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ABSTRACT

Increasing weakly supervised semantic segmentation methods concentrate on the
target segmentation by leveraging solely image-level labels. However, few works
notice that a significant gap exists in addressing medical characteristics, which
demands massive attention. In this paper, we note: (i) Lesion regions typically
exhibit a sharp high-intensity anatomical distribution while healthy tissues adhere
to an underlying homogeneous distribution, which deviates from typical natural
images; (ii) Boundaries of lesion foregrounds and structural backgrounds are in-
distinct; (iii) Similar anatomical structures frequently appear within specific or-
gans or tissues, which poses a challenge to concentrating models’ attention on
regions of interest instead of the entire image. Thus we propose a Commonality-
specificity attention GAN (CoinGAN) to overcome the above challenges, which
leverages distribution discrepancies to mine the knowledge underlying images.
Specifically, we propose a new form of convolution, contrastive convolution, to
utilize the fine-grained perceptual discrepancies of activation sub-maps to en-
hance the intra-image distribution, making lesion foregrounds (specificity) and
structural backgrounds (commonality) boundary-aware. Then a commonality-
specificity attention mechanism is proposed to suppress similarity regions between
different labels of images and accentuate discrepancy regions between different
labels of images. This dual attention mechanism adeptly isolates lesion areas
from the structural background. Extensive experiments are conducted on three
public benchmarks. Our CoinGAN achieves state-of-the-art performance with the
DSC of 71.69%, 84.73%, and 78.32% on QaTa-COV19, ISIC2018, and MoNuSeg
datasets, making a significant contribution to the detection of pneumonia, skin
disease, and cancer. Furthermore, the visualized results also corroborate the ef-
fectiveness of CoinGAN in segmenting medical objects.

1 INTRODUCTION

Semantic segmentation has shown substantial progress in a diverse array of computer vision tasks,
e.g., autonomous driving, robotics and medical diagnosis Mo et al. (2022). However, these mod-
els are heavily dependent on pixel-level annotations, which are notoriously laborious and time-
intensive. On the contrary, some weak supervision alternatives, e.g., image-level labels He et al.
(2024), points Gao et al. (2024), and bounding boxes Cheng et al. (2023), are easier to obtain.
Therefore, exploring the potential of weak annotations for semantic segmentation is appealing. In
this paper, we aim to advance weakly supervised semantic segmentation (WSSS) for medical im-
ages, utilizing solely the image-level annotations for supervision.

Image-level WSSS is extremely challenging since these image-level labels solely indicate the pres-
ence or absence of the target object without specifying any location information. To counter this,
a pioneering approach, class activation maps (CAM) Zhou et al. (2016) endue convolutional neu-
ral networks with locating ability for recognizing the most discriminative regions. However, these
location maps inevitably suffer from sparsity (false negative) or inappropriately activate false back-
ground structures for the target objects (false positive) Chen et al. (2022a;b). Such incomplete cor-
respondence between location maps and actual object locations severely hampers the performance
of CAM-like methods Lin et al. (2023b); Kim et al. (2024). Recent endeavors have spearheaded
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Pathological modality Healthy modality

Challenge 1: Potential distribution discrepancies

Challenge 2: Ambiguous boundaries Challenge 3: Similar anatomy

Contrastive Convolution (C-Conv) to 

explore intra-image discrepancy for 

boundary uncertainty

A commonality-specificity attention 

mechanism (CSA) to separate inter-

image discrepancy for the further 

segmentation 

Figure 1: Main challenges of medical images (left) and the core idea of our proposal (right).
Left: a visualized example of medical challenges. 1) Lesion regions tend to exhibit a sharp high-
intensity anatomical distribution while healthy tissues adhere to an underlying homogeneous distri-
bution. 2) Boundaries of lesion foreground and structural background are ambiguous. 3) Similar
anatomy structures are observed. Right: the core idea of our proposal. The above challenges are
addressed by leveraging the distribution discrepancies between different labels of medical images,
where the intra-image discrepancies are explored by the C-Conv module and the inter-image dis-
crepancies are learned by the CSA mechanism.

initiatives to overcome this issue by introducing new network architectures, e.g., ViT Hanna et al.
(2023), SAM Kweon & Yoon (2024), or new training strategies, including text-driven strategies Lin
et al. (2023b), shared feature strategies Zhao et al. (2024b), but such models do not account for the
causes of oversegmentation and inaccurate shapes1 in medical segmentation.

Our insight is that, in medical WSSS, image-level labels are insufficient to address the key chal-
lenges inherent in medical images. As depicted in Figure 1 (left), we take the coronavirus disease
2019 (COVID-19) as a visualized example to illustrate: i) We plot the probability mass function
(PMF) for two different labels of medical images where medical images belonging to the pathologi-
cal modalities tend to exhibit a consistent and sharp high-intensity probability distribution, whereas
those holding the healthy modalities adhere to an underlying homogeneous probability distribution.
This is because medical images generally follow a certain physiological structure. Once a lesion ap-
pears, the stable distribution will be broken and generate abnormal distribution. Nonetheless, such
pronounced distribution discrepancies render models vulnerable to pathological modalities, facili-
tating a hasty convergence through the ‘shortcut’. This hinders the models’ ability to thoroughly
explore the discriminative regions. ii) Boundaries of lesion foreground and structural background
are ambiguous. This phenomenon is widespread in lesion segmentation tasks. For instance, cer-
tain lesion tissues, e.g., ground-glass opacities of COVID-19 or brain glioblastoma, grow gradually
alongside lungs or brains, making it challenging for models to delineate lesion boundaries. iii) Simi-
lar anatomy structures remain consistent in specific organs or neighboring tissues, which challenges
the model’s ability to focus on local representations rather than the entire image. The interference
from these similar structures further hinders the model’s ability to explore complete discriminative
regions.

Therefore, we propose a Commonality-specificity attention GAN (CoinGAN), an innovative model
to leverage the inherent discrepancies within regions of the same image and between different labels
of images for enhancing the segmentation of objects. As in Figure 1(Right), the C-Conv module is
devised to explore the intra-image distribution discrepancies, where fine-grained perceptual discrep-
ancies of activation sub-maps within the same image are adaptively detected to ensure a clear dis-
tinction of different regions within images, which eliminates ambiguous boundaries. Subsequently,
we propose the CSA mechanism to recognize inter-image distribution discrepancies. In this pro-
cess, similarity regions between different labels of images are suppressed and discrepancy regions
between different labels of images are accentuated. This steers the model’s attention toward the
concerned lesion regions, eliminating the interference of similar structures. Finally, a GAN-based
adversarial loss function is used for performing the distribution conversion between different labels

1The concepts of oversegmentation and inaccurate shapes are provided in Appendix A.
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of images, thereby capturing the potential knowledge underlying distribution discrepancies across
labels and further facilitating precise segmentation. Our contributions are summarized as follows:

• We propose an innovative model, CoinGAN, to address the medical WSSS issue. It lever-
ages distribution discrepancies underlying different labels of medical images to generate
high-quality pixel-level annotations. To our best knowledge, CoinGAN is the first work to
explore the pathological distribution conversion for medical WSSS without any auxiliary
information.

• A novel convolution (C-Conv) and a dual attention (CSA) mechanism are proposed to
explore latent distribution discrepancies. C-Conv concentrates on intra-image discrepancy
learning to reduce boundary uncertainty. The CSA mechanism accentuates inter-image
discrepancy learning for eliminating the interference of similar structures. The GAN-based
adversarial loss function conducts the distribution conversion between different labels of
medical images for precise lesion segmentation.

• CoinGAN achieves state-of-the-art performance across three public benchmarks and the
visualized results corroborate the effectiveness of the distribution conversion.

