Aha Moment Revisited: Are VLMs Truly Capable of Self Verification in
Inference-time Scaling?

Anonymous ACL submission

Abstract

Recent advances in large language models
(LLMs) have demonstrated that inference-time
computation techniques, such as decoding-time
scaling and self-refinement, can significantly
enhance reasoning capabilities without rely-
ing on external knowledge. A key driver of
this success is the emergence of self-correction
and self-verification behaviors, often elicited
through reinforcement learning (RL).

In this paper, we investigate whether these
inference-time techniques extend effectively to
vision-language models (VLMs), particularly
those trained with RL. We find that while de-
coding strategies such as majority voting and
best-of-N selection with self-verification all im-
prove VLM reasoning performance, generation-
reliant methods such as the former achieve
significantly higher gains versus verification-
reliant methods such as the latter. Additionally,
the self-correction behavior often associated
with RL-tuned models, such as “aha moment,”
does not lead to measurable gains. We show via
extensive experimentation within the inference-
time scaling framework to identify a key root
cause: RL-trained VLMs still lack robust self-
verification capabilities across both visual and
textual modalities.

1 Introduction

The reasoning capabilities of large language mod-
els (LLMs) have seen notable improvements in
recent years (DeepSeek-Al, 2025; OpenAl, 2024).
Although larger model scales and higher-quality
pretraining datasets are major contributing factors
to these improvements, emerging strategies that in-
stead leverage inference-time computation (Snell
et al., 2024) have also been proven effective: Pro-
viding models with zero-shot "think step by step"
prompts or few-shot demonstrations augmented
with intermediate reasoning steps (Wei et al., 2022)
have enabled generation of extended reasoning
chains even when not explicitly fine-tuned to do so.

Likewise, methods such as decoding-time major-
ity vote (Wang et al., 2023) and chain-of-thought
decoding (Wang and Zhou, 2024) have enabled
outputting of higher-quality answers without ex-
ternal feedback. More recently, inference-time
self-correction (Kumar et al., 2025; DeepSeek-Al,
2025) has emerged as another form of scaling:
models are trained with Reinforcement Learning
(RL) to revise earlier mistakes and generate addi-
tional reasoning steps to arrive at improved rea-
soning answers. "aha moment" exists: model
generates "Wait, I made a mistake in my prior re-
sponse”’—and initiates a second round of reasoning
to refine its answer.

A dominant hypothesis for why inference-time
computation works without external knowledge
is that models contain difficult-to-access “hidden
knowledge” (Huang et al., 2024; Hinton et al.,
2015), and that these prompting and/or decoding
methods, rather than being knowledge generators
on their own, serve as effective extractors of hidden
knowledge for further reasoning into more user-
accessible forms.

What exactly is this hidden knowledge? A
compelling possibility is that it is the models’ ca-
pacities for inference-time self-verification. The
various aforementioned methods invoke different
degrees of self-verification, from zero-shot "think
step by step"’s implied verification against an an-
swer template to more explicit verification present
within RL-trained, "aha-moment" utilizing models.
LLM-Monkey (Brown et al., 2024) demonstrates
that with sufficiently powerful verification capa-
bilities, one can simply sample multiple diverse
outputs from the model and select the most ac-
curate one to improve performance (Song et al.,
2025). Interestingly, Song et al. (2025) shows
that LLMs often perform even better on verify-
ing answers versus generating them: this gap may
explain why inference-time computation methods
which invoke explicit self-verification such as Self-

Refine (Madaan et al., 2023) achieve high effective-
ness in LLM reasoning.

A central question we explore in this work
is whether self-verification generalize swell to
VLMs. Notably, several recent efforts (Zhou et al.,
2025; Chen et al., 2025b; Zhang et al., 2025; Huang
et al., 2025; Liu et al., 2025; Deng et al., 2025;
Wang et al., 2025) adopt similar RL-based training
strategies and report the emergence of “aha mo-
ments” in VLM reasoning to suggest that VLMs
similarly contain the "hidden knowledge" of self-
verification capacitiy present in LLMs and can be
elicited via RL. However, a key question remains:
Are RL-trained VLMs genuinely effectively per-
forming self-verification and self-correction dur-
ing inference, or are these behaviors merely
surface-level artifacts of training which con-
tribute little to model performance?

We study this problem by contrasting two
inference-time strategies: (1) Majority vote, which
generates multiple answers, then determines the fi-
nal answer via a consensus among the generated an-
swers. This method does focus on self-verification,
instead requiring a model to have high generation
capabilities for consistently outputting correct an-
swers. (2) Self-verified Best-of-N, which similarly
generates multiple answers, but explicitly uses it-
self as a verifier to evaluate and select the most
appropriate self-generated answer, placing heavy
emphasis on the model’s verification capability for
performance. Importantly, we find that the former
approach consistently outperforms the latter for a
variety of evaluated RL-trained VLMs, highlight-
ing a notable presence of a generation-verification
gap present in VLMs but absent in LLMs.

