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ABSTRACT

We present MM1.5, a new family of multimodal large language models (MLLMs)
designed to enhance capabilities in text-rich image understanding, visual referring
and grounding, and multi-image reasoning. Building upon the MM1 architecture,
MM1.5 adopts a data-centric approach to model training, systematically exploring
the impact of diverse data mixtures across the entire model training lifecycle. This
includes high-quality OCR data and synthetic captions for continual pre-training,
as well as an optimized visual instruction-tuning data mixture for supervised fine-
tuning. Our models range from 1B to 30B parameters, encompassing both dense
and mixture-of-experts (MoE) variants, and demonstrate that careful data curation
and training strategies can yield strong performance even at small scales (1B
and 3B).1 Through extensive empirical studies and ablations, we provide detailed
insights into the training processes and decisions that inform our final designs,
offering valuable guidance for future research in MLLM development.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have emerged as an increasingly active research topic
in recent years. Closed-source models, such as GPT-4o (Islam & Moushi, 2024), GPT-4V (OpenAI,
2024), Gemini-1.5 (Team et al., 2023; Reid et al., 2024), and Claude-3.5 (Anthropic, 2023), have
demonstrated remarkable capabilities in advanced multimodal understanding. Meanwhile, open-
source models, such as the LLaVA series of work (Liu et al., 2023b;a; 2024a; Li et al., 2024c),
InternVL2 (Chen et al., 2024b), Cambrian-1 (Tong et al., 2024a) and Qwen2-VL (Bai et al., 2023;
team, 2024), are rapidly narrowing the performance gap. There has also been growing interest in
developing models capable of understanding single-image, multi-image, and video data using a single
set of model weights (Li et al., 2024c). Further discussion of recent works is in Appendix A.1.

Building upon MM1 (McKinzie et al., 2024), we introduce MM1.5, a new family of MLLMs carefully
designed to enhance a set of core capabilities. Specifically, we focus on the following aspects.

• OCR. MM1.5 supports arbitrary image aspect ratios and resolutions of up to 4 Megapixels. By
incorporating carefully selected OCR data to enhance text comprehension across different training
stages, MM1.5 excels at understanding text-rich images.

• Visual referring and grounding. MM1.5 offers robust, fine-grained image understanding, extend-
ing beyond text prompts to interpret visual prompts such as points and bounding boxes. Moreover,
MM1.5 can generate grounded responses by grounding text output with image bounding boxes.
This capability is notably under-explored in most open-source models (e.g., LLaVA-OneVision (Li
et al., 2024c) and Phi-3-Vision (Abdin et al., 2024b)), and even in strong proprietary models like
GPT-4o, which rely on set-of-mark (SoM) prompting (Yang et al., 2023) to reference image regions.

• Multi-image reasoning. MM1.5 benefits from large-scale interleaved pre-training, resulting in
strong in-context learning and multi-image reasoning capabilities right out of the box. We further
improve its capabilities via supervised fine-tuning (SFT) on additional multi-image data.

Our primary focus is on the most efficient model scales, 1B and 3B, together with their corresponding
Mixture-of-Experts (MoE) variants, and demonstrates that even relatively small MLLMs can achieve
competitive performance on various downstream tasks. Furthermore, we demonstrate that the

1Additionally, we introduce two specialized variants: MM1.5-Video, designed for video understanding, and
MM1.5-UI, tailored for mobile UI understanding, detailed in Appendix A.7 and A.8 correspondingly.
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Figure 1: Recipe for building MM1.5. Model training contains three stages: (i) large-scale pre-
training with low-resolution images (378×378), (ii) continual pre-training with high-resolution (up
to 4 Megapixels) OCR data and synthetic captions, and (iii) supervised fine-tuning (SFT). At each
stage, we aim to identify the optimal data mix and assess the impact of each data type.

MM1.5 recipe exhibits strong scaling behavior all the way to 30B parameters, achieving competitive
performance across a wide range of benchmarks.

Building performant MLLMs is a highly empirical endeavor. While the overarching goal and the
high-level training procedure are well-defined, the finer details of their execution remain unclear.
In developing MM1.5, we choose to retain the same model architecture as MM1 (McKinzie et al.,
2024), enabling us to focus on refining and investigating the intricacies of our data-centric training
recipes. Our attention is centered on the following key aspects:

• Continual Pre-training. We introduce an additional high-resolution continual pre-training stage
preceding the SFT stage, which we found crucial for boosting text-rich image understanding
performance. We ablate the impact of two kinds of data: (i) text-rich OCR data, focusing on
detailed transcription of text within images; and (ii) high-quality synthetic image captions.

• SFT. While considerable prior work discusses SFT data for MLLMs, there is still limited exploration
into how each category of SFT data can affect the final model’s performance. In particular, the
impact of data supporting each capability on other capabilities is understudied. We conduct
extensive ablations to identify trade-offs and synergies, ultimately constructing a mixture from
public datasets that contributes to well-balanced performance across a wide set of capabilities.

• Dynamic High-resolution. Furthermore, for high-resolution image encoding, we follow the
popular any-resolution approach, dynamically dividing the image into sub-images (Li et al., 2023i;
Zhang et al., 2024b), and conduct thorough ablations to refine key details in our design.

Unlike most open-source models focusing solely on SFT (Liu et al., 2023b;a; 2024a), MM1 demon-
strated strong zero-shot and few-shot learning capabilities through large-scale pre-training. In
developing MM1.5, we aim to retain these strengths and more effectively transfer them to the SFT
stage. To achieve this, We further extend MM1’s pre-training by exploring the impact of text-only data
and optimizing the ratio of different pre-training data types. This approach improves performance on
knowledge-intensive benchmarks and enhances overall multimodal understanding capabilities.

Our main contributions are summarized as follows: (i) We introduce MM1.5, a family of MLLMs
that include both dense models (ranging from 1B to 30B) and MoE variants. (ii) We conduct a
thorough empirical study detailing the process and decisions leading to our final design choices. (iii)
MM1.5 excels in handling a wide range of multimodal tasks, from general-domain to text-rich image
understanding, coarse- to fine-grained understanding, and single- to multi-image reasoning.

2 RECIPE FOR BUILDING MM1.5

In this work, beyond pre-training and SFT stages as in MM1 (McKinzie et al., 2024), we introduce
a continual pre-training stage with high-quality OCR data and synthetic captions. As outlined in
Figure 1, to obtain the best data recipe,

• We first present comprehensive ablations of our SFT data mixture (Section 2.2). We categorize the
SFT data into multiple groups based on the capabilities they aim to support. We carefully evaluate
the impact of datasets from each category and adjust the ratio to balance different core capabilities.

2
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• To further enhance model performance, especially for text-rich image understanding, we further
ablate the data choices for continual pre-training (Section 2.3). This includes 45M rich OCR data
and 7M high-quality captions from public or generated by a MM1-based image captioner.

• We also provide detailed ablation regarding dynamic image splitting, also known as AnyRes (Liu
et al., 2024a) (Section 2.4), for high-resolution image comprehension.

Finally, to enhance performance on knowledge-heavy benchmarks like MMMU (Yue et al., 2023a),
we further study the impact of pre-training data (Appendix A.2).

2.1 EMPIRICAL SETUP FOR ABLATIONS

Unless otherwise noted, we follow the default settings below in our ablation studies.

Model architecture and data preprocessing. Wefollow MM1 (McKinzie et al., 2024) and use
the same architecture, focusing on the 3B dense model for all the ablation studies in this section.
Specifically,

• Static image splitting (Lin et al., 2023b) is enabled with 4 sub-image splits (plus an overview
image), and each sub-image is resized to 672×672 resolution via position embedding interpolation.
Note that we did not use dynamic image splitting during ablation for faster iteration of experiments.

• As to the encoding of multi-image data, we enable image splitting only when the current training
sample contains fewer than three images to avoid excessively long sequence lengths.

• Similar to capabilities introduced in Ferret (You et al., 2023), MM1.5 directly supports referring
and grounding. When requested, MM1.5 can produce bounding boxes in its textual output to
ground its responses. Additionally, the model can interpret references to points and regions in the
input image in the form of referring coordinates and bounding boxes.

• The CLIP image encoder and the LLM backbone are based on in-house models, with C-
Abstractor (Cha et al., 2024) serving as the vision-language connector.

Model optimization. For both continual pre-training and SFT, we set the batch size as 256. We use
the AdaFactor optimizer with a peak learning rate of 1e-5 and a cosine decay of 0. For continual
pre-training, we train a maximum of 30k steps. During SFT, all models are optimized for one epoch.

Continual pre-training. Models are initialized with the MM1 pre-trained checkpoint. By default, we
conduct continual pre-training on 45M high-resolution OCR data (including PDFA, IDL, Rendered-
text (Laurençon et al., 2024a) and DocStruct-4M (Hu et al., 2024a)) at this stage. In each training
batch, data is equally sampled from those four datasets. Similar to the SFT stage, we use static
image splitting, dividing each image into five sub-images, with each sub-image resized to 672×672
resolution. We find that this high-resolution setup is essential for continual pre-training.

SFT data categorization. Grouping datasets into categories can be helpful for data balancing and
simplifying the analysis (Laurençon et al., 2024a; Tong et al., 2024a). At a high level, we cluster
datasets into single-image, multi-image, and text-only categories based on the number of images
presented in each example. For the single-image group, we further classify each dataset into the
following sub-categories: general, text-rich, refer&ground, science, math and code. See Table 5
in Appendix A.3 for the details of each category used for the ablation study, and Figure 8 for an
overview of the group categories.

Evaluation benchmarks. We group our benchmarks into categories based on what capabilities a
benchmark primarily measures. Our benchmark groups include general, text-rich, refer&ground,
knowledge, and multi-image. See Table 6 in Appendix A.4 for more details. We propose Category
Average Score, the average score of all benchmark numbers for each sub-category, to represent
the average performance on that capability. We focus on the categories of general, text-rich, and
knowledge, as these capabilities are widely considered essential for MLLMs. To evaluate a model’s
impact on these capabilities, we refer to a MMBase score, defined as the average scores on general,
text-rich, and knowledge categories. Details of the evaluation metrics are provided in Appendix A.4.

2.2 SFT ABLATIONS

To determine the optimal SFT recipe, we first study the impact of different data categories in
Section 2.2.1, followed by investigating how to best mix all the data in Section 2.2.2.

3
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Figure 2: Impact of different SFT data categories to different model capabilities (general, text-
rich, knowledge, and refer&ground). Text-rich data significantly improves text-rich and knowledge
benchmarks on average. Science data improves knowledge average score. Referring and grounding
data enables this capability.
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Figure 3: Impact of α (x-axis) for different data categories to a model’s different capabilities. The
selected ratio is marked with red “x”. α denotes the data ratio of the target category (science, math,
code, refer&ground (R&G)) when compared with the general category.

2.2.1 IMPACT OF DIFFERENT DATA CATEGORIES

In this subsection, we focus on evaluating the single-image data category. We begin by assessing
the general data category and then progressively evaluate the impact of adding other sub-categories
individually. During training, we mix data from different sub-categories and construct each training
batch by randomly sampling data from the corresponding mixture. We compare models using each
capability with the Category Average Score.

Our results are summarized in Figure 2. We observe that adding text-rich data can significantly
improve the performance on text-rich and knowledge benchmarks. The inclusion of math data follows
a similar trend, though we observe a lesser degree of improvement in the text-rich average score.
When science data is added, we observe the expected improvement in the knowledge benchmarks,
alongside a minor improvement in text-rich performance. Adding the code category yields a slight
increase in the text-rich average score, while the performance on other benchmarks does not improve.
Including the refer&ground data instills the model with referring and grounding capability, but we
also observe slight regression in all other capability categories.

2.2.2 DATA MIXTURE RATIO STUDY

We first study the mixing ratio within the single-image categories. Since directly mixing the general
and text-rich data based on their data sizes shows strong results across a variety of benchmarks (see
Figure 2), we use this combination as the starting point to study how to mix other categories to this
set. Then, we combine the entire single-image set with multi-image and text-only sets with sampling
weights of wsingle, wmulti and wtext, respectively, where wsingle + wmulti + wtext = 1.

Mixture of single-image data. Directly mixing all datasets from different categories may not be
ideal due to imbalanced numbers of data samples across different sub-categories. For example, the
size of the general data category is around 68× the size of the science data category. In this study, we
use the general data category as the reference, and upsample/downsample data from a target category,
such that in each training batch, the data ratio from the general and target category is 1:α.

4
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Figure 4: Impact of the mixing ratio for text-only and multi-image SFT data. The selected ratio is
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Figure 5: Ablation study of mixing all the SFT data. Base Mixture denotes general, text-rich and
knowledge (science, math and code). The “Average” column represents the performance averaged
across the preceding five benchmark categories.

To measure the average impact of α, we propose MMBase score, an average over general, text-rich,
and knowledge average scores, for model comparison. As shown in Figure 3, we vary the α for
different data categories. For science, math, and code categories, we find the best ratio of α to be
0.1, 0.5, and 0.2, respectively. As shown in Section 2.2.1, the refer&ground data is the main driver
for improving referring and grounding benchmarks. Therefore, besides the MMBase score, we also
include the Refer&Ground average score as another metric for the α selection. As summarized in
Figure 3(d), the MMBase score will drop slightly, while the Refer&Ground average score increases
significantly. With that, we select α = 2.0 as a good trade-off.

Mixture of single-image, multi-image, and text-only data. Now, we study the mixture ratios,
wsingle, wmulti and wtext. Enumerating all combinations between the three ratios will incur significant
computational cost. Therefore, we instead separately ablate wtext and wmulti for text-only and multi-
image data, respectively, to evaluate how sensitive our model is to these ratios. Finally, wsingle is
determined by 1− wtext − wmulti.

Similar to the single-image mixture study, we also start with the combination of general and text-rich
data and enumerate different values for wmulti and wtext. For text-only data, we tested wtext from 0 to
0.2. Figure 4(left) shows that varying different values for wtext has minor effects on the model’s base
capabilities in general. We select wtext = 0.1 to allocate a higher weight for single-image data for
potential performance improvements.

For multi-image data, we use the multi-image average score (evaluated on multi-image benchmarks in
Table 6) as an additional metric to assess a model’s capability of handling multi-image tasks. Results
are summarized in Figure 4(right). We observe that increasing the sampling ratio of multi-image data
would introduce a performance drop of the base capabilities as indicated by the decreased number of
the MMBase score, while the multi-image average score increases. We select wmulti = 0.1 since it
introduces a surge in the multi-image average score.

