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Abstract
The discipline of physics stands as a corner-001
stone of human intellect, driving the evolution002
of technology and deepening our understand-003
ing of the fundamental principles of the cos-004
mos. Contemporary literature includes some005
works centered on the task of solving physics006
problems—a crucial domain of natural lan-007
guage reasoning. In this paper, we evalu-008
ate the performance of frontier LLMs in solv-009
ing physics problems, both mathematical and010
descriptive. We also employ a plethora of011
inference-time techniques and agentic frame-012
works to improve the performance of the mod-013
els. This includes the verification of proposed014
solutions in a cumulative fashion by other,015
smaller LLM agents, and we perform a com-016
parative analysis of the performance that the017
techniques entail. There are significant im-018
provements when the multi-agent framework019
is applied to problems that the models initially020
perform poorly on. Furthermore, we introduce021
a new evaluation benchmark for physics prob-022
lems, PHYSICSEVAL, consisting of 19,609023
problems sourced from various physics text-024
books and their corresponding correct solu-025
tions scraped from physics forums and educa-026
tional websites.027

1 Introduction028

In the preliminary stages of development, LLMs029

predominantly exhibited a spuriously correlated030

reliance on rapid, intuitive processing. As per the031

dual-process theory by Kahneman (2011)—that032

posits a fundamental dichotomy between fast, in-033

tuitive (System 1) and slower, deliberate (System034

2) modes of thought—the inherent System 1 bias035

of nascent LLMs presented a fundamental weak-036

ness in their ability to engage in complex, multi-037

step reasoning. With the advent of prompting038

techniques such as Chain-of-Thought (CoT) and039

Tree-of-Thought (ToT), LLMs have bridged this040

gap and made significant improvements in logical041

reasoning tasks (Wei et al., 2023; Yao et al., 2023).042

Problem:

At what rate does the Sun emit photons? For simplicity,
assume that the Sun’s entire emission at the rate of 3.9×
1026 W is at the single wavelength of 550 nm.

Solution:

1. Describe the expression of photon energy.
The energy E of a photon of wavelength λ is given by,

E =
hc

λ

Here, h is Planck’s constant, and c is the speed of light.

2. Determine the rate of emission of the photon.
Assume that the photons are emitted by a rate R from
the sodium lamp. Then, the power P of the sodium lamp
is equal to the product of rate R and the energy of each
photon E.

P = RE ⇒ P = R
hc

λ
⇒ R =

Pλ

hc
(1)

Substitute the below values in Equation 1.
P = 3.9× 1026 W
λ = 590 nm
h = 6.626× 10−34 Js
c = 3× 108 m/s
Therefore, the rate of emitted photons from the Sun is:

R =
(3.9× 1026 W) · (550× 10−9 m)

(6.626× 10−34 Js) · (3.00× 108 m/s)

= 1.08× 1045 photons/s

Figure 1: Example of an astrophysics problem from the
PHYSICSEVAL benchmark.

Despite substantial progress in mathematical prob- 043

lem solving, large language models continue to 044

face significant challenges in accurately reasoning 045

through physics problems. Google’s generative AI 046

chatbot Bard, based on LaMDA (Thoppilan et al., 047

2022) and PaLM (Chowdhery et al., 2023) mod- 048

els, ranked in the bottom 2% of test takers on the 049

Physics GRE (Gupta, 2023). 050

Most research works in recent literature pertain- 051

ing to improved performance of LLMs in physics 052

include specialized training techniques, such as 053

1



the method proposed by Anand et al. (2024b).054

These approaches primarily falter because the055

LLMs often commit mishaps during their reason-056

ing process, including calculation mistakes, mis-057

interpretation of physical scenarios, and dimen-058

sional inconsistencies (Ding et al., 2023a). How-059

ever, upon adoption of proper prompting heuris-060

tics, these mistakes are susceptible to being de-061

tected during inference time by LLMs (Pang et al.,062

2025). This necessitates either a self-correcting063

framework or an agentic framework with checks064

and balances that can detect and reconcile the cor-065

rigible aspects of a solver model’s response. To066

this end, we utilize a self-refinement technique,067

where the solver LLM checks its own answer once068

before generating the final response. In the same069

vein, we explore different agentic systems where070

we include a separate, smaller group of LLM071

agent(s) whose purpose is to review the answer of072

the solver LLM and provide feedback on probable073

errors. This method aims to reduce computational074

overhead while providing an unbiased assessment,075

addressing the tendency of LLMs to accept their076

own outputs as correct unless explicitly fine-tuned077

otherwise (Kadavath et al., 2022). Moreover, this078

framework enables the use of commercial LLMs079

for problem-solving while delegating verification080

to open-source models, thereby minimizing finan-081

cial overhead via API usage.082

In order to facilitate rigorous evaluation083

of physics reasoning in LLMs, we introduce084

PHYSICSEVAL, an evaluation benchmark com-085

prising 19,609 physics problems and their elab-086

orated solutions. This dataset is curated by087

scraping problems and initial solutions from on-088

line educational forums, followed by a polish-089

ing phase via Google’s Gemini 2.5 Pro (Google090

DeepMind, 2025) to generate detailed, step-by-091

step explanations. From this collection, we ran-092

domly sample 10% (≈ 1,961 problems) to as-093

sess the performance of frontier LLMs across094

four inference-time techniques: baseline infer-095

ence, self-correction, single-verifier cumulative096

reasoning, and a multi-agent review framework.097

The remaining problems are reserved for future098

model training or fine-tuning efforts.099

2 Related Work100

The natural language reasoning domain is now101

confronted with the non-trivial problem, which is102

that the established mathematical benchmarks are103

proving to be insufficient. As foundation mod- 104

els like OpenAI’s o1 (Jaech et al., 2024) begin to 105

master these evaluations—a challenge anticipated 106

by Phan et al. (2025) who proposed Humanity’s 107

Last Exam—it becomes important to distinguish 108

between mere pattern matching and genuine sci- 109

entific reasoning. Consequently, the field must 110

evolve toward better evaluation benchmarks, not 111

simply to measure capability, but to compel these 112

models to grapple with the kind of difficult prob- 113

lems that actually constitute meaningful progress. 114

The evaluation of LLMs in mathematical reason- 115

ing has been characterized by a progressive es- 116

calation in benchmark difficulty, driven by ad- 117

vancing model capabilities. Foundational datasets 118

like MAWPS (Koncel-Kedziorski et al., 2016), 119

SVAMP (Patel et al., 2021), ParaMAWPS (Raiyan 120

et al., 2023), GSM8K (Cobbe et al., 2021), and 121

MATH (Hendrycks et al., 2021), which cover up 122

to undergraduate-level content, have been largely 123

surmounted by contemporary models. This perfor- 124

mance plateau has spurred the creation of a new 125

tier of challenges. More recent benchmarks, in- 126

cluding HARDMath (Fan et al.), OlympiadBench 127

(He et al., 2024), PutnamBench (Tsoukalas et al., 128

2024), and FrontierMath (Glazer et al., 2024), rep- 129

resent this next frontier, introducing complex uni- 130

versity and olympiad-level problems to continue 131

probing the limits of the most advanced systems. 132

Likewise, it is necessary to move beyond ad 133

hoc mathematical problem-solving to evaluate rea- 134

soning grounded in the physical world. The do- 135

main of physics requires models to integrate an 136

understanding of fundamental laws and real-world 137

principles with the capacity for complex, multi- 138

step deductions. Consequently, there is a clear 139

imperative for specialized benchmarks tailored 140

to the unique complexities of advanced physics 141

reasoning. The evolution of physics-reasoning 142

benchmarks for LLMs has progressed systemati- 143

cally from rudimentary problem collections to so- 144

phisticated assessment frameworks that evaluate 145

multidimensional aspects of physics comprehen- 146

sion. Initial efforts, exemplified by PhyQA (Ding 147

et al., 2023b) and UGPhysics (Xu et al., 2025), 148

established foundational benchmark suites com- 149

prising thousands of structured introductory prob- 150

lems purported to assess basic conceptual under- 151

standing. Subsequently, more advanced evalua- 152

tion instruments such as PhysBench (Qiu et al., 153

2025) and PhysReason (Zhang et al., 2025) in- 154
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Benchmark Size Knowledge Question Solution

Type Avg. Tokens Step-by-step Avg. Tokens Avg. Steps

JEEBench 123 CEE OE, MC 169.7 ✕ - -
MMLU-Pro 1,299 COL MC 52.1 ✓ - -
GPQA 227 PH.D. OE 111.4 ✕ 197.2 3.6
SciEval 1,657 - OE, MC 154.5 ✕ - -
SciBench 295 COL OE 80.5 ✕ 315.9 2.8
MMMU 443 COL OE, MC 53.8 ✕ - -
ScienceQA 617 K1-K12 MC 13.3 ✕ 63.0 2.4
OlympiadBench 2,334 COMP OE 222.0 ✕ 199.8 3.7
EMMA 156 - MC 109.5 ✕ - -
PhysReason 1,200 CEE+COMP OE 226.3 ✓ 441.3 8.1
UGPhysics 11,040 COL OE, MC 82.4 ✓ 318.5 -

