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Abstract

Recent advances in large language models001
(LLMs) have demonstrated that inference-time002
computation techniques, such as decoding-time003
scaling and self-refinement, can significantly004
enhance reasoning capabilities without rely-005
ing on external knowledge. A key driver of006
this success is the emergence of self-correction007
and self-verification behaviors, often elicited008
through reinforcement learning (RL).009

In this paper, we investigate whether these010
inference-time techniques extend effectively to011
vision-language models (VLMs), particularly012
those trained with RL. We find that while de-013
coding strategies such as majority voting and014
best-of-N selection with self-verification all im-015
prove VLM reasoning performance, generation-016
reliant methods such as the former achieve017
significantly higher gains versus verification-018
reliant methods such as the latter. Additionally,019
the self-correction behavior often associated020
with RL-tuned models, such as “aha moment,”021
does not lead to measurable gains. We show via022
extensive experimentation within the inference-023
time scaling framework to identify a key root024
cause: RL-trained VLMs still lack robust self-025
verification capabilities across both visual and026
textual modalities.027

1 Introduction028

The reasoning capabilities of large language mod-029

els (LLMs) have seen notable improvements in030

recent years (DeepSeek-AI, 2025; OpenAI, 2024).031

Although larger model scales and higher-quality032

pretraining datasets are major contributing factors033

to these improvements, emerging strategies that in-034

stead leverage inference-time computation (Snell035

et al., 2024) have also been proven effective: Pro-036

viding models with zero-shot "think step by step"037

prompts or few-shot demonstrations augmented038

with intermediate reasoning steps (Wei et al., 2022)039

have enabled generation of extended reasoning040

chains even when not explicitly fine-tuned to do so.041

Likewise, methods such as decoding-time major- 042

ity vote (Wang et al., 2023) and chain-of-thought 043

decoding (Wang and Zhou, 2024) have enabled 044

outputting of higher-quality answers without ex- 045

ternal feedback. More recently, inference-time 046

self-correction (Kumar et al., 2025; DeepSeek-AI, 047

2025) has emerged as another form of scaling: 048

models are trained with Reinforcement Learning 049

(RL) to revise earlier mistakes and generate addi- 050

tional reasoning steps to arrive at improved rea- 051

soning answers. "aha moment" exists: model 052

generates "Wait, I made a mistake in my prior re- 053

sponse”—and initiates a second round of reasoning 054

to refine its answer. 055

A dominant hypothesis for why inference-time 056

computation works without external knowledge 057

is that models contain difficult-to-access “hidden 058

knowledge” (Huang et al., 2024; Hinton et al., 059

2015), and that these prompting and/or decoding 060

methods, rather than being knowledge generators 061

on their own, serve as effective extractors of hidden 062

knowledge for further reasoning into more user- 063

accessible forms. 064

What exactly is this hidden knowledge? A 065

compelling possibility is that it is the models’ ca- 066

pacities for inference-time self-verification. The 067

various aforementioned methods invoke different 068

degrees of self-verification, from zero-shot "think 069

step by step"’s implied verification against an an- 070

swer template to more explicit verification present 071

within RL-trained, "aha-moment" utilizing models. 072

LLM-Monkey (Brown et al., 2024) demonstrates 073

that with sufficiently powerful verification capa- 074

bilities, one can simply sample multiple diverse 075

outputs from the model and select the most ac- 076

curate one to improve performance (Song et al., 077

2025). Interestingly, Song et al. (2025) shows 078

that LLMs often perform even better on verify- 079

ing answers versus generating them: this gap may 080

explain why inference-time computation methods 081

which invoke explicit self-verification such as Self- 082
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Refine (Madaan et al., 2023) achieve high effective-083