Mixing multiple categories. Based on the studies above, we present three mixtures, the Base mixture,
Single-image mixture, and All mixture, and analyze their trade-offs. The Base mixture includes the
general, text-rich, science (αscience = 0.1), math (αmath = 0.5) and code (αcode = 0.2) data groups.
The Single-image mixture additionally adds refer&ground data (αrg = 2.0) to the Base mixture. All

5
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Figure 6: Ablation study of continual pre-training. Average Score indicates the MMBase score. Cont.
PT denotes continual pre-training.

mixture includes all data from single-image, multi-image, and text-only data, with wsingle = 0.8,
wmulti = 0.1, and wtext = 0.1.

Our results are summarized in Figure 5. The first three columns indicate that including refer&ground
and multi-image data slightly reduces average performance on text-rich, knowledge, and general
benchmarks. The fourth column shows that adding refer&ground data significantly boosts referring
and grounding performance, while the fifth column highlights that adding multi-image data greatly
improves multi-image benchmarks. The final column reveals that our optimized mixture achieves the
best overall performance, balancing all capabilities across benchmarks.

2.3 CONTINUAL PRE-TRAINING ABLATIONS

Unless otherwise specified, we use OCR data (45M in total), including PDFA, IDL, Rendered-
text (Laurençon et al., 2024a) and DocStruct-4M (Hu et al., 2024a) in a high-resolution setting
(1344×1344) for continual pre-training. During the SFT stage, all continual pre-trained models in
this section are fine-tuned with data from the Base Mixture including general, text-rich, knowledge
(science, math, and code) with their selected mixture ratios as described in Section 2.2.2.

Impact of image resolution. Intuitively, higher-resolution images are preferable when training with
OCR data. We first ablate the impact of image resolution during this stage by setting up two baselines,
continual pre-training with 378×378 and 756×756 resolutions, respectively. For the former, we
disabled both image splitting and position embedding interpolation (our CLIP image encoder natively
supports image resolution of 378×378). For the latter, we enabled image splitting and turn-off
position embedding interpolation. The results are shown in Figure 6(a). Note that the final SFT stage
always uses image resolution 1344×1344 across these experiments, so the training only differs with
respect to the image resolution used in continual pre-training.

We can clearly see that using a setting of 1344×1344 image resolution for continual pre-training
achieves the best overall performance. Decreasing resolution consistently leads to lower final scores.
In particular, continual pre-training with 378×378 resolution can underperform a model without
continual pre-training. We hypothesize this is due to insufficient visible detail at lower resolutions,
which may hinder the model’s ability to effectively learn from the document-based OCR data in the
continual pre-training mixture.

Impact of OCR data and synthetic captions. Besides OCR data, high-quality synthetic image
captions (Chen et al., 2023c; Li et al., 2024a) are also widely considered useful for pre-training.
To study its impact, we use our default setting except for the data used in continual pre-training.
We study two synthetic caption datasets: LLaVA-Recap-3M (Li et al., 2024a) and ShareGPT4V-PT
(Chen et al., 2023c), and their combination with our OCR data. When we combine ShareGPT4V-PT
or LLaVA-Recap-3M with our OCR data, we equally sample data from individual datasets in each
training batch. Results are presented in Figure 6(b). We observe that all continual pre-trained models
perform better than the baseline without continual pre-training. However, we did not find conclusive
evidence that these high-quality synthetic captions improved performance over the arguably simpler

6
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Table 1: Ablation on the image resolution and the number of image tokens used in dynamic image
splitting. n denotes the total number of sub-images. Row 3: (nmin, nmax) = (4, 4); Row 4-7:
(nmin, nmax) = (9, 9). Image encoder resolution: (i) 378×378: no position embedding interpolation;
(ii) 672× 672: with position embedding interpolation.

Row
# Mode n

#image tokens
(per sub-img / total)

Image Enc.
Resolution

Effective
Resolution Text-rich Knowledge General Refer &

Ground Average

1 Static 1 144/144 672×672 0.45MP 49.4 53.6 62.6 71.3 59.2
2 5 144/720 672×672 1.8MP 57.7 53.8 64.4 74.8 62.7

3

Dynamic

5 144/720 672×672 1.8MP 58.6 53.7 64.1 74.0 62.5
4 10 81/810 378×378 1.3MP 57.6 53.3 62.9 74.0 62.0
5 10 81/810 672×672 4.1MP 58.3 53.8 64.3 74.9 62.8
6 10 144/1440 378×378 1.3MP 58.5 54.0 63.2 74.5 62.6
7 10 144/1440 672×672 4.1MP 59.8 54.0 64.5 75.2 63.3

OCR data. While prior studies (Li et al., 2024c) show synthetic captions boost performance, our
results indicate further investigation into their exact impact is needed.

Therefore, we further investigate the impact of synthetic captions generated through self-training for
even larger scales (up to 7M) and more controllable styles, using a pre-trained MM1 model fine-tuned
on human-annotated captions, similar to (Fang et al., 2024). This new dataset showed some promise
in certain settings, see Appendix A.5 for details. We defer further study of this topic to future work.

2.4 DYNAMIC IMAGE SPLITTING ABLATIONS

Dynamic image splitting. Processing high-resolution images is essential for text-rich image under-
standing. In static image splitting (Lin et al., 2023b), images are split into a rigid 2×2 grid, which is
often inefficient. Low-resolution images are splitted without any need, and images with non-square
aspect ratios can result in sub-images being padding only. Therefore, we adopt a dynamic image
splitting approach, which is common in the literature (Li et al., 2024a; Dong et al., 2024b; Hu et al.,
2024a; Lin et al., 2023b; Xu et al., 2024c; Zhang et al., 2024d), for MM1.5.

Given a minimum and maximum number of sub-images, nmin and nmax, consider the set of all
candidate grids G = {(nh, nw) ∈ N |nmin ≤ nh · nw ≤ nmax}. Further, consider the resolution of
the vision encoder r, and an input image resolution (h,w). If there is a grid that can cover the image,
we choose the grid that minimizes the amount of padding after longer side resizing to the grid, i.e.,
g∗ = argmin(nh,nw)=g∈G nhnwr

2 − hgwg, subject to nhr ≥ hg ≥ h and nwr ≥ wg ≥ w, where
hg, wg denote the image height and width after longer side resizing the candidate grid. If no such
grid exists, we choose the one that minimizes the resolution loss due to scaling the image down and
fully covers the longer side resized image. Assume we allow up to 4 sub-images. With a static image
splitting approach, all images use the grid (2, 2). The dynamic splitting approach instead allows for
the following grids: {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 2)}.

Global-Local Format. In addition to the sub-images, we always feed the original image with a
longer side resized to the encoder resolution r to the model. This ensures that the model has a global
understanding of the image. If the grid is (1, 1), we omit the overview image. We consider two
variants: (i) before: the overview image is put before the sub-images; (ii) after: the overview image
is put after the sub-images. These variants yield different results because an autoregressive mask is
used in the LLM decoder, and as such, the choice determines whether the decoder can attend to the
overview image when processing the sub-images (i) or attend to the sub-images when processing the
overview image (ii).

Sub-image position indicator. Given that an input image is dynamically split into multiple sub-
images, we explore whether it is helpful to indicate the position of each sub-image in the original high-
resolution image to ensure the model can understand the original 2D image structure. Specifically,
we consider two methods.

• Index. A tuple of (k, i, j) is used to represent sub-image position information, where k is the
zero-indexed image number in the example (assuming there can be multiple images in a training
sample), i and j are the one-index row and column id, e.g., (0, 0, 0) is the overview image of image
0, and (0, 2, 1) is the sub-image in the second row and first column, for image 0.
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Table 2: Ablation on the image grid configuration (nmin, nmax) used in dynamic image splitting.

Row (nmin, nmax) DocVQA InfoVQA Text-rich Knowledge General Refer & Average# Train Inference Ground

3B Model Comparison

1 (4, 4) (4, 4) 73.2 48.3 58.6 53.3 64.1 74.0 62.5
2 (4, 9) (4, 9) 75.7 53.8 60.0 54.0 63.9 74.6 63.1
3 (4, 16) (4, 16) 76.3 55.2 60.7 53.4 64.0 73.8 63.0
4 (1, 9) (1, 9) 76.2 54.1 60.4 53.7 62.5 71.5 62.0

5 (4, 4) (4, 9) 73.4 52.9 59.7 53.5 63.8 74.0 62.8
6 (4, 4) (4, 16) 72.3 53.5 59.6 53.8 63.5 74.0 62.7
7 (4, 4) (1, 9) 73.5 52.7 59.8 50.7 62.6 24.5 49.4

7B Model Comparison

8 (4, 4) (4, 4) 77.0 54.3 64.5 61.1 66.8 77.7 67.5
9 (4, 9) (4, 9) 81.7 62.1 67.4 60.1 66.6 78.0 68.0

10 (4, 16) (4, 16) 83.3 64.1 68.0 58.7 67.7 77.2 67.9

Table 3: Ablation on the sub-image position indicator and the position of the overview image. We set
(nmin, nmax) = (4, 4) for experiments.

Row
#

Sub-img
pos. indicator

Overview
image pos. DocVQA InfoVQA Text-rich Knowledge General Refer &

Ground Average

1 none before 73.2 48.3 58.6 53.5 64.1 74.0 62.5
2 seps before 74.3 49.7 58.8 53.0 63.8 74.5 62.5
3 index before 73.4 48.6 58.6 52.7 63.4 74.8 62.4
4 none after 73.3 49.7 59.2 54.3 64.1 73.8 62.8

• Seps. Instead of using indexes, we use three text tokens. Specifically, ‘:’ is the overview image
indicator, ‘,’ is the column separator, and ‘<n>’ is the row separator. The latter two tokens are
inserted between the set of image tokens corresponding to each sub-image so that the original 2D
image structure can be recovered from the flattened image token sequence.

Inference for higher resolution. The tuple (nmin, nmax) is used to decide the dynamic image
splitting configuration for model training. During inference, it is possible to support even higher-
resolution image processing simply by increasing these parameters. For example, we explore
training at (nmin, nmax) = (4, 9) to save model training compute, while during inference, we use
(n′

min, n
′
max) = (4, 16) to process images at even higher effective resolutions.

Findings. We use the final Single-image Mixture as our default experiment setting, including
general, text-rich, knowledge (science, math and code), and refer&ground data. For fast iteration of
experiments, all the models are initialized with the MM1 pre-trained checkpoint without continual
pre-training. Following Figure 2, we report the average performance on text-rich, knowledge, general,
and refer&ground benchmarks. Our findings are summarized as follows.

• Dynamic image splitting outperforms static splitting in text-rich tasks. Both image resolution and
the number of sub-images, along with image token counts, are important (Table 1).

• Regarding image grid configuration (Table 2), dynamic image splitting with a larger nmax signifi-
cantly improves performance on tasks with unusual aspect ratios, such as DocVQA and InfoVQA,
especially when trained natively for it. Grounding performance is highly sensitive to grid size
changes, and larger LLM backbones yield greater performance gains, with the 7B model showing
larger improvements than the 3B model.

• In terms of position indicators (Table 3), they are not strictly necessary for text-rich tasks, though
they can be beneficial for specific tasks like DocVQA and InfoVQA. Additionally, placing the
overview image after the sub-images improves performance, as it allows the decoder attention
mask to attend to all sub-images more effectively.

• In practice, dynamic image splitting does not significantly increase the number of sub-images to
process. In a sample of 100k examples, static splitting generates 500k sub-images, while dynamic
splitting with (nmin, nmax) = (4, 9) produces barely more, only 539k images in total.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3 FINAL MODEL AND TRAINING RECIPE

We collect the results from the previous ablations to determine the final recipe for MM1.5 training:

• Architecture. We use the same model architecture as MM1 (McKinzie et al., 2024).

• Data and training pipeline. As summarized in Figure 1, MM1.5 is trained in three stages:
– Pre-training. The pre-training data comprises three parts: (i) 2B image-text pairs, (ii) 600M

interleaved image-text documents with 1B images in total, and (iii) text-only data with 2T
tokens. Except for the updated text-only data, the data remains unchanged from MM1 (McKinzie
et al., 2024). However, the data ratio has been adjusted from 45:45:10 to 50:10:40, significantly
downweighting the interleaved data (from 45% to 10%) while increasing the proportion of
text-only data (from 10% to 40%) as discussed in Section A.2.

– Continual Pre-training. We use 45M OCR data to enhance text-rich image understanding.
Notably, we do not include additional synthetic image captions based on empirical results.

– SFT. We use the data illustrated in Figure 8 and adopt the mixing ratios studied in Section 2.2.2.
Our final mixture consists of 80% single-image data, 10% multi-image data, and 10% text-only
SFT data. The single-image data can be further categorized into 37.2% text-rich data, 22.5%
refer&ground data (VQA data enriched with bounding boxes and/or point coordinates), 11.3%
general data, 5.6% math data, 2.3% code data, and 1.1% science data, totaling 80% of all data.

• Dynamic high-resolution. We set the image grid configuration (nmin, nmax) = (4, 9), using an
index for the sub-image position indicator and placing the overview image after the sub-images.
Dynamic image splitting is only enabled when the current training sample has fewer than three
images. The supported resolution reaches up to 4 Megapixels (approximately 2016×2016 for a
square image, or 6048×672 for a long image).

We use the same image encoder and the LLM backbone from MM1 (McKinzie et al., 2024), and
keep them unfrozen during all the model training stages. For pre-training, we follow the exact same
learning rate schedule as in MM1 (McKinzie et al., 2024) and 200k training steps with sequence
length 4096. For continual pre-training, we use a peak learning rate of 1e-5 with the cosine decay
and 30k training steps for all the models (from 1B to 30B). For SFT, we use a peak learning rate of
2e-5 and 23k training steps for all the models.2

Mixture-of-Experts (MoE). We introduce two MoE models, a 1B-MoE and a 3B-MoE, with 64
experts replacing dense layers every two layers. We use the same hyperparameters as those applied to
the dense models for both scales and top-2 gating with a 0.01 load balance loss to encourage a better
expert load balance and a 0.001 router z-loss for training stability (Lepikhin et al., 2021).

3.1 RESULTS

We evaluate our MM1.5 models across 35 multimodal benchmarks using an internal fork of lm-eval-
harness (Gao et al., 2023), covering task categories ranging from general multimodal understanding,
knowledge, text-rich, referring and grounding, multi-image reasoning, to in-context learning. Detailed
results for each capability at various model sizes are further summarized in Table 7, 8, 9, 10, and 11,
respectively. Below, we highlight a few key observations from Table 4.

MM1.5 represents a major upgrade over MM1. It delivers improvements across all model sizes
and nearly all benchmarks, often by a substantial margin. For instance, MM1.5-30B boosts the
MathVista from 39.4 to 55.6, DocVQA from 75.8 to 91.4, and InfoVQA from 47.3 to 67.3. It also
offers much enhanced multi-image reasoning capability and introduces new capabilities not present
in MM1, such as visual referring & grounding.