2 RELATED WORK

Weakly Supervised Semantic Segmentation. WSSS has attracted increasing attention via weak
supervision alternatives, such as image-level annotations He et al. (2024), points Gao et al. (2024),
and bounding boxes Cheng et al. (2023), which substantially alleviates the manual annotation bur-
den. Among them, image-level annotations stand out for their minimal annotation costs, but the
lack of location information presents a significant challenge. A mainstream solution, CAM Zhou
et al. (2016), adds a global average pooling layer to the convolutional neural networks for gener-
ating location maps. However, these location maps usually highlight the most discriminative areas
of the target or co-occurring objects, resulting in degraded segmentation performance. A plethora
of research efforts have been proposed to refine these location regions, e.g., semantic association
Zhang et al. (2020), boundary constraint Rong et al. (2023), threshold operation Lee et al. (2022b),
auxiliary information Xu et al. (2021); Lee et al. (2022a), new training strategies Lin et al. (2023b);
Zhao et al. (2024b) or network architectures Kweon & Yoon (2024). However, these methods suffer
from a severe performance gap when directly applied to medical images owing to more challenging
medical anatomical distributions Chen et al. (2022a).

Anatomical Priors. Prior knowledge is extremely crucial in semantic segmentation tasks, which
guides training models to converge in the correct direction Redondo-Cabrera et al. (2019). For in-
stance, SkelCon Tan et al. (2022) leverages skeletal priors for retinal vessel segmentation. PaNN
Zhou et al. (2019) incorporates abdominal anatomy priors into multi-organ segmentation. Min-
Max Belharbi et al. (2021) utilizes the intra-category histology variations to segment colon cancer.
Swin-MIL Qian et al. (2022) reveals inter-instance correction for colon cancer segmentation. SAM-
driven Zhao et al. (2024a) depends on the pre-trained priors for the nodule segmentation. However,
these methods are mainly designed for some specific organs or scenarios, and sometimes need ad-
ditional auxiliary information. This considerably restricts the model’s applicability. In contrast,
our proposed CoinGAN aims to explore prior knowledge directly from medical images themselves
without extra auxiliary information or tools.

Attention Mechanisms. The attention mechanism is playing an increasingly important role in com-
puter vision tasks Rahman et al. (2024). It can direct attention to the most salient regions, providing
a discriminative insight that holds significant potential in WSSS tasks. Recently, a few works have
attempted attention mechanisms to WSSS. For instance, Group Zhou et al. (2022) proposes a co-
attention mechanism to discover the semantic relations in images. MCTformer Xu et al. (2022) em-
ploys the multi-head self-attention mechanism to capture global class-specific attention. SparseVIT
Hanna et al. (2023) inserts gating units to the multi-head attention mechanism for correlated region
sparsity control. However, to our best knowledge, there are few similar attempts in medical WSSS.
Inspired by it, our CoinGAN devises a commonality-specificity attention mechanism for medical
WSSS, which integrates the anatomical distribution discrepancies from the image themselves and
attention mechanisms to investigate the knowledge underlying different labels of images.

3
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Figure 2: CoinGAN targets to adaptively learn the representation distribution discrepancies
to capture the latent knowledge gap inherent in the images themselves, which contains three
crucial components. The C-Conv module is devised to learn intra-image distribution discrepancies,
reducing the boundary uncertainty. The CSA mechanism is proposed for the inter-image discrepancy
learning. The resulting commonality map Mc is added to intra-image reinforced features to enhance
the background distribution while the specificity map Ms filters these features to drive abnormal
feature distributions to different labels of distributions. Finally, a GAN-based backbone facilitates
the distribution conversion and further separates lesion regions.

3 METHODOLOGY

3.1 MOTIVATION & OVERVIEW

We analyze medical WSSS by two important questions. Question 1: Why do classification results
tend to be accurate but the segmentation performance is not satisfactory? Question 2: Why does the
segmentation shape severely deviate from ground truth contours? The first answer is that the clas-
sification model can establish associations between image-wise labels and discriminative regions.
These discriminative regions have a strong statistical correlation with the aligned category, that is,
the classification model discovers the category specificity, which is sufficient to make an accurate
classification prediction (a ‘shortcut’ convergence). However, previous works Zhao et al. (2024b)
have shown these specific regions also present a strong association with surrounding regions, this is
because the boundary ambiguity leads to an extended segmentation region, and further causes the
oversegmentation of objects. For instance, when segmenting pneumonia lesions, we may get the en-
tire thoracic cavity. The second answer is that the output results lack the constraints of background
structures, failing to prevent the model’s attention from deviating from object regions. This is mainly
because pronounced distribution discrepancies between labels, as well as similar anatomical struc-
tures within the same image label, further exacerbate the phenomenon of “shortcut” convergence,
which makes the model fail to effectively capture fine-grained local representations, resulting in
inaccurate segmentation shapes.

Therefore, we propose the C-Conv module and CSA mechanism. Specifically, the C-Conv module
is proposed to learn the intra-image distribution discrepancies for reducing the ambiguous bound-
aries, which forms a clear distinction of different regional distributions within the image and prevents
oversegmentation. Subsequently, the CSA mechanism is designed to learn the inter-image distribu-
tion discrepancies for mitigating the inference of similar structures, which captures the similarity
regions and discrepancy regions between different labels of images to help enhance the shape con-
straints. Finally, for the pronounced distribution discrepancies across different labels, a GAN-based
adversarial loss function assists the model in performing the global distribution conversion and fur-
ther extracting valuable regions of interest, thereby forming the precise segmentation. The overview
of CoinGAN is illustrated in Figure 2.
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3.2 CONTRASTIVE CONVOLUTION (C-CONV) MODULE

In medical WSSS tasks, different labels of images I are first projected into the embedding space by
an Embedding Mapping layer EM(·), thereby obtaining initial representations X:

X = EM(I) (1)

where the initial representations X = {xu,v|0 ≤ u < h, 0 ≤ v < w} (h,w are the height and
width of representations X) are rich in image details and generally fed into deeper neural networks
to extract high-level representations. In this process, convolution plays a pivotal role2:

F(xu,v) =

k,k∑
p,q

Wp,qxu−⌊k/2⌋+p,v−⌊k/2⌋+q

=

k,k∑
p,q

Wp,qxu+△u,v+△v

(2)

where for the input representation xu,v , its output representation F(xu,v) (a standard convolution) is
computed within a receptive field of k×k size. The element-wise multiplication and summation are
conducted using the kernel weights W ∈ Rk×k at the kernel position (p, q) and the corresponding
position of pixel x. △u and △v denote the corresponding positional offsets.

Despite achieving great success in learning local representations, such convolutional structures may
introduce certain irrelevant positions of weighted representation xir into the representations F(xu,v)
as a noise term. This is because the boundary regions are typically situated at the intersection
of the target foreground and anatomical background; hence, their element-wise weighted average
inevitably expands and blurs the boundaries. This further causes discriminative object information
to leak into background regions, that is, the cause of oversegmentation as elaborated in Question 1.

Formally, these mixed-weighted representation corresponding to target regions can be defined as:

F(xu,v) =
∑

p,q∈R
Wp,qx

r
u+△u,v+△v +

∑
p,q∈IR

Wp,qx
ir
u+△u,v+△v (3)

where the relevant representations xr
u+△u,v+△v contribute positively to discernible regions (p, q ∈

R), while the irrelevant representations xir
u+△u,v+△v negatively influence the model’s decision-

making by introducing confusion (p, q ∈ IR).