ness in LLM reasoning.084

A central question we explore in this work085

is whether self-verification generalize swell to086

VLMs. Notably, several recent efforts (Zhou et al.,087

2025; Chen et al., 2025b; Zhang et al., 2025; Huang088

et al., 2025; Liu et al., 2025; Deng et al., 2025;089

Wang et al., 2025) adopt similar RL-based training090

strategies and report the emergence of “aha mo-091

ments” in VLM reasoning to suggest that VLMs092

similarly contain the "hidden knowledge" of self-093

verification capacitiy present in LLMs and can be094

elicited via RL. However, a key question remains:095

Are RL-trained VLMs genuinely effectively per-096

forming self-verification and self-correction dur-097

ing inference, or are these behaviors merely098

surface-level artifacts of training which con-099

tribute little to model performance?100

We study this problem by contrasting two101

inference-time strategies: (1) Majority vote, which102

generates multiple answers, then determines the fi-103

nal answer via a consensus among the generated an-104

swers. This method does focus on self-verification,105

instead requiring a model to have high generation106

capabilities for consistently outputting correct an-107

swers. (2) Self-verified Best-of-N, which similarly108

generates multiple answers, but explicitly uses it-109

self as a verifier to evaluate and select the most110

appropriate self-generated answer, placing heavy111

emphasis on the model’s verification capability for112

performance. Importantly, we find that the former113

approach consistently outperforms the latter for a114

variety of evaluated RL-trained VLMs, highlight-115

ing a notable presence of a generation-verification116

gap present in VLMs but absent in LLMs.117

Finally, we probe the self-verification mecha-118

nism in more detail to study possible causes of119

this gap by comparing between (1) giving the (self-120

)verifier access to the original image input and (2)121

witholding it during verification within the best-of-122

N setup, and find that the verifier counterintuitively123

performs better without the image input. This124

behavior highlights a possible core limitation of125

VLMs’ self-verification, in that they currently do126

not sufficiently leverage visual information for self-127

verification, which may explain the fundamental128

limitations that prevent current VLMs to effectively129

performing inference-time computation.130

Contributions. In this paper, we explicitly131

demonstrate that inference-time decoding strate-132

gies improve reasoning performance in RL-tuned133

VLMs. We also show that the emergence of “aha 134

moments” in RL-tuned VLMs does not lead to 135

gains in final reasoning accuracy—largely due to 136

the model’s limited self-verification capabilities. 137

We design and perform extensive experimentation 138

with various inference-time scaling frameworks to 139

support our findings. 140

2 Related Works 141

2.1 LLM/VLM, Reinforcement Learning for 142

Reasoning 143

Reinforcement learning (RL) was introduced to 144

LLM fine-tuning via RL from human feedback 145

(RLHF) (Ouyang et al., 2022), which learns a re- 146

ward model from human preferences and optimizes 147

the LLM policy, using Proximal Policy Optimiza- 148

tion (PPO) (Schulman et al., 2017). More recent 149

works (Rafailov et al., 2023; Shao et al., 2024) 150

are multiple variants of PPO with improved com- 151

putational efficiency. Beyond alignment, RL has 152

also been shown to enhance LLM reasoning and 153

self-correction capabilities (Kumar et al., 2025; 154

DeepSeek-AI, 2025; Zeng et al., 2025a). Several 155

studies (Gandhi et al., 2025; Zeng et al., 2025a) fur- 156

ther investigate what intrinsic properties enable ef- 157

fective self-improvement and how "aha moments" 158

emerge as a result of RL-based training. 159

In the vision-language domain, similar ideas 160

have been extended to improve VLM reasoning. 161

A number of recent works apply RL to incentivize 162

multimodal reasoning behaviors, typically using 163

PPO or GRPO to fine-tune VLMs. These studies 164

report positive signs of RL to train VLM to gen- 165

erate "aha moments" in VLMs (Zhou et al., 2025; 166

Chen et al., 2025b; Zhang et al., 2025; Huang et al., 167

2025; Liu et al., 2025; Deng et al., 2025; Wang 168

et al., 2025). 169

2.2 Inference-Time Scaling 170

Inference-time scaling (Snell et al., 2024; Brown 171

et al., 2024) has emerged as an effective strategy 172

for improving LLM reasoning without additional 173

fine-tuning. Several methods fall under this um- 174

brella. Simple parallel decoding approaches—such 175

as chain-of-thought decoding (Wang and Zhou, 176

2024) and self-consistency sampling (Wang et al., 177

2023)—have shown strong empirical gains by ag- 178

gregating multiple sampled outputs. More sophisti- 179

cated techniques involve training reward-based ver- 180

ifiers to guide step-by-step generation (Lightman 181

et al., 2023). Recent studies have also proposed 182
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training-time modifications to enhance inference-183