Both Dense and MoE model scaling are effective. First, scaling the dense model from 1B to 30B
consistently improves performance, with benchmarks like AI2D increasing from 59.3 to 77.2 (see
Table 7). Second, both the 1B and 3B MoE models outperform their dense counterparts. Notably,
the MM1.5-3B-MoE model can even surpass the MM1.5-7B model in knowledge, general, visual
referring and grounding, and multi-image benchmarks, though it falls slightly behind on text-rich
benchmarks. This suggests that MoE models show strong potential in integrating diverse capabilities
compared to dense models.

2All models are trained using the AXLearn framework https://github.com/apple/axlearn
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Table 4: Comparison with SOTA models on the selected benchmarks. Comparison of more bench-
marks and broader baselines can be found in Table 7,8,9, 10 and 11in the Appendix.

Model

Text-rich Knowledge General Refer&Ground Multi-image In-context

TextVQA
(val)

DocVQA
(test)

InfoVQA
(test)

MMMU
(val)

MathV
(testmini) SEEDI RealWorldQA RefCOCO

avg
LVIS
avg

NLVR2
(val)

VL-ICL
avg

1B Model Comparison

LLaVAOneVision-0.5B – 70.0 41.8 31.4 34.8 65.5 55.6 – – 63.4 –
SPHINX-Tiny 57.8 53.0 26.3 – 26.4 – – 77.2 – – –
MM1-1B 68.2 68.4 38.5 33.2 31.1 65.6 51.2 – 51.5 50.9 34.3
MM1.5-1B 72.5 81.0 50.5 35.8 37.2 70.2 53.3 81.4 62.2 79.0 51.0
MM1.5-1B-MoE 76.1 84.8 55.9 41.2 42.9 71.4 57.8 83.9 64.1 83.2 56.0

3B Model Comparison

IntenVL2-2B 73.4 86.9 58.9 36.3 46.0 70.9 57.4 77.7 51.1 67.4 18.5
MiniCPM-V 2.0-3B 74.1 71.9 37.6 38.2 38.7 67.1 55.8 – 48.0 – –
Phi-3-Vision-4B 70.1 83.3 49.0 40.4 44.5 71.8 59.4 38.1 54.2 53.6 19.5
MM1-3B 71.9 75.2 44.7 33.9 32.0 68.8 55.8 – 53.4 51.7 37.0
MM1.5-3B 76.5 87.7 58.5 37.1 44.4 72.4 56.9 85.6 67.9 83.8 56.3
MM1.5-3B-MoE 76.8 85.0 53.6 42.9 46.9 73.3 60.7 86.2 66.9 86.0 59.6

7B Model Comparison

MM1-7B 72.8 76.8 45.5 37.0 35.9 69.9 55.7 – 53.2 59.9 52.8
MM1.5-7B 76.5 88.1 59.5 41.8 47.6 73.4 62.5 86.6 66.4 86.9 56.0

30B Model Comparison

MM1-30B 73.5 75.8 47.3 44.7 39.4 72.1 59.4 – 53.1 63.1 52.1
MM1.5-30B 79.2 91.4 67.3 47.4 55.6 75.0 69.0 90.1 73.2 90.6 77.6

MM1.5-1B is the state-of-the-art model at the 1B scale. While few models are available at this
scale, MM1.5-1B clearly outperforms comparable models such as SPHINX-Tiny (Gao et al., 2024).
For reference, MM1.5-1B also significantly surpasses LLaVAOneVision-0.5B (Li et al., 2024c) (e.g.,
ScienceQA: 67.2 vs. 82.1, DocVQA: 70.0 vs. 81.0, see Table 7 and 8), but it should be stressed that
this is of course an even smaller model and as such cannot be directly compared.

MM1.5-3B outperforms MiniCPM-V 2.0 and is competitive with InternVL2 and Phi-3-Vision.
Compared to MiniCPM-V 2.0, MM1.5-3B achieves superior results on MathVista (38.7 vs. 44.4) and
DocVQA (71.9 vs. 87.7) while also supporting visual referring and grounding, which MiniCPM-V
lacks. It surpasses InternVL2-2B on general VQA and, although Phi-3-Vision (4.2B) has an edge
on knowledge-based tasks like AI2D as in Table 7, MM1.5-3B excels on text-rich benchmarks (e.g.,
DocVQA: 83.3 vs. 87.7) and outperforms Phi-3-Vision in referring and grounding (see Table 9), as
well as in-context learning tasks (see Table 10).

MM1.5 excels in visual referring and grounding. While most SOTA models focus on improving
performance across general, knowledge, and text-rich benchmarks, few have integrated fine-grained
image grounding and referring ability into their design. Even GPT-4o relies on set-of-mark prompting
to demonstrate visual grounding capabilities. As shown in Table 9, MM1.5-3B outperforms Ferret-7B
and is on par with Ferret-13B, both of which are fine-tuned specifically for referring and grounding
tasks. Notably, our model inherently possesses these capabilities while still excelling in other areas.

MM1.5 excels in multi-image reasoning and in-context learning. As shown in Table 11, the
MM1.5-1B model outperforms LLaVAOneVision-0.5B at the 1B scale. Similarly, at the 3B scale,
MM1.5-3B significantly surpasses Phi-3-Vision. Additionally, we evaluate MM1.5’s zero-shot
transfer capability for video understanding using MVBench (Li et al., 2024h), a benchmark designed
for video tasks. Moreover, we evaluate MM1.5’s ability of multimodal in-context learning on VL-ICL
benchmark (Zong et al., 2024). As shown in Table 10, our models outperform others in in-context
learning. In Section A.7, we will further introduce MM1.5-Video, a model variant specifically
designed for video understanding.

4 CONCLUSION AND LIMITATION

In this work, we build on the insights of MM1 (McKinzie et al., 2024) and introduce MM1.5, a
family of highly performant generalist MLLMs. While MM1 focused on key pre-training choices,
we improve post-pre-training techniques like continual pre-training, dynamic high-resolution image
processing, and curation of our supervised fine-tuning datasets. Our extensive ablations show MM1.5
’s strong performance in text-rich image understanding, visual grounding, and multi-image reasoning.
Like most MLLMs, MM1.5 may produce harmful and counterfactual responses. Future efforts
will aim to unify these capabilities for a stronger generalist model, with the hope of benefiting the
community beyond specific architectures.
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A APPENDIX

A.1 RELATED WORK

Multimodal Large Language Models (MLLMs) (OpenAI, 2024; Islam & Moushi, 2024; Team et al.,
2023; Li et al., 2024d; Huang et al., 2023) have recently emerged as a significant area of research
focus. The development of MLLMs can be traced back to Frozen (Tsimpoukelli et al., 2021) and
Flamingo (Alayrac et al., 2022; Awadalla et al., 2023), with more recent advancements such as
LLaVA (Liu et al., 2023b) and MiniGPT-4 (Zhu et al., 2023) introducing the concept of visual
instruction tuning. The past year has witnessed a boom of open-source MLLMs, some of which
claim to rival GPT-4o on certain benchmarks. Notable examples include Emu2 (Sun et al., 2023b;
2024), VILA (Lin et al., 2024b), Idefics2/3 (Laurençon et al., 2024a; Laurençon et al., 2024a),
Cambrian-1 (Tong et al., 2024a), InternLM-XComposer-2.5 (Dong et al., 2024a; Zhang et al., 2024b),
InternVL2 (Chen et al., 2024c;b), MiniCPM-V (Yao et al., 2024b), CogVLM2 (Wang et al., 2023a;
Hong et al., 2024a), BLIP-3 (Li et al., 2023d; Xue et al., 2024), LLaVA-OneVision (Li et al., 2024e),
Llama3.1-V (Dubey et al., 2024), and the latest Qwen2-VL (Bai et al., 2023).

Research in MLLMs has expanded across several fronts: (i) scaling up the pre-training data (Lin
et al., 2024b; McKinzie et al., 2024; Xue et al., 2024; Awadalla et al., 2024; Li et al., 2024j) and
supervised instruction-tuning data (Hu et al., 2024b; Tang et al., 2024; Laurençon et al., 2024a; Tong
et al., 2024a); (ii) enhancing high-resolution image comprehension (Lin et al., 2023b; Li et al., 2023i;
Liu et al., 2024a; Dong et al., 2024a; Gao et al., 2024; Ge et al., 2024; Chen et al., 2024a; Zhang et al.,
2024d; Xu et al., 2024c; Li et al., 2024l); (iii) exploring various vision encoders (Tong et al., 2024b;
Shi et al., 2024) and vision-language connectors (Cha et al., 2024; Yao et al., 2024a; Li et al., 2024k;
Cai et al., 2024); (iv) using mixture-of-experts (Lin et al., 2024a; Li et al., 2024g); (v) extending
LLaVA-like architectures to region-level (Wang et al., 2023b; Zhao et al., 2023; Zang et al., 2023;
Peng et al., 2023; Chen et al., 2023b; Zhang et al., 2023; You et al., 2023; Zhang et al., 2024a) and
pixel-level (Lai et al., 2024; Rasheed et al., 2024; Yuan et al., 2024; Ren et al., 2024) understanding,
multi-image reasoning (Jiang et al., 2024; Li et al., 2024e), UI comprehension (You et al., 2024;
Hong et al., 2024b), and video understanding (Lin et al., 2023a; Xu et al., 2024a;b), among others.

Among the extensive body of literature on MLLMs, MM1.5 distinguishes itself as a significant
upgrade over its predecessor, MM1 (McKinzie et al., 2024). The MM1.5 model family integrates a di-
verse set of core capabilities, including text-rich image understanding, visual referring and grounding,
and multi-image reasoning. In contrast, recent general-purpose MLLMs such as Cambrian-1 (Tong
et al., 2024a) and LLaVA-OneVision (Li et al., 2024e) have shown less satisfactory performance
in handling referring and grounding tasks, and GPT-4o has to rely on set-of-mark (SoM) prompt-
ing (Yang et al., 2023) to understand image regions.

While several recent works have open-sourced detailed SFT data mixtures for public use (Laurençon
et al., 2024a; Tong et al., 2024a), the precise impact of each data category and the best recipe
to combine them remain under-explored. This is particularly true for models requiring diverse
capabilities. MM1.5 stands out by providing a comprehensive empirical study that presents mature
recipes for building performant MLLMs. The extension of MM1.5 to mobile UI understanding
further enhances the uniqueness of this work.

Another emerging trend in the field is the development of lightweight MLLMs for potential edge
deployment (Jin et al., 2024b; Huang et al., 2024; Beyer et al., 2024; Lu et al., 2024; Hinck et al.,
2024; Li et al., 2024l; Zhou et al., 2024; He et al., 2024). In MM1.5, models with 1B and 3B
parameters are offered, which outperform similar-sized models, such as Phi-3-Vision (Abdin et al.,
2024b) and MiniCPM-V (Yao et al., 2024b).

A.2 PRE-TRAINING ABLATIONS

Beyond the SFT and continual pre-training, we emphasize the importance of large-scale, task-specific
data used during pre-training in establishing robust foundations for models to effectively handle
diverse tasks. For knowledge-heavy benchmarks like MMMU (Yue et al., 2023a), we found that
model performance is highly sensitive to its text comprehension capabilities. The LLM’s ability to
understand and process textual content is pivotal in addressing the complex reasoning and knowledge-
representation challenges posed by these benchmarks, as also observed in Cambrian-1 (Tong et al.,
2024a).
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Figure 7: Performance comparison of all categories across different text-only data and pre-training
data ratio. The figure highlights the performance improvement when replacing with HQ-Text data
and the additional gains achieved by adjusting the ratio to 50:10:40. Note that the default setting for
continual pre-training (OCR) and All Mixture for SFT are used for all models.

We incorporated a higher-quality and more diverse set of text-only datasets, referred to as HQ-Text,
introduced by (Gunter et al., 2024), during the pre-training phase. These datasets were specifically
curated to enhance the model’s language capabilities by providing deeper and more varied textual
contexts, with a focus on general knowledge, mathematics, and coding. This update aims to strengthen
the model’s ability in language-based reasoning.

As shown in Figure 7, by simply replacing with the new data, the average score on knowledge
improves by 0.85 points.

In conjunction with the text-only datasets and the latest SFT recipes discussed in Section 2.2, we
further refined our pre-training data composition. The original data ratio proposed in MM1 (McKinzie
et al., 2024) was 45:45:10 for image-caption, interleaved image-text, and text-only data, respectively.
Further experiments revealed that decreasing the amount of interleaved pre-training data and, respec-
tively, increasing the weight of text-only data to a ratio of 50:10:40 resulted in improved performance
across most tasks after SFT. We note that in contrast to pre-training ablations in MM1, for MM1.5,
we conduct evaluations on downstream benchmarks post SFT to select our final pre-training mixture.
We hypothesize that relying primarily on few-shot pre-training metrics may not be ideal, as the
improvements on such evaluations may not effectively transfer to downstream performance. Our
newly optimized data mix for MM1.5 not only enhances multimodal capabilities but also strengthens
language understanding, leading to superior overall performance across benchmarks.

With the updated mixture, performance on text-rich average increased by 0.85, knowledge average
by 0.99, and refer&ground tasks by around 1.4, as shown in Figure 7. Although there was a slight
decrease of 0.05 on multi-image datasets due to the lower weighting of interleaved data, we consider
this trade-off reasonable for maintaining strong performance across all tasks.

A.3 DETAILS OF SFT DATA FOR ABLATION & FINAL SFT MIXTURE

As presented in Table 5, we use a subset of our final SFT data when conducting the ablation study.
The MM1.5 final mixture is presented in Figure 8.