Thus we propose a new form of convolution, C-Conv, to learn intra-image distribution discrepancies
for addressing the above ambiguous representations. As depicted in Figure 2(b), the C-Conv kernel
consists of an Edge Perception Zone (EPZ) and an Internal Feature Zone (IFZ). EPZ has a wider
receptive field, enabling it to identify the potential change regions earlier, while IFZ focuses more
on capturing local representations within a small range. Therefore, an intuitive idea comes out.
For the same position of representation, the representation discrepancy learned by EPZ and IFZ
will be a crucial criterion for determining whether the representation is ambiguous. For instance,
for the same category of areas, the anatomical distribution within an n × n receptive field tends to
be similar. Thus, the convolutional discrepancy between EPZ and IFZ is small, hovering around
0. However, when a boundary emerges, the EPZ convolution, with its wider receptive field, will
undergo changes earlier and detect the presence of a new category. In contrast, the IPZ convolution
within a small receptive field remains relatively stable. Therefore, it is promising to learn intra-
image distributions by exploiting the fine-grained perceptual discrepancy between both types of
convolutions. Specifically, C-Conv Fc(.) can be formulated as:

Fc(xu,v) =

k′,k′∑
s,t

Ws,txu−k′+1+2s,v−k′+1+2t − F(xu,v)

=FEPZ(xu,v)− FIFZ(xu,v)(s.t. 2k′ − k ≥ 3)

(4)

where FEPZ(xu,v) and FIFZ(xu,v) are the output of EPZ and IFZ convolution for the input repre-
sentations xu,v , FIFZ(·) = F(·). s and t denote the kernel position for the EPZ convolution. By

2For simplicity, we omit the channel-level operation, as it can be easily extended by following the standard
convolutional settings.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

leveraging the fine-grained perceptual discrepancies between EPZ and IFZ convolutions, Fc(xu,v)
captures the intra-image distribution discrepancy at position (u, v).

Then a category activation maps C is generated to eliminate ambiguous representations as follows:

Cu,v =

{
1, |Fc(xu,v)/FIFZ(xu,v)| < λ

0, |Fc(xu,v)/FIFZ(xu,v)| ≥ λ
(5)

where λ is a hyperparameter for measuring ambiguous representations and C = {Cu,v|0 ≤ u <
h, 0 ≤ v < w}. If the distribution discrepancy Fc(xu,v) for an representation xu,v is significantly
smaller than the internal distribution FIFZ(xu,v), this representation is activated, i.e., Cu,v = 1.
This indicates that xu,v belongs to the same category as its surrounding representations. Conversely,
if a substantial discrepancy is observed, indicating an ambiguous boundary, Cu,v is set to 0.

Finally, local representations FIFZ(X) of initial input representations X are multiplied by C, that is
C · FIFZ(X), to eliminate ambiguous boundary representations xir, thereby facilitating a clear dis-
tinction of different regions within the image and further avoiding the oversegmentation of objects.

3.3 COMMONALITY-SPECIFICITY ATTENTION (CSA) MECHANISM

Subsequently, the CSA mechanism is proposed to learn the inter-image distribution discrepancies for
mitigating the inference of similar structures by both the Commonality Attention (CA) and Specificity
Attention (SA) mechanisms as in Figure 2(c).

CA for Similarity Representations. Representations C ·FIFZ(X) obtained from the C-Conv mod-
ule go through CA in two distinct pathways, where one is for the pathological modality representa-
tions C · FIFZ(Xp) and the other is for the healthy modality representations C · FIFZ(Xh). Xp and
Xh denotes the initial representations of the pathological and healthy image, respectively. For the
first pathway, healthy modality representations C · FIFZ(Xh) are fed into an Average Buffer ab(·)
(Definition 3.1. in Appendix C) to store a certain number of reference samples and compute their
average distribution ab(C · FIFZ(Xh)). This generates rich background structure information from
the healthy modality. In this process, reference samples are dynamically replaced as the model up-
dates. Subsequently, the SElayer algorithm3 s(·)Hu et al. (2018) is integrated to adaptively reweight
the channel-wise average representations for increasing the expressive power of the healthy modality
representations, forming Rc×hw representation vectors s(ab(C · FIFZ(Xh))). Simultaneously, the
second pathway takes the pathological modality representations C · FIFZ(Xp) and projects them to
the consistent dimensional embedding space Rc×hw via a reshape layer reshape1(·), the reshaped
pathological modality representations are denoted as reshape1(C · FIFZ(Xp)). Following this, an
element-wise incidence matrix R is computed as:

R = softmax(s(ab(C · FIFZ(Xh)))
T × reshape1(C · FIFZ(Xp))) (6)

In R, similarity regions between different modalities of images generally represent a common struc-
tural backbone with high probabilities falling in [0.5, 1], i.e., commonality, whereas discrepancy
regions between different modalities of images tend to approach zero, indicating the emergence of
discriminative representations. Thus commonality attention maps Mc can be calculated by multi-
plying reshaped pathological modality representations with the incidence matrix R:

Mc = reshape2(reshape1(C · FIFZ(Xp))× R) (7)

where Mc highlights the regions of similarity representations. reshape2(·) resizes the commonality
attention maps to the representation space Rc×h×w for further processing.

SA for Discrepancy Representations. Similarly, leveraging commonality attention maps Mc, the
specificity attention maps Ms can be calculated through multiplying pathological modality repre-
sentations with an inverse activation projection M′

c:

M′
c(u, v) =

{
1, softmax(Mc(u, v)) < 0.5

0, softmax(Mc(u, v)) ≥ 0.5
(8)

Ms = C · FIFZ(Xp) ·M′
c (9)

3More details about the SElayer algorithm are provided in Appendix D.
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Specifically, when the similarity probability softmax(Mc(u, v)) in commonality attention maps is
below 50%, a potential discrepancy position is detected and the corresponding position of value
in the inverse activation map M′

c(u, v) is set as 1. Conversely, softmax(Mc(u, v)) ≥ 0.5 indi-
cates that a similar structure is found, M′

c(u, v) = 0. Therefore, the resulting specificity attention
maps identify local discriminative regions (discrepancy representations), which avoids the model’s
attention shifting away from target objects and hence mitigates the inference of similar structures.
Furthermore, the commonality attention map Mc is added to the detected pathological modality
representations C ·FIFZ(Xp) to enhance the constraints of background structures and the specificity
attention map Ms removes potential discrepancy distributions in pathological modality images to
facilitate the representation distribution conversion across labels for further image-level supervision.

3.4 OBJECTIVE FUNCTION

Finally, CoinGAN devises a GAN-based adversarial loss function Ladv to complete this distribu-
tion conversion and further extract valuable regions of interest, thereby forming precise segmen-
tation. Specifically, dual-enhanced representations FCSA(C · FIFZ(Xp)) are fed into a Generative
Adversarial Network (GAN), comprising a generator G(·) and a discriminator D(·). The generator
G(·) transforms these dual-enhanced representations towards a converted healthy image to fool the
well-trained discriminator D(·). D(·) is trained to distinguish between different labels of medical
images. The difference between the original image and the converted healthy image serves as the
segmentation mask for the lesion region. This adversarial process is supervised by Ladv:

Ladv = −
∑
u,v

log(1−D(G(FCSA(C · FIFZ(Xp))))) + log(D(Ih)) (10)

where Ih is the healthy image.

4 EXPERIMENTS

Datasets & Metrics. We conduct our extensive experiments on three public benchmarks: QaTa-
COV19 Degerli et al. (2022) is a large-scale pneumonia benchmark dataset with 9,258 chest X-ray
images. Both ISIC2018 Codella et al. (2019) and MoNuSeg Kumar et al. (2019) are the challenge
datasets designed for skin lesions and kernel segmentation. ISIC2018 consists of 2,694 dermoscopy
images while MoNuSeg involves 21,623 annotations on histopathologic images. More details about
datasets are summarized in Appendix E. Six key metrics are utilized to assess the model perfor-
mance, namely Dice Coefficient (DSC), Jaccard Coefficient (JC), Average Surface Distance (ASD),
Accuracy (ACC), Specificity (SP), and Sensitivity (SE). Among them, the DSC, JC, and ASD met-
rics are specially utilized for measuring the precision of biomedical segmentation.