time behavior. For example, inference-aware fine-184

tuning methods (Chow et al., 2024; Qu et al.,185

2024) aim to improve best-of-N. Meanwhile, se-186

quential refinement approaches—such as Think-187

Speak (Goyal et al., 2024)—encourage the model188

to iteratively revise its own answers in a sequential189

(rather than parallel) manner, offering a comple-190

mentary view of inference-time reasoning.191

3 Methodology192

We investigate the impact of various inference-time193

scaling methods for VLMs, methods that are con-194

sidered established methods for text-based-only195

LLMs. As we introduce these methods to VLMs,196

we analyze the adaptability of each method with197

respect to gains in performance and to evidence of198

the emergence of self-verification capabilities.199

3.1 Inference-time Scaling Methods200

3.1.1 Reinforcement Learning for VLMs201

We test both the base version as well as the RL-202

tuned version of the VLMs. Previous work on203

LLMs has demonstrated the emergence of the ’aha204

moment’ in RL RL-tuned model’s reasoning pro-205

cess and such a process was shown to have a posi-206

tive contribution to model performance. We would207

like to study whether similar benefits also exist for208

VLMs trained through RL. To this end, we adopt209

RL-tuned models from recent work (Zhang et al.,210

2025; Chen et al., 2025a; Wang et al., 2025), using211

them directly within our experimental framework.212

These models are trained under a general RL objec-213

tive commonly used for multimodal reasoning:214
215

max
πθ

E[I,x]∼D, y∼πθ(·|I,x)
[
rϕ(I, x, y)

]
216

− β DKL

[
πθ(· | I, x) ∥πref(· | I, x)