A.4 MM1.5 BENCHMARK DETAILS

Benchmarks used for MM1.5 evaluation are summarized in Table 6, where for each Category Average
Score, we directly calculate the average of each metric number within that capability category as
follows, with detailed evaluation metrics listed in Table 6.
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General

Text Rich

Knowledge

Referring &
Grounding

Multi
Image

Text
Only

SFT
Mixture

1

General LLaVA 1.5 conversation Liu et al. (2023a)
(56.7k)

LLaVA v1.5 VQAv2 OKVQA Marino et al.
(2019); Liu et al. (2023a) (91.8k)

LLaVA v1.5 GQA Hudson & Manning
(2019); Liu et al. (2023a) (72.1k)

LLaVA v1.5 A-OKVQA Schwenk et al. (2022)
(66.2k)

Coco Captions Chen et al. (2015) (82.8k)

LLaVA Complex Reasoning Liu et al. (2023b)
(76.6k)

ShareGPT-4V Chen et al. (2023c) (96.1k)

Text Rich TextCaps Sidorov et al. (2020) (22k)
Synthdog-En Kim et al. (2022) (500k) ArxivQA Li et al. (2024i) (100k)
ScreenQA Hsiao et al. (2022) (80.8k) WikiSQL Zhong et al. (2017) (75k)
WikiTQ Pasupat & Liang (2015) (38.2k) Chart2Text Obeid & Hoque (2020) (27k)
TabMWP Lu et al. (2023b) (22.7k) TextVQA Singh et al. (2019) (34.6k)
ST-VQA Biten et al. (2019) (17.2k) RenderedText ren (10k)
VisText Tang et al. (2023) (10k) FinQA Chen et al. (2021) (5.3k)
DeepForm Svetlichnaya (2020) (7k) TAT-QA Zhu et al. (2021) (2.2k)
HiTab Cheng et al. (2021) (2.5k) DVQA Kafle et al. (2018) (200k)
ChartQA Masry et al. (2022) (66.7k) DocVQA Mathew et al. (2021) (128.5k)
InfoVQA Mathew et al. (2022) (52.3k) WikiTable (35.8k) Pasupat & Liang (2015)
TabFact Chen et al. (2019) (91.6k) VisualMRC Tanaka et al. (2021) (24.5k)
KleisterCharity Stanisławek et al. (2021) (27.7k) OCRVQA Mishra et al. (2019) (80k)
TextVQA Singh et al. (2019) (34.6k)

Knowledge (Math/Science/Code) CLEVR Johnson et al. (2017) (70k) IconQA Lu et al. (2021b) (27.3k)

RAVEN Zhang et al. (2019) (42k) Inter-GPS Lu et al. (2021a) (1.3k) GeomVerse Kazemi et al. (2023) (9.3k)
AI2D Kembhavi et al. (2016a) (3.2k) ScienceQA Lu et al. (2022) (5k) WebSight Laurençon et al. (2024b) (10k)
DaTikZ Belouadi et al. (2023) (48k) Design2Code Si et al. (2024) (0.5k)

Referring & Grounding GRIT-Visual Genome You et al. (2023); Krishna
et al. (2017) (267.6k)

GRIT-Region reasoning You et al. (2023)
(76.6k)

GRIT-Flickr30k You et al. (2023); Plummer et al. (2015)
(200.8k)

GRIT-Refcoco You et al. (2023); Lin et al. (2014);
Yu et al. (2016); Nagaraja et al. (2016) (210k)

GRIT-Spatial Negative Mining You et al.
(2023); Shao et al. (2019) (213.6k)

Multi-image Birds-to-Words Jiang et al. (2024); Forbes et al.
(2019) (2.6k)

Coinstruct Jiang et al. (2024); Wu et al.
(2024b) (132.3k)

DreamSim Jiang et al. (2024); Fu* et al. (2023) (15.9k) IconQA Jiang et al. (2024); Lu et al. (2021b) (64.5k) MultiVQA Jiang et al. (2024) (5k)
NLVR2 Jiang et al. (2024); Suhr et al. (2018) (86.4k) Spot-the-diff Jiang et al. (2024); Jhamtani & Berg-

Kirkpatrick (2018) (8k)
NExT-QA Jiang et al. (2024); Xiao et al.

(2021b) (3.9k)
Star Jiang et al. (2024); Wu et al. (2024a) (3k) ICL-Instruct† (0.4k) Coco instruct interleaved† (2.1k)

Text OpenOrca Lian et al. (2023) (994k) MathInstruct Yue et al. (2023b) (262k)
OrcaMath Mitra et al. (2024) (200k) WizardCoder Luo et al. (2023) (43k) OpenCodeInterpreter Zheng et al. (2024)

(66k)
Dolly Mike et al. (2023) (11k)

Figure 8: A high-quality data mixture used for MM1.5 supervised fine-tuning, including (i) single-image data
for enhanced math/science reasoning, text-rich image understanding, and visual referring and grounding, (ii)
multi-image data, and (iii) text-only data. (†) denotes in-house datasets with curation details in Appendix A.9.

Table 5: Overview of the SFT data used in ablation study.

Data category Sub-category Datasets # QA

Single-image

General
LLaVA Complex Reasoning, LLaVA Conversation,

ShareGPT-4v, Coco Caption, LLaVA v1.5 VQAv2 OKVQA,
LLaVA v1.5 GQA, LLaVA v1.5 A-OKVQA

542K

Text Rich
OCRVQA, Synthdog-En, TextCaps, TextVQA, DVQA,

ChartQA, DocVQA, InfoVQA, VisualMRC,
WikiTQ, DeepForm, KleisterCharity, TabFact

1.3M

Refer&Ground GRIT-Visual Genome, GRIT-Region reasoning, GRIT-Flickr30k,
GRIT-Refcoco, GRIT-Spatial Negative Mining 1.08M

Science AI2D, ScienceQA 8K

Math GeomVerse, CLEVER, IconQA, RAVEN, Inter-GPS 150K

Code WebSight, DaTikZ, Design2Code 58K

Multi-image –
DreamSim, NLVR2, Star, Birds-to-Words, IconQA,
Spot-the-diff, ICL-instruct, Coinstruct, MultiVQA,

NExT-QA, Coco Instruct Interleaved
324K

Text-only – Dolly, OpenOrca, MathInstruct,
WizardCoder, OrcaMath, OpenCodeInterpreter 1.71M

• General Average Score: average score of the corresponding metric scores from MME-Normalize3,
Seed-IMG, POPE, LLaVAW, MM-Vet and RealWorldQA.

• Text-rich Average Score: average score of the corresponding metric scores from WTQ, TabFact,
OCRBench4, ChartQA5, TextVQA, DocVQA and InfoVQA.

3MME-Normalize is (MME-Perception + MME-Cognition)/2800 ×100%.
4The accuracy of OCRbench is the total score normalized by 1000 ×100%.
5Average of human part accuracy and augmented part accuracy.
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Table 6: Details of benchmarks and their metrics used in MM1.5 ablation study. Benchmarks marked
with (†) are excluded from the category average.

Category Benchmark Metric

MME Fu et al. (2024a) Normalized Accuracy
SEED Li et al. (2023b) Seed-IMG
POPE Li et al. (2023h) Average of random, popular and adversarial

LLaVA-Bench (Wild) Liu et al. (2023b) GPT-assisted score
MM-Vet Yu et al. (2023) GPT-assisted score

General

RealWorldQA x.ai Accuracy

WTQ Pasupat & Liang (2015) Accuracy
TabFact Chen et al. (2019) Accuracy

OCRBench Liu et al. (2024b) Accuracy
ChartQA Masry et al. (2022) Accuracy
TextVQA Singh et al. (2019) VQA Open Flamingo Accuracy

DocVQA Mathew et al. (2021) ANLS Score

Text-rich

InfoVQA Mathew et al. (2022) ANLS Score

Flickr30K Young et al. (2014) Recall (IoU>0.5, any protocol)
LVIS_Ferret Gupta et al. (2019); You et al. (2023) Accuracy

Refcoco Kazemzadeh et al. (2014) Recall@1 (IoU>0.5)
Refcoco+ Kazemzadeh et al. (2014) Recall@1 (IoU>0.5)
Refcocog Kazemzadeh et al. (2014) Recall@1 (IoU>0.5)

Refer&Ground

Ferret-Bench† You et al. (2023) GPT-assisted score

AI2D Kembhavi et al. (2016b) Accuracy
ScienceQA Lu et al. (2022) Accuracy-IMG
MathVista Lu et al. (2023a) GPT-assisted scoreKnowledge (Math/Science/Code)

MMMU Yue et al. (2023a) Accuracy

Qbench2 Zhang et al. (2024e) Accuracy
Mantis Jiang et al. (2024) Accuracy
NLVR2 Suhr et al. (2018) Accuracy
BLINK Fu et al. (2024c) Accuracy

MVbench Li et al. (2023f) Accuracy

Multi-image

Muirbench† Wang et al. (2024) Accuracy

• Refer & ground Average Score: average of the scores of Flickr30k, RefCOCO avg. and LVIS avg.,
where RefCOCO avg. is the average of RefCOCO A, RefCOCO B, RefCOCO+ A, RefCOCO+ B
and RefCOCOg, and LVIS avg. is the average of point and box metrics.

• Knowledge Average Score: average score of the corresponding metric scores from AI2D, Sci-
enceQA, MathVista and MMMU.

• Multi-image average score: average of Qbench, Mantis, NLVR2, BLINK and MVBench metric
scores.

• MMBaseScore: average score of the General Average Score, Text-rich Average Score and Knowl-
edge Average Score. This aggregated metric is used in Section 2 to measure the impact of the
general, text-rich, and knowledge capabilities of a model.

A.5 IMPACT OF SYNTHETIC CAPTIONS BY SELF-TRAINING

Besides using public captioning data mentioned in Section 2.3, we also follow (Fang et al., 2024)
to study the effect of self-training using synthetic captions. This is particularly important because
captioning data generated by black-box commercial models can sometimes be difficult to scale and
data from open models, such as from the LLaVA-NeXT family may be constrained by these model’s
inherent limitations. We develop a self-augmented image-caption data engine building on our previous
work, MM1 (McKinzie et al., 2024) with a goal to provide high quality captions in a computationally
efficient manner. Specifically, we fine-tune a pre-trained 3B MM1-style model on a mix of synthetic
and approximately 8k human-annotated paragraph-length image captions (approximately 70 tokens
on average). We then apply this captioner at scale to 290 million web-crawled images with resolutions
ranging from 512 to 1024px. Following the approach in (Liu et al., 2024a), we perform concept
filtering based on the generated captions, resulting in a dataset of 7 million high-quality captions,
which includes numerous text-rich examples and alt-text-derived knowledge.

Building on this, we investigate the impact of the volume of synthetic caption data. The synthetic
captions, ranging from 1.4 million to 7 million, show consistent improvements in model performance
across various metrics, as illustrated in Figure 9. Specifically, a ratio of 0 on the x-axis indicates that
no image-caption data is added to the original OCR dataset, while ratios ranging from 0.2 to 1.0 on
the x-axis represent the proportion of the total 7M dataset included in the training. For example, a
ratio of 0.2 corresponds to approximately 1.4M image-caption pairs added with the original OCR
data while 1.0 denotes all 7M are added into training.
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Figure 9: Impact of synthetic captions for continual pre-training the 3B model, building on top of the
final MM1.5 strategy introduced in the main text, i.e., including the OCR continual pre-training stage.
We report the impact of adding incrementally more synthetic captions, up to 7M in total.

In contrast to the ShareGPT4V-PT and LLaVA-Recap-3M captions as explored in Section 2.3,
we find that adding our in-house synthetic captions to the OCR data mixture can lead to consistent
improvement for continual pre-training.6 We observe improvements in knowledge-related benchmarks
and the aggregated MMBase scores that further scale with increased data volume. This is especially
notable since our in-house captioner uses only a 3B model while LLaVA-Recap, for example, uses a
34B model for captioning.

Our results suggest that while a comparatively simple OCR mixture represents a strong baseline for
continual pre-training data, high-quality captions can still lead to further improvements. However, the
quality, distribution, perhaps even style and length of the generated captions seem crucial to realize
gains. While our in-house captions empirically outperformed publicly available data in our specific
setting, further research is necessary as to what, specifically, these improvements are attributable to
and whether further improvements can be achieved. This investigation goes beyond the scope of this
paper, and we aim to study synthetic captioning further in future work.

A.6 COMPARISON WITH SOTA MODELS

We compared our model with selected benchmarks in Section 3. Here, we present comparisons with
more baselines on extensive benchmarks in Table 7 (Knowledge & General), 8 (Text-rich), Table 9
(Refer & s Ground), Table 10 (In-context Learning), and Table 11 (Multi-image).

6Experiments in this section are based on the final recipe from Section 3, with slightly different settings
compared to those in Section A.2.
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Table 7: Comparison with SOTA models on knowledge and general benchmarks. (†) The score is the
summation of perception and cognition scores. Gemini-1.5-Pro, GPT-4V and GPT-4o numbers are
from OpenVLM Leaderboard.

Model

Knowledge Benchmarks General Benchmarks

AI2D
(test)

SQA
(test)

MMMU
(val)

MathV
(testmini)

MME
(P/C) SEEDI POPE LLaVAW MM-Vet RealWorldQA

1B Model Comparison

LLaVAOneVision-0.5B Li et al. (2024c) 57.1 67.2 31.4 34.8 1238.0/240.0 65.5 – – 29.1 55.6
SPHINX-Tiny Gao et al. (2024) 24.6 21.5 – 26.4 1261.2/242.1 – 82.2 52.3 23.8 –
DeepSeek-VL Lu et al. (2024) – – 32.2 31.1 – – 87.6 – 34.8 –
TinyLLaVA Zhou et al. (2024) – 60.1 – – – – 86.1 60.8 25.8 –
Gemini Nano-1 Team et al. (2023) 37.9 – 26.3 27.3 – – – – – –
IntenVL2-2B Chen et al. (2024b) 74.1 94.1 36.3 46.0 1864.3† 70.9 85.2 60.0 39.7 57.4
MM1-1B McKinzie et al. (2024) 57.7 62.3 33.2 31.1 1393.2/217.1 65.6 87.4 67.5 39.4 51.2
MM1.5-1B 59.3 82.1 35.8 37.2 1365.7/245.7 70.2 88.1 71.6 37.4 53.3
MM1.5-1B-MoE 67.1 87.6 41.2 42.9 1511.9/361.1 71.4 88.6 75.5 39.8 57.8

3B Model Comparison

MiniCPM-V 2.0-3B Yao et al. (2024b) 62.9 80.7 38.2 38.7 1808.2† 67.1 87.8 69.2 38.2 55.8
VILA1.5-3B Lin et al. (2024b) – 69.0 33.3 – 1442.4/– 67.9 85.9 – – –
TinyLLaVA Zhou et al. (2024) – 69.1 – – 1464.9/– – 86.4 75.8 32.0 –
Gemini Nano-2 Team et al. (2023) 51.0 – 32.6 30.6 – – – – – –
Bunny He et al. (2024) – 78.3 41.4 – 1581.5/361.1 72.5 87.2 – – –
BLIP-3 Xue et al. (2024) – 88.3 41.1 39.6 – 72.2 87.0 – – 60.5
Phi-3-Vision-4B Abdin et al. (2024a) 76.7 90.8 40.4 44.5 1441.6/320.0 71.8 85.8 71.6 46.2 59.4
MM1-3B McKinzie et al. (2024) 62.4 69.4 33.9 32.0 1482.5/279.3 68.8 87.4 72.1 43.7 55.8
MM1.5-3B 65.7 85.8 37.1 44.4 1478.4/319.6 72.4 88.1 73.0 41.0 56.9
MM1.5-3B-MoE 69.9 89.8 42.9 46.9 1591.4/365.7 73.3 87.2 76.1 43.7 60.7

7B Model Comparison

LLaVA-NeXT-7B Liu et al. (2024a) – 70.1 35.8 34.6 1519.0/332.0 70.2 86.5 81.6 43.9 –
Idefics2-8B Laurençon et al. (2024a) – – 43.0 51.4 – – – – – –
MM1-7B McKinzie et al. (2024) 66.0 72.6 37.0 35.9 1529.3/328.9 69.9 86.6 81.5 42.1 55.7
MM1.5-7B 72.2 89.6 41.8 47.6 1514.9/346.4 73.4 88.6 74.2 42.2 62.5

30B Model Comparison

LLaVA-NeXT-34B Liu et al. (2024a) – 81.8 51.1 46.5 1631.0/397.0 75.9 87.7 89.6 57.4 –
Cambrian-34B Tong et al. (2024a) 79.7 85.6 49.7 53.2 1689.3/– 75.3 – – – 67.8
MM1-30B McKinzie et al. (2024) 73.3 81.0 44.7 39.4 1637.6/431.4 72.1 87.6 89.3 48.7 59.4
MM1.5-30B 77.2 91.9 47.4 55.6 1646.2/405.7 75.0 88.6 80.4 52.0 69.0

Gemini-1.5-Pro Reid et al. (2024) 79.1 85.7 60.6 57.7 2110.6† – 88.2 95.3 64.0 64.1
GPT-4V OpenAI (2024) 75.9 82.1 53.8 48.7 1771.5† 71.6 75.4 93.1 56.8 56.5
GPT-4o Islam & Moushi (2024) 84.6 90.7 69.2 61.3 2310.3† 77.1 85.6 102.0 69.1 75.4
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Table 8: Comparison with SOTA models on text-rich benchmarks. Numbers marked with (†) are
obtained from Li et al. (2024c).