Implementation Details. We use CycleGAN Zhu et al. (2017) (a typical GAN) as the backbone
without pre-trained weights, which consists of three stride-2 convolutions, nine residual blocks,
and three 1

2 -strided convolutions. Our method is implemented in Python using the deep learning
framework PyTorch and tested on a Tesla P40 GPU with 22GB of memory. In medical WSSS tasks,
we use the stochastic gradient descent (SGD) optimizer with an initial learning rate of 2.5×1e-4 for
the generator. The momentum is set to 0.9 and the weight decay is 5×1e-4. For the discriminator,
we adopt the adaptive moment estimation (Adam) optimizer with an initial learning rate of 1e-4.
Both learning rates are subjected to a polynomial decay scheduler with a decay power of 0.9. We
train CoinGAN for 100 epochs for every dataset. In all experiments, we solely utilize image-level
labels for supervision.

4.1 COMPARISON WITH SOTA BASELINES

For a comprehensive evaluation of CoinGAN for WSSS, we select eighteen state-of-the-art (SOTA)
baselines for comparison, including AuxSegNet Xu et al. (2021), SESS Tursun et al. (2022),
DRS Kim et al. (2021), Group Zhou et al. (2022), AffinityNet Ahn & Kwak (2018), IRNet Ahn et al.
(2019), CONTA Zhang et al. (2020), RPNet Liu et al. (2021), SFC Zhao et al. (2024b), AMN Lee
et al. (2022b), FPR Chen et al. (2023a), SeCo Yang et al. (2024b), MinMax Belharbi et al. (2021),
WSSS-Tissue Han et al. (2022), OEEM Li et al. (2022), Swin-MIL Qian et al. (2022), CMER Patel
& Dolz (2022), SA-MIL Li et al. (2023b).
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Table 1: CoinGAN surpasses SOTA WSSS methods on three application scenarios with 1.1∼17.88%
improvement on comprehensive metrics. The following table is the statistical comparison results on QaTa-
COV19. The last row “Fullsup” denotes results of a fully supervised segmentation method where we adopt a
standard segmentation model (U-Net) as a benchmark. I signifies the image-level supervision, S denotes the
use of saliency maps as additional auxiliary information. GT are the ground truth pixel-level annotations.

QaTa-COV19
Method Backbone Sup. DSC(%)↑ JC(%)↑ ASD↓ ACC(%)↑ SP(%)↑ SE(%)↑

Image-level supervision + Saliency map.
AuxSegNet ResNet38 I+S 60.07 44.90 2.99 66.73 62.46 93.21

DRS VGG16/ResNet101 I+S 60.56 46.89 2.61 72.18 73.43 64.43
Group VGG16/ResNet101 I+S 63.44 49.01 2.17 72.18 70.30 83.83
SESS VGG16/ResNet50 I+S 65.36 52.00 1.72 77.25 78.87 67.20

Image-level supervision.
AffinityNet ResNet38 I 33.16 19.88 7.11 33.17 20.49 99.72

IRNet ResNet50 I 52.55 38.54 3.03 62.14 62.18 61.87
CONTA ResNet50/ResNet101 I 53.37 40.01 3.25 65.25 67.19 53.21
RPNet ResNet50/ResNet101 I 56.19 42.03 2.76 66.03 65.85 67.11
AMN ResNet50 I 55.69 42.19 3.06 67.58 69.32 56.82
FPR ResNet50 I 64.82 51.53 2.42 77.08 79.02 65.01
SeCo ViT-B/16 I 61.83 50.52 3.44 81.01 95.18 25.05
SFC ResNet101 I 53.88 39.57 3.07 62.81 90.43 22.97

CoinGAN (ours) CycleGAN I 71.69 58.71 1.45 82.11 82.90 77.20

Fullsup U-Net GT 80.76 70.11 0.82 91.13 95.53 63.78

Table 2: Statistical comparison with SOTA WSSS methods on ISIC2018.

ISIC2018
Method Backbone Sup. DSC(%)↑ JC(%)↑ ASD↓ ACC(%)↑ SP(%)↑ SE(%)↑

Image-level supervision + Saliency map.
AuxSegNet ResNet38 I+S 82.74 71.44 1.22 86.81 92.61 71.06

DRS VGG16/ResNet101 I+S 76.95 63.07 1.59 79.10 74.98 90.27
Group VGG16/ResNet101 I+S 82.08 70.64 1.27 86.79 94.48 65.93
SESS VGG16/ResNet50 I+S 80.91 69.09 1.23 85.97 94.02 64.10

Image-level supervision.
AffinityNet ResNet38 I 63.47 47.42 3.95 66.70 59.35 98.52

IRNet ResNet50 I 76.47 63.02 1.59 80.93 85.15 69.45
CONTA ResNet50/ResNet101 I 77.78 65.22 1.56 84.21 94.42 56.50
RPNet ResNet50/ResNet101 I 82.23 70.83 1.23 86.84 94.23 66.75
AMN ResNet50 I 80.61 68.57 1.27 85.18 91.47 68.10
FPR ResNet50 I 82.45 70.72 1.31 85.13 85.05 85.39
SeCo ViT-B/16 I 82.55 71.00 1.3 85.88 91.75 71.79
SFC ResNet101 I 80.51 68.85 1.37 86.89 85.64 93.57

CoinGAN (ours) CycleGAN I 84.73 74.27 1.20 88.57 94.92 71.33

Fullsup U-Net GT 88.37 79.63 1.13 91.13 95.66 78.83

Table 3: Statistical comparison with SOTA WSSS methods on MoNuSeg.

MoNuSeg
Method Backbone Sup. DSC(%)↑ JC(%)↑ ASD↓ ACC(%)↑ SP(%)↑ SE(%)↑

Image-level supervision + Saliency map.
AuxSegNet ResNet38 I+S 38.30 24.95 1.19 42.60 12.43 98.86

DRS VGG16/ResNet101 I+S 50.88 36.13 1.05 57.58 72.61 29.56
Group VGG16/ResNet101 I+S 42.70 27.31 3.94 43.28 25.51 76.40
SESS VGG16/ResNet50 I+S 60.89 43.94 0.33 61.45 56.34 70.98

Image-level supervision.
AffinityNet ResNet38 I 19.27 11.93 8.97 23.87 2.59e-05 99.99

IRNet ResNet50 I 49.60 33.29 1.37 50.65 49.99 51.87
CONTA ResNet50/ResNet101 I 50.07 33.85 3.15 51.61 53.13 48.77
RPNet ResNet50/ResNet101 I 52.62 37.11 1.04 57.33 58.35 54.06
AMN ResNet50 I 53.31 38.74 1.01 61.30 67.42 41.76
FPR ResNet50 I 52.21 38.02 0.91 61.14 68.94 36.83
SeCo ViT-B/16 I 61.21 46.78 0.84 70.26 71.24 65.38
SFC ResNet101 I 48.61 33.00 0.76 51.60 64.14 33.53

CoinGAN (ours) CycleGAN I 78.32 64.66 0.31 79.54 80.02 79.28

Fullsup U-Net GT 81.95 69.85 0.33 83.89 89.59 73.25
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Table 4: Statistical comparison with recent
medical WSSS methods on QaTa-COV19.