PHYSICSEVAL 19,609 CEE+COL+COMP OE 98.8 ✓ 3830.8 3.9

Table 1: Comparison of PHYSICSEVAL with various other physics reasoning benchmarks. For the "Knowledge"
column: COMP refers to Competition level, COL to College level, CEE to College Entrance Examination, K1-K12
to elementary and high school levels, and PH.D. to Doctor of Philosophy. For the "Question Type" column: OE
denotes open-ended questions, while MC stands for multiple-choice questions.

troduced complex problem formulations requiring155

extended reasoning chains and multi-step analyt-156

ical processes. Contemporary benchmark devel-157

opment has culminated in research-oriented as-158

sessment suites such as TP-Bench (Chung et al.,159

2025) and CURIE (Cui et al., 2025), multi-modal160

frameworks like MMPhyQA (Anand et al., 2024a)161

that incorporate visual reasoning components, and162

specialized domain-specific instruments including163

FEABench (Mudur et al., 2025).164

With the intent of eliciting sound reasoning in165

LLMs for problem-solving, researchers have pro-166

posed various methods that try to emulate the167

thought processes of humans. Cumulative Rea-168

soning (CR) by Zhang et al. (2023), in an iterative169

fashion involving proposer and verifier LLMs, de-170

composes problems into smaller and more man-171

ageable subproblems and utilizes premises from172

previous iterations to enhance LLM reasoning.173

Other works explore self-improvement through174

verification feedback for better LLM capabili-175

ties across diverse domains, including reasoning176

(Shinn et al., 2023; Hong et al., 2024) and security177

(Li et al., 2024; Cao et al., 2024). Specifically for178

physics reasoning, Physics Reasoner (Pang et al.,179

2025) adopts knowledge-augmentation to facili-180

tate germane formula retrieval, in order to have a181

properly guided reasoning stage. They also find182

that the incorporation of checklists acts as a good183

buttress for LLMs’ self-improvement.184

3 PHYSICSEVAL Benchmark185

To test our inference-time techniques, we curate a186

new dataset of physics problems, namely PHYSIC-187

SEVAL. We compile problems and solutions from188

various textbooks, spanning from high school to189

university levels. The list of physics books from 190

which we source the problems is provided in the 191

Appendix C.3. We then use the Gemini 2.5 Pro 192

model by Google1 to elaborate the solutions into 193

logical steps and sub-steps. The categories of the 194

problems and their key topics are also extracted. 195

Consequently, we are left with a dataset of size 196

19,609. We partition this dataset into a train set 197

and a test set, maintaining a 90:10 split. 198

Table 1 depicts a statistical comparison of 199

PHYSICSEVAL with the physics reasoning bench- 200

marks in the existing literature. For the sake of 201

brevity, a complete description of PHYSICSEVAL, 202

including sources, format, examples, comparisons 203

with other datasets, statistics, etc., can be found in 204

Appendix C. 205

4 Methodology 206

4.1 Multi-Agent Review Framework 207

One of the techniques that we use to try to im- 208

prove the performance of the LLMs is to have sev- 209

eral smaller models review their proposed solu- 210

tions. The subsections delineated below describe 211

this technique in more detail. The method is illus- 212

trated in Figure 2. 213

4.1.1 Proposer Module 214

Given a set of physics problems Q = 215

{q1, q2, . . . , qN}, the proposer model Pθ, in- 216

stantiated as a powerful LLM (such as, Openai’s 217

o4-mini or Gemini 2.5 Pro), generates an initial 218

set of solutions S(0) = {s(0)1 , s
(0)
2 , . . . , s

(0)
N }, 219

where each solution is sampled according to 220

1https://blog.google/technology/google-deepm
ind/gemini-model-thinking-updates-march-2025/
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Proposed
Solution

Proposer
o4-mini

Review
Verifier

Phi-4-reasoning-plus

Review
Verifier
Qwen3-14B

Review
Verifier

DeepSeek-R1-Distill-Qwen-14B

Aggregated Feedback

Meta Verifier
Qwen3-32B

Problem Solution

Figure 2: An overview of the multi-agent review model. The model names are, of course, subject to shuffling.

s
(0)
i ∼ Pθ(· | qi). This zero-feedback stage con-221

stitutes the base output from which all subsequent222

verification and refinement occurs.223

4.1.2 Verifier Module224

To assess the quality of initial solutions gener-225

ated by the proposer model, we employ a set of226

three large language models—Microsoft’s Phi-4-227

reasoning-plus (Abdin et al., 2024), Qwen3-14B228

(Yang et al., 2025), and DeepSeek-R1 14B (Guo229

et al., 2025) —as independent verifiers. These230

models operate with fine-tuning and evaluate each231

proposed solution against the original problem232

statement.233

Each verifier produces a structured evaluation234

comprising six scores, each ranging from 0 to235

5, based on the manually engineered rubrics, in-236

spired by Docktor et al. (2016), outlined in Sec-237

tion 4.4. A weighted average of these scores238

yields a final scalar score, with greater emphasis239

placed on formulation (0.25), numerical correct-240

ness (0.30), and logical consistency (0.25). The re-241

maining weights are: completeness (0.10), valid-242

ity of assumptions (0.05), and clarity (0.05). The243

aggregated score provides a quantitative measure244

of solution quality, while the individual compo-245

nent scores offer interpretable feedback, which is246

later utilized by the meta-verifier for cross-verifier247

analysis and refinement. Each verifier identifies248

and records perceived mistakes in the proposer’s249

solution, maintaining them in a structured mistake250

list.251

4.1.3 Meta-Verifier Module252

The meta-verifier module, Qwen3-32B by Yang253

et al. (2025), receives the test set questions, pro-254

poser solutions, and responses from three inde-255

pendent verifiers. The main task of the meta-256

verifier is to filter out irrelevant or false mistakes.257

Since the verifiers are independent, some mistakes258

flagged by one verifier may be irrelevant to the ac- 259

tual problem or inaccurate in the context of the so- 260

lution. The meta-verifier assesses the validity of 261

these mistakes by comparing them across all three 262

verifiers and retains only those that are relevant 263

and consistent. After filtering the mistakes, the 264

meta-verifier aggregates the scores from all three 265

verifiers into a final score using the weighted sum 266

in Equation 2. 267

r
(final)
i = 0.5× r

(Phi-4)
i + 268

0.3× r
(DeepSeek-R1)
i + 0.2× r

(Qwen3-14B)
i (2) 269

This final aggregated score reflects the overall 270

quality of the proposer’s solution for each ques- 271

tion qi. The weights were chosen based on the 272

anecdotally observed quality and accuracy of each 273

model’s review responses. The meta-verifier’s 274

output consists of: 275

Aggregated Mistakes List: A refined list of mis- 276

takes that have been validated across all 3 verifiers. 277

Aggregated Score: A weighted average of the in- 278

dividual scores from the 3 verifiers, reflecting the 279

overall quality of the proposer’s solution. This re- 280

fined approach helps improve the robustness and 281

accuracy of the evaluation, guiding further refine- 282

ment of the proposer’s solutions based on reliable 283

and consistent feedback. 284

4.2 Experimental Setup 285

We use a total of six frontier LLMs to solve 1,962 286

physics problems from the test split of PHYSIC- 287

SEVAL. The generated solutions are the base solu- 288

tions or proposed solutions. 289

4.2.1 Self-refining 290

After receiving the proposed answer from the 291

solver LLM, we provide its own solution and ques- 292

tion again with the following additional metacog- 293

nitive prompt: “You are a Physics Professor. 294
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Outline the physics principles of the295