Model

Text-rich Benchmarks

WTQ
(test)

TabFact
(test)

OCRBench
(test)

ChartQA
(test)

TextVQA
(val)

DocVQA
(test)

InfoVQA
(test)

1B Model Comparison

LLaVAOneVision-0.5B Li et al. (2024c) – – – 61.4 – 70.0 41.8
SPHINX-Tiny Gao et al. (2024) 15.3 51.1 – 34.1 57.8 53.0 26.3
DeepSeek-VL Lu et al. (2024) – – 40.9 – – – –
TinyLLaVA Zhou et al. (2024) – – – – 51.7 – –
Gemini Nano-1 Team et al. (2023) – – – 53.6 62.5 72.2 51.1
InternVL2-2B Chen et al. (2024b) 35.8 56.7 78.1 76.2 73.4 86.9 58.9
MM1-1B McKinzie et al. (2024) 19.9 49.8 56.6 61.8 68.2 68.4 38.5
MM1.5-1B 34.1 66.1 60.5 67.2 72.5 81.0 50.5
MM1.5-1B-MoE 38.9 71.4 62.6 73.7 76.1 84.8 55.9

3B Model Comparison

MiniCPM-V 2.0-3B Yao et al. (2024b) 24.2 58.2 60.5 59.8 74.1 71.9 37.6
TinyLLaVA Zhou et al. (2024) – – – – 59.1 – –
Gemini Nano-2 Team et al. (2023) – – – 51.9 65.9 74.3 54.5
BLIP-3-4B Xue et al. (2024) – – – – 71.0 – –
Phi-3-Vision-4B Abdin et al. (2024b) 47.4 67.8 63.7 81.4 70.1 83.3 49.0
MM1-3B McKinzie et al. (2024) 23.6 52.9 57.0 66.8 71.9 75.2 44.7
MM1.5-3B 41.8 72.9 65.7 74.2 76.5 87.7 58.5
MM1.5-3B-MoE 39.1 73.1 63.8 73.6 76.8 85.0 53.6

7B Model Comparison

LLaVA-NeXT-7B Liu et al. (2024a) – – – – 64.9 – –
Idefics2-8B Laurençon et al. (2024a) – – – – 73.0 74.0 –
DocOwl-1.5-Chat Hu et al. (2024a) 40.6 80.2 – 70.2 68.6 82.2 50.7
MM1-7B McKinzie et al. (2024) 28.8 55.5 62.6 72.6 72.80 76.8 45.5
MM1.5-7B 46.0 75.9 63.5 78.6 76.5 88.1 59.5

30B Model Comparison

LLaVA-NeXT-34B Liu et al. (2024a) – – – – 69.5 – –
Cambrian-34B Tong et al. (2024a) – – 60.0 75.6 76.7 75.5 –
MM1-30B McKinzie et al. (2024) 33.3 58.9 60.6 76.9 73.5 75.8 47.3
MM1.5-30B 54.1 84.0 65.8 83.6 79.2 91.4 67.3

Gemini-1.5-Pro Reid et al. (2024) – – 75.4 87.2 78.7 93.1 81.0
GPT-4V OpenAI (2024) – – 64.5 78.5† – 88.4† –
GPT-4o Islam & Moushi (2024) – – 73.6 85.7† – 92.8† –

Table 9: Comparison with SOTA models on referring and grounding benchmarks.

Model

Refer and Ground Benchmarks

RefCOCO
(testA/B)

RefCOCO+
(testA/B)

RefCOCOg
(test)

Flickr30k
(test)

LVIS-Ref
(box/point)

Ferret-Bench
(avg.)

1B Model Comparison

SPHINX-Tiny Gao et al. (2024) 86.9/77.9 78.5/63.7 78.9 – – –
MM1-1B McKinzie et al. (2024) 0/0 0/0 0 0 51.4/51.6 47.3
MM1.5-1B 89.3/81.9 83.7/69.3 82.8 83.0 69.7/54.7 67.4
MM1.5-1B-MoE 91.0/84.8 86.0/73.0 84.7 85.4 71.4/56.7 69.6

3B Model Comparison

MiniCPM-v2-3B Yao et al. (2024b) – – – – 48.2/47.7 22.1
Phi-3-Vision-4B Abdin et al. (2024b) 46.3 / 36.1 42.0 / 28.8 37.6 27.12 53.8/54.5 32.2
InternVL2 Chen et al. (2024b) 88.2 / 75.9 82.8 / 63.3 78.3 51.6 51.0 / 51.1 35.0
MM1-3B McKinzie et al. (2024) 0/0 0/0 0 0 52.9/53.9 46.3
MM1.5-3B 92.0/86.1 87.7/75.9 86.4 85.9 76.3/59.5 69.5
MM1.5-3B-MoE 92.6/86.4 88.0/77.8 86.4 85.8 79.3/54.5 72.2

7B Model Comparison

Qwen-VL-7B Bai et al. (2023) 92.3/84.5 88.6/76.8 86.3 – – –
MiniGPT-v2-7B Chen et al. (2023a) 91.3/84.3 85.5/73.3 84.3 – – –
LLaVA-OneVision-7B Abdin et al. (2024b) 80.0/61.6 76.9/56.2 70.0 50.1 51.2/51.4 38.4
Ferret-7B You et al. (2023) 91.4/82.5 87.4/73.1 84.8 82.2 79.4/67.9 64.5
Ferret-V2-7B Zhang et al. (2024a) 94.7/88.7 92.8/79.3 89.3 85.8 86.6/74.6 75.6
MM1-7B McKinzie et al. (2024) 0/0 0/0 0 0 53.1/53.3 48.5
MM1.5-7B 92.5/86.7 88.7/77.8 87.1 85.3 79.4/53.4 72.6

Larger (>13B) Model Comparison

Ferret-13B You et al. (2023) 92.4/84.4 88.1/75.2 86.3 84.8 80.5/68.4 66.3
Ferret-V2-13B Zhang et al. (2024a) 95.0/88.9 92.8/81.4 90.0 86.3 87.7/75.1 74.9
MM1-30B McKinzie et al. (2024) 0/0 0/0 0 0 53.4/52.7 50.9
MM1.5-30B 94.9/89.5 92.4/83.5 90.0 87.5 84.9/61.4 77.1
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Table 10: Comparison with SOTA models on VL-ICL benchmark Zong et al. (2024) for multimodal
in-context learning. 4-shot accuracy reported for each subtask.

Model

VL-ICL Benchmark

CLEVR Matching
MiniImageNet

Open
MiniImageNet

Operator
induction

Operator
induction

interleaved
TextOCR Avg.

1B Model Comparison

MM1-1B McKinzie et al. (2024) 25.0 49.3 73.0 16.7 8.3 33.5 34.3
MM1.5-1B 39.0 52.0 84.0 60.0 36.7 34.0 51.0
MM1.5-1B-MoE 33.0 56.5 89.0 56.7 56.7 44.0 56.0

3B Model Comparison

Phi-3-Vision-4B Abdin et al. (2024b) 17.0 50.0 1.0 26.7 8.3 14.0 19.5
MM1-3B McKinzie et al. (2024) 27.5 50.0 79.0 18.3 13.3 34.0 37.0
MM1.5-3B 33.5 59.0 88.0 48.3 66.7 42.5 56.3
MM1.5-3B-MoE 32.0 58.0 92.0 63.3 65.0 47.5 59.6

7B Model Comparison

OpenFlamingo-9B Awadalla et al. (2023) 18.8 50.0 51.2 2.8 2.8 0.0 20.9
Idefics-9B Laurençon et al. (2024b) 27.7 50.0 53.8 7.8 6.1 22.8 28.0
Otter-9B Li et al. (2023a) 8.2 50.4 28.5 12.2 7.2 0.8 17.9
InternLM-XComposer2-7B Dong et al. (2024a) 20.0 50.1 49.0 39.4 11.1 16.0 30.9
Qwen-VL-Chat-7B Bai et al. (2023) 26.8 56.4 58.0 18.9 8.9 22.3 31.9
LLaVA-NeXT-7B Liu et al. (2024a) 17.8 50.0 0.0 3.3 5.0 0.0 12.7
MM1-7B McKinzie et al. (2024) 33.0 69.5 97.5 40.0 45.0 32.0 52.8
MM1.5-7B 25.5 52.8 98.5 68.3 60.0 31.0 56.0

Larger (>30B) Model Comparison

Idefics-80B- Laurençon et al. (2024b) 31.5 50.0 52.5 21.7 28.3 29.5 35.6
Emu2-Chat-37B Sun et al. (2023a) 14.8 50.0 28.2 21.7 10.0 36.5 26.9
MM1-30B McKinzie et al. (2024) 25.0 63.0 98.5 51.7 38.3 36.0 52.1
MM1.5-30B 46.5 66.5 100.0 65.0 80.0 44.5 77.6

GPT-4V OpenAI (2024) 42.0 81.0 56.0 92.0 74.0 50.0 65.8

Table 11: Comparison with SOTA models on multi-image benchmarks. The result with mark (†)
in the row of GPT-4V is from GPT-4o. MVBench Li et al. (2024h) is treated as a multi-image
benchmark to test the zero-shot transfer capability of MM1.5 to video understanding tasks.

Model

Multi-image Benchmarks

QBench2
(val)

Mantis
(test)

NLVR2
(val) MVBench BLINK

(val)
Muirbench

(test)

1B Model Comparison

LLaVA-NeXT-Interleave-0.5B Li et al. (2024f) 52.0 45.6 67.8 45.6 39.2 –
LLaVAOneVision-0.5B Li et al. (2024c) 48.8 39.6 63.4 45.5 52.1 25.5
MM1-1B McKinzie et al. (2024) 43.4 41.5 50.9 43.8 40.3 30.7
MM1.5-1B 66.4 50.7 79.0 45.8 46.3 34.7
MM1.5-1B-MoE 70.9 51.2 83.2 48.3 43.7 40.9

3B Model Comparison

BLIP-3-4B Xue et al. (2024) 75.1 56.7 – – 49.7 –
Phi-3-Vision-4B Abdin et al. (2024b) 56.8 47.9 53.6 46.7 44.2 38.0
MM1-3B McKinzie et al. (2024) 41.4 45.2 51.7 44.8 41.5 28.0
MM1.5-3B 73.2 54.8 83.8 47.7 46.8 44.3
MM1.5-3B-MoE 73.8 54.4 86.0 50.3 49.8 45.6

7B Model Comparison

LLaVA-v1.5-7B Liu et al. (2023a) 49.3 31.3 53.9 36.0 37.1 23.5
LLaVA-NeXT-Interleave-7B Li et al. (2024f) 74.2 62.7 88.8 53.1 52.6 38.9
Idefics2-8B Laurençon et al. (2024a) 57.0 48.9 86.9 29.7 45.2 26.1
Mantis-Idefics2-8B Jiang et al. (2024) 75.2 57.1 89.7 51.4 49.1 44.5
MM1-7B McKinzie et al. (2024) 43.6 51.6 59.9 45.3 40.0 30.4
MM1.5-7B 73.2 57.6 86.9 48.3 48.2 49.1

Larger (>14B) Model Comparison

LLaVA-NeXT-Interleave-14B Li et al. (2024f) 76.7 66.4 91.1 54.9 52.1 –
Emu2-Chat-37B Sun et al. (2023a) 50.1 37.8 58.2 39.7 36.2 33.6
MM1-30B McKinzie et al. (2024) 42.8 52.5 63.1 47.1 43.5 36.7
MM1.5-30B 79.3 64.6 90.6 54.0 50.2 58.2

GPT-4V OpenAI (2024) 76.5 62.7 88.8 43.5 51.1 68.0†
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A.7 MM1.5-VIDEO

The multi-image reasoning capability shown in MM1.5 naturally leads us to develop MM1.5-Video
for video understanding. It takes a video and an instruction as input and generates the response.
For the inputs, we uniformly sample N frames from the video at an arbitrary length and feed them
into the model as multi-image inputs without special frame assembly. Due to the token limits, we
disable the dynamic image splitting for each frame, and the vision encoder generates the feature maps
frame-by-frame independently. Specifically, we sample 24 frames for each video, and each frame is
represented by 144 tokens.

We introduce two variants for MM1.5-Video. First, we build MM1.5-Video as a training-free model,
which is achieved by directly adopting the pre-trained MM1.5 image models to video tasks without
being fine-tuned on any video data. This saves a lot of computation resources and demonstrates
MM1.5’s capability of transferring knowledge to new domains.

Second, we introduce the supervised fine-tuning (SFT) model where we fine-tune MM1.5 image
models on video instruction-tuning datasets to improve its temporal modeling capability for video
tasks. We use a mixture of public video datasets from ShareGPTVideo (Zhang et al., 2024c) (556K),
VideoChat2 (Li et al., 2023e) (225K), and ActivityNet-QA (Yu et al., 2019) (31.5K). These datasets
contain a variety of videos types, spanning different tasks (e.g., open-ended and multiple choice
questions), viewpoints (e.g., first- and third-person views), and lengths (e.g., videos from a few
seconds to tens of minutes).