QaTa-COV19
Method DSC(%) JC(%) ACC(%)
MinMax 46.60 32.11 52.38

WSSS-Tissue 31.79 19.19 32.81
OEEM - 25.38 60.01

Swin-MIL 42.03 27.22 44.09
CMER 63.03 50.86 79.32

SA-MIL 52.03 41.70 73.10

CoinGAN (ours) 71.69 58.71 82.11

Table 5: Statistical comparison with recent
medical WSSS methods on MoNuSeg.

MoNuSeg
Method DSC(%) JC(%) ACC(%)
MinMax 47.17 31.62 49.70

WSSS-Tissue 40.31 32.49 63.82
OEEM - 30.01 61.25

Swin-MIL 34.66 23.31 42.63
CMER 60.99 44.02 61.48

SA-MIL 50.80 34.78 53.25

CoinGAN (ours) 78.32 64.66 79.54

Figure 3: There is a serious performance drop of
SOTA baselines between natural images (orange)
and medical images (blue). This substantiates the
more challenging characteristics of medical images in
the field of pathological segmentation.

Figure 4: λ = 0.3 achieves the best performance.
The hyperparameter varying from 0.01 to 0.9 is anal-
ysed in CoinGAN based on QaTa-COV19 using the
DSC(%) (Left ordinate axis) and JC(%) (Right ordi-
nate axis) metrics.

Comparison with General SOTA Baselines. Comparison results with the general SOTA WSSS
methods are present in Tables 1, 2, 3. CoinGAN achieves the best performance across three datasets.
On the ISIC2018 dataset, CoinGAN achieves an improvement with a 2.83% JC and 1.99% DSC
gain against the SOTA method. Further, larger performance improvements are achieved on the
QaTa-COV19 and MoNuSeg datasets, including the pneumonia segmentation with a 6.71% JC and
6.33% DSC gain (QaTa-COV19) and kernel segmentation with a 17.88% JC and 17.11% DSC gain
(MoNuSeg). The main reason for the performance improvement gap is extracorporeal lesions, e.g.,
skin cancer, are exposed to air and usually have a clear boundary, which makes them easy to distin-
guish. However, glass-frosted pneumonia lesions and kernels have a close relationship with the chest
structure and tissues because they depend on nutrients provided by these structures, resulting in the
complexity of segmentation tasks, e.g., vague boundaries, and the connectivity of foreground and
background. Thus all these prove the superiority of our method in resolving ambiguous boundaries
and structural constraints.

Comparison with Domain-specific SOTA Baselines. Apart from the general SOTA WSSS meth-
ods, we also assess CoinGAN against medical SOTA methods, particularly for more challenging
internal medical scenarios, namely QaTa-COV19 and MoNuSeg. As depicted in Tables 4 and 5,
CoinGAN exhibits the best performance across evaluation metrics and application scenarios. On the
contrary, existing medical WSSS methods are not satisfactory. This is because they are primarily
designed for some specific organs or scenarios, and at times necessitate additional auxiliary informa-
tion, e.g., patch-level annotation, which significantly limits their application scenarios as discussed
in Sec. 2. In contrast, CoinGAN extracts the discrepancy information directly from medical images
themselves, enhancing its effectiveness across various application scenarios.

4.2 PERFORMANCE DROP ON DIFFERENT DATA TYPES

As in Figure 3, we also compare the performance of recent SOTA WSSS methods in medical images
and natural images. It can be seen that there is a serious performance drop from natural images
(PASCAL VOC2012) to medical images (QaTa-COV19). This performance decline suggests that
medical images indeed possess some unique and more challenging characteristics that make these
methods fall into a dilemma when segmenting pathological regions, e.g., ambiguous boundaries,
distinctive anatomical distribution patterns and similar anatomical structures.
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Figure 5: Visualized results validate CoinGAN achieves more boundary-aware and accurate segmenta-
tion. Results of CoinGAN and best-performing WSSS methods on ISIC2018 and QaTa-COV19 are presented.

4.3 ABLATION STUDY AND VISUALIZATION STUDY

Table 6: Ablation studies indicate that the C-
Conv module and CSA mechanism achieved
the most significant improvements. Besides,
each component is individually investigated in
CoinGAN based on QaTa-COV19.

QaTa-COV19
Backbone C-Conv CA SA S DSC(%)

✓ 65.15

✓ ✓ 68.29
✓ ✓ ✓ 70.82
✓ ✓ ✓ 71.10
✓ ✓ ✓ ✓ 71.69

✓ ✓ ✓ ✓ ✓ 72.67

To investigate the effectiveness of each component, we
perform an ablation study on three major modules: the
C-Conv module, the CA and SA mechanism. Besides,
we also explore the ability of saliency maps (S) to con-
strain output results as in Tursun et al. (2022). All ex-
periments are conducted on the QaTa-COV19 dataset.

Ablation study results are shown in Table 6, with each
row corresponding to a different experimental setup.
Specifically, the first row denotes the backbone result
as a reference. The second row introduces the C-Conv
module alone. This leads to a significant improvement
(3.14% DSC gain) over the backbone, indicating that
the C-Conv module effectively enhances intra-image
distribution and contributes to cleaner representations. The third to fifth rows validate the perfor-
mance of the CA, SA, and CSA mechanisms. The CA mechanism strengthens the common back-
ground structure. This aids in cleaning up false positive samples, facilitating a notable improvement.
The SA mechanism removes the discrepancy distribution which directly rectifies the mistaken neg-
ative (true positive) samples for further improvement. Notably, the SA mechanism outperforms
CA. This is because semantic segmentation focuses more on accurate targets (true positive samples)
compared with common structural background constraints. Finally, the integrated CSA mechanism
achieves the best overall performance. Besides, salient maps can further improve our model per-
formance with a 0.98% increase in DSC. Visualization results (Figure 5) validate our CoinGAN
achieves more boundary-aware and accurate segmentation results (More details in Appendix H).

4.4 HYPERPARAMETER SENSITIVITY STUDY

To analyze the influence of the hyperparameter λ in the C-Conv module, we conduct experiments
with different λ values while keeping other parameters fixed. As depicted in Figure 4, overly large λ
values relax the limitations on boundary regions, introducing more noise to representation learning
and hence limiting the model performance. Conversely, overly small λ values render the convolution
oversensitive to changes within images. Even minor changes are mistaken for the appearance of a
boundary, causing the category activation maps Mc conv to filter out too many mistaken ambiguous
representations, which results in a loss of anatomical information. λ = 0.3 achieves the best perfor-
mance, striking a balance between sensitivity to boundaries and retaining anatomical information.

5 CONCLUSIONS

In this paper, we propose CoinGAN, a novel model to address challenges posed by medical WSSS.
CoinGAN features two pivotal modules: the C-Conv Module and the CSA Mechanism, to un-
earth latent knowledge inherent in the images themselves. The C-Conv module leverages intra-
image representation perceptual discrepancies to eliminate the boundary uncertainty, while the CSA
mechanism exploits inter-image representation discrepancies for precise pathological segmentation.
Comprehensive experiments substantiate the efficacy of CoinGAN across diverse datasets.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic affinity with image-level supervision for
weakly supervised semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4981–4990, 2018.

Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly supervised learning of instance segmentation
with inter-pixel relations. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2209–2218, 2019.

Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin S Kirby,
John B Freymann, Keyvan Farahani, and Christos Davatzikos. Advancing the cancer genome atlas
glioma mri collections with expert segmentation labels and radiomic features. Scientific data, 4
(1):1–13, 2017.

Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi,
RT Shinohara, Christoph Berger, SM Ha, Martin Rozycki, et al. Identifying the best machine
learning algorithms for brain tumor segmentation. progression assessment, and overall survival
prediction in the BRATS challenge, 10, 2018.
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APPENDIX

A CLARIFICATIONS OF CONCEPTS

• Oversegmentation refers to instances where the segmentation results extend beyond the
actual ground truth object region, incorrectly including background areas as part of the
object (false positives). This results in a segmentation “overflow.”