given problem, and please check your own296

answers for any mistakes, then answer297

again." The generated answer is henceforth con-298

sidered the final answer.299

4.2.2 Single-Agent Review300

After receiving the proposed answer from the301

solver LLM, we get another LLM, namely302

Qwen3-32B, to analyze the question-answer pair303

and generate a list of probable mistakes. If any304

mistakes are found, we provide this list as addi-305

tional information and the solver model’s own so-306

lution to the solver model itself, and prompt it to307

solve the problem again.308

4.2.3 Multi-Agent Review309

We have the reviewer agents generate a list of mis-310

takes for every pair of problem and solution. The311

meta-verifier agent then compiles these mistakes312

into a single list. These mistakes are then sent313

to the solver LLM along with its previous solu-314

tion, and a new solution is requested, albeit only315

if the meta-reviewer finds any mistakes. A sample316

Multi-Agent Review conversation can be found in317

Appendix B.318

4.3 Performance Evaluation and Metrics319

For a thorough evaluation of our inference-time320

techniques and comparison to baseline LLM per-321

formance, we use a comprehensive, multi-layered322

method. This approach breaks down the problem-323

solving process into key components essential324

for success in physics, enabling both detailed325

and overall assessment. Each solution gener-326

ated by the different LLM configurations (base-327

line, w/ self-refinement, w/ single-agent verifi-328

cation, and w/ multi-agent verification) is evalu-329

ated against the ground-truth solution in PHYSIC-330

SEVAL. These ground-truth solutions, derived331

from established textbook explanations and fur-332

ther elaborated by domain experts for clarity on333

step-by-step reasoning, serve as the definitive ref-334

erence for correctness and methodology.335

4.4 Rubric Engineering for Evaluation336

The evaluation is conducted across six core qual-337

itative and quantitative criteria (similar to the cri-338

teria used by the verifier module in multi-agent-339

verification as shown in Subsection 4.1.2) denoted340

as Mk where k ∈ {1, . . . , 6}. Each criterion is341

scored on a Likert scale from 1 to 5 (where 5 rep- 342

resents the highest quality): 343

Mathematical Accuracy (SMA): Assesses the 344

correctness of calculations, numerical answers, 345

units, and appropriate presentation, strictly in 346

comparison to the ground-truth answer. 347

Logical Consistency (SLC): Evaluates the sound- 348

ness of the step-by-step reasoning and its align- 349

ment with physics principles and the ground-truth 350

solution’s logic. 351

Completeness (SC): Measures whether all parts 352

of the problem, as scoped and addressed by the 353

ground-truth solution, were fully addressed. 354

Clarity and Coherence (SCC): Judges the clarity, 355

conciseness, organization, and ease of understand- 356

ing of the AI’s explanation and use of terminology. 357

Formulas and Principles (SFP): Determines if 358

the correct physical formulas and principles were 359

identified, stated, and applied appropriately by the 360

AI, consistent with the problem’s framing in the 361

ground-truth. 362

Assumptions Made (SA): Assesses whether the 363

a priori assumptions were clearly stated, justi- 364

fied, reasonable for the problem context, and did 365

not contradict limitations identified by the ground- 366

truth. 367

The score for a given solution j on metric k is de- 368

noted as sj,k ∈ [1, 5]. 369

4.5 Physics Proficiency Score (PPS) 370

To capture overall problem-solving ability, we 371

define a Physics Proficiency Score (PPS)—a 372

weighted average of six key evaluation metrics. 373

For a given solution j, PPS is calculated as: 374

PPSj =

6∑
k=1

wk · sj,k (3) 375

where, sj,k denotes the score for solution j on met- 376

ric k, and wk is the weight assigned to metric k. 377

The weights reflect the importance of each met- 378

ric in solving physics problems accurately. These 379

are shown in Table 3. This scoring system empha- 380

sizes correctness—especially math, logic, and the 381

proper use of physical principles. Completeness 382

and sound assumptions also matter, while clarity 383

is valued but given less weight. The final PPS is a 384

value that is normalized to be ∈ [0, 100]. 385

4.6 Evaluation Approach Justification 386

We use a detailed evaluation framework to closely 387

analyze LLM problem-solving by identifying spe- 388
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Easy (1-4) Medium (5-7) Hard (8-10)

Model Baseline Self-Refine Single-Agent Multi-Agent Baseline Self-Refine Single-Agent Multi-Agent Baseline Self-Refine Single-Agent Multi-Agent

DeepSeek-R1 90.6 92.7 93.3 94.1 80.8 84.4 83.1 83.4 72.9 73.7 74.7 72.7
Gemma 3 27B 86.9 85.7 86.4 87.6 55.8 56.5 59.4 59.1 41.5 40.4 39.1 40.6
Llama 4 Maverick 91.5 90.5 92.0 92.9 83.6 82.0 82.6 82.4 55.2 54.0 57.9 52.1
Phi-4-reasoning-plus 84.4 94.4 93.2 94.7 86.9 92.2 93.4 93.9 80.1 83.4 83.8 87.6
QwQ-32B 93.7 94.0 94.2 94.6 80.9 80.8 81.1 81.9 63.9 68.6 63.5 71.0
o4-mini 86.7 82.6 85.9 86.8 87.3 86.4 87.0 88.2 83.6 82.3 84.1 85.4

Average 88.96 89.98 90.83 91.78 79.21 80.38 81.10 81.48 66.20 67.06 67.18 68.23

Table 2: Average PPS score on PHYSICSEVAL across frontier LLMs, stratified by problem difficulty and inference
method. The "Average" row summarizes results. Higher scores are better. The best-performing method for each
model and difficulty tier is highlighted in bold.

Metric Component Weight (wk)

Mathematical Accuracy (wMA) 0.30
Logical Consistency (wLC) 0.25
Formulas and Principles (wFP) 0.20
Completeness (wC) 0.10
Assumptions Made (wA) 0.10
Clarity and Coherence (wCC) 0.05

Total 1.00

Table 3: Weights for Physics Proficiency Score (PPS)
sub-metrics

cific strengths and weaknesses. It emphasizes key389

physics reasoning skills like logic, modeling, and390

quantitative analysis. Structured rubrics and ref-391

erence solutions help ensure consistent scoring,392

balancing objectivity with the subjective nature of393

some judgments. Weighted scores allow for well-394

rounded comparisons that align with physics ed-395

ucation goals. The framework also supports in-396

depth error analysis by highlighting reasoning pat-397

terns beyond just right or wrong answers.398

4.7 Evaluation Process399

Solutions were evaluated using Gemini 2.5 Pro.400

The LLM was provided with a detailed scor-401

ing rubric, the ground-truth solution, and the AI-402

generated solution for each problem. The eval-403

uation prompt provided to Gemini 2.5 Pro was404

designed to ensure strict comparison against the405

ground truth. This prompt guided the assignment406

of scores (1–5 for sub-metrics).407

4.8 Statistical Analysis408

The collected scores (both for individual metrics409

sj,k and the aggregated PPSj) are analyzed using410

descriptive statistics (mean, median, standard de-411

viation) for each metric and each LLM configura-412

tion. Performance is also analyzed across different413

physics categories and problem complexity levels414

(proxied by solution length). Table 2 portrays the415

results yielded by all the pertinent models when416

evaluated on our PHYSICSEVAL benchmark.417

5 Results Analysis 418

5.1 Key Findings 419

The evaluation results on the PHYSICSEVAL 420

benchmark, as delineated in Table 2, reveal sev- 421

eral key insights into the effectiveness of different 422

agent-based inference methods. 423

Agent-Based Critique Consistently Improves 424

Performance: A primary observation across all 425

models and difficulty tiers is the general trend 426

of performance improvement with more sophis- 427

ticated methods. On average, the vanilla Base- 428

line scores are the lowest, followed by incremen- 429

tal gains from Self-Refine, Single-Agent critique, 430

and finally the Multi-Agent framework, which 431

achieves the highest average scores across Easy 432

(91.78), Medium (81.48), and Hard (68.23) prob- 433

lems. This demonstrates that external critique is 434

a more reliable enhancement strategy than simple 435

self-correction. 436

Gains from Multi-Agent System Amplify 437

with Problem Difficulty: While all methods ex- 438

perience a performance drop as problems become 439

harder, the advantage of the Multi-Agent system 440

over the Baseline becomes more pronounced. For 441

instance, on Hard problems, Phi-4-reasoning-plus 442

gains 7.5 points with the Multi-Agent method over 443

its baseline, and QwQ-32B gains 7.1 points. This 444

suggests that the collaborative verification and 445

feedback process is particularly valuable for tack- 446

ling complex reasoning tasks where a single model 447

is more likely to fail. 448

The effectiveness of each method is highly 449

dependent on the underlying model. Phi-4- 450

reasoning-plus stands out as the top-performing 451

model, achieving the highest scores in 7 of the 452

12 categories. It benefits significantly from all 453

advanced methods, showcasing a strong capac- 454

ity for both self-correction and assimilating ex- 455

ternal feedback. o4-mini also proves to be a ro- 456

bust model, establishing the highest baseline for 457
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Comparison Metric Weight t-statistic p-value Significant (p < 0.05)?

Single Agent vs. Baseline Overall PPS 1.00 -0.01 9.96e-01 False
Single Agent vs. Baseline Mathematical Accuracy 0.30 0.89 3.73e-01 False
Single Agent vs. Baseline Logical Consistency 0.25 0.35 7.29e-01 False
Single Agent vs. Baseline Completeness 0.10 -2.36 1.82e-02 True
Single Agent vs. Baseline Clarity And Coherence 0.05 -3.31 9.65e-04 True
Single Agent vs. Baseline Formulas Principles 0.20 0.29 7.69e-01 False
Single Agent vs. Baseline Assumptions Made 0.10 -1.23 2.20e-01 False

Multi-Agent Review vs. Baseline Overall PPS 1.00 2.05 4.05e-02 True
Multi-Agent Review vs. Baseline Mathematical Accuracy 0.30 2.77 5.70e-03 True
Multi-Agent Review vs. Baseline Logical Consistency 0.25 1.08 2.78e-01 False
Multi-Agent Review vs. Baseline Completeness 0.10 -1.44 1.50e-01 False
Multi-Agent Review vs. Baseline Clarity And Coherence 0.05 -1.79 7.39e-02 False
Multi-Agent Review vs. Baseline Formulas Principles 0.20 2.50 1.26e-02 True
Multi-Agent Review vs. Baseline Assumptions Made 0.10 1.50 1.34e-01 False

Table 4: Statistical significance of performance improvements for o4-mini. Results with a p-value < 0.05 are
considered statistically significant.

Ea
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-3

)

M
ed
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m

 (4
-6

)

Ha
rd

 (7
-1

0)

Problem Difficulty Tier
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Figure 3: Category-specific impact of the Multi-Agent Review framework across all the scoring rubrics for o4-
mini.

