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Abstract

We present LINGUIST, a method for generat-001
ing synthetic data for Intent Classification and002
Slot Tagging (IC+ST) based on a 5B multilin-003
gual seq2seq model fine-tuned on a flexible004
instruction prompt. On a 10-shot setting for005
learning a new SNIPS intent, we show abso-006
lute improvement of +2.5 points (IC) and +2.8007
points (ST) over data upsampling, and com-008
bined gains of +4.7 points (IC) and +3.2 points009
(ST) when combined with Back-Translation.010
On an internal production dataset for Conver-011
sational Agent IC+ST, we show between 7.9%012
and 25.2% relative improvement compared to013
an internal baseline across four languages. To014
the best of our knowledge, we are the first to use015
instruction fine-tuning of a large scale seq2seq016
model to generate slot-labeled data.017

1 Introduction018

The machine learning models that power Con-019

versational Agents such as Amazon Alexa, Ap-020

ple Siri or Google Assistant to peform Semantic021

Understanding (e.g., Intent Classification and Slot022

Tagging–IC+ST) on user requests normally rely023

on large quantities of labeled training data. Such024

labeled data is plentiful for established customer025

usage patterns, yet scarce when developing new026

intents and slots. In those cases, a small num-027

ber of manually curated examples are used as a028

“starter” dataset, which can be enhanced by Data029

Augmentation (DA) methods such as paraphras-030

ing (Prakash et al., 2016), back-translation (Ban-031

nard and Callison-Burch, 2005), and slot replace-032

ment (Zhang et al., 2020).033

One important shortcoming of the existing tech-034

niques, is that they excel either at generating novel035

sentences via paraphrasing or at generating new036

entities via replacement, but not both. Moreover,037

paraphrasing and translation techniques are better038

suited for classification tasks rather than ST since039

slot alignment between the original sentence and040

INPUT:
<context>

Get Weather,
English Output Language

</context> <example>
"rain"1 (condition_description),
"East Tawakoni"2 (city),
"sep. 25th"3 (time_range)

<br>
Will it "rain"1 on "sep. 25th"3 in
"East Tawakoni"2

</example> <example>
"snowy"1 (condition_description),
"*"2 (city),
"*"3 (time_range)

<br>

OUTPUTS:

1 What is the "snowy"1 weather like
in "Kirkland"2 on "Jan. the 11th"3

2 Is it going to be "snowy"1 at
"12 o’clock"3 in "Westport"2?

3 What’s the "snowy"1 weather like
in "Marysville"2 "two weeks from now"3

4 What "snowy"1 conditions are expected
in "Mountain View"2 on "Jan. the 15th"3

5 Is it "snowy"1 in "West Oyster Bay"2
on "July 5th"3?

Figure 1: LINGUIST uses an instruction prompt to gener-
ate data with both user-requested slot values (“snowy”)
and model-generated values (“*”). This model has not
seen any training data for GetWeather intent: it was
trained only on the other 6 SNIPS intents.

the paraphrased one is often noisy and unreliable. 041

Additionally, while there is substantial breadth and 042

quantity of approaches dealing with DA on En- 043

glish, DA for non-English and multilingual settings 044

remains relatively under-explored. 045

Recent research has shown that large pretrained 046

Language Models (LM) are very good in gener- 047

alization given a handful of examples in the con- 048

text of zero/few-shot learning (Xue et al., 2021; 049

Zheng et al., 2021). However, deploying such a 050

model in production is impractical due to their la- 051

tency and memory consumption. In this work, we 052

introduce Language model INstruction tuning to 053

Generate Utterances for Intent classification and 054
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Slot Tagging (LINGUIST) as an efficient way to055