• Inaccurate shapes describe cases where the segmented regions deviate significantly from
the true shapes of the target objects, failing to align with the ground truth lesions and
leading to segmentation errors that misrepresent the actual lesion boundaries.

B DETAILED ILLUSTRATIONS FOR FIGURE 1

Figure 1 (first row) illustrates the probability mass function (PMF) for two different labels of medical
images. The horizontal axis represents the intensity values of image pixels (ranging from 0 to 255),
while the vertical axis denotes the probability of each intensity value. Specifically:

• Intensity refers to the numerical value of a pixel’s intensity.
• Distribution represents the PMF of intensity values in medical images.

C AVERAGE BUFFER

Definition 3.1. Average Buffer. Average Buffer ab(·) is a sample buffer designed to store a certain
number of reference samples A = {A1,A2, . . . ,AN} and compute their average representations
Ā. During the model training, these stored samples are dynamically updated with each batch of
input samples {A′

1,A
′
2, . . . ,A

′
N}. N is the batch size.

To clarify this process, the detailed mathematical definition is formulated as follows:

Let:

• A = {A1,A2, . . . ,AN} represent the set of N stored reference samples in the Average
Buffer, where N is the batch size.

• Ai denote the i-th sample in the Average Buffer.

The Average Buffer computes the average representation Ā of the stored samples as:

Ā =
1

N

N∑
i=1

Ai (11)

where Ai refers to the representation derived from the C-Conv module, specifically C · FIFZ(Xh).

During model training, when a new batch of samples {A′
1,A

′
2, . . . ,A

′
N} is input to the Aver-

age Buffer, the existing samples {A1,A2, . . . ,AN} are dynamically replaced by the new batch
{A′

1,A
′
2, . . . ,A

′
N}.

After replacement, the updated Average Buffer is:

Anew = {A′
1,A

′
2, . . . ,A

′
N} (12)

and the average representation of the new Average Buffer becomes:

Ānew =
1

N

N∑
i=1

A′
i (13)

where A′
i is the representation computed by the C-Conv module for the new batch of samples.

In the CSA mechanism, the Average Buffer enables CoinGAN to capture rich structural background
information from the healthy modality, using the computed average representation as a reference.
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D SELAYER

The SElayer is a channel-wise adaptive weighting algorithm originally proposed in Hu et al. (2018).
The SElayer enables the neural network to prioritize the most critical features for the task at hand,
boosting the expressive capacity of representations. In CoinGAN, we integrate the SElayer follow-
ing the Average Buffer component to adaptively reweight the channel-wise average representations
Ā, thereby increasing the expressive power of the healthy modality reference representation and im-
proving the utilization of background information in subsequent processing. To clarify, the technical
details of the SElayer algorithm are outlined as follows:

Algorithm 1 SELayer (Squeeze-and-Excitation Layer)

Require: Channel-wise average representations Ā with shape (NH , NW , NL), where NH is the height, NW

is the width, and NL is the number of channels.
1: Compute the channel descriptor z via global average pooling with Eq. 14
2: Pass Z through a bottleneck architecture comprising two fully connected layers with Eq. 15
3: Recalibrate the input representations Ā by element-wise scaling with Ẑ with Eq. 16
4: Return the recalibrated representations B

1. Compute the channel descriptor Z of the input representations Ā via global average pooling:

Zl =
1

NH ×NW

NH∑
i=1

NW∑
j=1

Āijl,∀l = 1, 2, . . . , NL (14)

where NH , NW , and NL are the height, width, and number of channels, respectively, of the repre-
sentations Ā.

2. Pass the channel descriptor Z through a bottleneck architecture comprising two fully connected
layers for learning the channel-wise weights:

Ẑ = σ(W2(ReLU(W1Z+ b1)) + b2) (15)

where σ denotes the sigmoid activation function, and Ẑ is the recalibration vector with shape
(1, 1, NL).

3. Recalibrate the input representations Ā by element-wise scaling with Ẑ:

Bijl = Āijl · Ẑl,∀i, j, l (16)

4. Return the recalibrated representations B.

This integration of the SElayer refines the CSA mechanism by emphasizing the most relevant fea-
tures, facilitating the effective exploitation of background information. The SElayer algorithm is
summarized in Algorithm 1.

E DATASETS

Datasets. To evaluate the effectiveness of CoinGAN, we conduct experiments for medical WSSS
tasks on three public benchmarks, including QaTa-COV19 Degerli et al. (2022), ISIC2018 Codella
et al. (2019), and MoNuSeg Kumar et al. (2019).

QaTa-COV19 Degerli et al. (2022) is a large-scale benchmark COVID-19 dataset compiled by
Qatar University and Tampere University. It contains 9,258 COVID-19 chest X-rays with ground
truth segmentation masks (pneumonia lesions) and 12,544 healthy chest X-rays as the control group
that have a resolution of 224 × 224 pixels. To ensure a fair comparison with state-of-the-art methods,
we adopt the same experimental setting as Yamac et al. (2021): 80% samples are used for training,
and 20% samples for testing.

ISIC2018 Codella et al. (2019) is a large-scale skin lesion segmentation challenge dataset, compris-
ing dermatoscopic data collected from multiple treatment centers. Images vary in size ranging from
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556 × 679 to 4499 × 6748 pixels with the corresponding skin lesion annotations. For the healthy
images, inspired by Tschandl et al. (2020), we crop healthy skin regions from the backgrounds of
these images and apply bilinear interpolation, resulting in healthy images (control samples). Fol-
lowing the previous work Zhang et al. (2022), we resize all the images and their masks by the
bilinear interpolation and split this dataset into a training set with 2,594 dermoscopy images and a
test set with 100 images. (Additionally, there are 1,000 extra samples that are unavailable on the
ISIC challenge website: https://challenge.isic-archive.com/data/#2018.)

MoNuSeg Kumar et al. (2019) is a MICCAI 2018 Challenge dataset designed for the multi-instance
segmentation task. It consists of 21,623 single kernel annotations in the histopathologic images of
H&E (Hematoxylin and Eosin) stained tissue, with a resolution of 1000 × 1000 pixels for each
image. Similar to the approach in Yang et al. (2024a), we process this dataset to derive healthy
images by applying morphological operations (image erosion) and Gaussian filtering to obtain the
background information. The segmented nuclear status can be used for assessing cancer grade and
treatment effectiveness. Following a strategy similar to the previous work Wu et al. (2022), we crop
images sequentially for data augmentation. Among them, 80% samples are used as training images
and 20% samples are used as evaluation images.

BraTS 2021 (Brain Tumor Segmentation 2021) Bakas et al. (2017; 2018); Menze et al. (2014) is a
widely used benchmark dataset for the segmentation of brain tumors from MRI scans. It contains
2,000 3D brain scans, each of which includes four different MRI modalities (e.g., T1, T1ce, T2, and
FLAIR) as well as tumor segmentation ground truth. The official data divides these cases by the
ratio of 8:1:1 for training, validation, and testing. Following the latest practices Chen et al. (2023b);
Hu et al. (2023); Hatamizadeh et al. (2021), the FLAIR channel is used for the model training and
validation, then the validation set is used to evaluate the model performance for a fair comparison.

MELA Wang et al. (2022) is a large-scale benchmark dataset for the mediastinal lesion analysis. It
contains a training set with 770 Computed Tomography (CT) scans, a validation set with 110 CT
scans, and a test set with 220 CT scans. Each CT slice has a resolution of 512 × 512 pixels. A total
of 1,152 mediastinal lesions are annotated using the bounding boxes (diameter: 10–204 mm, mean:
48 mm). While MELA does not provide precise segmentation masks, it provides valuable bounding
boxes with the size information of lesions which indicates the disease severity, rendering it suitable
for the prospective research - the disease evolution.