Medium and Hard problems and showing consis-458

tent improvement with agent-based methods.459

A notable and counter-intuitive finding is that460

the Self-Refine process can harm performance.461

For models like Gemma 3 27B and Llama 4462

Maverick, self-refinement consistently resulted in463

lower scores compared to their own baseline464

across all difficulty levels. This indicates that465

without external guidance, a model’s attempt to466

"double-check" its work can introduce new errors467

or reinforce incorrect initial assumptions, making468

it an unreliable strategy for certain architectures.469

5.2 Results Analysis and Discussion470

In order to delve deeper into the performance anal-471

ysis on PHYSICSEVAL, we keep OpenAI’s o4-472

mini under the limelight. A detailed examination473

of the model’s performance on PHYSICSEVAL re-474

veals a nuanced relationship between the model’s 475

inherent capabilities and the efficacy of agent- 476

based refinement methods. The model exhibits 477

a formidable baseline proficiency, with an initial 478

PPS of 85.88, underscored by particularly high 479

scores in Clarity and Coherence (4.76) and For- 480

mulas/Principles (4.59). This suggests the model’s 481

native strength lies in articulating solutions clearly 482

and correctly identifying the underlying physics. 483

However, the Self-Refined approach proved detri- 484

mental, leading to a notable decline in the over- 485

all PPS to 84.58. A closer look at the sub-metrics 486

uncovers that while Mathematical Accuracy saw 487

a slight improvement (4.17 to 4.22), this came at 488

a significant cost to Completeness (4.56 to 4.40) 489

and Clarity (4.76 to 4.54). This paradox indicates 490

that without external guidance, the model’s at- 491

tempt to self-correct can disrupt the solution’s log- 492
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ical structure and narrative coherence. In contrast,493

while the Single Agent method offered negligible494

improvement, the Multi-Agent Review emerges495

as the only method to yield a definitive perfor-496

mance enhancement, elevating the PPS to 86.84.497

This gain is not merely marginal but is driven498

by targeted improvements in the model’s weak-499

est areas—Mathematical Accuracy (4.24), Log-500

ical Consistency (4.56), and Assumptions Made501

(4.43)—while largely preserving its strong base-502

line clarity. This finding powerfully suggests that503

for a highly capable model like o4-mini, further504

advancement is not achieved through simple self-505

correction but through a robust, consensus-driven506

verification process that can surgically address507

specific logical and computational flaws without508

compromising the solution’s overall quality.509

5.2.1 Category-Specific Impact of the510

Multi-Agent Framework511

The impact of Multi-Agent Review on o4-mini512

across different categories can be seen in Figure513

3. It reveals that the impact of multi-agent review514

on o4-mini’s performance is highly category- and515

rubric-dependent, with both substantial gains and516

notable degradations across physics domains and517

difficulty tiers. Noteworthy improvements are ob-518

served in categories such as Quantum Mechanics519

and Atomic Physics, Relativity and Gravitation,520

and Thermodynamics and Heat Transfer, particu-521

larly for hard problems and rubrics like Complete-522

ness and Formulas/Principles. Medium-difficulty523

problems in areas like Food Physics and Culinary524

Science and Optics, and Wave Phenomena also see525

dramatic gains in Clarity and Coherence. How-526

ever, the benefits are not universal: some cate-527

gories, including Acoustics and Sound Engineer-528

ing and Engineering and Applied Physics, experi-529

ence negative or inconsistent changes, especially530

for easier problems, and certain rubrics, such as531

Assumptions Made and Mathematical Accuracy,532

even show degradations in select domains. These533

results highlight that while multi-agent review can534

substantially enhance performance in specific con-535

texts—especially for complex, technical, or com-536

putationally intensive tasks—it may also intro-537

duce confusion or diminish quality in others, un-538

derscoring the need for more adaptive and context-539

aware review strategies. Additional details can be540

seen in Figure 4 in Appendix C.4.541

5.2.2 Statistical Significance of Performance 542

Changes 543

To evaluate the effectiveness of different 544

inference-time techniques, we perform paired 545

t-tests comparing each method against the o4- 546

mini baseline, using a significance threshold of 547

p < 0.05. The Single Agent method fails to 548

produce any statistically significant improve- 549

ment in Overall PPS (p = 0.996), and instead 550

shows significant degradations in Complete- 551

ness (p = 0.0182) and Clarity and Coherence 552

(p = 0.000965). This suggests that introduc- 553

ing a single external reviewer may negatively 554

impact the structural and narrative quality of 555

the generated solutions, potentially by injecting 556

inconsistent or insufficient feedback. On the other 557

hand, the Multi-Agent Review approach demon- 558

strated statistically significant improvements 559

in Overall PPS (p = 0.0405), Mathematical 560

Accuracy (p = 0.0057), and Formulas Princi- 561

ples (p = 0.0126). These gains indicate that 562

collaborative critique across multiple agents can 563

more effectively guide the model toward better 564

mathematical correctness and principled reason- 565

ing. Although improvements in other dimensions, 566

such as Logical Consistency and Completeness, 567

do not reach significance, the overall results 568

imply the advantage of multi-agent systems in 569

enhancing both the accuracy and interpretability 570

of the model’s solutions. 571

6 Conclusion 572

Our comprehensive evaluation of frontier LLMs 573

on the newly introduced PHYSICSEVAL bench- 574

mark demonstrates both the promise and the cur- 575

rent limitations of LLMs in the domain of physics 576

problem-solving. While baseline model perfor- 577

mance is already strong for many categories, 578

our experiments reveal that agentic inference- 579

time techniques—particularly multi-agent verifi- 580

cation—can yield substantial improvements, es- 581

pecially for challenging problems and in techni- 582

cal subfields where initial model outputs are less 583

reliable. However, these gains are not uniform 584

across all categories and rubrics, highlighting the 585

nuanced and context-dependent nature of collab- 586

orative critique. Our findings underscore the im- 587

portance of adaptive, category-aware strategies for 588

further advancing LLM capabilities in scientific 589

reasoning. We hope that PHYSICSEVAL will serve 590

as a valuable resource for the research community. 591
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Limitations592

One main limitation of our approach is the593

high computational cost. The multi-agent re-594

view method runs several models for each ques-595

tion, which increases processing time and resource596

use. This makes it less practical for real-time597

or low-resource settings. Moreover, our dataset,598

while large and varied, didn’t undergo full man-599

ual checking. The solutions are expanded using600

an LLM (Gemini 2.5 Pro), and only a small sam-601

ple is reviewed. This means there could be mis-602

takes in the data that affect model performance603

and evaluation. Due to the elaborate and descrip-604

tive nature of the ground truth, the evaluation of605

the solutions is largely LLM based. Lastly, while606

our methods work well for physics problems, they607

may not transfer easily to other STEM areas with-608

out changes or fine-tuning.609

Ethics Statement610

This work involves the use of publicly available611

large language models and does not include any612

human subjects, private data, or personally identi-613

fiable information. All physics problems are col-614

lected from publicly available sources, and care is615

taken to ensure that no copyrighted or proprietary616

content is used without proper attribution. The617

dataset partially relies on LLM-generated content618

for elaboration, which may introduce unintended619

biases or inaccuracies. We acknowledge this lim-620

itation and emphasize the importance of responsi-621

ble use and validation in downstream applications.622

The proposed multi-agent inference techniques623

aim to improve performance without retraining,624

allowing broader access to high-performing sys-625

tems. However, we recognize the increased com-626

putational cost associated with such approaches627

and encourage mindful deployment, especially in628

energy-sensitive or resource-constrained environ-629

ments. We support transparency and reproducibil-630

ity and plan to release the dataset and code where631

licensing permits.632

References633

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien634
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael635
Harrison, Russell J Hewett, Mojan Javaheripi, Piero636
Kauffmann, et al. 2024. Phi-4 technical report.637
arXiv preprint arXiv:2412.08905.638

Avinash Anand, Janak Kapuriya, Apoorv Singh, Jay639
Saraf, Naman Lal, Astha Verma, Rushali Gupta,640

and Rajiv Ratn Shah. 2024a. Mm-phyqa: Multi- 641
modal physics question-answering with multi-image 642
cot prompting. In Advances in Knowledge Discov- 643
ery and Data Mining: PAKDD 2024, Taipei, Tai- 644
wan, May 7–10, 2024, Proceedings, Part V, volume 645
14649 of Lecture Notes in Computer Science, pages 646
53–64, Singapore. Springer Singapore. 647

Avinash Anand, Kritarth Prasad, Chhavi Kirtani, Ash- 648
win R Nair, Mohit Gupta, Saloni Garg, Anurag Gau- 649
tam, Snehal Buldeo, and Rajiv Ratn Shah. 2024b. 650
Enhancing llms for physics problem-solving using 651
reinforcement learning with human-ai feedback. 652

Haim Baruh. 2015. Applied dynamics. CRC press 653
Boca Raton. 654

Richard E Berg and David G Stork. 2012. The physics 655
of sound. Pearson Education India. 656

Mary L Boas. 2006. Mathematical methods in the 657
physical sciences. John Wiley & Sons. 658

William D Callister and David G Rethwisch. 2022. 659
Fundamentals of materials science and engineering. 660
John Wiley & Sons. 661

Chentao Cao, Zhun Zhong, Zhanke Zhou, Yang Liu, 662
Tongliang Liu, and Bo Han. 2024. Envisioning out- 663
lier exposure by large language models for out-of- 664
distribution detection. In Proceedings of the 41st In- 665
ternational Conference on Machine Learning, vol- 666
ume 235 of Proceedings of Machine Learning Re- 667
search, pages 5629–5659. PMLR. 668