]
. (1)217

where πθ is the policy VLM parametrized with218

model weights θ. πref is the reference VLM policy.219

rϕ is the reward function. DKL is KL-divergence220

measure. β > 0 is the KL penalty coefficient.221

The input [I, x] denotes multimodal samples with222

image and text drawn from the dataset D. The223

generated response in the rollout y ∼ πθ, sam-224

pled from the VLM policy. Specifically, inspired225

by DeepSeek-R1 (DeepSeek-AI, 2025), most re-226

cent RL-for-VLM work adopts Group Relative227

Policy Optimization (GRPO), which removes the228

need for a separate value-function critic by esti-229

mating a baseline directly from a group of sam-230

pled roll-outs, thereby cutting both memory usage231

and wall-clock time. For every multimodal prompt 232

[I, x], we first freeze the current policy to create a 233

snapshot πold. We then draw G candidate outputs 234

{yi}Gi=1 ∼ πold(· | I, x) and compute token-level 235

advantages Âi,t by subtracting the group-mean re- 236

turn from each candidate’s return. The policy is 237

updated by maximizing the clipped-surrogate ob- 238

jective equation 2 239

This GRPO objective, JGRPO(θ), aims to update 240

the policy πθ by maximizing an expected, clipped 241

surrogate objective based on multiple candidate 242

generations from an old policy πold. The core 243

term involves a probability ratio ri,t(θ) between 244

the current and old policies for each token, multi- 245

plied by a token-level advantage Âi,t (derived from 246

comparing a candidate’s return to the group mean). 247

This product is clipped to limit policy update sizes, 248

promoting stability, a technique common in PPO. 249

A KL-divergence penalty term, −β DKL
[
πθ ∥πref

]
, 250

regularizes the policy πθ to prevent it from straying 251

too far from a reference policy πref. 252

These RL-tuned VLMs are typically optimized 253

using outcome-based rewards, and recent works 254

(Zhang et al., 2025; Chen et al., 2025a; Wang et al., 255

2025) claim near-GPT-4o-level performance using 256

models with only ∼7B parameters. They also re- 257

port the emergence of “aha moments”—suggesting 258

that the models can learn to self-correct by identi- 259

fying failures in earlier reasoning and generating 260

additional rethinking steps, which can be consid- 261

ered as emergent inference-time scaling behavior. 262

3.1.2 Decoding Methods for VLMs 263

VLMs generate text in the same way as LLMs do, 264

except with additional image embeddings as part of 265

the input query. Decoding methods concerned with 266

how each next token is sampled from Language 267

Models. In this work, we consider methods that 268

aim to sample multiple starting tokens and thus 269

generate multiple outputs given one single input 270

query. 271

Greedy Decoding Sequentially selects the most 272

probable next token at each decoding step. It is a 273

one-time inference with no scaling. 274

Decoding-Time Majority Voting This strategy 275

first samples multiple candidate outputs and then 276

subsequently selects the final solution by majority 277

consensus among the generated candidates. By ag- 278

gregating multiple responses, it seeks to mitigate 279

random errors or inconsistencies in individual out- 280

puts. We consider this as a strong baseline method 281

to beat due to the ’deterministic’ nature of how the 282
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JGRPO(θ) =E[I,x]∼D{yi}Gi=1∼πold(·|I,x)
(2)[

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
− β DKL

[
πθ ∥πref

]]

final output is selected. This method primarily re-283

flects the model’s generation capability, as high284

accuracy depends on the model producing cor-285

rect answers frequently enough to dominate the286

vote.287

Best of N Sampling with Self as Verifier This288

strategy also samples multiple candidate outputs289

from the VLM, but we then prompt the model to290

evaluate and verify all candidate outputs together.291

The output identified as most reliable by the model292

itself is selected as the final answer, thus integrat-293

ing a self-verification component into the decoding294

process. This method emphasizes the model’s295

self-verification ability, as accuracy depends on296

correctly identifying the best answer to the ques-297

tion from a diverse set of responses.298

Chain-of-Thought(CoT) Decoding Unlike299

Greedy Decoding, Chain-of-Thought(CoT)300

Decoding considers multiple candidate tokens301

(top-k) at critical decoding points, branching out302

to form multiple decoding paths. Each of these303

paths potentially includes intermediate reasoning304

steps generated inherently by the model. A305

distinguishing feature of CoT Decoding is the use306

of a confidence metric, computed as the average307

probability margin between the top two candidate308

tokens across answer tokens within each decoding309

path. The path exhibiting the highest confidence310

margin is selected as the final output.311

Verifier Prompt

Now you act as a judge, helping me
determine which of the <length> texts I
provide better answers the question.
Question: <question>
Repsonse: <response>
Please strictly follow the following
format requirements when outputting, and
don’t have any other unnecessary words.
Output format: "I choose response
[number] because"

312

3.2 Evaluating Decoding Methods313

To quantify the effectiveness of each decoding strat-314

egy, we use reasoning accuracy as our primary eval-315

uation metric. Accuracy is defined as the propor-316

tion of examples where the final selected answer317

exactly matches the ground-truth solution. 318

Importantly, we focus on accuracy rather than 319

coverage—the latter referring to the percentage of 320

examples where at least one generated candidate 321

is correct—because we do not assume access to a 322

strong oracle verifier. Instead, our goal is to assess 323

whether the model can effectively self-verify and 324

select the best answer on its own, thereby reflecting 325

its true reasoning performance. 326

3.3 Self-Verification in Vision Language 327

Models 328

Self-verification has emerged as an influential gen- 329

eration strategy within LLMs, enabling models to 330

internally assess and validate the accuracy and re- 331

liability of their generated outputs. In our study, 332

we investigate whether similar self-verification ca- 333

pabilities exist within VLMs. Utilizing the VLM 334

itself as the verifier in the "Best of N" Decoding 335

strategy allows for direct evaluation of the model’s 336

self-verification abilities. 337

The self-verification mechanism typically in- 338

volves the model generating multiple candidate out- 339

puts and subsequently scoring or ranking these can- 340

didates based on internal measures of confidence, 341

coherence, and contextual alignment. This intrinsic 342

verification mechanism provides insights into the 343

model’s reflective reasoning capabilities—its ca- 344

pacity to recognize correct reasoning pathways and 345

distinguish them from incorrect or less coherent 346

alternatives. 347

To understand whether VLMs are able to benefit 348

from self-verification and whether the vision inputs 349

are been used for better self-verification, we test 350

VLMs using multiple configurations of the Best of 351

N Decoding method: 352

• Self Verification with Text Only: The self- 353

verifier receives only the generated responses 354

and the text-based question. The image is 355

omitted to test the model’s ability to verify 356

using language alone. 357

• Self Verification with Image and Text: The 358

self-verifier is provided with both the image 359

and the text input, allowing it to use multi- 360

modal information for verification. 361
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3.4 Finding ’aha moment’362