A.7.1 BENCHMARKS AND METRICS

We compare our video training-free and SFT models with state-of-the-art methods on multiple video
question-answering (VideoQA) tasks and benchmarks.

Open-Ended Benchmarks evaluate the performance of a model to answer questions in a free-form
style. For this task, we include ActivityNet-QA (Yu et al., 2019) and VCGBench (Maaz et al., 2024).
Following prior work (Xu et al., 2024b), we use GPT-3.5-Turbo-0125 to assess the accuracy
and score for the prediction. Considering that the labeled answers of these two datasets are typically
short (e.g., one word or phrase), we also evaluate on the LLaVA-Hound (Zhang et al., 2024c), which
requires the model to generate more detailed answers. This is useful for assessing performance on
tasks involving detailed video understanding. We follow their original setting to report the score from
GPT-3.5-Turbo-0301 and consider a score value ≥ 3 as correct for accuracy calculation.

Multiple Choice Benchmarks require the model to pick the correct answer from multiple choices.
For this evaluation, we include VideoMME (Fu et al., 2024b), EgoSchema (Mangalam et al., 2024),
NExTQA (Xiao et al., 2021a), and IntentQA (Li et al., 2023c). VideoMME is a comprehensive
evaluation dataset containing video from a few seconds to one hour in length. EgoSchema consists of
egocentric videos and involves complex long-form temporal understanding and reasoning. NExTQA
and IntentQA are collected from the same video source, but IntentQA focuses on predicting intents in
daily social activities. For all these datasets, the accuracy of selecting the correct answer from the
options is used as the evaluation metric.

A.7.2 RESULTS

Training-free results are shown in Table 12 and 13. MM1.5-Video demonstrates greater capability on
Multiple Choice VideoQA, where MM1.5-Video-3B already outperforms state-of-the-art training-free
7B models on all benchmarks. We also find that MM1.5-Video can follow the instruction to precisely
output the predicted option; however, most existing methods (Li et al., 2024h) use structured answer
prompts (e.g, "Best Option:(") to guide their models to generate answers in a desirable format.
On the other hand, MM1.5-Video achieves only on-par performance compared to SlowFast-LLaVA
on the open-ended benchmarks. We hypothesize that this is because our multi-image SFT datasets
contain primarily multiple choice tasks, making such a task formulation most similar to the training
data.

SFT results are also shown in Table 12 and 13. First, we observe that fine-tuning MM1.5-Video on
video datasets can improve its performance on all tasks. Second, on both open-ended and multiple
choice benchmarks, our small model, MM1.5-Video-1B, significantly outperforms LLaVAOneVision-
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Table 12: Comparison with SOTA models on Open-Ended and Multiple Choice benchmarks.

Model Video
Data

Open-Ended Benchmarks Multiple Choice Benchmarks

ActivityNet-QA
(test)

VCGBench
(test)

VideoMME
(w/o subs)

EgoSchema
(subset)

NExTQA
(val)

IntentQA
(val)

Training-Free Model Comparison

DeepStack-L-7B Meng et al. (2024) ✘ 49.3 – – 38.4 61.0 –
IG-VLM-7B (LLaVA-v1.6) Kim et al. (2024) ✘ 54.3 3.03 – 35.8 63.1 60.3
SlowFast-LLaVA-7B Xu et al. (2024b) ✘ 55.5 3.04 40.7 47.2 64.2 60.1

MM1.5-Video-1B (Training-free) ✘ 46.8 2.86 45.6 45.4 70.0 67.8
MM1.5-Video-3B (Training-free) ✘ 50.9 3.04 48.4 48.4 72.8 72.7
MM1.5-Video-7B (Training-free) ✘ 52.5 3.05 52.4 49.6 76.1 76.7

SFT Model Comparison

VideoChatGPT-7B Maaz et al. (2024) ✔ 35.2 2.42 – – – –
Video-LLaVA-7B Lin et al. (2023a) ✔ 45.3 2.84 39.9 – – –
Vista-LLaMA-7B Ma et al. (2024) ✔ 48.3 – – – 60.7 –
MovieChat+-7B Song et al. (2024) ✔ 48.1 – – – 54.8 –
VideoChat2-7B Li et al. (2024h) ✔ 49.1 2.98 – – 68.6 81.9
Video-LLaMA2-7B Cheng et al. (2024) ✔ 50.2 3.13 47.9 51.7 – –
PLLaVA-7B Xu et al. (2024a) ✔ 56.3 – – – – –
LLaVA-NeXT-Interleave-0.5B Li et al. (2024f) ✔ 48.0 3.07 – – 59.5 –
LLaVA-NeXT-Interleave-7B Li et al. (2024f) ✔ 55.3 3.42 – – 78.2 –
LLaVAOneVision-0.5B Li et al. (2024c) ✔ 50.5 3.12 44.0 26.8 57.2 –
LLaVAOneVision-7B Li et al. (2024c) ✔ 56.6 3.51 58.2 60.1 79.4 –

MM1.5-Video-1B (SFT) ✔ 56.1 3.14 45.7 51.0 71.8 74.2
MM1.5-Video-3B (SFT) ✔ 57.9 3.17 49.5 52.4 74.7 81.2
MM1.5-Video-7B (SFT) ✔ 60.9 3.22 53.5 57.2 76.9 86.6

Table 13: Comparison with SOTA models on LLaVA-Hound benchmarks. (†) indicates the published
version released at https://huggingface.co/ShareGPTVideo/LLaVA-Hound-SFT.

Model In-domain Benchmarks Out-of-domain Benchmarks

ActivityNet-QA VIDAL-QA WebVid-QA MSVD-QA MSRVTT-QA TGIF-QA SSV2-QA

Video-ChatGPT-7B Maaz et al. (2024) 34.2 29.4 38.9 34.1 25.7 31.4 19.4
LLaMA-VID-7B Li et al. (2023g) 36.5 30.6 37.0 34.1 25.0 27.2 22.2
Chat-UniVi-7B Jin et al. (2024a) 39.4 31.4 40.1 35.6 25.9 33.2 20.6
Video-LLaVA-7B Lin et al. (2023a) 41.4 34.3 42.5 39.5 30.8 33.0 24.3
LLAVA-HOUND-SFT-7B† 62.8 56.3 66.8 62.2 52.6 61.1 35.4

MM1.5-Video-1B (Training-free) 49.0 42.6 55.8 49.8 43.3 47.6 27.2
MM1.5-Video-3B (Training-free) 51.5 45.4 58.5 51.1 46.0 49.2 28.2
MM1.5-Video-7B (Training-free) 52.8 48.7 58.5 52.9 48.1 49.8 30.4
MM1.5-Video-1B (SFT) 65.7 60.6 68.7 65.0 55.3 64.0 34.0
MM1.5-Video-3B (SFT) 67.8 63.4 71.1 65.2 57.2 64.9 35.2
MM1.5-Video-7B (SFT) 68.5 68.5 71.5 67.2 59.3 65.5 37.9

0.5B (e.g., 24.2% on EgoSchema and 14.6% on NExTQA) and achieves the state-of-the-art results.
Third, our 7B model achieves state-of-the-art performance on ActivityNet-QA (e.g., outperforming
LLaVAOneVision-7B by 4.3%) and very strong results (mostly runner-up) on other benchmarks by
using only public video datasets. We are impressed by the superior results of LLaVAOneVision-7B,
especially on long-form video benchmarks such as VideoMME and EgoSchema. We hypothesize this
can be due to that (i) it is trained on their re-annotated video datasets with better labeling quality,
(ii) it takes more video frames as inputs (i.e., 32 vs. 24), (iii) it uses multiple training stages on
joint image and video datasets. We will explore these directions to improve our model in future
work. Lastly, MM1.5-Video achieves state-of-the-art performance on the LLaVA-Hound benchmarks,
which demonstrates our capability for detailed video understanding.

A.8 MM1.5-UI

One of the most promising applications of MLLMs that has recently gained popularity is using them to
understand and act on user interfaces (UIs) on behalf or alongside users (Hong et al., 2024b; Baechler
et al., 2024; You et al., 2024; Li & Li, 2023), which could significantly boost users’ productivity and
efficiency when interacting with digital devices. This application typically involves providing a model
input of: (i) an image of the graphical user interface (GUI) of a device (i.e., phone or computer)
screen; and (ii) instructions on either knowledge grounded on certain areas or the entirety of the
screen (e.g., Is this element at <x1,x2,y1,y2> clickable?), or asking it to refer to certain areas of the
screen that fit the questions’ criterion (e.g., Where is the text ‘login’ on the screen?). Beyond referring
and grounding abilities, excelling on UI tasks also requires text-rich image understanding ability to
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Figure 10: Illustration of the UI understanding capability shown in MM1.5-UI. Our single model is
able to perform a variety of referring and grounding tasks and establish new state-of-the-arts. More-
over, it can summarize the functions of the UI screen and engage with users through conversations.

understand text-dense UIs, and background knowledge about typical user interactions on devices,
which makes MM1.5 a perfect candidate to be developed into a highly capable UI understanding
model.

Towards this goal, we developed MM1.5-UI, an MM1.5 model variant further fine-tuned specifically
on UI data that achieves competitive performance on UI understanding tasks and establishes new
state-of-the-art performance in various benchmarks. Figure 10 illustrates a single MM1.5-UI model’s
wide range of UI understanding capabilities on an iPhone screenshot. The model can find certain text
(“BRIGHTNESS”) on the left side (box2), correctly identify the settings icon at the top left (box1),
classify a UI element on the right as a checkbox (box0), and maintain a multi-turn conversation about
the “Night Shift” function (box3) in the UI.

A.8.1 BENCHMARKS AND METRICS

We train and evaluate MM1.5-UI on a variety of public and elementary UI understanding tasks used in
Ferret-UI (You et al., 2024). These tasks are established benchmarks in literature that cover multiple
aspects of UI understanding, and allow us to fairly compare MM1.5-UI against prior work:

• Public Benchmarks include screen2words (Wang et al., 2021): a screen-level captioning task;
widget captions (Li et al., 2020): a widget-level captioning task; and taperception (Schoop et al.,
2022): predicting the tapability of a certain widget on the UI.

• Ferret-UI elementary tasks are split into two categories: Grounding (Grd-*) are questions querying
for a certain area on the screen, such as finding an icon; and Referring (Ref-*) are questions given
a certain area on the screen, such as recognizing text within a screen area (i.e., OCR). Each of
these tasks also has an iOS (*-i) and Android (*-A) version, forming four categories of tasks (e.g.,
Grounding task on Android is Grd-A).
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Table 14: Comparison with SOTA models on UI benchmarks. S2W: screen2words, WiC: widget
captioning, TaP: taperception. (†) denotes per-task fine-tuning. 1 ep. means 1 epoch model training.

Model Public Benchmarks Ferret-UI Elementary Tasks

S2W WiC TaP Ref-i Ref-A Grd-i Grd-A

Spotlight Li & Li (2023) 106.7 141.8 88.4 - - - -
PaliGemma-3B† Beyer et al. (2024) 119.6 148.4 - - - - -
Ferret-UI-13B You et al. (2024) 113.4 142.0 78.4 80.5 82.4 79.4 83.5

MM1.5-UI-1B 103.0 144.4 79.3 90.0 88.6 86.5 88.2
MM1.5-UI-3B 103.3 145.0 80.4 90.8 89.2 87.3 88.8
MM1.5-UI-7B 100.6 149.7 80.3 91.2 89.2 87.2 88.6
MM1.5-UI-30B 106.0 145.9 80.6 91.8 89.7 88.2 89.1

Ablation on MM1.5 SFT on UI tasks

MM1.5-UI-3B (1 ep.) 103.9 145.2 77.4 88.6 87.7 86.0 87.9
MM1.5-UI-3B (1 ep., w/o MM1.5 SFT) 103.8 139.5 75.3 88.2 87.4 85.5 87.1

More details of the benchmarks can be found in Appendix A.10 and the original Ferret-UI paper (You
et al., 2024).

A.8.2 RESULTS

MM1.5-UI models are trained by further fine-tuning the final MM1.5 models on the Ferret-UI data
mixture (You et al., 2024), which includes training data corresponding to the above elementary UI
tasks and additional GPT-4-generated conversations about functionalities and descriptions about the
UIs’ functionality and layouts. There are 801K samples in total. All models are trained with the same
batch size and learning rate as the original MM1.5 model.

Comparison with Prior Art. Results are summarized in Table 14. Our MM1.5-UI models outperform
prior best models in nearly all benchmarks except Screen2words. In particular, even our 1B model is
able to outperform the Ferret-UI model in its proposed elementary tasks by a wide margin despite
being ten times smaller. The performance difference is most significant on iOS tasks at 9.1 points on
average. This demonstrates that the abilities learned by MM1.5 are relevant and useful for UI tasks.

When comparing the performance across individual benchmarks, MM1.5-UI demonstrates a clear
hierarchy of difficulties among tasks that focus on different types of UI elements, similar to Ferret-
UI (You et al., 2024). Tasks focused on text are the most challenging, followed by those involving
icons, while widget-based tasks are the easiest. This trend holds for both referring and grounding tasks.
However, MM1.5-UI shows a notable performance improvement in icon-based tasks, significantly
narrowing the gap between icon and widget tasks. Ferret-UI highlighted the importance of resolution
for tasks involving smaller elements like icons. The higher resolution and dynamic image splitting
used in MM1.5-UI further confirm that resolution is particularly beneficial for enhancing performance
in icon-related tasks.

Impact of MM1.5 SFT on UI tasks. To highlight the effectiveness of the MM1.5 SFT mixture
on downstream UI tasks (i.e., in MM1.5-UI), we compare the performance of the full MM1.5-UI
model with a baseline UI model fine-tuned with UI data on the pre-training checkpoint that MM1.5
was trained on. Both models are trained for one epoch using the Ferret-UI dataset, and their results
are presented in Table 14. The final MM1.5-UI model, which underwent SFT for general domain,
text-rich, and refer&ground tasks, achieves superior UI performance within the same number of
training steps. This demonstrates the strong transfer capability of MM1.5 for UI applications and
contributes to its performance improvement over prior SOTA models.

Impact of model scaling. We observe overall performance improvements as models scale, though
gains in all metrics remain modest, suggesting that larger models may be constrained by factors such
as data diversity, image resolution, or overfitting. For instance, in the most challenging OCR tasks,
47.8% of incorrect responses contain the ground truth as a strict substring of the generated response,
or vice versa. This suggests the model accurately recognized the text but failed to trim or include the
correct amount. Additionally, the performance of the 7B and 30B models appears to have plateaued,
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indicating that larger, more diverse datasets and joint SFT of UI and core capabilities could further
improve the performance.