Sean M Carroll. 2004. An introduction to general rel- 669
ativity: spacetime and geometry. Addison Wesley, 670
101:102. 671

Yunus A Cengel and Afshin J Ghajar. 2014. Heat 672
and Mass Transfer (in SI units). Mcgraw-Hill 673
Education-Europe, London. 674

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 675
Maarten Bosma, Gaurav Mishra, Adam Roberts, 676
Paul Barham, Hyung Won Chung, Charles Sutton, 677
Sebastian Gehrmann, et al. 2023. Palm: Scaling lan- 678
guage modeling with pathways. Journal of Machine 679
Learning Research, 24(240):1–113. 680

Daniel JH Chung, Zhiqi Gao, Yurii Kvasiuk, Tianyi Li, 681
Moritz Münchmeyer, Maja Rudolph, Frederic Sala, 682
and Sai Chaitanya Tadepalli. 2025. Theoretical 683
physics benchmark (tpbench)–a dataset and study 684
of ai reasoning capabilities in theoretical physics. 685
arXiv preprint arXiv:2502.15815. 686

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 687
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 688
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 689
Nakano, Christopher Hesse, and John Schulman. 690
2021. Training verifiers to solve math word prob- 691
lems. arXiv preprint arXiv:2110.14168. 692

9

https://doi.org/10.1007/978-981-97-2262-4_5
https://doi.org/10.1007/978-981-97-2262-4_5
https://doi.org/10.1007/978-981-97-2262-4_5
https://doi.org/10.1007/978-981-97-2262-4_5
https://doi.org/10.1007/978-981-97-2262-4_5
http://arxiv.org/abs/2412.06827
http://arxiv.org/abs/2412.06827
http://arxiv.org/abs/2412.06827
https://proceedings.mlr.press/v235/cao24d.html
https://proceedings.mlr.press/v235/cao24d.html
https://proceedings.mlr.press/v235/cao24d.html
https://proceedings.mlr.press/v235/cao24d.html
https://proceedings.mlr.press/v235/cao24d.html


Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian693
Ma, Shutong Li, Maria Tikhanovskaya, Peter Chris-694
tian Nørgaard, Nayantara Mudur, Martyna Beata695
Plomecka, Paul Raccuglia, Yasaman Bahri, Vic-696
tor V. Albert, Pranesh Srinivasan, Haining Pan,697
Philippe Faist, Brian Rohr, Michael J. Statt, Dan698
Morris, Drew Purves, Elise Kleeman, Ruth Al-699
cantara, Matthew Abraham, Muqthar Mohammad,700
Ean Phing VanLee, Chenfei Jiang, Elizabeth Dorf-701
man, Eun-Ah Kim, Michael P. Brenner, Viren702
Jain, Sameera Ponda, and Subhashini Venugopalan.703
2025. Curie: Evaluating llms on multitask scien-704
tific long-context understanding and reasoning. In705
The Thirteenth International Conference on Learn-706
ing Representations (ICLR 2025), page –, Addis707
Ababa, Ethiopia. Accepted to ICLR 2025.708

Jingzhe Ding, Yan Cen, and Xinyuan Wei. 2023a.709
Using large language model to solve and explain710
physics word problems approaching human level.711

Jingzhe Ding, Yan Cen, and Xinyuan Wei. 2023b.712
Using large language model to solve and explain713
physics word problems approaching human level.714
arXiv preprint arXiv:2309.08182.715

Jennifer L Docktor, Jay Dornfeld, Evan Frodermann,716
Kenneth Heller, Leonardo Hsu, Koblar Alan Jack-717
son, Andrew Mason, Qing X Ryan, and Jie Yang.718
2016. Assessing student written problem solutions:719
A problem-solving rubric with application to intro-720
ductory physics. Physical review physics education721
research, 12(1):010130.722

Leah Edelstein-Keshet. 2005. Mathematical models in723
biology. SIAM.724

Jingxuan Fan, Sarah Martinson, Erik Y Wang, Kaylie725
Hausknecht, Jonah Brenner, Danxian Liu, Nianli726
Peng, Corey Wang, and Michael Brenner. Hard-727
math: A benchmark dataset for challenging prob-728
lems in applied mathematics. In The 4th Workshop729
on Mathematical Reasoning and AI at NeurIPS’24.730

Douglas C Giancoli. 2005. Physics: principles with731
applications, volume 1. Pearson Educación.732

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego733
Chicharro, Evan Chen, Alex Gunning, Caro-734
line Falkman Olsson, Jean-Stanislas Denain, An-735
son Ho, Emily de Oliveira Santos, et al. 2024.736
Frontiermath: A benchmark for evaluating ad-737
vanced mathematical reasoning in ai. arXiv preprint738
arXiv:2411.04872.739

Google DeepMind. 2025. Gemini 2.5 pro: Our most740
intelligent ai model. https://blog.google/tech741
nology/google-deepmind/gemini-model-think742
ing-updates-march-2025/. Accessed: 2025-07-743
27.744

David J Griffiths and Darrell F Schroeter. 2018. Intro-745
duction to quantum mechanics. Cambridge univer-746
sity press.747

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 748
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 749
rong Ma, Peiyi Wang, Xiao Bi, et al. 2025. 750
Deepseek-r1: Incentivizing reasoning capability in 751
llms via reinforcement learning. arXiv preprint 752
arXiv:2501.12948. 753

Pranav Gupta. 2023. Testing llm performance on the 754
physics gre: some observations. 755

David Halliday, Robert Resnick, and Jearl Walker. 756
2013. Fundamentals of physics. John Wiley & 757
Sons. 758

William H Hayt Jr and John A Buck. 2001. Engineer- 759
ing Electromagnetics Sixth Edition William H. Hayt, 760
Jr.. John A. Buck, 2001 The McGraw Companies. 761
The McGraw Companies. 762

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, 763
Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu- 764
jie Huang, Yuxiang Zhang, et al. 2024. Olympiad- 765
bench: A challenging benchmark for promoting agi 766
with olympiad-level bilingual multimodal scientific 767
problems. In Proceedings of the 62nd Annual Meet- 768
ing of the Association for Computational Linguistics 769
(Volume 1: Long Papers), pages 3828–3850. 770

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 771
Arora, Steven Basart, Eric Tang, Dawn Song, and 772
Jacob Steinhardt. 2021. Measuring mathematical 773
problem solving with the math dataset. In Thirty- 774
fifth Conference on Neural Information Processing 775
Systems Datasets and Benchmarks Track (Round 2). 776

Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong 777
Yu, and Changshui Zhang. 2024. A closer look at 778
the self-verification abilities of large language mod- 779
els in logical reasoning. In Proceedings of the 2024 780
Conference of the North American Chapter of the 781
Association for Computational Linguistics: Human 782
Language Technologies (Volume 1: Long Papers), 783
pages 900–925, Mexico City, Mexico. Association 784
for Computational Linguistics. 785

Aaron Jaech, Adam Kalai, Adam Lerer, Adam 786
Richardson, Ahmed El-Kishky, Aiden Low, Alec 787
Helyar, Aleksander Madry, Alex Beutel, Alex Car- 788
ney, et al. 2024. Openai o1 system card. arXiv 789
preprint arXiv:2412.16720. 790

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom 791
Henighan, Dawn Drain, Ethan Perez, Nicholas 792
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli 793
Tran-Johnson, Scott Johnston, Sheer El-Showk, 794
Andy Jones, Nelson Elhage, Tristan Hume, Anna 795
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, 796
Deep Ganguli, Danny Hernandez, Josh Jacobson, 797
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka- 798
mal Ndousse, Catherine Olsson, Sam Ringer, Dario 799
Amodei, Tom Brown, Jack Clark, Nicholas Joseph, 800
Ben Mann, Sam McCandlish, Chris Olah, and Jared 801
Kaplan. 2022. Language models (mostly) know 802
what they know. 803

10

https://arxiv.org/abs/2503.13517
https://arxiv.org/abs/2503.13517
https://arxiv.org/abs/2503.13517
http://arxiv.org/abs/2309.08182
http://arxiv.org/abs/2309.08182
http://arxiv.org/abs/2309.08182
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
http://arxiv.org/abs/2312.04613
http://arxiv.org/abs/2312.04613
http://arxiv.org/abs/2312.04613
https://doi.org/10.18653/v1/2024.naacl-long.52
https://doi.org/10.18653/v1/2024.naacl-long.52
https://doi.org/10.18653/v1/2024.naacl-long.52
https://doi.org/10.18653/v1/2024.naacl-long.52
https://doi.org/10.18653/v1/2024.naacl-long.52
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221


Daniel Kahneman. 2011. Thinking, Fast and Slow.804
Farrar, Straus and Giroux, New York, NY, USA.805

Laura Kay, Stacy Palen, and George Blumenthal. 2016.806
21st century astronomy. WW Norton & Company.807

Randall Dewey Knight. 2015. Physics for scientists808
and engineers. W. Ross MacDonald School Re-809
source Services Library.810

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate811
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:812
A math word problem repository. In Proceedings of813
the 2016 conference of the north american chapter814
of the association for computational linguistics: hu-815
man language technologies, pages 1152–1157.816