The ’aha moment’ is being regarded as a signa-363

ture of the self-verification process for LLMs. We364

investigate if such ’aha’ moment is contributing365

meaningfully to VLMs.366

Aha Search Method. To systematically exam-367

ine whether these “aha moments” after RL con-368

tribute to improved reasoning, we adopt an auto-369

matic detection protocol based on the Aha Search370

strategy (Gandhi et al., 2025; Zeng et al., 2025b).371

Originally proposed for LLMs, this method aligns372

"aha moments" with observable cognitive behav-373

iors—specifically, backtracking and verification. In374

our setup, we prompt GPT-4o with the generated re-375

sponse and ask whether it exhibits these behaviors.376

The simplified prompt template is provided below377

and complete version is in appendix. If GPT-4o378

confirms the presence of backtracking or verifica-379

tion, we classify the response as containing an “aha380

moment.”381

AHA Search Prompt

<system prompt>
<start_of_reasoning> <RESPONSE>
<end_of_reasoning>
Specifically, actively identify and
emphasize beneficial behaviors such as:
(1) Backtracking: Explicitly revising
approaches upon identifying errors or dead
ends ...
(2) Verification: Systematically checking
intermediate results or reasoning steps
...
Important:
Clearly specify each beneficial behavior
you identify.
If there is a strong example of this,
provide <YES> followed by specific
explanations. Otherwise, provide <NO>
<NO>

382

We introduce two metrics to assess whether the383

presence of an aha moment positively contributes384

to reasoning performance:385

Post-Aha Accuracy Among Selected Predic-386

tions:We compute the probability that a selected387

answer containing a confirmed aha moment is also388

correct. This is denoted as389

P ⋆(Correct | AHA in Prediction),390

where the star (⋆) indicates that we report the best391

value across all decoding strategies. This metric392

reflects how often aha moments align with correct393

final answers in selected outputs.394

Aha Potential Recovery Rate from Incorrect Pre-395

dictions: To assess whether aha moments can help396

recover from initial errors, we focus on cases where 397

the selected prediction is incorrect. We then search 398

through the unselected generated responses and 399

check whether any of them contain both a con- 400

firmed aha moment and a correct answer. This is 401

measured as 402

P (Aha Correct | Wrong Prediction), 403

indicating the potential for aha-based reasoning 404

paths in the inference-time scaling to correct mis- 405

takes even when they are not selected by default. 406

4 Experiment 407

4.1 Dataset 408

We utilize the GeoQA170K and MathVista (Lu 409

et al., 2024) datasets (Gao et al., 2023) for our 410

empirical evaluation. 411

GeoQA170K is a geometric reasoning ability 412

training dataset containing question-answer pairs 413

created by a variety of models. We filter out re- 414

peated Q-A pairs and use 754 unique samples for 415

our experimentation. All questions are in the form 416

of an image + text prompt, while expected answers 417

are free-form text from which only numerical sym- 418

bols are extracted for evaluation based on numeri- 419

cal matching. 420

MathVista (Lu et al., 2024) covers a broad spec- 421

trum of visual question answering tasks, encom- 422

passing geometric, algebraic, arithmetic, and other 423

forms of reasoning. The questions are similarly in 424

the form of image + text, with images consisting of 425

both simple mathematical diagrams and complex, 426

real-world images associated with the text prompt. 427

We use the test-mini split of the dataset, which con- 428

tains 1,000 samples. Answer formats include both 429

free-form responses and multiple-choice selections. 430

Due to the diversity of the former, MathVista uti- 431

lizes a LLM judge (parser prompt in Appendix) 432

whether a predicted answer matches the ground 433

truth. 434

4.2 Inference Setup 435

Our experiments are conducted on one computer 436

equipped with NVIDIA 4090Ti and one with 437

NVIDIA A100 GPU. The models evaluated range 438

from the base Qwen2-VL-2B-Instruct to a set of 439

Qwen-based RL-tuned models. The full list in- 440

cludes: R1-VL-2B, R1-VL-7B (Zhang et al., 2025), 441

VLAA-Thinker-Qwen2.5VL-3B, VLAA-Thinker- 442

Qwen2.5VL-7B (Chen et al., 2025a), and VL- 443

Rethinker-7B (Wang et al., 2025). For sampling- 444
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Table 1: Decoding Comparison on GeoQA with ×4 Scaling