F IN-DEPTH ANALYSES OF COMPARATIVE EXPERIMENTS

The comparative experimental results are presented in Tables 1 and 2 in the main paper. We analyze
the model performance from two key perspectives: metric analysis and scenario analysis.

Metric Analysis. 1) Our CoinGAN achieves the best performance in all comprehensive evaluation
metrics on three datasets. This validates the effectiveness of CoinGAN in leveraging the distinc-
tive medical anatomical distribution divergence to mine the latent knowledge gap among different
pathological modalities. 2) We note that AffinityNet Ahn & Kwak (2018) achieves the highest SE
but yields inferior results in other metrics across all three datasets. This is because AffinityNet
propagates local responses to nearby areas based on semantic affinities, leading to representations
that are biased towards the positive category of positions and some false positive positions with
high biological affinities. This results in a high SE but low SP in the medical application scenar-
ios. AuxSegNet Xu et al. (2021) presents similar issues but its performance is slightly rectified by
extra auxiliary information, e.g., saliency maps (S). On the other hand, some methods overly rely
on image-level classification models, and the unique distribution patterns of medical images lead to
rapid convergence through shortcuts, further resulting in incomplete exploration of discriminative
regions (high SP, low SE), such as Seco. 3) Our CoinGAN demonstrates the closest performance to
the Fully supervised semantic segmentation (Fullsup), even keeps similar metric distributions. This
suggests that the knowledge discrepancy underlying medical modalities holds promising potential
to compete with manual annotations. Medical images inherently contain a wealth of information.
4) We note that certain models rely on extra auxiliary information (S+I) to improve their perfor-
mance, yet are not effective across all application scenarios, e.g., MoNuSeg. Our PAIR effectively
eliminates the need for auxiliary information (S) and achieves superior performance solely using
image-level annotations (I).
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Scenario Analysis. We discuss this part from two standpoints: the extracorporeal scenario and the
internal scenario. In the extracorporeal WSSS scenario, CoinGAN achieves a 2.83% boost in JC
and a 1.99% boost in DSC over the best-performing WSSS method on the ISIC2018 dataset. In
this context, extracorporeal lesions, e.g., skin cancer, are exposed to air and typically have well-
defined boundaries like natural scenarios, enabling them to work well in lesion segmentation, but
our CoinGAN still achieves a slight improvement. Simultaneously, in the internal WSSS scenarios,
CoinGAN demonstrates more significant performance improvements. Specifically, in pneumonia
segmentation on the QaTa-COV19 dataset, CoinGAN substantially achieves a 6.71% rise in JC and
a 6.33% rise in DSC. Additionally, in kernel segmentation on the MoNuSeg dataset, CoinGAN
delivers remarkable improvements with a 17.88% increase in JC and a 17.11% increase in DSC.
Such performance improvement can be attributed to the unique characteristics of medical images.
Glass-frosted pneumonia lesions, for example, depend on nutrients provided by chest cavity tissues,
having a tight relationship with the chest structure, which results in ambiguous boundaries. Sym-
metrical structures, besides, give rise to structural interference. Similarly, in histopathologic tissues,
tissues, and kernels are often intertwined, with different developmental cycles contributing to more
complex dependencies and elusive structural relationships. The capability of CoinGAN to address
these challenges makes it more effective in intra-body medical WSSS scenarios.

G VISUALIZATION STUDY FOR DISTRIBUTION CONVERSION

Additionally, we also demonstrate the efficacy of the distribution conversion through comparative
distribution maps as depicted in Figure 6. The initial distribution maps (Red) reveal a pronounced
concentration of high-intensity signals, this is a characteristic of lesion regions. After implementing
the distribution conversion, the distribution maps (Blue) display a strategic redistribution of these
high intensities to lower ranges. The conversion from high-intensity distribution to lower ranges
confirms that CoinGAN successfully grasps the latent knowledge gap, that is, the separated lesion
area.

Figure 6: The conversion from high-intensity distribution to lower ranges confirms that our method has
indeed grasped the knowledge gap underlying distribution discrepancies, further ensuring lesion seg-
mentation. Some visualized distribution maps of the modality transition are present for comparison. Left: The
original pathological X-rays and the corresponding distribution maps (Red); Right: The transformed images
and the corresponding distribution maps after the distribution conversion (Blue).

H VISUALIZATION STUDY

Figure 5 provides an intuitive visualization demonstration. With the introduction of the C-Conv
module and CSA mechanism, CoinGAN provides clearer boundaries and more accurate segmenta-
tion shapes. This demonstrates that CoinGAN well addresses the segmentation overflow noise and
the latent incomplete exploration of lesion regions. More true positive lesions and fewer false pos-
itive backgrounds make CoinGAN reach the state-of-the-art WSSS performance, generating dense
and high-quality pseudo annotations.

I EVALUATION OF COINGAN ON A DIFFERENT MEDICAL IMAGING
MODALITY AND LESS COMMON DISEASES

To investigate the performance of CoinGAN on other forms of medical imaging data and less com-
mon diseases, we include the BraTS 2021 Bakas et al. (2017; 2018); Menze et al. (2014) dataset in
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our experiments for the detection and segmentation of brain tumors. This dataset focuses on MRI
images and includes diverse cases of brain tumors, such as gliomas and other less common tumor
types. We evaluate CoinGAN on this dataset to demonstrate its generalizability to the MRI modality
and its applicability to less common disease types such as gliomas. The experimental results are
presented in Figure 7:

Table 7: Evaluation of CoinGAN on the BraTS 2021 dataset.

BraTS 2021

Method DSC(%)↑ JC(%)↑ ASD↓ ACC(%)↑ SP(%)↑ SE(%)↑
SeCo 69.68 61.76 2.04 98.38 99.24 38.39
FPR 86.07 77.80 0.67 97.88 98.80 74.91

CoinGAN 89.41 82.30 0.47 98.56 99.63 72.14

The experimental results show that CoinGAN achieves superior performance, surpassing state-of-
the-art image-level weakly supervised semantic segmentation models, including FPR and SeCo.
Notably, FPR and SeCo were previously the top-performing models across the three datasets, as
detailed in Tables 1, 2 and 3.

J COMPARISON WITH A STATE-OF-THE-ART DOMAIN-SPECIFIC
DIFFUSION-BASED MODEL

As a new baseline for comparison. CG-CDM Hu et al. (2023) is specifically tailored for medical
WSSS, making it a suitable counterpart for our study. In the CG-CDM paper, the BraTS dataset is
used to assess model performance, with image-level labels for training, and the reported results of
CG-CDM are retrieved from [1]. Additionally, we have evaluated our proposed CoinGAN model on
the same BraTS dataset. The results are summarized in Table 8:

Table 8: The comparison with a state-of-the-art domain-specific diffusion-based model on the
BraTS 2021 dataset.

BraTS 2021

Method DSC(%)↑ JC(%)↑
CG-CDM 56.3 45.0
CoinGAN 89.41 82.30

The experimental results highlight the superior performance of CoinGAN, further validating the
effectiveness of our proposal.

K COINGAN FOR MODELING THE PROGRESSION OF MEDIASTINAL LESIONS

To explore the severity levels as image-level labels in medical WSSS, we introduce a new dataset,
MELA Wang et al. (2022) (more details elaborated in Appendix E), designed to analyze the pro-
gression of mediastinal lesions. In this dataset, medical images are categorized based on lesion
sizes, with smaller lesions labeled as mild and larger ones as severe. This labeling reflects object
sizes rather than presence/absence. Using this dataset, we conduct extensive visualization studies
to investigate the conversion from mild to severe lesions, effectively simulating the progression of
mediastinal lesions. The visualized results are presented in Figure 7 with the white box highlighting
the mediastinal region.