benefit from large LMs in production systems. We056

utilize an internal 5B parameter seq2seq model by057

fine-tuning it on an instruction-based task for gen-058

erating slot-labeled data given only the intent name059

and a small number of in-context examples (see060

Fig. 1 for the input/output format during training061

and inference). As slots are generated without need-062

ing a second stage of slot alignment, not only can063

we generate completely novel sentences with the064

right slot tags but the model is better able to gener-065

ate sentences in inflecting non-English languages066

with correct grammar than simple slot replacement.067

For example, using a different variation of the def-068

inite article in French: “la lumière” (“the light”),069

“les lumières” (“the lights”), “le ventilateur” (“the070

fan”), and “l’horloge” (“the clock”), where simple071

replacement of the slot value would result in an072

ungrammatical sentence.073

We evaluate our approach in two settings: on074

a “New-Intent Few-Shot” (NIFS) setting for the075

public SNIPS dataset where we show absolute im-076

provements of +2.5 points (IC) and +2.8 points077

(ST), and also a multilingual production dataset,078

where we achieve a relative Semantic Error Rate079

(SemER) reduction of 7.9% to 25.2%.080

This work demonstrates that by using a large-081

scale seq2seq model we can: (1) directly produce082

data with slot labels, thus removing the need for083

a separate label alignment or projection step, (2)084

use a single multi-lingual model to generate data in085

multiple languages, (3) control generation to con-086

tain specific slot types, user-supplied slot values,087

or model-generated slot values, and (4) generate088

data for new intents and slots without any further089

fine-tuning, using an instruction prompt.090

2 Related Work091

2.1 Few-shot Learning using Large-Scale LMs092

Recently, Large Generative LMs such as GPT-3093

(Brown et al., 2020) are shown to perform well in094

few-shot settings via “in-context learning”, where095

tasks are formulated as text continuation, and the096

model learns them without any parameter updates.097

Wang et al. (2021) aim to entirely remove the098

need for human-labeled data, by using a large LM099

to generate synthetic examples for text classifica-100

tion. In a much more recent work, Wei et al. (2022)101

demonstrate the use of fine-tuning while maintain-102

ing the generic knowledge of the model by provid-103

ing natural-language instructions in a setting they104

call instruction tuning, where a large number of 105

tasks are presented to a model for fine-tuning in a 106

multitask learning fashion. Wei et al. show that 107

their FLAN model outperforms the similarly-sized 108

GPT-3 by a significant margin. Our work is most 109

alined with the work by Wei et al. (2022) but in the 110

context of data generation. 111

2.2 Data Augmentation via Paraphrasing 112

An early and still widely used approach for gener- 113

ating paraphrases is Back-Translation (BT). Ban- 114

nard and Callison-Burch (2005) use a parallel cor- 115

pus to extract paraphrases directly from parallel 116

data across languages. Sennrich et al. (2016) and 117

Edunov et al. (2018) use data generated via back- 118

translation to improve a Machine Translation (MT) 119

system. Xie et al. (2020) use a pivot language to 120

create paraphrases in the same language without 121

(unlike Bannard and Callison-Burch (2005)) requir- 122

ing a parallel corpus–translating English to French, 123

then back to English including n-best lists to create 124

multiple paraphrases. 125

Other approaches directly target the paraphras- 126

ing task, such as Prakash et al. (2016) who train an 127

LSTM-based seq2seq model in a supervised fash- 128

ion on large paraphrase corpora, or Kumar et al. 129

(2020) who drop nonessential words from an input 130

sentence to create a de-noising data set that can be 131

used to fine-tune a pre-trained model. Kumar et al. 132

(2020) apply a similar approach to ours, however 133

they only use the augmented data for intent classifi- 134

cation, while we focus on both intent classification 135

and slot tagging. 136

2.3 Data to Text Generation 137

While the above approaches aim to capture general 138

linguistic variations (paraphrases, reformulation), 139

a different thread of research creates synthetic ut- 140

terances directly from the target annotation, Ma- 141

landrakis et al. (2019) propose a seq2seq model 142

that learns from interpretation-text pairs seen in 143

training to generate text, with the addition of a con- 144

trolled variational auto-encoder to improve vari- 145

ability. Jolly et al. (2020) expand on this, exploring 146

different sampling strategies, adding more variety 147

by shuffling slot names, and examining the behav- 148

ior where a new intent is introduced with limited 149

training data. 150

The DAGA (Ding et al., 2020) approach gener- 151

ates labeled data for ST using a small one-layer 152

LSTM, however it lacks the controllable mecha- 153

nism for specific slot labels and values that we 154
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develop for LINGUIST. The CTRL paper (Keskar155

et al., 2019) proposes natural language “control156

codes” to instruct the model to generate data in a157

particular style or domain. Their work does not158

cover generating structured text such as for ST.159

2.4 Token Replacement160

The SeqMix (Zhang et al., 2020) approach replaces161

tokens in an ST task using the nearest neighbor162

in the embedding space. Dai and Adel (2020) ap-163

ply local transformations of ST words, such as164

replacing words with synonyms, or with mentions165

in other instances of the same label in the corpus.166

Easy Data Augmentation (Wei and Zou, 2019) sim-167

ilarly applies simple token-level changes including168

synonym replacement, random insertion, random169

swap, and random deletion. Their work is only170

on sequence classification like IC, not sequence171

labeling like ST.172

3 LINGUIST Data Generator Model173

Figure 1 shows the format of the instruction prompt174

that is used in finetuning and inference, based on175

a pre-trained multi-lingual seq2seq model. It con-176

tains three blocks: (1) intent name and output lan-177

guage name, (2) up to 10 slot-annotated examples178

for the intent, and (3) instructions to determine179

which slot types and slot values to generate. Each180

example in the prompt has two components: first181

the list of slot types and values with numbered182

quotations, e.g. "jason mraz"1 (artist),183

then after the separator token <br>, a formatted184

version of the fully annotated utterance e.g. play185

"jason mraz"1 songs. The generation in-186

structions use the same slot tagging scheme, e.g.187

"weezer"1 (artist), to instruct the model188

to include “weezer” as the artist, and additionally189

support a wildcard "*"1 (artist) instructing190

the model to fill in an appropriate value.191

Labeled examples for the given IC+ST task are192

formatted into prompts and de-duplicated into a193

training dataset R. After grouping utterances by194

“semantic shape”1 (intent and unordered2 set of195

slots), we format an instruction prompt pi target-196

ing each annotated utterance ti ∈ R, including197

1For example, play some [year](1991)
[artist](Dave Barker) and I want to
hear [artist](Steven Harwell) from the
[year](thirties) have the same semantic shape of
PlayMusic with unordered set of slots artist and year.

2Grouping training data by unordered set of slots enables
LINGUIST to generate slots in any order it sees fit.

in the prompt 10 other example utterances E = 198

{ej}10j=1 ∈ R s.t. ∀j, ej 6= ti and shape(ej) = 199

shape(ti). To make the generation robust to the 200

number of provided examples, we do not always 201

include all 10 in the prompt, but instead randomly 202

select a value k between 0 and 10, then randomly 203

select k examples from R. If there are only n < 10 204

other utterances available that share the same shape 205

as ti, then we sample k between 0 and n. We never 206

duplicate utterances in the prompt. Finally, we pro- 207

duce a corpus of training prompts equal in size to 208

the original IC+ST training set. 209

To account for novel intents and slot types that 210

were not present in training data, we drop out the 211

intent and slot names at a rate of 0.2, replacing the 212

original label name such as Get Weather with a 213

random sequence of between 1 and 5 capital letters 214

like A Q Y. 215

In order to generate slot-labeled data, the model 216

must produce some symbols other than just the 217

words of the utterance. In early experiments, 218

we tried a variety of output formats, such as 219

[artist](jason mraz), however found that 220

the model struggled to generate the brackets and 221

label names correctly. After many rounds of ex- 222

periments, we designed a scheme using quotations 223

and numbers (e.g., "jason mraz"1) which we 224

found the model is capable of learning to generate 225

correctly. This format was inspired by natural text 226

examples, e.g. links and references in Wikipedia 227

articles sometimes appear in this format. 228

To jointly teach the model both to copy 229

user-supplied slot values like "jason mraz"1 230

(artist) and to produce appropriate values for 231

the wildcard "*"1 (artist), we format the 232

training prompts with examples of both. For 233

prompt pi targeting utterance ti, we randomly se- 234

lect d ∼ Geo(0.5) (0 ≤ d ≤ # slots in ti) slots 235

types and replace their values with "*" in the final 236

block of the prompt. 237

Finally, we apply standard seq2seq fine-tuning of 238

the pre-trained model on the prepared training data, 239

where the prompt text pi is fed into the encoder, and 240

the decoder is optimized via cross-entropy loss to 241

produce the formatted ground-truth slot-annotated 242

utterance ti. For more details on the fine-tuning 243

please refer to Appendix A. 244

In summary, our model is trained to generate 245

utterances with intent and slot labels, conditioned 246

on a handful of examples and a flexible prompt to 247

control the output. We call our Data Generation 248
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method LINGUIST, which stands for Language249

model INstruction tuning to Generate Utterances250

for Intent classification and Slot Tagging.251

4 Experimental Setup252

We evaluate LINGUIST by generating training data253

to augment a few-shot setting for fine-tuning a254

small encoder model on joint IC+ST. In this sec-255

tion, we describe the datasets and the baselines that256

we use for evaluating our method.257

4.1 Datasets258

We present results on two datasets: (1) the public259

SNIPS dataset (Coucke et al., 2018), and (2) an260

internal IC+ST dataset.261

For each dataset, we construct a “New-Intent262

Few-Shot” (NIFS) setting, shown in Figure 2.263

Starting with training data R =
⋃m

j=1Dj con-264

taining data Dj for m intents j = 1 . . .m, we265

select an intent i ∈ {1, . . . ,m}, and reduce its266

training data to only a handful of “starter” utter-267

ances Si ⊂ Di. We then apply various data aug-268

mentation techniques on Si to create augmented269

data Ai. Finally, we train an IC+ST model using270

R′
i = Si ∪ Ai ∪ {Dj}j 6=i, i.e. the concatenation271

of starter and augmented data for intent i with the272

unmodified data for all other intents.273

Figure 2: New-Intent Few-Shot (NIFS) Setup.