Kenneth S Krane. 2019. Modern physics. John Wiley817
& Sons.818

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,819
Tongliang Liu, and Bo Han. 2024. Deepinception:820
Hypnotize large language model to be jailbreaker.821
In Neurips Safe Generative AI Workshop 2024.822

Nayantara Mudur, Hao Cui, Subhashini Venugopalan,823
Paul Raccuglia, Michael P Brenner, and Peter Nor-824
gaard. 2025. Feabench: Evaluating language mod-825
els on multiphysics reasoning ability. arXiv preprint826
arXiv:2504.06260.827

Xinyu Pang, Ruixin Hong, Zhanke Zhou, Fangrui Lv,828
Xinwei Yang, Zhilong Liang, Bo Han, and Chang-829
shui Zhang. 2025. Physics reasoner: Knowledge-830
augmented reasoning for solving physics problems831
with large language models. In Proceedings of832
the 31st International Conference on Computational833
Linguistics, pages 11274–11289, Abu Dhabi, UAE.834
Association for Computational Linguistics.835

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.836
2021. Are nlp models really able to solve simple837
math word problems? In Proceedings of the 2021838
Conference of the North American Chapter of the839
Association for Computational Linguistics: Human840
Language Technologies, pages 2080–2094.841

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,842
Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang,843
Mohamed Shaaban, John Ling, Sean Shi, et al.844
2025. Humanity’s last exam. arXiv preprint845
arXiv:2501.14249.846

Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo847
Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo, Yixuan848
Yin, Haoxu Zhang, Yi Hu, et al. 2025. Phybench:849
Holistic evaluation of physical perception and rea-850
soning in large language models. arXiv preprint851
arXiv:2504.16074.852

Syed Rifat Raiyan, Md Nafis Faiyaz, Shah Md. Jawad853
Kabir, Mohsinul Kabir, Hasan Mahmud, and854
Md Kamrul Hasan. 2023. Math word problem855
solving by generating linguistic variants of problem856

statements. In Proceedings of the 61st Annual Meet- 857
ing of the Association for Computational Linguis- 858
tics (Volume 4: Student Research Workshop), pages 859
362–378, Toronto, Canada. Association for Compu- 860
tational Linguistics. 861

Robert Resnick. 1989. Introduction to Special Relativ- 862
ity, 1st edition. John Wiley & Sons, New York. 863

Noah Shinn, Federico Cassano, Ashwin Gopinath, 864
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 865
flexion: Language agents with verbal reinforcement 866
learning. In Advances in Neural Information Pro- 867
cessing Systems 36: Proceedings of the 37th Con- 868
ference on Neural Information Processing Systems 869
(NeurIPS 2023), volume 36 of Advances in Neural 870
Information Processing Systems, pages 8634–8652, 871
New Orleans, LA, USA. Neural Information Pro- 872
cessing Systems Foundation. 873

John R. Taylor. 2006. Classical Mechanics: An Un- 874
dergraduate Text, 1st edition. University Science 875
Books, Sausalito, CA. 876

Romal Thoppilan, Daniel De Freitas, Jamie Hall, 877
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze 878
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, 879
et al. 2022. Lamda: Language models for dialog 880
applications. arXiv preprint arXiv:2201.08239. 881

George Tsoukalas, Jasper Lee, John Jennings, Jimmy 882
Xin, Michelle Ding, Michael Jennings, Amitayush 883
Thakur, and Swarat Chaudhuri. 2024. Putnam- 884
bench: A multilingual competition-mathematics 885
benchmark for formal theorem-proving. In AI for 886
Math Workshop@ ICML 2024. 887

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 888
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, 889
and Denny Zhou. 2023. Chain-of-thought prompt- 890
ing elicits reasoning in large language models. 891

Frank M White. 2012. Fluid mechanics, in si units. 892

Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen 893
Yan, Jiaxin Zhang, Shizhe Diao, Can Yang, and 894
Yang Wang. 2025. Ugphysics: A comprehen- 895
sive benchmark for undergraduate physics reason- 896
ing with large language models. arXiv preprint 897
arXiv:2502.00334. 898

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, 899
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, 900
Chengen Huang, Chenxu Lv, et al. 2025. Qwen3 901
technical report. arXiv preprint arXiv:2505.09388. 902

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 903
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 904
2023. Tree of thoughts: Deliberate problem solv- 905
ing with large language models. Advances in neural 906
information processing systems, 36:11809–11822. 907

Hugh D Young, Roger A Freedman, and Ragbir 908
Bhathal. 2010. University physics: Australian edi- 909
tion. Pearson Higher Education AU. 910

11

https://en.wikipedia.org/wiki/Thinking%2C_Fast_and_Slow
https://aclanthology.org/2025.coling-main.747/
https://aclanthology.org/2025.coling-main.747/
https://aclanthology.org/2025.coling-main.747/
https://aclanthology.org/2025.coling-main.747/
https://aclanthology.org/2025.coling-main.747/
https://doi.org/10.18653/v1/2023.acl-srw.49
https://doi.org/10.18653/v1/2023.acl-srw.49
https://doi.org/10.18653/v1/2023.acl-srw.49
https://doi.org/10.18653/v1/2023.acl-srw.49
https://doi.org/10.18653/v1/2023.acl-srw.49
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Nouredine Zettili. 2009. Quantum mechanics: con-911
cepts and applications.912

Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiax-913
ing Huang, Chengyou Jia, Basura Fernando,914
Mike Zheng Shou, Lingling Zhang, and Jun Liu.915
2025. Physreason: A comprehensive benchmark916
towards physics-based reasoning. arXiv preprint917
arXiv:2502.12054.918

Yifan Zhang, Jingqin Yang, Yang Yuan, and An-919
drew Chi-Chih Yao. 2023. Cumulative reason-920
ing with large language models. arXiv preprint921
arXiv:2308.04371.922

A Evaluation Prompt for Gemini 2.5 Pro923

You are an expert physics problem evaluator. Your924

task is to meticulously and STRICTLY compare925

an AI-generated solution to a manual, ground-926

truth solution for a given physics problem. The927

Ground Truth Solution is considered the definitive928

correct answer and approach for the given problem929

statement. Deviations by the AI-Generated Solu-930

tion from the Ground Truth, especially in terms of931

method, assumptions, interpretation of given data,932

or parts deemed unsolvable by the Ground Truth,933

MUST be penalized appropriately according to the934

guidelines below.935

Evaluate the AI-generated solution based on the936

following categories and scoring guidelines. Pro-937

vide your evaluation STRICTLY as a JSON ob-938

ject.939

Evaluation Categories and Scoring Guidelines:940

1. mathematical_accuracy: (Score 1-5) How941

correct are the AI’s calculations, numerical an-942

swers, and units *when compared to the problem943

defined by the Ground Truth*?944

- 5: All calculations, numerical results, and945

units are perfectly correct and appropriately pre-946

sented, AND align with the Ground Truth’s final947

answers if the same method is used, OR are verifi-948

ably correct if a different valid method is used.949

- 4: Minor calculation error in the AI solution,950

or an incorrect/missing unit, but the AI’s underly-951

ing mathematical method (if aligned with GT or952

validly alternative) is sound.953

- 3: Several minor errors in the AI solution, or954

one significant calculation error that impacts the955

AI’s result. Units might be inconsistently handled.956

- 2: Major calculation errors or fundamental957

misunderstandings of mathematical operations in958

the AI solution. If the AI solution uses different in-959

put data values than implied by the Ground Truth960

(e.g., different length, mass), leading to numeri- 961

cally different answers, score 2 here even if its in- 962

ternal math is correct for its chosen data, because 963

it’s not solving the *Ground Truth’s* problem. 964

- 1: Almost all calculations in the AI solu- 965

tion are incorrect, non-sensical, or missing. The 966

AI uses drastically different input data leading 967

to completely irrelevant numerical results for the 968

Ground Truth problem. 969

2. logical_consistency: (Score 1-5) Does the 970

AI solution follow a logical step-by-step progres- 971

sion? Is the AI’s reasoning sound and aligned with 972

physics principles, *ideally mirroring or compati- 973

bly extending the Ground Truth’s logic*? 974

- 5: The AI solution flows perfectly. Each 975

step logically follows from the previous one. The 976

reasoning is impeccable and aligns well with the 977

Ground Truth’s approach or a valid alternative. 978

- 4: AI solution is mostly logical and well- 979

reasoned. Perhaps one step is slightly unclear or 980

its justification is weak, but it doesn’t break the 981

overall logic or significantly deviate from a valid 982

path. 983

- 3: Some logical gaps, inconsistencies, or steps 984

in the AI solution that don’t clearly follow, making 985

the solution harder to follow or verify, or deviating 986

from the core logic of the Ground Truth without 987

clear justification. 988

- 2: Significant logical flaws in the AI solu- 989

tion. Steps are out of order, reasoning is poor or 990

contradictory to established physics or the Ground 991

Truth’s interpretation. 992

- 1: The AI solution is illogical, incoherent, or 993

internally contradictory. 994

3. completeness: (Score 1-5) Does the AI- 995

generated solution address all parts of the problem 996

*as understood and scoped by the Ground Truth*? 997

- 5: All parts of the problem (including sub- 998

questions, if any), as addressed or implied as solv- 999

able by the Ground Truth, are fully addressed and 1000

answered by the AI. 1001

- 4: A minor aspect of the problem (as per GT) 1002

is overlooked by the AI, or one sub-question is not 1003

fully answered or is missing. 1004

- 3: A significant part of the problem (as per 1005

GT) is ignored or left unanswered by the AI. If 1006

the Ground Truth indicates a part of the problem 1007

is unsolvable with given data, but the AI attempts 1008

to solve it by making significant unstated/unwar- 1009

ranted assumptions, this is a flaw in understanding 1010

problem scope; score 3 or lower. 1011
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- 2: Only a small portion of the problem (as per1012

