIST-5B $ 0.005 .‘ —e— LINGUIST-5B
i -E- LINGUIST-0.58 & ; -m- LINGUIST-0.58
' -+ Selected LINGUIST-58 @ 400 | S Selected LINGUIST-5B @ 400
0.6001 g Selected LINGUIST-0.5B @ 1600 0.000{ o Selected LINGUIST-0.58 @ 1600
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Updates Updates
(a) Development Token Accuracy (b) Development Sequence Exact Match

Figure A4: Comparing LINGUIST-5B and LINGUIST-0.5B: Development token accuracy and sequence accuracy
across model updates.

INPUT: INPUT:
<context> <context>
Get Weather, Get Weather,
English Output Language English Output Language
</context> <example> </context> <example>
"rain"l (condition_description), "rain"l (condition_description),
"East Tawakoni"2 (city), "East Tawakoni"2 (city),
"sep. 25th"3 (time_range) "sep. 25th"3 (time_range)

Will it "rain"l on "sep. 25th"3 in Will it "rain"l on "sep. 25th"3 in
"East Tawakoni"2 "East Tawakoni"2
</example> <example> </example> <example>
"snowy"l (condition_description), "snowy"l (condition_description),
"x"2 (city), "x"2 (city),
"#"3 (time_range) "*"3 (time_range)

OUTPUTS: OUTPUTS:
1 What is the "snowy"l weather like 1 Will it get "snowy"l on
in "Kirkland"2 on "Jan. the 11th"3 "jul. 8"3 in "The Point"2
2 Is it going to be "snowy"l at 2 Will it be "snowy"l when it’s
"12 o’clock”"3 in "Westport"2? "in the area"3 with the forecast for "now"2
3 What’s the "snowy"l weather like 3 Will it be "snowy"l in
in "Marysville"2 "two weeks from now'"3 "Okiwa"2 "may"3
4 What "snowy"l conditions are expected 4 Can you get me a forecast for "snowy"l
in "Mountain View"2 on "Jan. the 15th"3 conditions at "Tlapa"3 in "Denmark"2
5 Is it "snowy"l in "West Oyster Bay"2 5 Will it be "snowy"l in
on "July 5th"3? "Finland"2 on "Sep. 2nd"3
(a) Generated utterances from LINGUIST-5B. (b) Generated utterances from LINGUIST-0.5B.

Figure A5: Generated outputs from LINGUIST-5B (left, (a)) and LINGUIST-0.5B (right, (b)). Crucially, both
models did not see any GetWeather data during training, as they were trained only on the other 6 SNIPS
intents. We observe that while LINGUIST-5B produces primarily high-quality outputs, LINGUIST-0.5B more
frequently produces outputs with incorrect slot fills, e.g. "in the area" and "Tlapa" for time_range, or
"Finland", "Denmark", and "now" for city. Furthermore, LINGUIST-0.5B tends to produce less diverse
carrier phrases than LINGUIST-5B, which we note tends to remain the case even when we try a larger top_k or
higher temperature values.

C Sample Model Outputs

We show examples of a LINGUIST model (trained on all 7 SNIPS intents for 400 updates) generating for
novel intents and slots not seen during training.

A3

INPUT:
<context>
Draft Player,
English Output Language
</context> <example>
"Patrice Bergeron"l (player),
"Boston Bruins"2 (hockey_team_name)

Assign "Patrice Bergeron"l to the "Boston Bruins"2
</example> <example>
"Brad Marchand"l (player),
"x"2 (hockey_team_name)

OUTPUTS:

1 Draft "Brad Marchand"l for the "Chicago Blackhawks"2

2 Add "Brad Marchand"l to the "Montreal Canadiens"2 roster

3 Can you put "Brad Marchand"l on the "Florida Panthers"2?

4 The "San Jose Sharks"2 need "Brad Marchand"l.

5 I want "Brad Marchand"l to play for the "Philadelphia Flyers"2.

Figure A6: The model correctly copies the requested slot Brad Marchand, and fills in appropriate values for
hockey_team_name and uses a variety of carrier phrases.

INPUT:
<context>
Music Theory Get Accidentals,
English Output Language
</context> <example>
"d. major"1l (key),
"sharp"2 (accidental_type)

what notes are "sharp"2 in "d. major"l
</example> <example>
"c. sharp major"l (key),
"sharp"2 (accidental_type)

tell me which notes are "sharp"2 in "c. sharp major"l
</example> <example>

"*"1 (key),

"flat"2 (accidental_type)

OUTPUTS:

1 Can you tell me which "flat"2 notes are in "fa"l
2 What "flat"2 notes are there in the key of "e"1
3 What are the "flat"2 notes in "si"1l

4 find "flat"2 notes in "e flat"l

5 I want to know which notes are "flat"2 in "C"1

Figure A7: The model correctly copies the requested slot £1at, and fills in appropriate values for key and uses a
variety of carrier phrases.