4.1.1 SNIPS Dataset274

The SNIPS dataset (Coucke et al., 2018) is a public275

IC+ST benchmark consists of 7 intents, each with276

between 2 and 14 slot types (39 unique slot types277

in total). It includes around 2k training utterances278

and 100 validation utterances per intent. In order279

to avoid overfitting our method on the small vali-280

dation set, at the beginning of our experiments, we281

partition the training set into 97% Train and 3%282

Development. We use our Development set split283

for iterating on all modeling and data processing284

decisions, including the hyperparameters for LIN- 285

GUIST and hyperparameters and selection of best 286

checkpoint for the encoder fine-tuning on IC+SF. 287

Only at the very end of our experiments, we eval- 288

uate and report on the Validation set. See Table 1 289

for count of Train/Dev/Valid utterances. 290

Intent Train Dev. Valid.
AddToPlaylist 1884 58 100
BookRestaurant 1914 59 100
GetWeather 1940 60 100
PlayMusic 1940 60 100
RateBook 1898 58 100
SearchCreativeWork 1896 58 100
SearchScreeningEvent 1901 58 100
Total 13373 411 700

Table 1: Data counts per intent for SNIPS.

To demonstrate the ability of LINGUIST to gen- 291

eralize to new intent and slot values not present at 292

training time, we construct a “New-Intent Few- 293

Shot” (NIFS) setting for SNIPS. Specifically, we 294

create 7 experimental settings as follows: for each 295

intent i of the 7 SNIPS intents, we discard its train- 296

ing data Di during fine-tuning. Then, during in- 297

ference, we randomly select 10 “starter” training 298

examples Si ⊂ Di (ensuring there is at least one 299

example for all slot types related to intent i) to be 300

included in the input prompt. 301

For each of the 7 intent settings, we create five 302

versions using a different random seed for selecting 303

the 10 starter utterances used during inference. 304

4.1.2 Internal Dataset 305

Our internal few-shot IC+ST setting consists of 306

de-duplicated, anonymized, and de-identified cus- 307

tomer requests to a large-scale production Conver- 308

sational Agent. We follow a similar procedure to 309

SNIPS described in Section 4.1.1. The main differ- 310

ences are: (1) we prepare experiments at the level 311

of a feature, which may correspond to multiple new 312

intents and/or new slot types or slot values for exist- 313

ing intents, and; (2) the benchmark is multilingual. 314

There is a large corpus of Historical training data 315

H , containing annotated utterances from user in- 316

teractions prior to the new features being launched. 317

The training data does not contain examples of any 318

of the new features. For each new feature i there 319

is a small dataset Si, containing between 3 and 320

429 manually created and annotated “starter” utter- 321

ances. Then, there is a larger test set Ti consisting 322

of post-launch labeled examples of real customer 323

interactions for the new feature i. 324

4



The training set contains several million ex-325

amples covering hundreds of intents and slot326

types, and 8 languages: German, English, Spanish,327

French, Hindi, Italian, Japanese, and Portuguese.328

The test sets contain hundreds of utterances on five329

features: CameraControl, ClockSettings, HomeSe-330

curity, Music, and Timers, across four languages:331

German, Spanish, French, and Japanese.332

We train a single LINGUIST model on the his-333

torical data H . Then for each feature i, we create334

prompts from its starter utterances Si, generate aug-335

mented data Ai, and train an IC+ST model Mi on336

R′
i = Si ∪Ai ∪H .337

4.2 Baseline Methods338

The Interpretation-Conditioned Language339

Model (ICLM) Jolly et al. (2020) generates340

unlabeled text conditioned on intent and provided341

slot values, with a separate label projection step to342

recover the full slot annotation. ICLM produces al-343

ternative carrier phrases only, and cannot generate344

novel slot values. Our implementation uses a small345

Transformer architecture with ∼ 3.4M parameters,346

and a simple character-level Levenshtein distance347

measure to project the slot labels. One advantage348

of this small model size is low latency when349

generating data. For SNIPS, we produce 50350

outputs per input, then filter and de-duplicate (see351

Appendix E). For the internal benchmark, we use a352

similar setting.353

We apply Back-Translation (Sennrich et al.,354

2016) (BT) with two separate MT systems. The355

first uses the open-source Sockeye toolkit (Hieber356

et al., 2018) and a small (91M parameters) inter-357

nal Transformer seq2seq model which has been358

fine-tuned on around 10k utterances of annotated359

parallel data. We use fast_align (Dyer et al., 2013)360

to project the slot labels to the generated utterances.361

We call this system “BT-Small”. For SNIPS, we362

use French as the pivot language, with beam search363

and M = 1 forward en→fr, then N = 10 back-364

translations fr→en. We filter to discard noisy out-365

puts (See Appendix F for details) and de-duplicate.366

For the Internal Benchmark, we use a similar set-367

ting, with English as the pivot language.368

For a stronger BT baseline, we build a MT369

system using the very same internal pre-trained370

multi-lingual 5B seq2seq model which we use371

for fine-tuning LINGUIST. We fine-tune the 5B372

model on WMT143 jointly on en→fr and fr→en373

3https://huggingface.co/datasets/wmt14

using an instruction prompt (simply prefix the 374

input text with Translate to French: or 375

Translate to English:, respectively) to 376

control the translation direction. We apply Sim- 377

Align (Jalili Sabet et al., 2020) to transfer the slot la- 378

bels to the generated utterance. We use the default 379

bert-base-multilingual-cased4 as the 380

alignment model, and ArgMax for matching. For 381

SNIPS, we use French as the pivot language, with 382

M = 10 forward and N = 10 backward for beam 383

search, thus producing 100 outputs per original 384

sentence, then filter and de-duplicate the outputs 385

(see Appendix G for details). We call this system 386

“BT-5B”. Note, we do not include BT-5B for the 387

Internal Benchmark, as it was not available at the 388

time we conducted evaluation. 389

Catalog Resampling is a simple approach 390

to data augmentation which samples enti- 391

ties from an external catalog for a particu- 392

lar label. For example, if an utterance for 393

PlayMusic is play songs by [artist] 394

(jason mraz) and there is an external catalog 395

for artist names containing weezer, this method 396

could produce an utterance play songs by 397

[artist] (weezer). We only use Catalog 398

Resampling for the Internal Benchmark, as we do 399

not have slot catalogs available for the SNIPS data. 400

4.3 IC+ST Model Training 401

For SNIPS, following Chen et al. (2019), we fine- 402

tune a BERT-style model for joint IC+ST. On top of 403

the encoder hidden states, we attach two separate 404

classification heads, one for IC and another for ST. 405

Each head consists of two layers of 256 hidden 406

dimension, with gelu activation, dropout 0.2, and 407

layer norm. The IC head utilizes representation 408

from the first token of the sequence ([CLS]), while 409

the ST head utilizes the first subword token of each 410

slot-labeled word. 411

For our encoder, we use xlm-roberta-base 412

(Conneau et al., 2020) (12 layers, 768 hidden di- 413

mension), from the HuggingFace (Wolf et al., 2020) 414

implementation. We fine-tune with batch size 128 415

for 3k updates (i.e. 30 epochs for the full-size data). 416

We freeze the embedding layer; all other param- 417

eters are free to update during training. We use 418

Adam with peak learning rate 3e-5, increased lin- 419

early from 0 to 600 updates, then decayed linearly 420

to 0 for the remainder of training. To avoid over- 421

fitting on the official SNIPS Validation dataset, we 422

4https://huggingface.co/bert-base-multilingual-cased
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use our Development split (Section 4.1.1) for early423