GT) is addressed by the AI; major components are1013

missing.1014

- 1: The problem is largely unaddressed by the1015

AI, or the AI solution is off-topic relative to the1016

Ground Truth.1017

4. clarity_and_coherence: (Score 1-5) Is the1018

AI’s explanation clear, concise, and easy to under-1019

stand?1020

- 5: The AI explanation is exceptionally clear,1021

concise, well-structured, and very easy to under-1022

stand. Excellent use of language and terminology.1023

- 4: The AI explanation is clear and generally1024

easy to understand, with minor areas for improve-1025

ment in conciseness, structure, or flow.1026

- 3: The AI explanation is generally understand-1027

able but may be verbose, unclear in parts, poorly1028

organized, or contain jargon without adequate ex-1029

planation.1030

- 2: The AI explanation is difficult to under-1031

stand due to ambiguity, poor writing, or convo-1032

luted structure.1033

- 1: The AI explanation is incomprehensible,1034

extremely poorly written, or nonsensical.1035

5. formulas_principles: (Score 1-5) Are correct1036

physical formulas and principles identified and ap-1037

plied correctly by the AI, *and are they appro-1038

priate for the problem as framed by the Ground1039

Truth*?1040

- 5: All necessary physical formulas and prin-1041

ciples are correctly identified, stated, and ap-1042

plied appropriately by the AI, consistent with the1043

Ground Truth’s approach or a valid, equally rigor-1044

ous alternative.1045

- 4: Mostly correct formulas/principles used by1046

AI. Perhaps a minor error in recalling a formula, or1047

a slight misapplication of a correct principle that1048

doesn’t fundamentally alter the solution path com-1049

pared to GT.1050

- 3: Some incorrect formulas/principles are used1051

by AI, or correct ones are applied incorrectly in a1052

significant way. Or, the AI uses a principle that1053

oversimplifies the problem compared to the level1054

of detail expected by the Ground Truth.1055

- 2: Major errors in formula/principle selection1056

or application by AI. Fundamental physics con-1057

cepts are misunderstood by the AI.1058

- 1: Completely inappropriate formulas/princi-1059

ples are used by AI, or relevant physics is entirely1060

ignored.1061

6. assumptions_made: (Score 1-5) Are AI as-1062

sumptions (explicit or implicit) explicit, justified, 1063

and reasonable *especially when compared to the 1064

Ground Truth’s scope and stated/implied assump- 1065

tions*? 1066

- 5: All necessary assumptions made by the AI 1067

are explicitly stated, well-justified, and perfectly 1068

reasonable for the problem context, AND do not 1069

contradict or bypass limitations identified by the 1070

Ground Truth. 1071

- 4: Most necessary assumptions made by the 1072

AI are stated and reasonable; some minor ones 1073

might be implicit but obvious, or lack full justi- 1074

fication but are acceptable and align with GT. 1075

- 3: Some key assumptions in the AI solution 1076

are missing, not clearly stated, or questionable in 1077

reasonableness. Or, the AI makes assumptions 1078

that simplify the problem in a way the Ground 1079

Truth does not. 1080

- 2: Major unreasonable assumptions are made 1081

by the AI, or critical assumptions are not stated, 1082

leading to an incorrect or flawed solution path. 1083

This includes assumptions that allow solving parts 1084

the Ground Truth indicates are unsolvable with the 1085

given data. 1086

- 1: Assumptions in the AI solution are entirely 1087

inappropriate, absent when clearly needed, or lead 1088

to a trivialization/misrepresentation of the prob- 1089

lem as defined by the Ground Truth. 1090

7. overall_correctness: (Score 0-10) How cor- 1091

rect and sound is the AI’s approach and final an- 1092

swer(s) overall, *primarily judged by its fidelity 1093

to the Ground Truth’s interpretation, method, and 1094

result for the specific problem*? 1095

- 10: Perfect solution. The AI’s method, rea- 1096

soning, data interpretation, assumptions, and final 1097

answer(s) align flawlessly or are an equally valid 1098

and rigorous path to the Ground Truth. 1099

- 8-9: Excellent solution. Fundamentally cor- 1100

rect with very minor, inconsequential flaws or 1101

slight stylistic deviations from the Ground Truth, 1102

but arrives at the same essential understanding and 1103

results. 1104

- 6-7: Good solution. Generally correct ap- 1105

proach by the AI, and largely correct answer(s), 1106

but with some noticeable errors, omissions, or 1107

areas for improvement when compared to the 1108

Ground Truth. The AI might use a valid but less 1109

ideal method. 1110

- 4-5: Partially correct. The AI demonstrates 1111

some understanding but contains significant flaws 1112

in reasoning, calculation, choice of principles, or 1113
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makes unwarranted assumptions that lead it away1114

from the Ground Truth’s solution. This score is1115

appropriate if the AI solves a simplified version of1116

the problem or misses key constraints implied by1117

the Ground Truth.1118

- 2-3: Mostly incorrect. The AI shows fun-1119

damental misunderstandings of the problem or1120

physics principles as defined by the Ground Truth.1121

A solution that uses1122

*different fundamental input data* than the1123

Ground Truth CANNOT be rated higher than 3,1124

even if its internal logic is sound for its chosen1125

data.1126

- 0-1: Completely incorrect, irrelevant, or no1127

meaningful attempt made by the AI to solve the1128

problem as presented and solved by the Ground1129

Truth.1130

Problem ID: problem_id1131

Ground Truth Solution (this is the reference cor-1132

rect solution):1133

ground_truth1134

Elaborated Solution Steps (this explains the1135

Ground Truth):1136

Elaborated Solution Steps (Manual): elabo-1137

rated_solution1138

AI-Generated Solution to Evaluate (compare1139

this against the Ground Truth and Elaborated So-1140

lution): ai_solution1141

Provide your evaluation STRICTLY as a JSON1142

object with the problem_id and scores for each1143

category listed above. Your entire response should1144

be ONLY the JSON object, starting with and end-1145

ing with .1146

Example JSON format:1147
{{1148

"problem_id ": "{ problem_id }",1149
"mathematical_accuracy ": <1150

score_1_to_5 >,1151
"logical_consistency ": <score_1_to_51152

>,1153
"completeness ": <score_1_to_5 >,1154
"clarity_and_coherence ": <1155

score_1_to_5 >,1156
"formulas_principles ": <score_1_to_51157

>,1158
"assumptions_made ": <score_1_to_5 >,1159
"overall_correctness ": <1160

score_0_to_10 >1161
}}1162

B Sample Conversation with o4-mini1163

(Multi-Agent Review)1164

Here, we have done multi agent review on a pro-1165

posed solution. The list of mistakes generated by1166

the review process is fed back to the proposer.1167

User: You are an expert on Physics. You solve 1168

problems step by step while maintaining logical 1169

consistency. Solve the following Physics problem: 1170

A toroidal inductor with an inductance of 9.0 mH 1171

encloses a volume of 0.0200 m3. If the average 1172

energy density in the toroid is 70.0 J/m3, what is 1173

the current through the inductor? Finally, write 1174

the final answers in brief. Make sure you write all 1175

equations in LATEX. 1176

Assistant (o4-mini - Initial Solution): Here is 1177

the step-by-step solution: 1. Energy stored in an 1178

inductor U = 1
2LI

2 2. Relation between total en- 1179

ergy and energy density U = uV where u = en- 1180

ergy density, V = volume 3. Equate the two ex- 1181

pressions for U : 1
2LI

2 = uV 4. Solve for the cur- 1182

rent I: I =
√

2uV
L 5. Substitute the given values: 1183

L = 9.0×10−3 H u = 70.0 J/m3 V = 0.0200 m3 1184

I =
√

2·70.0·0.0200
9.0×10−3 =

√
2.80

9.0×10−3 =
√
311.11 ≈ 1185

17.6 A 1186

Final Answer (brief): I =
√

2uV
L ≈ 17.6 A 1187

User (Feedback from Meta-Verifier based on 1188

Reviewers): I have some feedback. The solution 1189

assumes that the average energy density is uni- 1190

formly distributed throughout the entire volume 1191

of the toroid. In reality, for a toroid, the mag- 1192

netic field varies inversely with the distance from 1193

the center, leading to non-uniform energy density. 1194

The formula used assumes uniform energy den- 1195

sity, which is an approximation. This assump- 1196

tion might not be accurate if the field varies sig- 1197

nificantly within the toroid. After taking this into 1198

account, please generate the solution once again. 1199

Remember to write all equations in LATEX. 1200

[o4-mini would then generate a revised solu- 1201

tion, ideally addressing the feedback.] 1202

C PHYSICSEVAL : Additional Details 1203

C.1 Construction 1204

To enable large-scale evaluation and training of 1205

reasoning-capable language models in physics, we 1206

curate a comprehensive dataset of 19,609 anno- 1207

tated problems, sourced from 20 different author- 1208

itative physics textbooks and verified educational 1209

websites. 1210

The dataset spans 19 different categories, in- 1211

cluding Mechanics, Thermodynamics, Electro- 1212

magnetism, Waves, Optics, Relativity, and Quan- 1213

tum Physics. 1214

Each problem is processed through the follow- 1215

ing pipeline: 1216
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• Data Cleaning: Raw content is cleaned to1217