A4

D Results on Global Metrics

s10 s10 s10 s10 s10 s10
Modified Intent /Data FullsIONOUPS | pyseline) | +ICLM ~ +BT-Small +BTSB +Livauist | FLNOUST
AddToPlaylist 99.1 987 £1.0 | 98903 | 98903 989 +F03 99.1 £0.1 97413 | 985 +038
BookRestaurant 99.1 97.7+04 | 982403 | 982402 979402 9824+0.1 983406 | 98.5-+0.3
GetWeather 99.1 989 +0.1 | 98.9+0.1 | 989402 99.04£0.0 99.0 0.1 99.0+0.1 | 99.1 +£0.2
PlayMusic 99.1 953415 | 96.1+1.0 | 964 +£1.3 960408 97.04+04 97.8-+0.6 | 98.0+0.4
RateBook 99.1 99.0+0.1 | 98.9+0.1 | 99.0+0.1 99.0£0.1 99.0+0.1 99.0+02 | 99.0 +0.2
SearchCreativeWork ~ 99.1 952 +1.1 | 965412 | 96.0+£1.2 958418 96.7+14 97.6+1.2 | 98.0+1.2
SearchScreeningEvent 99.1 953 +£0.8 | 963 £1.1 | 959405 958408 962415 96.6+04 | 97.1 £0.6
Average 991 972104 | 977502 | 97.6 £04 975403 979102 98.0+03 | 983+02
(a) SNIPS New-Intent few-shot results on Global Intent Accuracy.
s10 s10 s10 s10 s10 s10
Modified Intent /Data Full - s10-NoUps |, eine) | +ICLM ~ +BT-Small +BT-5B +LINGUIST ”ngG_‘SJ]I;T
AddToPlaylist 96.7 940 £04 | 94205 | 942 £04 949104 94503 941105 | 942+104
BookRestaurant 96.7 927404 | 94.1+£0.6 | 94.1 £0.3 942403 945403 944406 | 94.1 0.3
GetWeather 96.7 938405 | 949407 | 947 £0.6 94.6 +04 950403 94.4+05 | 948 +0.6
PlayMusic 96.7 913404 | 929403 | 93.1 406 928402 93.8+04 940405 | 942403
RateBook 96.7 95.0+03 | 958 +0.4 | 958 +03 955406 955404 958403 | 958403
SearchCreativeWork 967 929 +£1.0 | 942409 | 93.9+£1.0 942410 94.14+1.1 953 +1.0 | 952409
SearchScreeningEvent 967 923 £0.8 | 94.0 £0.6 | 94.0£0.6 93.540.6 942404 94.6+0.5 | 94.8+£0.7
Average 96.7 931402 | 943F02 | 942+02 943103 945+03 946+02 | 94701

(b) SNIPS New-Intent few-shot results on Global ST F1 Score.

Table 4: Our results on SNIPS for the Global metrics, showing that the gains for Local metrics shown in Tables 2a
and 2b do not cause harm to the system overall. See Section 5.1 for details.

E Filtering ICLM Outputs

We discard any outputs containing the <unk> token, which happens less than 1% of the time. The number
of outputs (after de-duplication) are reported in Table 5.

Modified Intent Num outputs
AddToPlaylist 296
BookRestaurant 347
GetWeather 322
PlayMusic 255
RateBook 288
SearchCreativeWork 295
SearchScreeningEvent 273
Average 297

Table 5: The number of filtered and de-duplicated outputs from ICLM per intent. All numbers are averaged across
the five random seeds.

F Filtering BT-Small OQutputs

The small model has a fair amount of noise in its outputs, so we heuristically filter them, discarding any
which contain repeated bigrams such as play the song halo the song and/or any trigram of
the same word such as of of of. Success rate and number of outputs (after de-duplication) are reported

in Table 6.

A5

Modified Intent SuccessRate NumOutputs AvgNumsSlots

AddToPlaylist 70.2 64 2.7
BookRestaurant 72.8 73 3.2
GetWeather 60.4 60 2.3
PlayMusic 53.6 52 2.2
RateBook 70.8 71 3.8
SearchCreativeWork 41.6 42 1.8
SearchScreeningEvent 69.6 70 2.2
Average 62.7 62 2.6

Table 6: For each intent, the Success Rate of Back-Translation with the Small model, and Number of Generated
Outputs, both averaged across the five random seeds. For reference, we also show the Average Number of Slots in
the training data per intent.