Finally, we probe the self-verification mecha-
nism in more detail to study possible causes of
this gap by comparing between (1) giving the (self-
)verifier access to the original image input and (2)
witholding it during verification within the best-of-
N setup, and find that the verifier counterintuitively
performs better without the image input. This
behavior highlights a possible core limitation of
VLMs’ self-verification, in that they currently do
not sufficiently leverage visual information for self-
verification, which may explain the fundamental
limitations that prevent current VLMs to effectively
performing inference-time computation.

Contributions. In this paper, we explicitly
demonstrate that inference-time decoding strate-
gies improve reasoning performance in RL-tuned

VLMs. We also show that the emergence of “aha
moments” in RL-tuned VLMs does not lead to
gains in final reasoning accuracy—Ilargely due to
the model’s limited self-verification capabilities.
We design and perform extensive experimentation
with various inference-time scaling frameworks to
support our findings.

2 Related Works

2.1 LLM/VLM, Reinforcement Learning for
Reasoning

Reinforcement learning (RL) was introduced to
LLM fine-tuning via RL from human feedback
(RLHF) (Ouyang et al., 2022), which learns a re-
ward model from human preferences and optimizes
the LLM policy, using Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). More recent
works (Rafailov et al., 2023; Shao et al., 2024)
are multiple variants of PPO with improved com-
putational efficiency. Beyond alignment, RL has
also been shown to enhance LLM reasoning and
self-correction capabilities (Kumar et al., 2025;
DeepSeek-Al, 2025; Zeng et al., 2025a). Several
studies (Gandhi et al., 2025; Zeng et al., 2025a) fur-
ther investigate what intrinsic properties enable ef-
fective self-improvement and how "aha moments"
emerge as a result of RL-based training.

In the vision-language domain, similar ideas
have been extended to improve VLM reasoning.
A number of recent works apply RL to incentivize
multimodal reasoning behaviors, typically using
PPO or GRPO to fine-tune VLMs. These studies
report positive signs of RL to train VLM to gen-
erate "aha moments" in VLMs (Zhou et al., 2025;
Chen et al., 2025b; Zhang et al., 2025; Huang et al.,
2025; Liu et al., 2025; Deng et al., 2025; Wang
et al., 2025).

2.2 Inference-Time Scaling

Inference-time scaling (Snell et al., 2024; Brown
et al., 2024) has emerged as an effective strategy
for improving LLM reasoning without additional
fine-tuning. Several methods fall under this um-
brella. Simple parallel decoding approaches—such
as chain-of-thought decoding (Wang and Zhou,
2024) and self-consistency sampling (Wang et al.,
2023)—have shown strong empirical gains by ag-
gregating multiple sampled outputs. More sophisti-
cated techniques involve training reward-based ver-
ifiers to guide step-by-step generation (Lightman
et al., 2023). Recent studies have also proposed

training-time modifications to enhance inference-
time behavior. For example, inference-aware fine-
tuning methods (Chow et al., 2024; Qu et al.,
2024) aim to improve best-of-N. Meanwhile, se-
quential refinement approaches—such as Think-
Speak (Goyal et al., 2024)—encourage the model
to iteratively revise its own answers in a sequential
(rather than parallel) manner, offering a comple-
mentary view of inference-time reasoning.

3 Methodology

We investigate the impact of various inference-time
scaling methods for VLMs, methods that are con-
sidered established methods for text-based-only
LLMs. As we introduce these methods to VLMs,
we analyze the adaptability of each method with
respect to gains in performance and to evidence of
the emergence of self-verification capabilities.

3.1 Inference-time Scaling Methods
3.1.1 Reinforcement Learning for VLMs

We test both the base version as well as the RL-
tuned version of the VLMs. Previous work on
LLMs has demonstrated the emergence of the ’aha
moment’ in RL RL-tuned model’s reasoning pro-
cess and such a process was shown to have a posi-
tive contribution to model performance. We would
like to study whether similar benefits also exist for
VLMs trained through RL. To this end, we adopt
RL-tuned models from recent work (Zhang et al.,
2025; Chen et al., 2025a; Wang et al., 2025), using
them directly within our experimental framework.
These models are trained under a general RL objec-
tive commonly used for multimodal reasoning:

rr;%X E[[J]Nn y~o (| I,2) [r¢(I, z, y)]
— BDxi[7mo(- | L) [met (- | 1,2)]. (1)