Greedy BoN w. Image BoN w/o Image Majority Votes Chain-of-Thought
Qwen2-VL-2B-Instruct 13.8 16.3 15.6 16.0 15.5
R1-VL-2B (Zhang et al., 2025) 26.9 28.9 28.2 30.2 31.0
R1-VL-7B (Zhang et al., 2025) 39.7 44.6 43.9 44.2 43.4
VLAA-Thinker-3B (Chen et al., 2025a) 44.2 27.5 31.6 46.4 45.1
VLAA-Thinker-7B (Chen et al., 2025a) 48.3 44.3 46.2 52.1 49.7
VL-Rethinker-7B (Wang et al., 2025) 60.1 59.9 59.8 61.9 61.4

Table 2: Conditional Accuracy w.r.t A-ha Moments

P ⋆(Correct | A-ha in Prediction) P (A-ha Correct | Wrong Prediction)
R1-VL-2B (Zhang et al., 2025) 28.1(CoT) 2.7
R1-VL-7B (Zhang et al., 2025) 49.5(VLM) 4.4
VLAA-Thinker-3B (Chen et al., 2025a) 48.4(CoT) 5.4
VLAA-Thinker-7B (Chen et al., 2025a) 49.5(CoT) 13.0
VL-Rethinker-7B (Wang et al., 2025) 65.5(Majority Vote) 19.5

based decoding methods—including majority vot-445

ing and best-of-N with self-verification—we use446

the following inference configuration: temperature447

= 0.6, top-k = 50, and top-p = 0.9. For chain-of-448

thought decoding, which follows a deterministic449

approach as greedy decoding, we set the tempera-450

ture to 0. For evaluation tasks such as MathVista451

grading and Aha moment detection, we use GPT-452

4o-mini as the LLM-based judge. We fix the ran-453

dom seed across all experiments to ensure repro-454

ducibility.455

4.3 Discussion456

In this section, we present key insights from457

our study, supported by extensive experimental458

results under the inference-time scaling frame-459

work. We find that RL-trained VLMs do bene-460

fit from inference-time scaling via parallel decod-461

ing strategies such as majority voting. However,462

the effectiveness of sequential inference-time scal-463

ing—those that rely on self-correction capabilities,464

such as “aha moments”—is far less clear. Our re-465

sults indicate that such self-correction behaviors do466

not meaningfully improve VLM reasoning.467

We further investigate this limitation and offer a468

potential explanation: RL-trained VLMs struggle469

with self-verification. We provide two pieces of470

evidence to support this claim. First, generation-471

heavy strategies like majority voting consistently472

outperform verification-heavy approaches such as473

best-of-N sampling with self-verification. Second,474

and more surprisingly, the self-verifier performs475

better when the image input is omitted—suggesting476

that the model does not effectively use visual infor-477

mation during the verification process.478

Together, our findings highlight a fundamental 479

gap in current VLM capabilities and represent a 480

first step toward understanding the limitations and 481

potential of inference-time scaling in multimodal 482

reasoning. 483

Inference Time Scaling Improves Performance 484

of VLM. Table 1 summarizes the performance 485

gains of various inference-time scaling techniques 486

versus the baseline deterministic, greedy decoding 487

on GeoQA of the various VLMs. Notably, both 488

BoN-based methods achieve limited performance 489

gains over the greedy baseline, and in the case 490

of the two VLAA VLMs, even result in perfor- 491

mance decreases (up to -16.7%), which can be at- 492

tributed to its tendency to re-do the question rather 493

than to judge the response despite being explic- 494

itly prompted to choose from the responses. On 495

the other hand, the two generation-emphasizing 496

methods—Majority vote and CoT—achieve more 497

steady performance gains (4.5% and 4.1%, respec- 498

tively). 499

RL-trained VLMs Do Not Benefited from Aha 500

Moments As shown in Table 2, answers flagged as 501

containing “aha moments” do not lead to higher ac- 502

curacy—even when we select the best result across 503

all decoding strategies. This suggests that “aha mo- 504

ments” do not reliably contribute to improved 505

reasoning. While we also assess the potential of 506

aha moments—i.e., whether they could correct an 507

initially wrong prediction—the observed probabili- 508

ties remain low. This indicates that simply encour- 509

aging aha behavior is insufficient for improving 510

model performance within the inference-time scal- 511

ing framework. 512

Current RL-trained VLM Fall Short in Verifi- 513
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Table 3: Verifier Comparison on GeoQA