G Filtering BT-5B outputs

The Back-Translated text with the 5B model is significantly cleaner than with the smaller model, so we
do not apply any filtering on the output text itself. We do heuristically discard any outputs where we
suspect the augmented utterance is missing a slot. Specifically, SimAlign in ArgMax mode only returns
alignments across words that have mutual argmax between source and target. For any source word that
is an entity tag (i.e., not “O”), if it is not aligned to an output word, then we consider the output invalid.
For example, an input like rate this book 5 out of 6 with a Back-Translated output give
this book a rating of 5 would typically have no output word aligned to the source word “6”
(best_rating slot label), so the output would be discarded.
Success rate and number of outputs (after de-duplication) for BT-5B are reported in Table 7.

Modified Intent SuccessRate NumOutputs AvgNumSlots
AddToPlaylist 66.2 411 2.7
BookRestaurant 82.8 423 3.2
GetWeather 72.0 311 2.3
PlayMusic 89.0 455 2.2
RateBook 79.2 478 3.8
SearchCreativeWork 85.5 451 1.8
SearchScreeningEvent 72.0 330 2.2
Average 78.1 408 2.6

Table 7: For each intent, the Success Rate of Back-Translation with the SB model, and the number of outputs, both
averaged across the five random seeds. For reference, we also show the Average Number of Slots in the training
data per intent.

H Filtering LINGUIST Outputs

We apply heuristic filtering by discarding outputs which meet any of the following criteria: (1) copy one
of the examples from the prompt verbatim; (2) fail to follow the prompt instructions, by not copying the
instructed slot value or by producing repeated, missing, extra, or malformed slot-tag numbers; (3) produce
the literal wildcard instruction " = "; or (4) produce a punctuation character in the setof {_<>1[1] () {}; }.8

In Table 8, we report the Success Rate as the portion of generated utterances which remain after filtering,
and show the total number of generated utterances per intent. We observe a trend that success rate is
generally lower when the prompt contains more slots, which is intuitive as the generation task is more
challenging and has more chances to make a mistake. The success rates vary significantly by intent from
28.0 for RateBook to 92.9 for SearchCreativeWork, with an average of 67.5 across the 7 intents.

8These characters do not appear in the utterance text of any of the original training data, so are considered to be generation
mistakes.

A6

Modified Intent Success Rate #Outputs Average #Slots

AddToPlaylist 65.5 1037 2.7
BookRestaurant 55.6 1484 3.2
GetWeather 79.5 1014 2.3
PlayMusic 82.5 956 2.2
RateBook 28.0 497 3.8
SearchCreativeWork 92.9 1290 1.8
SearchScreeningEvent 68.3 967 2.2
Average 67.5 1035 2.6

Table 8: For each intent, the Success Rate of Generation, and Number of Generated Outputs, both averaged across
the five random seeds. For reference, we also show the Average Number of Slots in the training data per intent.

I SemER Metric

For the internal IC+ST benchmark (Sections 4.1.2, 4.4.2, and 5.2.2), we report on Semantic Error Rate
(SemER) (Su et al., 2018) which jointly evaluates Intent Classification and Slot Filling. SemER is defined
as follows: comparing a reference of tokens and their accompanying labels, count each of of these
operations: (1) Correct slots, where the slot name and slot value is correctly identified, (2) Deletion
errors, where the slot name is present in the reference but not in the hypothesis, (3) Insertion errors, where
extraneous slot names are included in the hypothesis, (4) Substitution errors, where slot names from the
hypothesis are included but with an incorrect slot value. Intent classification errors are substitution errors.
Then, apply Equation 1 to compute the SemER.

SemER — # Del + # Ins + # Sub)
Cor + # Del + # Sub

A7

	Introduction
	Related Work
	Few-shot Learning using Large-Scale LMs
	Data Augmentation via Paraphrasing
	Data to Text Generation
	Token Replacement

	Linguist Data Generator Model
	Experimental Setup
	Datasets
	SNIPS Dataset
	Internal Dataset

	Baseline Methods
	IC+ST Model Training
	Metrics
	Metrics for SNIPS
	Metrics for Internal Benchmark

	Results
	SNIPS
	SNIPS Baselines
	Linguist for SNIPS
	Linguist and Back-Translation

	Internal Dataset
	Internal Benchmark Baseline
	Linguist for Internal Benchmark

	Conclusion and Future Work
	Checkpoint Selection
	Impact of Model Size
	Sample Model Outputs
	Results on Global Metrics
	Filtering ICLM Outputs
	Filtering BT-Small Outputs
	Filtering BT-5B outputs
	Filtering Linguist Outputs
	SemER Metric