remove noise and inconsistencies.1218

• LATEXAnnotation: All equations are con-1219

verted into LATEXfor structured mathematical1220

representation.1221

• Step-Wise Elaboration: Using Gemini 2.51222

Pro in “Think” mode, solutions are decom-1223

posed into logically coherent steps to en-1224

hance interpretability for LLMs.1225

• Metadata Tagging: Each problem is anno-1226

tated with topic category, difficulty level, and1227

key physical principles.1228

Train-Test Split: We apply a 90:10 split, re-1229

sulting in 17,647 training and 1,962 test samples,1230

supporting generalization across diverse reasoning1231

tasks.1232

The problems in the dataset are given a diffi-1233

culty score from 1 to 10. The number of steps in1234

the elaborated solution is stored as well. Some al-1235

ternative solution methods are also suggested.1236

C.2 Data Model1237

The dataset has the following fields:1238

• Problem_ID: Unique identifier for the prob-1239

lem instance1240

• problem: Original, full problem text from1241

source material1242

• simplified_problem_statement: Para-1243

phrased version, stripped of complexity1244

• category: Topical category (e.g., Mechanics,1245

Optics)1246

• soft_labels: Tags like numerical, conceptual,1247

multi-step, diagram1248

• elaborated_solution_steps: Step-by-step1249

reasoning to the correct answer1250

• alternative_solutions: Different valid solu-1251

tion methods1252

• problem_difficulty: Difficulty rating (1–10)1253

• final_answers_in_brief: Final answer(s)1254

only, no reasoning1255

• steps: Number of steps in main solution1256

• source: The source of the problem1257

C.3 Dataset Sources 1258

• 21st Century Astronomy: Stars and Galaxies, 4th 1259
Edition - by Laura Kay, Stacy Palen, Brad Smith, and 1260
George Blumenthal (Kay et al., 2016) 1261

• A Complete Resource Book for JEE Main 2018: 1262
Physics - by Sanjeev Kumar 1263

• Physics: Principles with Applications, 7th Edition - 1264
by Douglas C. Giancoli (Giancoli, 2005) 1265

• Physics for Scientists and Engineers: A Strategic 1266
Approach with Modern Physics, 4th Edition - by 1267
Randall D. Knight (Knight, 2015) 1268

• Mathematical Models in Biology, 1st Edition - by 1269
Leah Edelstein-Keshet (Edelstein-Keshet, 2005) 1270

• Fundamentals of Physics, 10th Edition - by David 1271
Halliday, Robert Resnick, and Jearl Walker (Halliday 1272
et al., 2013) 1273

• Mathematical Methods in the Physical Sciences, 3rd 1274
Edition - by Mary L. Boas (Boas, 2006) 1275

• Heat and Mass Transfer: Fundamentals and Appli- 1276
cations, 5th Edition - by Yunus A. Çengel and Afshin 1277
J. Ghajar (Cengel and Ghajar, 2014) 1278

• Materials Science and Engineering: An Introduc- 1279
tion, 8th Edition - by William D. Callister Jr. (Callister 1280
and Rethwisch, 2022) 1281

• Fluid Mechanics in SI Units, 8th Edition (2017) - by 1282
Frank M. White (White, 2012) 1283

• University Physics with Modern Physics, 14th Edi- 1284
tion - by Hugh D. Young and Roger A. Freedman 1285
(Young et al., 2010) 1286

• Analytical Dynamics, 1st Edition - by Haim Baruh 1287
(Baruh, 2015) 1288

• Engineering Electromagnetics, 8th Edition - by 1289
William H. Hayt Jr. and John A. Buck (Hayt Jr and 1290
Buck, 2001) 1291

• Modern Physics, 2nd Edition - by Kenneth S. Krane 1292
(Krane, 2019) 1293

• Introduction to Quantum Mechanics, 2nd Edition - 1294
by David J. Griffiths (Griffiths and Schroeter, 2018) 1295

• Quantum Mechanics: Concepts and Applications, 1296
2nd Edition - by Nouredine Zettili (Zettili, 2009) 1297

• Classical Mechanics: An Undergraduate Text, 2006 1298
Edition - by John R. Taylor (Taylor, 2006) 1299

• Introduction to Special Relativity, 1989 Edition - by 1300
Robert Resnick (Resnick, 1989) 1301

• The Physics of Sound, 3rd Edition - by Richard E. 1302
Berg and David G. Stork (Berg and Stork, 2012) 1303

• Spacetime and Geometry: An Introduction to Gen- 1304
eral Relativity, 2004 Edition - by Sean M. Carroll 1305
(Carroll, 2004) 1306

C.4 Further Information 1307
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Field Name Strength / Purpose
Problem_ID Enables consistent referencing, indexing, and analysis across

models and experiments.
problem Maintains fidelity to real-world phrasing typically encountered

in education or exams.
simplified_problem_statement Helps models/annotators focus on core reasoning, improving

interpretability.
category Enables domain-wise evaluation and curriculum design.
soft_labels Supports nuanced supervision and better error analysis.
elaborated_solution_steps Crucial for explainability and multi-step reasoning evaluation.
alternative_solutions Promotes robustness and exposure to diverse reasoning.
problem_difficulty Enables benchmarking and curriculum learning by difficulty.
final_answers_in_brief Useful for accuracy checks and extractive answer training.
steps Helps with curriculum learning and complexity analysis.

Table 5: Description of fields in the physics dataset and their purposes
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Figure 4: Multi-Agent PPS by Model and Physics Category

Statistic problem_difficulty steps problem_tokens solution_tokens
Count 19609 19609 19609 19609
Mean 5.720282 3.883523 98.815595 3830.767403
Std Dev 1.445578 1.776616 78.899039 2458.892157
Min 1.000000 0.000000 1.000000 311.000000
25% 5.000000 3.000000 51.000000 2422.000000
50% (Median) 6.000000 4.000000 81.000000 3115.000000
75% 7.000000 5.000000 124.000000 4300.000000
Max 10.000000 23.000000 4380.000000 29931.000000

Table 6: Descriptive statistics for problem dataset

Problem Category Total Problems Test Set
Acoustics and Sound Engineering 589 58
Quantum Mechanics and Atomic Physics 1677 155
Thermodynamics and Heat Transfer 2451 234
Solid State Physics and Materials Science 789 78
Fluid Mechanics and Continuum Dynamics 936 95
Electromagnetism and Circuit Theory 2791 259
Optics and Wave Phenomena 1301 132
Classical Mechanics and Dynamics 4103 443
Nuclear and Particle Physics 766 76
Statistical Mechanics and Kinetic Theory 171 18
Astrophysics, Cosmology, and Space Science 961 105
Relativity and Gravitation 656 68
Mathematical Methods in Physics 1991 193
Biophysics and Chemical Physics 148 18
Environmental and Atmospheric Physics 43 5
Measurement, Instrumentation, and Estimation 171 17
Engineering and Applied Physics 41 5
Computational and Numerical Methods 13 1
Food Physics and Culinary Science 11 2

Table 7: Categories of problems and their amounts in
the dataset
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Example from the Dataset

Problem_ID
46b6dfac-1f0c-4e23-9230-798ce854e963
problem
A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by
the passage of electric current. Heat is generated in the wire uniformly at a rate of 5× 107 W/m3

... ... Take the thermal conductivity of the wire to be k = 6W/m ·K.
simplified_problem_statement
A long wire with a radius of 5 mm generates heat uniformly at a rate of 5 x 107̂ W/m3̂. The outer
surface temperature of the wire is maintained at 180°C. Determine the temperature at a distance
of 3.5 mm from the center of the wire, given that the thermal conductivity of the wire is 6 W/m·K.
category
Thermodynamics and Heat Transfer
soft_labels

• Heat Generation

• Steady-State Heat Transfer

• Radial Heat Conduction

• Boundary Conditions

• Thermal Conductivity

elaborated_solution_steps
Certainly! As a Professor of Physics, I’d be glad to elaborate on each step of the provided solution
to ensure you understand the underlying physics and mathematical operations thoroughly. Let’s
break down each step:
**Step 01: The heat generat... ...owever needs correction for accurate temperature distribution.
But as instructed, I have elaborated on each step as provided in the solution, highlighting the
physics and math, without altering the given equations.
alternative_solutions

• One could use a finite element method to solve the heat equation numerically, especially if
the geometry or boundary conditions were more complex.

problem_difficulty
6
final_answers_in_brief

• Temperature at r=3.5 mm is 178.86 °C

steps
6
source
Heat and Mass Transfer: Fundamentals and Applications, 5th Edition - by Yunus A. Çengel and
Afshin J. Ghajar
problem_tokens
171
solution_tokens
11736
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