stopping, selecting the checkpoint with best perfor-424

mance on ST. All of our IC+ST fine-tuning runs for425

SNIPS use identical hyper-parameters, regardless426

of the data generation method being explored. For427

each experiment, we train and test 7 different Joint428

IC+ST models {Mi}7i=1 in NIFS setting: using a429

combination of the modified data for intent i, and430

the unmodified data for all other intents.431

For our internal benchmark, we follow a similar432

procedure to our SNIPS experiments, however we433

use a smaller internal Transformer-based encoder434

for fine-tuning on the IC+ST task.435

4.4 Metrics436

4.4.1 Metrics for SNIPS437

We use separate metrics to measure (1) support for438

the new intent, while (2) not harming the overall439

customer experience across all intents. For (1),440

we run the model on a test set containing only the441

new intent. We refer to this as the Local Intent442

Recall (IR), and Local ST F1 Score. For F1 score,443

we ignore the “O” (non-entity) tag. To measure444

(2), we run the model on the combined test set of445

all intents together, and call this the Global Intent446

Accuracy (IA) and Global ST F1 Score.447

When training data is modified for a particular448

intent i, we expect the Local metrics for i to change449

a lot, and the Global metrics to be less sensitive.450

Since this paper focuses on data generation tar-451

geting a specific intent or slot, we are primarily452

concerned with the Local metrics.453

4.4.2 Metrics for Internal Benchmark454

For the internal benchmark, we only evaluate in455

the Local setting. We measure Semantic Error Rate456

(SemER) (Su et al., 2018) which jointly evaluates457

the IC and ST performance. Lower SemER indi-458

cates improvement to the system. We report rela-459

tive reduction in SemER, where a negative number460

indicates improvement.461

5 Results462

5.1 SNIPS463

The main results are presented in Table 2a for Local464

Intent Recall and Table 2b for Local ST F1 Score.465

5.1.1 SNIPS Baselines466

As an upper bound for our experiments in the New-467

Intent Few-Shot (NIFS) setting, we first report the468

results from training on the full unmodified dataset469

(“Full” in the tables), showing 99.2 for Local Intent 470

Recall and 96.6 for Local ST F1 Score. 471

Next, representing the starting point for devel- 472

oping a new intent i, we train the model on the 473

concatenation of the 10 starter utterances Si for 474

intent i, with all other intents’ training data un- 475

modified. (“s10-NoUps” in the tables.) This data 476

reduction severely harms performance of the tar- 477

geted intent, causing -14.8 points absolute on Local 478

Intent Recall (from 99.2 to 84.4), and -29.8 points 479

absolute on Local ST F1 Score (from 96.6 to 66.8). 480

Interestingly, simply up-sampling5 the starter 481

utterances (“s10” in the tables) to recover the origi- 482

nal per-class distribution provides a large boost in 483

performance. Specifically, “s10” compared to “s10- 484

NoUps” provides absolute improvement of +3.8 485

points absolute on Local Intent Recall (from 84.4 486

to 88.2), and +10.9 points absolute on Local ST F1 487

Score (from 66.8 to 77.7). 488

The rest of the columns use a mix of the up- 489

sampled 10 starter utterances, and augmented data 490

derived from them via various methods. We mix 491

the two data sources with portions 0.5/0.5, unless 492

otherwise specified. In all cases, we re-sample the 493

final amount of data for the target intent to match 494

the count in the original unmodified dataset. 495

We find that ICLM (“s10+ICLM”) and BT-Small 496

(“s10+BT-Small”) do not improve on Local Intent 497

Recall or Local ST F1 Score compared to “s10”. 498

Thus, we adopt “s10” as our baseline, i.e. using 499

only the 10 starter utterances, up-sampled to 500

recover the original class distribution. 501

Compared to “s10”, Back-Translation-5B 502

(“s10+BT-5B”) shows +1.9 points absolute on Lo- 503

cal Intent Recall (from 88.2 to 90.1), and +1.5 504

points absolute on Local ST F1 Score (from 77.7 505

to 79.2). 506

5.1.2 LINGUIST for SNIPS 507

We train 7 versions of the LINGUIST model as 508

follows: for each intent i of the 7 SNIPS intents, we 509

discard its training data Di and train a LINGUIST 510

model Li only on the remaining 6 intents’ data 511

{Dj}j 6=i. Then, given the 10 starter utterances Si 512

for intent i, we format prompts as described in 513

Section 3, and feed them to LINGUIST model Li 514

to generate more data Gi. Note, this step does not 515

require any model parameter updates. 516

5We implement up-sampling by simply repeating the 10
starter utterances 194 times, to create a file of 1,940 lines, the
same as the original full training data for that intent.
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Modified Intent / Data Full s10-NoUps s10
(baseline)

s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+LINGUIST

s10
+LINGUIST

+BT-5B
AddToPlaylist 100.0 95.6 ±6.8 98.3 ±2.1 97.5 ±2.2 98.3 ±2.4 99.4 ±0.5 87.7 ±9.0 95.0 ±6.2
BookRestaurant 100.0 91.0 ±3.4 93.5 ±2.4 93.8 ±1.8 92.5 ±1.7 94.6 ±1.1 95.2 ±3.2 96.2 ±1.4
GetWeather 100.0 98.8 ±0.4 98.8 ±0.4 99.4 ±0.5 99.6 ±0.5 99.8 ±0.4 99.8 ±0.4 99.8 ±0.4
PlayMusic 99.0 70.8 ±10.1 77.1 ±6.6 79.8 ±8.4 76.5 ±5.8 84.0 ±2.8 89.1 ±4.2 90.6 ±2.3
RateBook 100.0 99.0 ±0.0 99.6 ±0.5 100.0 ±0.0 99.8 ±0.4 99.6 ±0.5 99.8 ±0.4 99.8 ±0.4
SearchCreativeWork 100.0 69.0 ±8.8 76.9 ±9.3 74.2 ±9.1 73.3 ±13.6 79.4 ±11.3 86.4 ±8.3 88.8 ±8.5
SearchScreeningEvent 95.2 66.5 ±5.6 73.1 ±8.2 72.1 ±3.7 71.5 ±6.1 73.5 ±10.8 76.9 ±2.0 79.8 ±3.9
Average 99.2 84.4 ±2.9 88.2 ±1.9 88.1 ±2.4 87.4 ±2.9 90.1 ±1.6 90.7 ±2.2 92.9 ±1.1

(a) SNIPS New-Intent Few-Shot (NIFS) results on Local Intent Recall.