A.9 MM1.5 IN-HOUSE MULTI-IMAGE SFT DATA

We generated two sets of in-house SFT data for the multi-image capabilities of our model: coco-
instruct-interleaved and icl-instruct.

Coco-instruct-interleaved was generated using an LLaVa-style approach using our text-only LLM.
We input COCO image captions for two images, along with a prompt requiring the LLM to generate
a conversation between a user and an assistant, with the two images inserted in context. This dataset
helps our model learn conversational multi-image capabilities. An example from this dataset is shown
below. This dataset contains ~2k examples, with 2 images per example.

User: <image 1> What do you see in the following picture?
Assistant: I see an open beige toilet with a monitoring device attached to the
seat. The device appears to be displaying various metrics, such as temperature and
pressure, and it is likely used for medical purposes.
User: <image 2> What about this picture?
Assistant: I see a row of parking meters sitting next to each other near a street.
The meters are typical of those used to enforce parking regulations in many cities.
User: What is the difference between the two pictures?
Assistant: The first picture depicts a toilet with a monitoring device, while the
second picture shows a row of parking meters. These are two very different objects
in different settings. The first picture is likely used for medical purposes, while the
second picture is used to regulate parking in cities.

Icl-instruct was generated manually to help the model retain in-context learning abilities from pre-
training along with more nuanced in-context learning tasks that require multi-step reasoning from
the model. This dataset contains different varieties of in-context learning tasks, some of which are
similar to those found in the VL-ICL benchmark (Zong et al., 2024). We found that including this
dataset, which contains ~500 examples, greatly boosts the models’ in-context learning performance.

A.10 MM1.5-UI BENCHMARK DETAILS

The public benchmark tasks and metrics for evaluating MM1.5-UI are:

• Screen2words is a captioning task where each complete screen is paired with 5 ground-truth
high-level summaries under ten words. The generated summaries’ quality is measured by CIDEr
score between the ground-truth and generated summaries.

• Widget Captioning is a captioning task where a certain screen area that corresponds to a widget
(e.g., button, list item) is paired with 3 ground-truth captions. The generated summaries’ quality is
measured by CIDEr score similar to Screen2words.

• Taperception is a binary classification task where a certain screen area that correspond to a widget
(e.g., button, list item) is paired with a ground-truth binary label of whether the screen area is
’tappable’ (i.e., clickable by users). The generated labels’ quality is measured by F1 score.

The Ferret-UI Elementary task benchmarks used to evaluate MM1.5-UI, organized by capability
categories, are:

• Ferret-UI Grounding (Grd-i/A) is a set of three grounding-based UI tasks introduced in Ferret-
UI (You et al., 2024). These tasks query for certain areas of screens that meet certain criteria. They
include finding a widget given a text description, finding an icon given the class of the icon, and
finding a text location on screen. The expected response from the model is a bounding box, and the
quality of the bounding box is measured by Recall with IoU>0.5.

• Ferret-UI Referring (Ref-i/A) is a set of three referring-based UI tasks introduced in Ferret-
UI (You et al., 2024). These tasks query about knowledge or characteristics that correspond to
certain areas of the screens. They include classifying the type of widgets in the given areas,
recognizing the type of icons in the given areas, and recognizing texts in the given areas. The
quality of the responses is measured by exact match accuracies.
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Apple Confidential–Internal Use Only

padding

resolution loss due to downscaling

Figure 11: Illustration of image grid selection used in dynamic image splitting for high-resolution
image encoding. (Left) If the grid can cover the full image without scaling down, we choose the grid
that minimizes padding. (Right) Otherwise, we choose the grid that minimizes the resolution loss due
to scaling down.

Each of these two sets Ferret-UI tasks further have two variants with screenshots from two types
of operating systems (iOS/Android), of which Android tasks are denoted as -A (e.g., Grd-A), and
iPhone tasks as -i, which results in 12 tasks in total.

A.11 DYNAMIC VS STATIC IMAGE SPLITTING

Detailed ablation study of MM1.5 with different image splitting strategies is shown in Table 15, 16,
17 and 18. All models are using the final setting except for the image splitting (dynamic vs. static).

Table 15: Comparison of our models when using dynamic vs. static image splitting. We follow our
final settings for all models. (S) and (D) indicate static and dynamic splitting, respectively.

Model

Knowledge Benchmarks General Benchmarks

AI2D
(test)

SQA
(test)

MMMU
(val)

MathV
(testmini)

MME
(P/C) SEEDI POPE LLaVAW MM-Vet RealWorldQA

1B Model Comparison

MM1.5-1B(S) 59.5 83.9 36.1 37.4 1393.4/244.9 69.99 87.9 67.9 34.2 51.8
MM1.5-1B(D) 59.3 82.1 35.8 37.2 1365.7/245.7 70.2 88.1 71.6 37.4 53.3
MM1.5-1B-MoE(S) 66.4 86.8 41.2 42.2 1481.4/293.6 71.3 89.5 76.5 41.8 60.1
MM1.5-1B-MoE(D) 67.1 87.6 41.2 42.9 1511.9/361.1 71.4 88.6 75.5 39.8 57.8

3B Model Comparison

MM1.5-3B(S) 66.1 87.2 36.8 43.1 1439.8/297.5 71.9 88.3 72.1 38.3 58.8
MM1.5-3B(D) 65.7 85.8 37.1 44.4 1478.4/319.6 72.4 88.1 73.0 41.0 56.9
MM1.5-3B-MoE(S) 66.3 89.3 41.9 43.1 1527.8/342.5 72.4 88.4 78.5 41.4 59.2
MM1.5-3B-MoE(D) 69.9 89.8 42.9 46.9 1591.4/365.7 73.3 87.2 76.1 43.7 60.7

7B Model Comparison

MM1.5-7B(S) 72.2 89.6 44.1 49.1 1531.3/366.4 73.5 88.6 77.2 43.3 57.0
MM1.5-7B(D) 72.2 89.6 41.8 47.6 1514.9/346.4 73.4 88.6 74.2 42.2 62.5

30B Model Comparison

MM1.5-30B(S) 75.4 92.8 46.8 56.0 1605.2/402.1 74.1 89.0 79.5 49.4 68.0
MM1.5-30B(D) 77.2 91.9 47.4 55.6 1646.2/405.7 75.0 88.6 80.4 52.0 69.0

A.12 METHODOLOGY FOR RUNNING COMPETITOR MODELS

This section covers the methodology used to report results for Phi-3-Vision (Abdin et al., 2024b),
LLaVA-OneVision (Li et al., 2024c), InternVL2 (Chen et al., 2024b) and MiniCPM-V2 (Yao et al.,
2024b). When available, we reported the results published by the original authors, either in their
technical reports or on public leaderboards7. When not available, we implemented inference runners
using publicly released checkpoints. Commonly, we followed (Li et al., 2024b)’s implementations
that we adapted on our own internal fork of lm-eval-harness (Gao et al., 2023; McKinzie et al., 2024).
To verify the validity of our inference implementations, we ensured we could reproduce previously
published results within standard deviation. Below, we share details for each model implementation:

7https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
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Table 16: Comparison of our models when using dynamic vs. static image splitting. We follow our
final settings for all models. (S) and (D) indicate static and dynamic splitting, respectively.

Model

Text-rich Benchmarks

WTQ
(test)

TabFact
(test)

OCRBench
(test)

ChartQA
(test)

TextVQA
(val)

DocVQA
(test)

InfoVQA
(test)

1B Model Comparison

MM1.5-1B(S) 31.0 65.4 60.4 67.5 72.8 79.7 40.8
MM1.5-1B(D) 34.1 66.1 60.5 67.2 72.5 81.0 50.5
MM1.5-1B-MoE(S) 34.1 69.6 58.0 72.7 75.8 82.5 46.0
MM1.5-1B-MoE(D) 38.9 71.4 62.6 73.7 76.1 84.8 55.9

3B Model Comparison

MM1.5-3B(S) 36.3 71.0 61.1 74.3 75.2 84.0 45.8
MM1.5-3B(D) 41.8 72.9 65.7 74.2 76.5 87.7 58.5
MM1.5-3B-MoE(S) 32.5 70.1 60.2 73.0 75.9 81.0 44.2
MM1.5-3B-MoE(D) 39.1 73.1 63.8 73.6 76.8 85.0 53.6

7B Model Comparison

MM1.5-7B(S) 38.4 73.7 59.7 77.9 76.1 84.5 47.3
MM1.5-7B(D) 46.0 75.9 63.5 78.6 76.5 88.1 59.5

30B Model Comparison

MM1.5-30B(S) 46.0 81.0 64.5 82.4 78.7 88.5 53.2
MM1.5-30B(D) 54.1 84.0 65.8 83.6 79.2 91.4 67.3

Table 17: Comparison of our models when using dynamic vs. static image splitting. We follow our
final settings for all models. (S) and (D) indicate static and dynamic splitting, respectively.

Model

Refer and Ground Benchmarks

RefCOCO avg. Flickr30k
(test) LVIS avg. Ferret-Bench avg.

1B Model Comparison

MM1.5-1B(S) 82.0 82.7 62.4 69.7
MM1.5-1B(D) 81.4 83.0 62.2 67.4
MM1.5-1B-MoE(S) 79.3 80.9 63.9 73.4
MM1.5-1B-MoE(D) 84.8 85.4 64.6 69.6

3B Model Comparison

MM1.5-3B(S) 85.1 85.3 68.1 71.2
MM1.5-3B(D) 85.6 85.9 67.9 69.5
MM1.5-3B-MoE(S) 82.8 82.6 67.5 70.8
MM1.5-3B-MoE(D) 86.2 85.8 66.9 72.2

7B Model Comparison

MM1.5-7B(S) 87.2 86.0 68.8 71.2
MM1.5-7B(D) 86.6 85.3 66.4 72.6

30B Model Comparison

MM1.5-30B(S) 90.1 87.7 73.2 75.6
MM1.5-30B(D) 90.1 87.5 73.1 77.1

Phi-3-Vision. We used the public Phi-3-Vision checkpoint8 and ran it on our families of benchmarks.
For general, text-rich, knowledge and refer&ground benchmarks, when the position of the image
is not determined by the task, we prepend the image to the text input following the examples given
in the Phi-3-Vision cook book9. For grounding benchmarks, we introduced the following prompt:
“Question: {question}<b>Answer this question by listing the requested entities and their bounding
boxes. The bounding boxes are formatted as follows: <x1,y1,x2,y2>, each value is between 0-
{upper_bound}.<n>Answer:”. For both referring and grounding, we experimented with a variety of
upper bound bounding boxes. Through our experiments, we noticed that an upper box of 1 yielded to

8https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
9https://github.com/microsoft/Phi-3CookBook/blob/main/md/03.Inference/Vision_Inference.md#3-

comparison-of-multiple-images
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Table 18: Comparison of our models when using dynamic vs. static image splitting. We follow our
final settings for all models. (S) and (D) indicate static and dynamic splitting, respectively.

Model

Multi-image Benchmarks

QBench2
(val)

Mantis
(test)

NLVR2
(val) MVBench BLINK

(val)
Muirbench

(test)

1B Model Comparison

MM1.5-1B(S) 65.8 48.4 78.6 46.1 41.9 34.0
MM1.5-1B(D) 66.4 50.7 79.0 45.8 46.3 34.7
MM1.5-1B-MoE(S) 70.2 52.1 83.0 47.4 44.8 42.5
MM1.5-1B-MoE(D) 70.9 51.2 83.2 48.3 43.7 40.9

3B Model Comparison

MM1.5-3B(S) 72.0 53.5 83.9 47.8 42.5 44.5
MM1.5-3B(D) 73.2 54.8 83.8 47.7 46.8 44.3
MM1.5-3B-MoE(S) 70.4 54.4 85.3 47.2 47.1 44.2
MM1.5-3B-MoE(D) 73.8 54.4 86.0 50.3 49.8 45.6

7B Model Comparison

MM1.5-7B(S) 73.0 56.7 87.2 49.7 47.6 53.8
MM1.5-7B(D) 73.2 57.6 86.9 48.3 48.2 49.1

30B Model Comparison

MM1.5-30B(S) 77.0 64.5 90.2 49.9 48.4 60.1
MM1.5-30B(D) 79.3 64.6 90.6 54.0 50.2 58.2

better results, in line with the answers produced by Phi-3-Vision. For Flickr30k, we slightly simplified
the benchmark and asked the model to ground one entity per prompt, as grounding multiple entities
jointly did not lead to satisfactory results.

LLaVA-OneVision. We used the public checkpoint LLaVA-OneVision 7B10 and we followed closely
the LLaVA documentation11. When not baked directly into the benchmarks, we used the original
LlaVA prompts specified in (Liu et al., 2023a; Li et al., 2024c) for all families of benchmarks. In
particular, for grounding benchmarks, we used the prompt introduced in Table 18 of (Li et al.,
2024c): “Provide the bounding box coordinate of the region this sentence describes”. On Flickr30k,
we followed the single-entity approach outlined above.

InternVL2. The InternVL2 authors provided already a comprehensive set of benchmarks on general,
text-rich, knowledge and refer&ground families12, which we reported first. For the few remaining
benchmarks, we used the 2B public checkpoint released. InternVL2 code base relies on both
VLMEvalKit (Duan et al., 2024) and a custom internal evaluation13. We carefully reviewed the logic
implemented14, especially regarding the decoding parameters and prompts used. For grounding,
we used the prompt shared by the authors: “Please provide the bounding box coordinates of the
region this sentence describes: <ref>{question}</ref>”. On Flickr30k, we followed the single-entity
approach outlined above.

MiniCPM-V2. We used the publicly released MiniCPM-V2 2.8B checkpoint15. Similarly to In-
ternVL2, MiniCPM-V2 code base relies on both VLMEvalKit and a custom internal implementation16,
which we reviewed carefully to reproduce decoding parameters and prompts. For refer&ground
benchmarks, we noticed that regardless of the prompt used, MiniCPM-V2 could not produce satisfac-

10https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov
11https://github.com/LLaVA-VL/LLaVA-NeXT/blob/main/docs/LLaVA_OneVision_

Tutorials.ipynb
12https://huggingface.co/OpenGVLab/InternVL2-2B
13https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html
14https://github.com/OpenGVLab/InternVL
15https://huggingface.co/openbmb/MiniCPM-V-2
16https://github.com/OpenBMB/MiniCPM-V/tree/main/eval_mm
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tory results on RefCOCO and Flickr30k17. We decided not to include those results. For multi-image
and in-context learning benchmarks, we found that MiniCPM-V2 does not accept multiple images
as input in its Hugging Face implementation. We acknowledge MiniCPM-V2’s authors used a custom
image concatenating approach for BLINK18, but we could not reproduce easily the same approach on
other benchmarks. We decided to only include the BLINK score reported by the authors19.