where 7y is the policy VLM parametrized with
model weights 0. ¢ is the reference VLM policy.
¢ is the reward function. Dy is KL-divergence
measure. 5 > 0 is the KL penalty coefficient.
The input [I, z] denotes multimodal samples with
image and text drawn from the dataset D. The
generated response in the rollout y ~ my, sam-
pled from the VLM policy. Specifically, inspired
by DeepSeek-R1 (DeepSeek-Al, 2025), most re-
cent RL-for-VLM work adopts Group Relative
Policy Optimization (GRPO), which removes the
need for a separate value-function critic by esti-
mating a baseline directly from a group of sam-
pled roll-outs, thereby cutting both memory usage

and wall-clock time. For every multimodal prompt
[I, z], we first freeze the current policy to create a
snapshot m,q. We then draw G candidate outputs
{y:}%, ~ Towa(- | I,) and compute token-level
advantages flm by subtracting the group-mean re-
turn from each candidate’s return. The policy is
updated by maximizing the clipped-surrogate ob-
jective equation 2

This GRPO objective, Jgrpo(f), aims to update
the policy mg by maximizing an expected, clipped
surrogate objective based on multiple candidate
generations from an old policy moq. The core
term involves a probability ratio r;+(6) between
the current and old policies for each token, multi-
plied by a token-level advantage 1212-7,5 (derived from
comparing a candidate’s return to the group mean).
This product is clipped to limit policy update sizes,
promoting stability, a technique common in PPO.
A KL-divergence penalty term, —/3]D)KL[TFQ I 7rref] ,
regularizes the policy 7y to prevent it from straying
too far from a reference policy yer.

These RL-tuned VLMs are typically optimized
using outcome-based rewards, and recent works
(Zhang et al., 2025; Chen et al., 2025a; Wang et al.,
2025) claim near-GPT-4o-level performance using
models with only ~7B parameters. They also re-
port the emergence of “aha moments”—suggesting
that the models can learn to self-correct by identi-
fying failures in earlier reasoning and generating
additional rethinking steps, which can be consid-
ered as emergent inference-time scaling behavior.

3.1.2 Decoding Methods for VLMs

VLMs generate text in the same way as LLMs do,
except with additional image embeddings as part of
the input query. Decoding methods concerned with
how each next token is sampled from Language
Models. In this work, we consider methods that
aim to sample multiple starting tokens and thus
generate multiple outputs given one single input
query.

Greedy Decoding Sequentially selects the most
probable next token at each decoding step. It is a
one-time inference with no scaling.

Decoding-Time Majority Voting This strategy
first samples multiple candidate outputs and then
subsequently selects the final solution by majority
consensus among the generated candidates. By ag-
gregating multiple responses, it seeks to mitigate
random errors or inconsistencies in individual out-
puts. We consider this as a strong baseline method
to beat due to the ’deterministic’ nature of how the

Jareo(0) =By)y) E a1 12)

lyil

|yi| =

final output is selected. This method primarily re-
flects the model’s generation capability, as high
accuracy depends on the model producing cor-
rect answers frequently enough to dominate the
vote.

Best of N Sampling with Self as Verifier This
strategy also samples multiple candidate outputs
from the VLM, but we then prompt the model to
evaluate and verify all candidate outputs together.
The output identified as most reliable by the model
itself is selected as the final answer, thus integrat-
ing a self-verification component into the decoding
process. This method emphasizes the model’s
self-verification ability, as accuracy depends on
correctly identifying the best answer to the ques-
tion from a diverse set of responses.
Chain-of-Thought(CoT) Decoding Unlike
Greedy Decoding, Chain-of-Thought(CoT)
Decoding considers multiple candidate tokens
(top-k) at critical decoding points, branching out
to form multiple decoding paths. Each of these
paths potentially includes intermediate reasoning
steps generated inherently by the model. A
distinguishing feature of CoT Decoding is the use
of a confidence metric, computed as the average
probability margin between the top two candidate
tokens across answer tokens within each decoding
path. The path exhibiting the highest confidence
margin is selected as the final output.

Verifier Prompt

Now you act as a judge, helping me
determine which of the <length> texts I
provide better answers the question.
Question: <question>

Repsonse: <response>

Please strictly follow the following
format requirements when outputting, and
don’t have any other unnecessary words.
Output format: "I choose response
[number] because"”

3.2 Evaluating Decoding Methods

To quantify the effectiveness of each decoding strat-
egy, we use reasoning accuracy as our primary eval-
uation metric. Accuracy is defined as the propor-
tion of examples where the final selected answer

@

G

1 1 A .

el E — E min(ri,t(e) Aigyclip(rie(0), 1 —€, 1+¢) Ai,t) — BDxi[mo || Wref]:|
i=1

exactly matches the ground-truth solution.