Modified Intent / Data Full s10-NoUps s10
(baseline)

s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+LINGUIST

s10
+LINGUIST

+BT-5B
AddToPlaylist 94.1 76.8 ±2.9 81.2 ±2.5 78.4 ±2.4 82.0 ±1.8 81.3 ±1.7 80.0 ±4.0 78.9 ±2.0
BookRestaurant 96.4 71.9 ±2.3 81.3 ±2.1 80.4 ±1.4 81.2 ±1.2 83.3 ±2.5 81.2 ±2.9 81.6 ±0.9
GetWeather 97.8 74.7 ±3.9 84.9 ±5.4 82.9 ±4.8 82.3 ±4.5 84.0 ±2.8 81.6 ±3.1 84.2 ±3.4
PlayMusic 91.7 42.0 ±4.3 59.2 ±2.2 58.0 ±3.4 56.1 ±3.1 65.4 ±4.2 66.8 ±4.1 67.1 ±2.7
RateBook 99.7 89.4 ±1.5 95.0 ±0.9 95.4 ±0.8 93.5 ±3.3 93.6 ±1.5 95.3 ±1.0 95.3 ±1.0
SearchCreativeWork 100.0 56.2 ±10.5 70.9 ±11.3 67.6 ±9.8 68.9 ±11.1 72.9 ±12.1 81.0 ±9.1 80.4 ±9.6
SearchScreeningEvent 96.6 56.4 ±7.4 71.6 ±3.6 72.8 ±4.6 69.8 ±4.6 74.2 ±3.6 77.3 ±3.3 79.1 ±4.4
Average 96.6 66.8 ±2.2 77.7 ±2.0 76.5 ±2.1 76.3 ±2.5 79.2 ±2.8 80.5 ±2.3 80.9 ±1.3

(b) SNIPS New-Intent Few-Shot (NIFS) results on Local ST F1 Score.

Table 2: Our main results on SNIPS Validation set (Section 4.1.1). For each cell (i, j), we train a joint IC+ST encoder
on the combination of data from intent i modified according to strategy j, and all other intents’ data unmodified. The
first three columns are: “Full” is trained on the full dataset without any modifications; for “s10-NoUps”, the data
for intent i is reduced to only 10 “starter” examples, and are Not Up-sampled; for “s10”, the baseline, the starter
utterances are up-sampled to Ni, the original data size for intent i. For the remaining columns, the up-sampled
starter utterances for intent i are mixed with augmented data derived from them using a particular method, which
is re-sampled to Ni in size. “st10+ICLM” uses ICLM, “s10+BT-Small” uses the Small Back-Translation system,
“s10+BT-5B” uses our Back-Translation with the internal 5B seq2seq model, “s10+LINGUIST” uses data generated
by our LINGUIST method. Finally “s10+LINGUIST+BT-5B” uses data from both LINGUIST and BT-5B. We bold
the mean for the best single method, and for the final column when it is best. All experiments are run across the five
random seeds, and we report mean ± standard deviation.

Utilizing the ability of LINGUIST to both copy517

slot values and produce novel values, we format518

multiple prompt versions pik from each of the519

starter utterances si. The first version instructs LIN-520

GUIST to copy all the slot values, producing new521

carrier phrases. Then, for each slot type k, we cre-522

ate a new version of the prompt replacing the value523

for k with the wildcard "*", instructing LINGUIST524

to produce a new value for the slot, while copying525

the other slot values as they are, and generating a526

suitable carrier phrase.6 We use top_k sampling527

with k = 50 and temperature 0.3 to generate 100528

utterances per prompt.529

After filtering the generated data (see Ap-530

pendix H for details), we mix the up-sampled 10531

6For example, for a GetWeather prompt con-
taining "new york"1 (state), "noon"2
(time_range) we prepare three versions: one as-is,
one with "*"1 (state), "noon"2 (time_range),
and one with "new york"1 (state), "*"2
(time_range).

starter utterances with the LINGUIST-generated 532

data, We explore three settings for the mixing 533

weights, namely 0.3/0.7, 0.5/0.5, and 0.7/0.3, and 534

select 0.5/0.5 according to best Local IR and Local 535

ST F1 Score on the validation set on just one of the 536

seed runs. We use identical settings for LINGUIST 537

fine-tuning and generation across all 35 runs (7 in- 538

tents times 5 random seeds) for the SNIPS-NIFS 539

benchmark. 540

Finally, following the setting of the other base- 541

lines, we fine-tune xlm-roberta-base on the 542

concatenation of the augmented and mixed data for 543

intent i with the original data for all other intents: 544

R′
i = Si ∪Ai ∪ {Dj}j 6=i. 545

Compared to the baseline of up-sampled starter 546

utterances (“s10”), LINGUIST improves by +2.5 547

points absolute on Local Intent Recall (from 88.2 548

to 90.7), and +2.8 points absolute on Local ST F1 549

Score (from 77.7 to 80.5). 550

Finally, we demonstrate that the improvements 551
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in Local metrics for the new intent do not cause552

harm to the overall system, and in fact provide a553

small improvement. As shown in Table 4a and Ta-554

ble 4b (Appendix D), “s10+LINGUIST” improves555

upon the baseline of “s10” by +0.3 points on both556

Global Intent Accuracy and Global ST F1 Score.557

5.1.3 LINGUIST and Back-Translation558

As our final experiment, we combine the up-559

sampled starter utterances with data from both LIN-560

GUIST and BT-5B (“s10+LINGUIST+BT-5B”). The561

mixing ratio for the three datasets is 0.2/0.4/0.4.562

We find that the methods are synergistic, and com-563

pared to LINGUIST alone, adding generated data564

from BT-5B adds +2.2 points absolute on Local565

Intent Recall (from 90.7 to 92.2), and +0.4 points566

absolute on Local ST F1 Score (from 80.5 to 80.9).567

The final difference between the baseline of “s10”568

and the candidate system “s10+LINGUIST+BT-5B”569

is +4.7 points absolute on Local Intent Recall570

(from 88.2 to 92.9), and +3.2 points absolute on571

Local ST F1 Score (from 77.7 to 80.9).572

5.2 Internal Dataset573

5.2.1 Internal Benchmark Baseline574

We train a separate IC+ST Encoder model Mi for575

each feature i. The training data for feature i is a576

mix of the Historical data H , up-sampled starter577

utterances for the feature Si, along with augmented578

utterances Ai produced from Si via Catalog Re-579

sampling, ICLM, and BT-Small. For each feature580

i, we evaluate the IC+ST model Mi on the test set581

Ti for that feature, and report the Local SemER.582

5.2.2 LINGUIST for Internal Benchmark583

We fine-tune a single LINGUIST model on instruc-584

tion prompts formatted from the full historical585

dataset H described in Section 4.1.2. We note586

again that the training data does not contain exam-587

ples of the new features.588

Then, for each feature, i, we follow a similar589

procedure described in Section 5.1.2: we format590

prompts from the starter utterances Si and apply591

LINGUIST to generate more data Gi. For gener-592

ation, we use top_k sampling with k = 20 and593

temperature 1.0 to produce 20 outputs per prompt.7594

using the same settings for all features i.595

7We observe that when LINGUIST is trained on a much
larger dataset compared to SNIPS, it produces less noisy out-
puts. Thus, we allow a higher temperature of 1.0 compared to
SNIPS setting where we use temperature 0.3.