Single Image

Dynamic Splitting

Decoder Only LLM

Language Instruction

Multi Image

Dynamic Splitting

Image patches

Language Response

Image Encoder
Coordinate tokens

Figure 12: The overview of model architecture. MM1.5 excels at (i) text-rich image understanding
with dynamic image splitting, (ii) visual referring and grounding with coordinate tokens, and (iii)
multi-image reasoning.

17Responses commonly produced incomplete bounding boxes, preventing any parsing for a fair evaluation.
18https://github.com/OpenBMB/MiniCPM-V/blob/a209258d851f404485e5ae25864417dff3bb74ca/

eval_mm/vlmevalkit/vlmeval/api/base.py#L260
19https://huggingface.co/spaces/opencompass/open_vlm_leaderboard

39

https://github.com/OpenBMB/MiniCPM-V/blob/a209258d851f404485e5ae25864417dff3bb74ca/eval_mm/vlmevalkit/vlmeval/api/base.py#L260
https://github.com/OpenBMB/MiniCPM-V/blob/a209258d851f404485e5ae25864417dff3bb74ca/eval_mm/vlmevalkit/vlmeval/api/base.py#L260
https://huggingface.co/spaces/opencompass/open_vlm_leaderboard


2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

A.13 QUALITATIVE EXAMPLES

A.13.1 MM1.5 CAPABILITIES

The ingredients <111,24,315,229> <308,235,460,314> <383,372,571,485> can be used to make a delicious cake. The 
first ingredient is cake flour, the second one is eggs, and the third one is butter. These are all essential components for 
baking a cake.

!

"
What can I make with these ingredients <111,24,315,229> <308,235,460,314> <383,372,571,485>?

To make a cake, you would need flour, sugar, eggs, butter, and baking soda from the image.
!

"
If we want to make a cake, choose the best ingredients in the image. 

"
Can you show me their coordinates?

Sure! The flour <112,26,316,239>, sugar <306,19,484,251>, eggs <312,239,392,312> 
<386,243,461,316>, butter <383,371,571,481>, and baking soda <457,155,567,308> are the 
ingredients you would need for a cake.

!

"
Should I add this stuff <101,306> to my cake too?

Yes, you should definitely add the canned cherries <54,211,165,388> to your cake. They will add a sweet and tangy flavor 
to the cake, enhancing its taste.

!

Step 1: Identify the main subject of each image. 

• Image 1: The main subject is a crowd of people at a concert. 

• Image 2: The main subject is the Sagrada Familia, a large Gothic-style church 
in Barcelona. 

• Image 3: The main subject is a cup of coffee with a heart-shaped foam design. 
Step 2: Determine the tone and theme of each image. 

• Image 1: The tone is energetic and lively, with a focus on the vibrant 
atmosphere of a concert. 

• Image 2: The tone is historical and architectural, showcasing the grandeur of 
the Sagrada Familia. 

• Image 3: The tone is cozy and inviting, with a focus on the comforting act of 
enjoying a cup of coffee. 

Step 3: Craft a Twitter post that incorporates the main subject and tone of 
each image. 
"Experience the energy of a live concert at [Concert Venue] or take a moment to 
appreciate the architectural beauty of [Sagrada Familia] with [Tourist 
Attraction]. Enjoy a warm cup of coffee with a heart-shaped foam design from 
[Coffee Shop]."

!

"
Help me generate a Twitter post providing these images.

To find the skier's speed at the bottom, we can use the conservation of 
energy principle. At the start, the skier has potential energy, and at the 
end, the skier has kinetic energy. Since the energy is conserved, we can 
set up the following equation: 
Start:  End:  
where E is the energy, m is the mass of the skier, g is the acceleration 
due to gravity (9.81 ), h is the height, and v is the final velocity. 
We are given the initial height (40 m) and the final height (0 m) since 
the skier reaches the ground. We can plug these values into the 
equation and solve for the final velocity (v): 

 
Divide both sides by m: 

 
Now, plug in the given values for g and h: 

 

 
Multiply both sides by 2: 

 
Now, take the square root of both sides to find the final velocity (v): 

 
 

So, the skier's speed at the bottom is approximately 28 m/s.

E = mgh E = (1/2)mv2

m /s2

(1/2)mv2 = mgh

(1/2)v2 = gh

(1/2)v2 = (9.81m /s2)(40m)
(1/2)v2 = 392.4J

v2 = 784.8J

v = 784.8J
v ≈ 28m /s

"
Try to reason about the question step by step.

Multi-Image Math/Reasoning

Refer & Ground

!

"
Read out the abstract of this paper.

In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study 
the importance of various architecture components and data choices. Through careful and comprehensive ablations of 
the image encoder, the vision language connector, and various pre-training data choices, we identify several crucial 
design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of 
image-captioning, the interleaved image-text and text-only data is crucial for achieving state-of-the-art (SOTA) few-
shot results across multiple benchmarks, compared to other published multimodal pre-training results. Further, we 
show that the image encoder together with image resolution and the image token count has substantial impact, while 
the vision-language connector design is of comparable negligible importance. By scaling up the presented recipe, we 
build MM1, a family of multimodal models, including both dense variants up to 30B and mixture-of-experts (MoE) 
variants up to 64B, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-
tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing 
properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought 
prompting.

Text Rich

!

Figure 13: Examples of MM1.5 capabilities. The examples we demonstrated are generated by the
MM1.5-3B model..

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

A.13.2 TEXT-RICH IMAGE UNDERSTANDING

The newspaper page is from The New York Times dated 
November 11, 1918. The main headline announces the 
signing of the Armistice, marking the end of World War 
I. Other articles cover the revolution in Germany, with 
Berlin being seized by revolutionists and the abdication 
of Kaiser Wilhelm II. The page also includes a call for 
the abdication of the German Emperor by the socialist 
Chancellor, Friedrich Ebert. Additionally, there are 
reports on the ousting of Kaiser Wilhelm II and his 
flight to the Netherlands, as well as the resignation of 
the German General Staff. The page also features a 
report on the armistice being signed in France, marking 
the end of the war.

!

"
Could you summarize every article on this newspaper 
page?

The newspaper page features several articles. The 
main headline reports on the tragic event of 60 
people dying in blasts at US embassies. Another 
article discusses President Clinton consoling the 
victims' families. There's also a piece about 
Ojukwu foreclosing on a presidential ambition. 
Additionally, the page includes a special sales 
advertisement for Samsonite/Carlton luggage and 
high-quality crystals.

!

"
Could you summarize the articles in this newspaper 
page?
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32%
!

"
What percent of growth is expected in the primary 
technician jobs in the U.S.?

$40,190
!

"
How much is the top 10% income earned by medical 
assistants in the U.S.?

39%
!

"
What is the expected growth rate of physical therapist jobs 
in the U.S.?

!

"
Can you give me a table of games and sales numbers, but only show games 
released before 2010

Sure, here is a table of games released before 2010 and their sales numbers:

Title Sales Series Platform(s) Initial release date

Wii Sports 82,900,000 Wii Wii November 19, 2006

Super Mario Bros. 58,000,000 Super Mario Multi-platform September 13, 1985

Tetris (Game Boy / 
NES) 48,000,000 Tetris Game Boy / NES June 14, 1989

Pokémon Red / 
Green / Blue 47,520,000 Pokémon Multi-platform February 27, 1996

Pac-Man 42,000,000 Pac-Man Multi-platform May 22, 1980
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A.13.3 VISUAL REFERRING AND GROUNDING

Uniform Size & Heavy: Pick a watermelon that is uniform in size and feels heavy for its size. 
This indicates that it is full of juice. 
Larger "Webbing": Choose a watermelon with larger webbing, as it is likely to be sweeter. 
Dark & Dull: A ripe watermelon will have a dark and dull exterior, which means it's ready 
to be enjoyed. 
Field Spot: Look for a watermelon with a field spot, which is a yellow or orange spot on the 
bottom where it was resting on the ground. This indicates that it was allowed to ripen on 
the vine. 
Orange Field Spot: The ideal watermelon will have an orange field spot, which means it was 
harvested at the perfect time. 
Shiny: A ripe watermelon will not be shiny, so avoid any that are. By following these 
guidelines, you can select a ripe and sweet watermelon every time.

!

"
Show me the guidelines for selecting the Ripe and Sweet melon

The ripe and sweet melon <114,453,227,595> would be the one with a dark and dull 
exterior, an orange field spot, and larger webbing.

!

"
Based on the guidelines, which one is the ripe and sweet melon? Also show me the 
coordinates of the things that you mention.

Fruits and Vegetables
!

"
Which place should I go to if I want to buy lemons?

!

"
Okay, here is the place. Can you help me find the lemons? Also show me the 
coordinates of the things that you mention.

No, you are in the fresh meat area. The correct place to buy lemons is in the 
Vegetables department as shown in the supermarket image.

!

"
Ok. Is this the correct place?

Sure! The lemons <236,218,646,448> are located in the middle of the image, 
nestled between the tomatoes and the peppers.
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A.13.4 MULTI-IMAGE REASONING

In the second image, you can drive on ahead because the traffic light is green.
!

"
In which of these situations can I drive on ahead?

The bike in image 1 is experiencing rust and wear, as indicated by the rusted metal parts and the bent 
handlebars. Image 2, with its focus on the bicycle wheel, fits best as it provides a close-up view of the 
bike's wheel, which is the part most directly related to the bike's condition.

!

"
What is the bike experiencing in image 1? Which one fits best, image 2 or image 3, and why?

You can make a banana bread using all of these ingredients. The ripe bananas from image 
3 can be mashed and combined with the flour from image 1 and the eggs from image 4 to 
create a moist and flavorful banana bread. The chocolate chips from image 2 can be mixed 
into the batter for added texture and sweetness.

!

"
I have these ingredients in my fridge. What can I make using all of these? Explain.
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A.13.5 VIDEO UNDERSTANDING

The first video and the second video are similar in that they both depict a person 
gardening. However, there are some differences between the two videos. 

In the first video, the person is seen picking berries from a bush, while in the second video, 
the person is seen planting flowers in a garden. This difference in activity suggests that the 
two videos may have been taken at different times or in different locations.  

Additionally, the first video is taken from a bird's-eye view, while the second video is taken 
from a lower angle. This difference in perspective gives the two videos a different feel and 
may affect the viewer's experience. Overall, while the two videos share some similarities, 
they also have some differences in terms of the activity being performed and the perspective 
from which the video is taken.

!

"
Here are two videos. Please provide the analysis on their differences.

The highlighted player is a long jumper, who is wearing a green and black uniform and is 
participating a long jump competition.

!

"
Describe the player highlighted in this video.

"
Why this player run very fast in the beginning of the video?

The player runs very fast at the beginning of the video to gain momentum and speed for 
their jump, which will help them achieve a longer distance.

!
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The player highlighted in this video is a gymnast. He is wearing a blue leotard and is 
shown performing on the parallel bars. The video captures his routine, which includes a 
variety of swings and movements on the apparatus. The gymnast's form and technique are 
on display as he navigates the parallel bars with precision and grace. The video also 
provides a close-up view of the gymnast's face, allowing viewers to see the concentration 
and determination he exhibits during his performance. Overall, the video showcases the 
gymnast's skill and dedication to his sport.

!

"
Describe the player highlighted in this video.

"
Do you think the player and his coach are satisfied with his performance?

The player and his coach are embracing each other in a sports hall or gym suggests a 
positive outcome or a sense of accomplishment, which could indicate satisfaction with the 
player's performance.

!

The primary objective that this person was trying to accomplish was installing or 
repairing a cable channel. He used a level repeatedly to check the accuracy of his work.

!

"
What was the primary objective that this person was trying to accomplish and what 
tool did he use repeatedly to check the accuracy of his work?

He cleaned the kitchen counter and the sink with a white towel.
!

"
What activities did the man do after he washed the black pan?
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The character is seen lying on the bed, holding a black shirt. They then place the black 
shirt on the bed. The character is seen holding a gray shirt and places it on the bed as 
well. They then hold a pair of black socks and place them on the bed. The character is 
seen holding a pair of red socks and places them on the bed. The character is seen holding 
a pair of black shoes and places them on the bed.

!

"
Please identify the most significant actions in the video. What conclusions can be drawn 
from these actions?

In the video, a person is engaged in the act of painting a wedding scene on a canvas. The 
canvas is propped up on a table, which is cluttered with various art supplies. The person 
is holding a paintbrush, dipping it into a palette filled with different shades of paint. They 
are carefully applying the paint to the canvas, bringing the wedding scene to life. 

The table around the canvas is a testament to the artist's process. It's covered in art 
supplies - brushes of different sizes and shapes, jars of paint in various colors, and a 
sketchbook filled with preliminary sketches. The sketchbook, in particular, provides a 
glimpse into the artist's thought process, with sketches of the wedding scene visible on its 
pages. 

The background of the video is a wall adorned with shelves. The shelves are lined with 
more art supplies, indicating a well-stocked workspace. The overall scene suggests a 
dedicated artist immersed in their work, bringing a beautiful wedding scene to life on 
canvas.

!

"
Please describe the video in details.
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A.13.6 UI UNDERSTANDING

“UI widgets present in this screen include Text displaying "Projects" 
<16,48,103,81>, "more" Icon <273,48,303,79>, Text displaying "No 
Projects" <106,259,204,287>, Text displaying "Start New Project" 
<85,352,225,380>, "Magic Movie, Choose media from Photos and let iMovie, 
create a movie for you." Button <0,413,310,482>, "Storyboard, Use beautiful 
templates to easily create a, video or movie trailer." Button 
<0,487,310,558>, "Movie, Make a movie from scratch using media, from 
Photos and your camera." Button <0,568,310,637>.”

!

"
List all UI elements on the screen.

$

microphone
!

"
What is the type of icon at <257,118,299,153> ?

$

voice search
!

"
What happens it I click on it?

Yes, you can also use the search field <10,118,303,155> at the top of the 
screen.

!

"
Is there another way to search?
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page displaying various books
!

"
Please provide a brief description of the screenshot.

$

You can find the current best booksellers by clicking on the 'Current 
Bestsellers' text <20,130,212,160>.

!

"
Where can I find the current best booksellers?

You can sign in to your account by tapping on the 'person' icon 
<255,70,294,111>.

!

"
Where should I tap to sign in to my account?

Tapping on the 'Library' tab <66,603,118,650> will take you to your 
personal library where you can view all the books you have added.

!

"
What will happen if I tap <66,603,118,650>?
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