Importantly, we focus on accuracy rather than
coverage—the latter referring to the percentage of
examples where at least one generated candidate
is correct—because we do not assume access to a
strong oracle verifier. Instead, our goal is to assess
whether the model can effectively self-verify and
select the best answer on its own, thereby reflecting
its true reasoning performance.

3.3 Self-Verification in Vision Language
Models

Self-verification has emerged as an influential gen-
eration strategy within LLMs, enabling models to
internally assess and validate the accuracy and re-
liability of their generated outputs. In our study,
we investigate whether similar self-verification ca-
pabilities exist within VLMs. Utilizing the VLM
itself as the verifier in the "Best of N" Decoding
strategy allows for direct evaluation of the model’s
self-verification abilities.

The self-verification mechanism typically in-
volves the model generating multiple candidate out-
puts and subsequently scoring or ranking these can-
didates based on internal measures of confidence,
coherence, and contextual alignment. This intrinsic
verification mechanism provides insights into the
model’s reflective reasoning capabilities—its ca-
pacity to recognize correct reasoning pathways and
distinguish them from incorrect or less coherent
alternatives.

To understand whether VLMs are able to benefit
from self-verification and whether the vision inputs
are been used for better self-verification, we test
VLMs using multiple configurations of the Best of
N Decoding method:

* Self Verification with Text Only: The self-
verifier receives only the generated responses
and the text-based question. The image is
omitted to test the model’s ability to verify
using language alone.

* Self Verification with Image and Text: The
self-verifier is provided with both the image
and the text input, allowing it to use multi-
modal information for verification.

3.4 Finding ’aha moment’

The ’aha moment’ is being regarded as a signa-
ture of the self-verification process for LLMs. We
investigate if such ’aha’ moment is contributing
meaningfully to VLMs.

Aha Search Method. To systematically exam-
ine whether these “aha moments” after RL con-
tribute to improved reasoning, we adopt an auto-
matic detection protocol based on the Aha Search
strategy (Gandhi et al., 2025; Zeng et al., 2025b).
Originally proposed for LLMs, this method aligns
"aha moments" with observable cognitive behav-
iors—specifically, backtracking and verification. In
our setup, we prompt GPT-40 with the generated re-
sponse and ask whether it exhibits these behaviors.
The simplified prompt template is provided below
and complete version is in appendix. If GPT-4o0
confirms the presence of backtracking or verifica-
tion, we classify the response as containing an “aha
moment.”

AHA Search Prompt

<system prompt>

<start_of_reasoning> <RESPONSE>
<end_of_reasoning>

Specifically, actively identify and
emphasize beneficial behaviors such as:

QD) Explicitly revising
approaches upon identifying errors or dead
ends ...

(2) Systematically checking

intermediate results or reasoning steps

Important:

Clearly specify each beneficial behavior
you identify.

If there is a strong example of this,
provide <YES> followed by specific
explanations. Otherwise, provide <NO>
<NO>

We introduce two metrics to assess whether the

presence of an aha moment positively contributes
to reasoning performance:
Post-Aha Accuracy Among Selected Predic-
tions:We compute the probability that a selected
answer containing a confirmed aha moment is also
correct. This is denoted as

P*(Correct | AHA in Prediction),

where the star (%) indicates that we report the best
value across all decoding strategies. This metric
reflects how often aha moments align with correct
final answers in selected outputs.

Aha Potential Recovery Rate from Incorrect Pre-
dictions: To assess whether aha moments can help

recover from initial errors, we focus on cases where
the selected prediction is incorrect. We then search
through the unselected generated responses and
check whether any of them contain both a con-
firmed aha moment and a correct answer. This is
measured as

P(Aha Correct | Wrong Prediction),

indicating the potential for aha-based reasoning
paths in the inference-time scaling to correct mis-
takes even when they are not selected by default.

4 Experiment

4.1 Dataset

We utilize the GeoQA170K and MathVista (Lu
et al., 2024) datasets (Gao et al., 2023) for our
empirical evaluation.

GeoQA170K is a geometric reasoning ability
training dataset containing question-answer pairs
created by a variety of models. We filter out re-
peated Q-A pairs and use 754 unique samples for
our experimentation. All questions are in the form
of an image + text prompt, while expected answers
are free-form text from which only numerical sym-
bols are extracted for evaluation based on numeri-
cal matching.

MathVista (Lu et al., 2024) covers a broad spec-
trum of visual question answering tasks, encom-
passing geometric, algebraic, arithmetic, and other
forms of reasoning. The questions are similarly in
the form of image + text, with images consisting of
both simple mathematical diagrams and complex,
real-world images associated with the text prompt.
We use the test-mini split of the dataset, which con-
tains 1,000 samples. Answer formats include both
free-form responses and multiple-choice selections.
Due to the diversity of the former, MathVista uti-
lizes a LLM judge (parser prompt in Appendix)
whether a predicted answer matches the ground
truth.