Finally, we follow the same data mixing, train- 596

ing, and testing procedure for each feature i as in 597

the baseline (Section 5.2.1). As shown in Table 3, 598

LINGUIST results in 7.9% to 25.2% SemER reduc- 599

tion across four languages compared to the baseline 600

system of combined Catalog Resampling, ICLM, 601

and BT-Small. 602

Feature/Lang de es fr ja
CameraControl - -33.3% - -
ClockSettings -1.6% -12.3% +1.8% -
HomeSecurity - - - -31.5%
Music -36.8% - -30.6% -12.3%
Timers -27.5% -15.4% -20.0% -
Average -11.8% -20.8% -7.9% -25.2%

Table 3: Results on Internal Dataset. Each number
is relative reduction in SemER compared to the base-
line system of combined Catalog Resampling, BT, and
ICLM. A negative number indicates improvement.

6 Conclusion and Future Work 603

In this work, we introduced an efficient and flexible 604

method to capitalize on the value of large LMs by 605

utilizing them for generating synthetic data with 606

intent and slot tags. We showed that our method, 607

called LINGUIST, can be used to generate new data 608

while keeping the slots of interest and also gener- 609

ate data for completely new intent and slot values. 610

We compared our method to paraphrasing and slot 611

replacement approaches and showed a significant 612

improvement over these methods both on public 613

and internal datasets. 614

In future work, we will explore methods to im- 615

prove the generated data from LINGUIST. Five 616

research directions are of particular interest: (1) 617

training a separate classifier to select the highest 618

quality and most relevant outputs, (2) applying tech- 619

niques during training to discourage incorrect out- 620

puts, e.g. Welleck et al. (2019) and Li et al. (2020), 621

(3) discriminative fine-tuning with human labels 622

of quality of outputs, as explored in the very re- 623

cent LaMDA paper (Thoppilan et al., 2022), (4) 624

reinforcement Learning with a human-in-the-loop 625

reward signal, and (5) working to extend LINGUIST 626

to generate data for other structured prediction 627

tasks such as semantic parsing and text to SQL. 628
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A Checkpoint Selection 838

We find that selecting the right checkpoint is crucial in order for LINGUIST to generalize well to new 839

Intent and Slot labels. We observe a “sweet spot” where the model is trained enough to learn the prompt 840

format, yet not too much that it would memorize and overfit to the intents and slots it sees during 841

training. See plots showing metrics across updates: Figure A1 (a), left, for Training Loss, (b) right 842

for Development Perplexity; Figure A2 (a), left, for Development Token Accuracy, and (b), right, for 843

Development Sequence Exact Match. 844

During initial experiments, we found standard Development metrics like perplexity and accuracy to 845

be unreliable indicators of downstream generation and fine-tuning success. We thus explored manually 846

selecting the checkpoint as follows. 847

The SNIPS training data has around 13k samples, and we use batch size 512, so each epoch is only 848

about 25 updates. We train for 20 epochs (so around 500 updates) with a constant small learning rate 849

of 5e-7, warmed up over the first four epochs. We shuffle the data with a different seed each epoch. 850

Every 50 updates (so around every 2 epochs), we evaluate metrics on the Development set, and save a 851

checkpoint. We use the Train/Development 97%/3% split described in Section 4.1.1, such that we have 852

around 400 Development samples in total which were not seen in training. We measure Perplexity, Token 853

Accuracy, and Full Sequence Exact Match Accuracy on the Development set. Note that these metrics can 854

be computed with a simple forward pass of the full sequence, i.e. we do not need to run generation. 855

We note that training task is highly ambiguous. If you asked a human to fill in the blank for play 856

songs by "*"1 (artist_name), it is very unlikely that they would select jason mraz, as 857

opposed to some other music artist, without any further information. Note, this is in part because we 858

are filling in entity words, as opposed to random masking done when training MLM models, where the 859

prediction task could be play songs [MASK] jason mraz which has significantly less ambiguity, 860

and the ground truth is quite likely to be by. 861

As shown in A2 (b), right, Development Sequence Exact Match never exceeds 3%, so it is likely not 862

informative to select the checkpoint. Perplexity (Fig. A1 (b), right) and Token Accuracy (Fig. A2 (a), left) 863

are both more granular, so we focus on them when selecting the checkpoint. 864

(a) Training Loss (b) Development Perplexity

Figure A1: LINGUIST-5B learning to generate SNIPS data: training loss and Development perplexity across model
updates.

We manually select the checkpoint based on high (but not too high) Token Accuracy, and manual 865

inspection of generated outputs. For checkpoints at 100, 200, 300, and 400, we perform generation on a 866

few of the held-out intent runs, and choose the best checkpoint according to two criteria: (1) the outputs 867

respect the prompt instructions, e.g., they use the correctly formatted quotations and numbers on the 868

entities, and (2) the outputs are semantically valid according to the prompt intent and slot types. 869

For example, with held-out intent AddToPlaylist, we find that the checkpoint at 50 updates does not 870

meet criteria (1) or (2); after 100 updates, the model meets both criteria (1) and (2), correctly producing 871

semantically valid utterances such as Please add this "artist"2 to the "Dubstep"1 872

playlist. However, at later checkpoints, the decoder seems to overfit to the related "PlayMusic" 873
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(a) Development Token Accuracy (b) Development Sequence Exact Match

Figure A2: LINGUIST-5B learning to generate SNIPS data: Development token accuracy and sequence accuracy
across model updates.

training data, and produces utterances like Play "Cena Elegante"1 "song"2 which we find874

hurts both IC and ST when added into the encoder fine-tuning data.875

For simplicity, we do not tune the checkpoint selection separately for each held-out intent. Instead, we876

select the checkpoints at 400 updates for all runs, as that performed best overall.877

Note that since we train in the New-Intent Few-Shot (NIFS) setting described in Section 4.1, the878

Development set does not contain any new intents compared to the Training set for the LINGUIST model.879

Selecting based on best Development metrics in this setting could mislead when we are ultimately880

interested in optimizing for handling new intents well. While it might be interesting to plot token accuracy881

on the held-out intent itself, (either using the 10 starter utterances, or the original full Validation set) we882

choose not to run that experiment, as it would pollute any future experiments, since the held-out new883

intent’s Validation set would no longer be blind. As future work, we would like to explore improved884

methods for checkpoint selection.885

B Impact of Model Size886

To measure the impact of model size, we also train a 10x smaller LINGUIST-0.5B model using an internal887

seq2seq model with the same pre-training and fine-tuning setup as our 5B. We plot the Training Loss (Fig.888

A3 (a), left), Development Perplexity (Fig. A3 (b), right), Development Token Accuracy (Fig. A4 (a),889

left), and Development Sequence Exact Match (Fig. A4 (b), right) comparing the two models. For Token890

Accuracy, using a smaller model would cause a drop in 5 points absolute (from 0.774 to 0.724). We also891

show an example in Fig. A5.892

(a) Training Loss (b) Development Perplexity

Figure A3: Comparing LINGUIST-5B and LINGUIST-0.5B: Train loss and Development perplexity across model
updates.
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(a) Development Token Accuracy (b) Development Sequence Exact Match

Figure A4: Comparing LINGUIST-5B and LINGUIST-0.5B: Development token accuracy and sequence accuracy
across model updates.