GeoQA BoN w. Image BoN w/o Image Majority Votes
Scaling × 4

R1-VL-2B (Zhang et al., 2025) 28.9 28.2 30.2
R1-VL-7B (Zhang et al., 2025) 44.5 43.9 44.2
VLAA-Thinker-3B (Chen et al., 2025a) 27.5 31.6 46.4
VLAA-Thinker-7B (Chen et al., 2025a) 44.3 46.2 52.1
VL-Rethinker-7B (Wang et al., 2025) 59.9 59.8 61.9

Scaling × 8
R1-VL-2B (Zhang et al., 2025) 31.2 30.2 35.1
R1-VL-7B (Zhang et al., 2025) 45.8 46.2 46.9
VLAA-Thinker-3B (Chen et al., 2025a) 23.5 28.0 48.3
VLAA-Thinker-7B (Chen et al., 2025a) 52.3 52.9 57.7
VL-Rethinker-7B (Wang et al., 2025) 58.9 58.9 62.1

Table 4: Verifier Comparison on MathVista

MathVista BoN w. Image BoN w/o Image Majority Votes
Scaling × 4

R1-VL-2B (Zhang et al., 2025) 39.2 40.9 52.7
R1-VL-7B (Zhang et al., 2025) 59.3 63.8 65.2
VLAA-Thinker-3B (Chen et al., 2025a) 50.3 52.1 66.2
VLAA-Thinker-7B (Chen et al., 2025a) 65.5 58.2 71.6
VL-Rethinker-7B (Wang et al., 2025) 75.0 74.7 75.4

Scaling × 8
R1-VL-2B (Zhang et al., 2025) 41.5 42.0 56.4
R1-VL-7B (Zhang et al., 2025) 61.1 63.6 66.0
VLAA-Thinker-3B (Chen et al., 2025a) 48.4 45.1 65.6
VLAA-Thinker-7B (Chen et al., 2025a) 70.5 66.2 74.0
VL-Rethinker-7B (Wang et al., 2025) 73.9 71.4 75.6

cation in Inference-time Scaling Tables 3 and 4514

quantitatively assess verification ability using best-515

of-N decoding with self-verification. Across both516

4- and 8-sample settings, majority voting—an in-517

dicator of generation quality—consistently outper-518

forms self-verification. This stands in contrast to519

findings in the LLM literature, where verification520

is often easier than generation. Our results suggest521

that current RL techniques do not endow VLMs522

with strong self verification capabilities, raising523

concerns about their effectiveness in multimodal524

reasoning tasks.525

No Visual Verification Another notable observa-526

tion from Tables 3 and 4 is that RL-trained VLMs527

sometimes verify their own outputs more accu-528

rately when visual input is excluded. This is par-529

ticularly evident in the GeoQA dataset, which con-530

sists entirely of geometric questions. Including the531

image does not necessarily help the model judge532

correctness—suggesting that the VLM fails to in-533

tegrate visual context during self-verification. In-534

stead, the model over-relies on textual input, ren-535

dering its verification process in both modalities536

unreliable. Our findings show that current VLMs537

do not fully utilize visual information during veri- 538

fication, and we call for future research to address 539

this shortcoming by enhancing the model’s true 540

multimodal verification capabilities to improve rea- 541

soning performance. 542

5 Conclusion 543

In this paper, we investigated the extensibility of 544

LLM inference-time computation techniques to 545

VLMs. We find that current RL-trained VLMs 546

yet lack robust self-verification capabilities across 547

both visual and textual modalities in the form of 548

a verification-generation gap. We have performed 549

extensive experimentation to support this claim: 550

our results show that the verification-reliant best- 551

of-N selection strategy achieves lower performance 552

gains versus the generation-reliant majority voting, 553

and that the self-correction behavior often associ- 554

ated with RL-tuned models, such as “aha moment,” 555

does not lead to measurable gains. 556

Broader Impacts. The current trend in the com- 557

munity treats vision-language models (VLMs) as a 558

natural extension of large language models (LLMs), 559

with many efforts focused on directly transfer- 560
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ring reasoning successes from LLMs to VLMs.561