4.2 Inference Setup

Our experiments are conducted on one computer
equipped with NVIDIA 4090Ti and one with
NVIDIA A100 GPU. The models evaluated range
from the base Qwen2-VL-2B-Instruct to a set of
Qwen-based RL-tuned models. The full list in-
cludes: R1-VL-2B, R1-VL-7B (Zhang et al., 2025),
VLAA-Thinker-Qwen2.5VL-3B, VLAA-Thinker-
Qwen2.5VL-7B (Chen et al., 2025a), and VL-
Rethinker-7B (Wang et al., 2025). For sampling-

Table 1: Decoding Comparison on GeoQA with x4 Scaling

Greedy BoN w. Image BoN w/o Image Majority Votes

Chain-of-Thought

Qwen2-VL-2B-Instruct 13.8 16.3
R1-VL-2B (Zhang et al., 2025) 26.9 28.9
R1-VL-7B (Zhang et al., 2025) 39.7 44.6
VLAA-Thinker-3B (Chen et al., 2025a) | 44.2 27.5
VLAA-Thinker-7B (Chen et al., 2025a) | 48.3 443
VL-Rethinker-7B (Wang et al., 2025) 60.1 59.9

15.6 16.0 15.5
28.2 30.2 31.0
43.9 442 434
31.6 46.4 45.1
46.2 521 49.7
59.8 61.9 61.4

Table 2: Conditional Accuracy w.r.t A-ha Moments

‘ P*(Correct | A-ha in Prediction)

P(A-ha Correct | Wrong Prediction)

R1-VL-2B (Zhang et al., 2025) 28.1(CoT) 2.7
R1-VL-7B (Zhang et al., 2025) 49.5(VLM) 44
VLAA-Thinker-3B (Chen et al., 2025a) 48.4(CoT) 5.4
VLAA-Thinker-7B (Chen et al., 2025a) 49.5(CoT) 13.0
VL-Rethinker-7B (Wang et al., 2025) 65.5(Majority Vote) 19.5

based decoding methods—including majority vot-
ing and best-of-N with self-verification—we use
the following inference configuration: temperature
= 0.6, top-k = 50, and top-p = 0.9. For chain-of-
thought decoding, which follows a deterministic
approach as greedy decoding, we set the tempera-
ture to 0. For evaluation tasks such as MathVista
grading and Aha moment detection, we use GPT-
40-mini as the LLM-based judge. We fix the ran-
dom seed across all experiments to ensure repro-
ducibility.

4.3 Discussion

In this section, we present key insights from
our study, supported by extensive experimental
results under the inference-time scaling frame-
work. We find that RL-trained VLMs do bene-
fit from inference-time scaling via parallel decod-
ing strategies such as majority voting. However,
the effectiveness of sequential inference-time scal-
ing—those that rely on self-correction capabilities,
such as “aha moments”—is far less clear. Our re-
sults indicate that such self-correction behaviors do
not meaningfully improve VLM reasoning.

We further investigate this limitation and offer a
potential explanation: RL-trained VLMs struggle
with self-verification. We provide two pieces of
evidence to support this claim. First, generation-
heavy strategies like majority voting consistently
outperform verification-heavy approaches such as
best-of-N sampling with self-verification. Second,
and more surprisingly, the self-verifier performs
better when the image input is omitted—suggesting
that the model does not effectively use visual infor-
mation during the verification process.

Together, our findings highlight a fundamental
gap in current VLM capabilities and represent a
first step toward understanding the limitations and
potential of inference-time scaling in multimodal
reasoning.

Inference Time Scaling Improves Performance
of VLM. Table 1 summarizes the performance
gains of various inference-time scaling techniques
versus the baseline deterministic, greedy decoding
on GeoQA of the various VLMs. Notably, both
BoN-based methods achieve limited performance
gains over the greedy baseline, and in the case
of the two VLAA VLMs, even result in perfor-
mance decreases (up to -16.7%), which can be at-
tributed to its tendency to re-do the question rather
than to judge the response despite being explic-
itly prompted to choose from the responses. On
the other hand, the two generation-emphasizing
methods—Majority vote and CoT—achieve more
steady performance gains (4.5% and 4.1%, respec-
tively).

RL-trained VLMs Do Not Benefited from Aha
Moments As shown in Table 2, answers flagged as
containing “aha moments” do not lead to higher ac-
curacy—even when we select the best result across
all decoding strategies. This suggests that “aha mo-
ments”’ do not reliably contribute to improved
reasoning. While we also assess the potential of
aha moments—i.e., whether they could correct an
initially wrong prediction—the observed probabili-
ties remain low. This indicates that simply encour-
aging aha behavior is insufficient for improving
model performance within the inference-time scal-
ing framework.