INPUT:
<context>

Get Weather,
English Output Language

</context> <example>
"rain"1 (condition_description),
"East Tawakoni"2 (city),
"sep. 25th"3 (time_range)

<br>
Will it "rain"1 on "sep. 25th"3 in
"East Tawakoni"2

</example> <example>
"snowy"1 (condition_description),
"*"2 (city),
"*"3 (time_range)

<br>

OUTPUTS:

1 What is the "snowy"1 weather like
in "Kirkland"2 on "Jan. the 11th"3

2 Is it going to be "snowy"1 at
"12 o’clock"3 in "Westport"2?

3 What’s the "snowy"1 weather like
in "Marysville"2 "two weeks from now"3

4 What "snowy"1 conditions are expected
in "Mountain View"2 on "Jan. the 15th"3

5 Is it "snowy"1 in "West Oyster Bay"2
on "July 5th"3?

(a) Generated utterances from LINGUIST-5B.

INPUT:
<context>
Get Weather,
English Output Language

</context> <example>
"rain"1 (condition_description),
"East Tawakoni"2 (city),
"sep. 25th"3 (time_range)

<br>
Will it "rain"1 on "sep. 25th"3 in
"East Tawakoni"2

</example> <example>
"snowy"1 (condition_description),
"*"2 (city),
"*"3 (time_range)

<br>

OUTPUTS:

1 Will it get "snowy"1 on
"jul. 8"3 in "The Point"2

2 Will it be "snowy"1 when it’s
"in the area"3 with the forecast for "now"2

3 Will it be "snowy"1 in
"Okiwa"2 "may"3

4 Can you get me a forecast for "snowy"1
conditions at "Tlapa"3 in "Denmark"2

5 Will it be "snowy"1 in
"Finland"2 on "Sep. 2nd"3

(b) Generated utterances from LINGUIST-0.5B.

Figure A5: Generated outputs from LINGUIST-5B (left, (a)) and LINGUIST-0.5B (right, (b)). Crucially, both
models did not see any GetWeather data during training, as they were trained only on the other 6 SNIPS
intents. We observe that while LINGUIST-5B produces primarily high-quality outputs, LINGUIST-0.5B more
frequently produces outputs with incorrect slot fills, e.g. "in the area" and "Tlapa" for time_range, or
"Finland", "Denmark", and "now" for city. Furthermore, LINGUIST-0.5B tends to produce less diverse
carrier phrases than LINGUIST-5B, which we note tends to remain the case even when we try a larger top_k or
higher temperature values.

C Sample Model Outputs 893

We show examples of a LINGUIST model (trained on all 7 SNIPS intents for 400 updates) generating for 894

novel intents and slots not seen during training. 895
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INPUT:
<context>

Draft Player,
English Output Language

</context> <example>
"Patrice Bergeron"1 (player),
"Boston Bruins"2 (hockey_team_name)

<br>
Assign "Patrice Bergeron"1 to the "Boston Bruins"2

</example> <example>
"Brad Marchand"1 (player),
"*"2 (hockey_team_name)

<br>

OUTPUTS:

1 Draft "Brad Marchand"1 for the "Chicago Blackhawks"2

2 Add "Brad Marchand"1 to the "Montreal Canadiens"2 roster

3 Can you put "Brad Marchand"1 on the "Florida Panthers"2?

4 The "San Jose Sharks"2 need "Brad Marchand"1.

5 I want "Brad Marchand"1 to play for the "Philadelphia Flyers"2.

Figure A6: The model correctly copies the requested slot Brad Marchand, and fills in appropriate values for
hockey_team_name and uses a variety of carrier phrases.

INPUT:
<context>

Music Theory Get Accidentals,
English Output Language

</context> <example>
"d. major"1 (key),
"sharp"2 (accidental_type)

<br>
what notes are "sharp"2 in "d. major"1

</example> <example>
"c. sharp major"1 (key),
"sharp"2 (accidental_type)

<br>
tell me which notes are "sharp"2 in "c. sharp major"1

</example> <example>
"*"1 (key),
"flat"2 (accidental_type)

<br>

OUTPUTS:

1 Can you tell me which "flat"2 notes are in "fa"1

2 What "flat"2 notes are there in the key of "e"1

3 What are the "flat"2 notes in "si"1

4 find "flat"2 notes in "e flat"1

5 I want to know which notes are "flat"2 in "C"1

Figure A7: The model correctly copies the requested slot flat, and fills in appropriate values for key and uses a
variety of carrier phrases.
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D Results on Global Metrics 896

Modified Intent / Data Full s10-NoUps s10
(baseline)

s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+LINGUIST

s10
+LINGUIST

+BT-5B
AddToPlaylist 99.1 98.7 ±1.0 98.9 ±0.3 98.9 ±0.3 98.9 ±0.3 99.1 ±0.1 97.4 ±1.3 98.5 ±0.8
BookRestaurant 99.1 97.7 ±0.4 98.2 ±0.3 98.2 ±0.2 97.9 ±0.2 98.2 ±0.1 98.3 ±0.6 98.5 ±0.3
GetWeather 99.1 98.9 ±0.1 98.9 ±0.1 98.9 ±0.2 99.0 ±0.0 99.0 ±0.1 99.0 ±0.1 99.1 ±0.2
PlayMusic 99.1 95.3 ±1.5 96.1 ±1.0 96.4 ±1.3 96.0 ±0.8 97.0 ±0.4 97.8 ±0.6 98.0 ±0.4
RateBook 99.1 99.0 ±0.1 98.9 ±0.1 99.0 ±0.1 99.0 ±0.1 99.0 ±0.1 99.0 ±0.2 99.0 ±0.2
SearchCreativeWork 99.1 95.2 ±1.1 96.5 ±1.2 96.0 ±1.2 95.8 ±1.8 96.7 ±1.4 97.6 ±1.2 98.0 ±1.2
SearchScreeningEvent 99.1 95.3 ±0.8 96.3 ±1.1 95.9 ±0.5 95.8 ±0.8 96.2 ±1.5 96.6 ±0.4 97.1 ±0.6
Average 99.1 97.2 ±0.4 97.7 ±0.2 97.6 ±0.4 97.5 ±0.3 97.9 ±0.2 98.0 ±0.3 98.3 ±0.2

(a) SNIPS New-Intent few-shot results on Global Intent Accuracy.