However, this paper highlights a critical gap: the562

core mechanisms that drive reasoning improve-563

ments in LLMs—particularly those enabled by re-564

inforcement learning—do not translate effectively565

to VLMs. We argue that a key reason for this is566

the lack of robust multimodal self-verification ca-567

pabilities in current VLMs, which undermines the568

foundation upon which RL-based reasoning suc-569

ceeds in the LLM setting.570

LLM Use. We use LLM for grammer checks.571

6 Limitations572

This work empirically highlights a key limitation573

of RL-trained VLMs: despite improvements in rea-574

soning performance, these models struggle to fully575

realize their potential due to weak self-verification576

capabilities in multimodal settings. While we ana-577

lyze and diagnose this issue, we do not propose578

a solution to address it. Instead, our findings579

serve as an important stepping stone—calling for580

future research to better understand and enhance581

the unique challenges and opportunities in VLM582

self-verification, a capability that remains underex-583

plored in the current landscape.584
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A Appendix755

Verifier Prompt
Now you act as a judge, helping me determine which of the <length> texts I
provide better answers the question.
Question: <question>
Repsonse: <response>
Please strictly follow the following format requirements when outputting, and
don’t have any other unnecessary words.
Output format: "I choose response [number] because"

756

AHA Search Prompt
Below is a chain-of-reasoning generated by a Language Model when attempting to
solve a math problem. Evaluate this chain-of-reasoning to determine whether it
demonstrates beneficial problem-solving behaviors that deviate from typical
linear, monotonic reasoning patterns commonly observed in language models.
<start_of_reasoning> <RESPONSE> <end_of_reasoning>
Specifically, actively identify and emphasize beneficial behaviors such as:
(1) Backtracking: Explicitly revising approaches upon identifying errors or
dead ends (e.g., "This approach won’t work because...").
(2) Verification: Systematically checking intermediate results or reasoning
steps (e.g., "Let’s verify this result by...").
Additionally, remain attentive to and encourage the identification of other
beneficial behaviors not explicitly listed here, such as creative analogies,
abstraction to simpler cases, or insightful generalizations.
Important:
Clearly specify each beneficial behavior you identify.
If there is strong example of this, provide <YES> followed by specific
explanations. Otherwise, provide <NO>
A positive response example:
<YES> This contains Backtracking and Verification, respectively from "example
quote" and "example quote"
A negative response example, no further explanation is needed at all, SIMPLY
return <NO>:
<NO>

757

MathVista Parser Prompt
Please read the following example. Then extract the answer from the model
response and type it at the end of the prompt.
Hint: Please answer the question requiring an integer answer and provide the
final value, e.g., 1, 2, 3, at the end. Question: Which number is missing?
Model response: The number missing in the sequence is 14.
Extracted answer: 14
Hint: Please answer the question requiring a floating-point number with one
decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end.
Question: What is the fraction of females facing the camera?
Model response: The fraction of females facing the camera is 0.6, which means
that six out of ten females in the group are facing the camera.

758
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Extracted answer: 0.6
Hint: Please answer the question requiring a floating-point number with two
decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the
end. Question: How much money does Luca need to buy a sour apple candy and a
butterscotch candy? (Unit: $)
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch
candy.
Extracted answer: 1.45
Hint: Please answer the question requiring a Python list as an answer and
provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.
Question: Between which two years does the line graph saw its maximum peak?
Model response: The line graph saw its maximum peak between 2007 and 2008.
Extracted answer: [2007, 2008]
Hint: Please answer the question and provide the correct option letter, e.g.,
A, B, C, D, at the end. Question: What fraction of the shape is blue?Choices:
(A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5
Model response: The correct answer is (B) 8/11.
Extracted answer: B
<query><response>
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