Current RL-trained VLM Fall Short in Verifi-

Table 3: Verifier Comparison on GeoQA

GeoQA [BoN w. Image BoN w/o Image Majority Votes
Scaling x 4
R1-VL-2B (Zhang et al., 2025) 28.9 28.2 30.2
R1-VL-7B (Zhang et al., 2025) 44.5 43.9 442
VLAA-Thinker-3B (Chen et al., 2025a) 27.5 31.6 46.4
VLAA-Thinker-7B (Chen et al., 2025a) 443 46.2 52.1
VL-Rethinker-7B (Wang et al., 2025) 59.9 59.8 61.9
Scaling x 8
R1-VL-2B (Zhang et al., 2025) 31.2 30.2 351
R1-VL-7B (Zhang et al., 2025) 45.8 46.2 46.9
VLAA-Thinker-3B (Chen et al., 2025a) 23.5 28.0 48.3
VLAA-Thinker-7B (Chen et al., 2025a) 52.3 52.9 57.7
VL-Rethinker-7B (Wang et al., 2025) 58.9 58.9 62.1

Table 4: Verifier Comparison on MathVista

MathVista \ BoN w. Image BoN w/o Image Majority Votes
Scaling x 4
R1-VL-2B (Zhang et al., 2025) 39.2 40.9 52.7
R1-VL-7B (Zhang et al., 2025) 59.3 63.8 65.2
VLAA-Thinker-3B (Chen et al., 2025a) 50.3 52.1 66.2
VLAA-Thinker-7B (Chen et al., 2025a) 65.5 58.2 71.6
VL-Rethinker-7B (Wang et al., 2025) 75.0 74.7 75.4
Scaling x 8
R1-VL-2B (Zhang et al., 2025) 41.5 42.0 56.4
R1-VL-7B (Zhang et al., 2025) 61.1 63.6 66.0
VLAA-Thinker-3B (Chen et al., 2025a) 48.4 45.1 65.6
VLAA-Thinker-7B (Chen et al., 2025a) 70.5 66.2 74.0
VL-Rethinker-7B (Wang et al., 2025) 73.9 71.4 75.6

cation in Inference-time Scaling Tables 3 and 4
quantitatively assess verification ability using best-
of-N decoding with self-verification. Across both
4- and 8-sample settings, majority voting—an in-
dicator of generation quality—consistently outper-
forms self-verification. This stands in contrast to
findings in the LLM literature, where verification
is often easier than generation. Our results suggest
that current RL techniques do not endow VLMs
with strong self verification capabilities, raising
concerns about their effectiveness in multimodal
reasoning tasks.

No Visual Verification Another notable observa-
tion from Tables 3 and 4 is that RL-trained VLMs
sometimes verify their own outputs more accu-
rately when visual input is excluded. This is par-
ticularly evident in the GeoQA dataset, which con-
sists entirely of geometric questions. Including the
image does not necessarily help the model judge
correctness—suggesting that the VLM fails to in-
tegrate visual context during self-verification. In-
stead, the model over-relies on textual input, ren-
dering its verification process in both modalities
unreliable. Our findings show that current VLMs

do not fully utilize visual information during veri-
fication, and we call for future research to address
this shortcoming by enhancing the model’s true
multimodal verification capabilities to improve rea-
soning performance.

5 Conclusion

In this paper, we investigated the extensibility of
LLM inference-time computation techniques to
VLMs. We find that current RL-trained VLMs
yet lack robust self-verification capabilities across
both visual and textual modalities in the form of
a verification-generation gap. We have performed
extensive experimentation to support this claim:
our results show that the verification-reliant best-
of-N selection strategy achieves lower performance
gains versus the generation-reliant majority voting,
and that the self-correction behavior often associ-
ated with RL-tuned models, such as “aha moment,”
does not lead to measurable gains.

Broader Impacts. The current trend in the com-
munity treats vision-language models (VLMs) as a
natural extension of large language models (LLMs),
with many efforts focused on directly transfer-

ring reasoning successes from LLMs to VLMs.
However, this paper highlights a critical gap: the
core mechanisms that drive reasoning improve-
ments in LLMs—particularly those enabled by re-
inforcement learning—do not translate effectively
to VLMs. We argue that a key reason for this is
the lack of robust multimodal self-verification ca-
pabilities in current VLLMs, which undermines the
foundation upon which RL-based reasoning suc-
ceeds in the LLM setting.

LLM Use. We use LLM for grammer checks.