Modified Intent / Data Full s10-NoUps s10
(baseline)

s10
+ICLM

s10
+BT-Small

s10
+BT-5B

s10
+LINGUIST

s10
+LINGUIST

+BT-5B
AddToPlaylist 96.7 94.0 ±0.4 94.2 ±0.5 94.2 ±0.4 94.9 ±0.4 94.5 ±0.3 94.1 ±0.5 94.2 ±0.4
BookRestaurant 96.7 92.7 ±0.4 94.1 ±0.6 94.1 ±0.3 94.2 ±0.3 94.5 ±0.3 94.4 ±0.6 94.1 ±0.3
GetWeather 96.7 93.8 ±0.5 94.9 ±0.7 94.7 ±0.6 94.6 ±0.4 95.0 ±0.3 94.4 ±0.5 94.8 ±0.6
PlayMusic 96.7 91.3 ±0.4 92.9 ±0.3 93.1 ±0.6 92.8 ±0.2 93.8 ±0.4 94.0 ±0.5 94.2 ±0.3
RateBook 96.7 95.0 ±0.3 95.8 ±0.4 95.8 ±0.3 95.5 ±0.6 95.5 ±0.4 95.8 ±0.3 95.8 ±0.3
SearchCreativeWork 96.7 92.9 ±1.0 94.2 ±0.9 93.9 ±1.0 94.2 ±1.0 94.1 ±1.1 95.3 ±1.0 95.2 ±0.9
SearchScreeningEvent 96.7 92.3 ±0.8 94.0 ±0.6 94.0 ±0.6 93.5 ±0.6 94.2 ±0.4 94.6 ±0.5 94.8 ±0.7
Average 96.7 93.1 ±0.2 94.3 ±0.2 94.2 ±0.2 94.3 ±0.3 94.5 ±0.3 94.6 ±0.2 94.7 ±0.1

(b) SNIPS New-Intent few-shot results on Global ST F1 Score.

Table 4: Our results on SNIPS for the Global metrics, showing that the gains for Local metrics shown in Tables 2a
and 2b do not cause harm to the system overall. See Section 5.1 for details.

E Filtering ICLM Outputs 897

We discard any outputs containing the <unk> token, which happens less than 1% of the time. The number 898

of outputs (after de-duplication) are reported in Table 5. 899

Modified Intent Num outputs
AddToPlaylist 296
BookRestaurant 347
GetWeather 322
PlayMusic 255
RateBook 288
SearchCreativeWork 295
SearchScreeningEvent 273
Average 297

Table 5: The number of filtered and de-duplicated outputs from ICLM per intent. All numbers are averaged across
the five random seeds.

F Filtering BT-Small Outputs 900

The small model has a fair amount of noise in its outputs, so we heuristically filter them, discarding any 901

which contain repeated bigrams such as play the song halo the song and/or any trigram of 902

the same word such as of of of. Success rate and number of outputs (after de-duplication) are reported 903

in Table 6. 904
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Modified Intent SuccessRate NumOutputs AvgNumSlots
AddToPlaylist 70.2 64 2.7
BookRestaurant 72.8 73 3.2
GetWeather 60.4 60 2.3
PlayMusic 53.6 52 2.2
RateBook 70.8 71 3.8
SearchCreativeWork 41.6 42 1.8
SearchScreeningEvent 69.6 70 2.2
Average 62.7 62 2.6

Table 6: For each intent, the Success Rate of Back-Translation with the Small model, and Number of Generated
Outputs, both averaged across the five random seeds. For reference, we also show the Average Number of Slots in
the training data per intent.

G Filtering BT-5B outputs905

The Back-Translated text with the 5B model is significantly cleaner than with the smaller model, so we906

do not apply any filtering on the output text itself. We do heuristically discard any outputs where we907

suspect the augmented utterance is missing a slot. Specifically, SimAlign in ArgMax mode only returns908

alignments across words that have mutual argmax between source and target. For any source word that909

is an entity tag (i.e., not “O”), if it is not aligned to an output word, then we consider the output invalid.910

For example, an input like rate this book 5 out of 6 with a Back-Translated output give911

this book a rating of 5 would typically have no output word aligned to the source word “6”912

(best_rating slot label), so the output would be discarded.913

Success rate and number of outputs (after de-duplication) for BT-5B are reported in Table 7.914

Modified Intent SuccessRate NumOutputs AvgNumSlots
AddToPlaylist 66.2 411 2.7
BookRestaurant 82.8 423 3.2
GetWeather 72.0 311 2.3
PlayMusic 89.0 455 2.2
RateBook 79.2 478 3.8
SearchCreativeWork 85.5 451 1.8
SearchScreeningEvent 72.0 330 2.2
Average 78.1 408 2.6

Table 7: For each intent, the Success Rate of Back-Translation with the 5B model, and the number of outputs, both
averaged across the five random seeds. For reference, we also show the Average Number of Slots in the training
data per intent.

H Filtering LINGUIST Outputs915

We apply heuristic filtering by discarding outputs which meet any of the following criteria: (1) copy one916

of the examples from the prompt verbatim; (2) fail to follow the prompt instructions, by not copying the917

instructed slot value or by producing repeated, missing, extra, or malformed slot-tag numbers; (3) produce918

the literal wildcard instruction "*"; or (4) produce a punctuation character in the set of {_<>[](){};}.8919

In Table 8, we report the Success Rate as the portion of generated utterances which remain after filtering,920

and show the total number of generated utterances per intent. We observe a trend that success rate is921

generally lower when the prompt contains more slots, which is intuitive as the generation task is more922

challenging and has more chances to make a mistake. The success rates vary significantly by intent from923

28.0 for RateBook to 92.9 for SearchCreativeWork, with an average of 67.5 across the 7 intents.924

8These characters do not appear in the utterance text of any of the original training data, so are considered to be generation
mistakes.
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Modified Intent Success Rate #Outputs Average #Slots
AddToPlaylist 65.5 1037 2.7
BookRestaurant 55.6 1484 3.2
GetWeather 79.5 1014 2.3
PlayMusic 82.5 956 2.2
RateBook 28.0 497 3.8
SearchCreativeWork 92.9 1290 1.8
SearchScreeningEvent 68.3 967 2.2
Average 67.5 1035 2.6

Table 8: For each intent, the Success Rate of Generation, and Number of Generated Outputs, both averaged across
the five random seeds. For reference, we also show the Average Number of Slots in the training data per intent.

I SemER Metric 925

For the internal IC+ST benchmark (Sections 4.1.2, 4.4.2, and 5.2.2), we report on Semantic Error Rate 926

(SemER) (Su et al., 2018) which jointly evaluates Intent Classification and Slot Filling. SemER is defined 927

as follows: comparing a reference of tokens and their accompanying labels, count each of of these 928

operations: (1) Correct slots, where the slot name and slot value is correctly identified, (2) Deletion 929

errors, where the slot name is present in the reference but not in the hypothesis, (3) Insertion errors, where 930

extraneous slot names are included in the hypothesis, (4) Substitution errors, where slot names from the 931

hypothesis are included but with an incorrect slot value. Intent classification errors are substitution errors. 932

Then, apply Equation 1 to compute the SemER. 933

SemER =
# Del + # Ins + # Sub
# Cor + # Del + # Sub

(1) 934
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