6 Limitations

This work empirically highlights a key limitation
of RL-trained VLMs: despite improvements in rea-
soning performance, these models struggle to fully
realize their potential due to weak self-verification
capabilities in multimodal settings. While we ana-
lyze and diagnose this issue, we do not propose
a solution to address it. Instead, our findings
serve as an important stepping stone—calling for
future research to better understand and enhance
the unique challenges and opportunities in VLM
self-verification, a capability that remains underex-
plored in the current landscape.

References

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V. Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling in-
ference compute with repeated sampling. Preprint,
arXiv:2407.21787.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng
Tang, Xinya Du, Yuyin Zhou, and Cihang Xie. 2025a.
Sft or r1? an early investigation into training rl-like
reasoning large vision-language models. Preprint,
arXiv:2504.11468.

Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and
Vinci. 2025b. R1-v: Reinforcing super generaliza-
tion ability in vision-language models with less than
$3. https://github.com/Deep-Agent/R1-V. Ac-
cessed: 2025-02-02.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent
Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier,
Rishabh Agarwal, Aviral Kumar, and Aleksandra
Faust. 2024. Inference-aware fine-tuning for best-
of-n sampling in large language models. Preprint,
arXiv:2412.15287.

DeepSeek-Al 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei
Wang, and Kai-Wei Chang. 2025. Openvlthinker:

An early exploration to complex vision-language
reasoning via iterative self-improvement. Preprint,
arXiv:2503.17352.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh,
Nathan Lile, and Noah D. Goodman. 2025. Cogni-
tive behaviors that enable self-improving reasoners,
or, four habits of highly effective stars. Preprint,
arXiv:2503.01307.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wan-
jun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han,
Hang Xu, Zhenguo Li, and Lingpeng Kong. 2023. G-
llava: Solving geometric problem with multi-modal
large language model. Preprint, arXiv:2312.11370.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Na-
garajan. 2024. Think before you speak: Train-
ing language models with pause tokens. Preprint,
arXiv:2310.02226.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.
Preprint, arXiv:1503.02531.

Audrey Huang, Adam Block, Dylan J. Foster, Dhruv Ro-
hatgi, Cyril Zhang, Max Simchowitz, Jordan T. Ash,
and Akshay Krishnamurthy. 2024. Self-improvement
in language models: The sharpening mechanism.
Preprint, arXiv:2412.01951.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao,
Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui
Lin. 2025. Vision-rl: Incentivizing reasoning capa-
bility in multimodal large language models. Preprint,
arXiv:2503.06749.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Igbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang,
Kay McKinney, Disha Shrivastava, Cosmin Paduraru,
George Tucker, Doina Precup, Feryal Behbahani, and
Aleksandra Faust. 2025. Training language models
to self-correct via reinforcement learning. In Pro-
ceedings of the 12th International Conference on
Learning Representations (ICLR).

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. Preprint,
arXiv:2305.20050.

Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue,
Fanbin Lu, Bei Yu, and Jiaya Jia. 2025. Seg-zero:
Reasoning-chain guided segmentation via cognitive
reinforcement. Preprint, arXiv:2503.06520.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2024.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. Preprint,
arXiv:2310.02255.

https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2504.11468
https://arxiv.org/abs/2504.11468
https://arxiv.org/abs/2504.11468
https://github.com/Deep-Agent/R1-V
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.17352
https://arxiv.org/abs/2503.17352
https://arxiv.org/abs/2503.17352
https://arxiv.org/abs/2503.17352
https://arxiv.org/abs/2503.17352
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2312.11370
https://arxiv.org/abs/2312.11370
https://arxiv.org/abs/2312.11370
https://arxiv.org/abs/2312.11370
https://arxiv.org/abs/2312.11370
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2503.06520
https://arxiv.org/abs/2503.06520
https://arxiv.org/abs/2503.06520
https://arxiv.org/abs/2503.06520
https://arxiv.org/abs/2503.06520
https://arxiv.org/abs/2310.02255
https://arxiv.org/abs/2310.02255
https://arxiv.org/abs/2310.02255

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

OpenAl. 2024. Openai ol system card. Preprint,
arXiv:2412.16720.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2024. Recursive introspection: Teaching lan-
guage model agents how to self-improve. Preprint,
arXiv:2407.18219.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728—
53741.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham
Kakade, Dean Foster, and Udaya Ghai. 2025.
Mind the gap: Examining the self-improvement
capabilities of large language models. Preprint,
arXiv:2412.02674.

Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu,
Fangzhen Lin, and Wenhu Chen. 2025. Vl-rethinker:
Incentivizing self-reflection of vision-language
models with reinforcement learning. Preprint,
arXiv:2504.08837.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language

models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Xuezhi Wang and Denny Zhou. 2024. Chain-of-thought
reasoning without prompting. In Advances in Neural
Information Processing Systems, volume 37, pages
66383-66409. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS °22,
Red Hook, NY, USA. Curran Associates Inc.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025a. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. Preprint,
arXiv:2503.18892.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025b. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. Preprint,
arXiv:2503.18892.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu,
Xikun Zhang, Shijian Lu, and Dacheng Tao. 2025.
R1-vl: Learning to reason with multimodal large
language models via step-wise group relative policy
optimization. Preprint, arXiv:2503.12937.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao
Cheng, Tianyi Zhou, and Cho-Jui Hsieh. 2025. R1-
zero’s "aha moment" in visual reasoning on a 2b
non-sft model. Preprint, arXiv:2503.05132.

https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2412.02674
https://arxiv.org/abs/2412.02674
https://arxiv.org/abs/2412.02674
https://arxiv.org/abs/2504.08837
https://arxiv.org/abs/2504.08837
https://arxiv.org/abs/2504.08837
https://arxiv.org/abs/2504.08837
https://arxiv.org/abs/2504.08837
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2024/file/7a8e7fd295aa04eac4b470ae27f8785c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7a8e7fd295aa04eac4b470ae27f8785c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7a8e7fd295aa04eac4b470ae27f8785c-Paper-Conference.pdf
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.12937
https://arxiv.org/abs/2503.12937
https://arxiv.org/abs/2503.12937
https://arxiv.org/abs/2503.12937
https://arxiv.org/abs/2503.12937
https://arxiv.org/abs/2503.05132
https://arxiv.org/abs/2503.05132
https://arxiv.org/abs/2503.05132
https://arxiv.org/abs/2503.05132
https://arxiv.org/abs/2503.05132

A Appendix

Verifier Prompt

Now you act as a judge, helping me determine which of the <length> texts I
provide better answers the question.

Question: <question>

Repsonse: <response>

Please strictly follow the following format requirements when outputting, and
don’t have any other unnecessary words.

Output format: "I choose response [number] because"”

AHA Search Prompt

Below is a chain-of-reasoning generated by a Language Model when attempting to
solve a math problem. Evaluate this chain-of-reasoning to determine whether it
demonstrates beneficial problem-solving behaviors that deviate from typical
linear, monotonic reasoning patterns commonly observed in language models.
<start_of_reasoning> <RESPONSE> <end_of_reasoning>

Specifically, actively identify and emphasize beneficial behaviors such as:

m Explicitly revising approaches upon identifying errors or
dead ends (e.g., "This approach won’t work because...”).
(2) Systematically checking intermediate results or reasoning

steps (e.g., "Let’s verify this result by...").

Additionally, remain attentive to and encourage the identification of other
beneficial behaviors not explicitly listed here, such as creative analogies,
abstraction to simpler cases, or insightful generalizations.

Important:

Clearly specify each beneficial behavior you identify.

If there is strong example of this, provide <YES> followed by specific
explanations. Otherwise, provide <NO>

A positive response example:

<YES> This contains and , respectively from "example
quote” and "example quote”

A negative response example, no further explanation is needed at all, SIMPLY
return <NO>:

<NO>

MathVista Parser Prompt

Please read the following example. Then extract the answer from the model
response and type it at the end of the prompt.

Hint: Please answer the question requiring an integer answer and provide the
final value, e.g., 1, 2, 3, at the end. Question: Which number is missing?
Model response: The number missing in the sequence is 14.

Extracted answer: 14

Hint: Please answer the question requiring a floating-point number with one
decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end.
Question: What is the fraction of females facing the camera?

Model response: The fraction of females facing the camera is 0.6, which means
that six out of ten females in the group are facing the camera.

Extracted answer: 0.6

Hint: Please answer the question requiring a floating-point number with two
decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the
end. Question: How much money does Luca need to buy a sour apple candy and a
butterscotch candy? (Unit: $)

Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch
candy.

Extracted answer: 1.45

Hint: Please answer the question requiring a Python list as an answer and
provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.
Question: Between which two years does the line graph saw its maximum peak?
Model response: The line graph saw its maximum peak between 2007 and 2008.
Extracted answer: [2007, 2008]

Hint: Please answer the question and provide the correct option letter, e.g.,
A, B, C, D, at the end. Question: What fraction of the shape is blue?Choices:
(A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5

Model response: The correct answer is (B) 8/11.

Extracted answer: B

<query><response>

11

	Introduction
	Related Works
	LLM/VLM, Reinforcement Learning for Reasoning
	Inference-Time Scaling

	Methodology
	Inference-time Scaling Methods
	Reinforcement Learning for VLMs
	Decoding Methods for VLMs

	Evaluating Decoding Methods
	Self-Verification in Vision Language Models
	Finding 'aha moment'

	Experiment
	Dataset
	Inference Setup
	Discussion

	Conclusion
	Limitations
	Appendix