Transition from Mild to Severe Disease State: This task represents the worsening of a medical
condition, where lesions gradually become more severe. From the process of lesion expansion, it
can be observed that the mediastinum gradually enlarges, covering normal tissues and expanding
into unobstructed spaces. This expansion of the mediastinum compresses surrounding tissues and
can compromise the respiratory system in the human body. As diseases progress, CoinGAN allows
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Figure 7: The visualized results present the progression of mediastinal lesions from mild to
severe lesions. The white box highlights the mediastinal region.

for the assessment of potential harm, which is crucial for developing the treatment plan. Further, this
exploratory study casts light on the potential of CoinGAN in facilitating smooth transitions between
varying-degree modalities, which is invaluable in medical imaging and diagnosis.

L ERROR ANALYSIS OF COINGAN

We perform the error analysis by elaborating on the core idea of CoinGAN - the utilization of
discrepancy information. The discrepancies between different labels of medical images are pivotal
for distinguishing discriminative regions (i.e., regions of interest), forming the foundation of our
proposed CoinGAN. CoinGAN leverages this discrepancy information to enhance the segmentation
of target objects in medical images.

However, discrepancy information can be affected by potentially “inaccurate” image-level labels,
which are not uncommon in clinical practice. For instance, some individuals labeled as healthy
controls may exhibit subtle abnormalities in their medical images that resemble patient lesions but
have not progressed to a diagnosable disease stage. These “healthy” images may introduce ambi-
guity into the model’s learning process, impairing the effective use of discrepancy information and,
consequently, the overall model performance.

Moreover, such data quality issues stemming from the complexity of real-world clinical scenarios
can also affect the performance of other weakly supervised semantic segmentation methods, as
evidenced by the robustness study in Appendix M. Addressing these challenges remains a critical
area for future exploration.

M ROBUSTNESS STUDY OF COINGAN TO INACCURACIES AND VARIABILITY
IN IMAGE-LEVEL LABELS

To assess the robustness of CoinGAN to inaccuracies and variability in image-level labels, we design
and supplement the following experiment. Specifically, following the protocol of existing robustness
studies such as Wei et al. (2021), we intentionally introduce inaccuracies in 10% of the image-level
labels and evaluate the performance of CoinGAN alongside the best-performing weakly supervised
semantic segmentation baseline method under these conditions.

For this robustness study, we use the QaTa-COV19 dataset as the reference. The experimental
results, including a comparison of CoinGAN with the baseline, are summarized in Table 9.

Table 9: The robustness study to inaccuracies and variability in image-level labels on the QaTa-
COV19 dataset

QaTa-COV19

Method DSC(%)↑ JC(%)↑ ASD↓ ACC(%)↑
FPR-10% 63.20 (-1.62) 48.99 (-2.54) 2.70 (-0.28) 72.74 (-4.34)

CoinGAN-10% 70.04 (-1.65) 57.19 (-1.52) 2.03 (-0.58) 81.88 (-0.23)
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The values on the left represent the models’ performance with 10% inaccurate image-level labels,
while the values in parentheses indicate performance changes relative to the scenario without label
inaccuracies. “-” signifies a decline in performance. Detailed results for the scenario without label
inaccuracies are provided in Table 1 of the manuscript. Notably, FPR is identified as the best-
performing weakly supervised semantic segmentation model on the QaTa-COV19 dataset under
image-level labels, as shown in Table 1.

The experimental results reveal that both CoinGAN and the baseline method experience perfor-
mance degradation across all four comprehensive metrics when subjected to inaccurate labels. How-
ever, CoinGAN exhibits smaller or comparable performance variations in three key metrics—DSC,
JC, and ACC—compared to the baseline, highlighting its superior robustness against label inaccu-
racies.

N DISCUSSION ON RELATED LITERATURE

Discussion about the first challenge (distribution discrepancies): Most of the generative method-
based approaches can effectively address inherent distribution discrepancies. Specifically, we pro-
pose to use the generative adversarial network (GAN) within the CoinGAN model to exploit such
discrepancies. Notably, some diffusion models, e.g., Hu et al. (2023); Li et al. (2023a); Liang et al.
(2023); Gonzalez-Jimenez et al. (2023) can present viable alternatives as backbones, which repre-
sents a promising avenue for further exploration.

Discussion about the second challenge (ambiguous boundaries): We discuss three related studies,
including BoundaryCAM Prabakaran et al. (2023), CTO Lin et al. (2023a), and boundary-aware
CNNs Hatamizadeh et al. (2019). Below, we summarize the working principles of these studies
with boundary-aware modules:

• BoundaryCAM Prabakaran et al. (2023) employs an unsupervised clustering strategy to
extract clusters of pixels, which assist in defining an initial boundary of the target ob-
ject. Subsequently, BoundaryCAM combines Class Activation Mapping (CAM) with the
Floodfill Fishkin & Barsky (1985) algorithm to refine this initial boundary and produce a
fine-grained mask.

• CTO Lin et al. (2023a) integrates Convolutional Neural Networks (CNNs), Vision Trans-
former (ViT), and a boundary detection operator (e.g., Sobel Kanopoulos et al. (1988)).
The CNNs and ViT form the encoder, capturing feature dependencies, while the decoder
combines convolutional layers and the boundary detection operator to enhance boundary
segmentation. Specifically, a convolutional layer adaptively fuses the initial features from
the boundary detection operator (Sobel operator) with the latent representations from the
encoder for boundary refinement. Ground truth boundary maps guide and supervise this
boundary learning process.

• Boundary-aware CNNs Hatamizadeh et al. (2019) utilize a standard encoder-decoder archi-
tecture alongside a shape processing component to process feature maps at the boundary
level. The shape processing component incorporates an attention layer and a dilated spatial
pyramid pooling layer to jointly learn boundary information, supervised by ground truth
boundary maps that distinguish boundary and non-boundary pixels.

Both CTO Lin et al. (2023a) and Boundary-aware CNNs Hatamizadeh et al. (2019) require ad-
ditional boundary maps for supervision, making them unsuitable for weakly supervised semantic
segmentation. BoundaryCAM Prabakaran et al. (2023) would require adaptation for such tasks.

Discussion about the third challenge (similar anatomical structures): The presence of consis-
tent, similar anatomical structures within specific organs or adjacent tissues is crucial for effective
segmentation. These structures require models to capture localized information rather than relying
solely on global features. If not adequately exploited, such similarities can hinder models’ ability
to distinguish regions accurately, especially in cases involving subtle or small lesions. For example,
small lesions may be misclassified as healthy tissues, limiting models’ learning capacity. Conversely,
leveraging anatomical similarities can provide essential physiological and structural information for
differentiating lesions from healthy tissues.
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O DISCUSSION ABOUT AVERAGE BUFFER AND SIMILAR TECHNIQUES

To distinguish our devised Average Buffer from similar techniques (e.g., traditional prototypes and
memory banks), we discuss their concepts and functionalities as follows:

• Average Buffer: This approach computes the average representation of a batch of data
within a specific label during the model’s data update process. It focuses on capturing
generalized representations across samples, which are then used as reference samples for
subsequent processing.

• Traditional prototypes: These typically represent the central or most representative sam-
ples of a label, derived by aggregating features or samples within the label. Prototypes
aim to encapsulate the core characteristics of a category, aiding the model in distinguishing
between clustering centers of different categories and consolidating similar representations
within the same category.

• Memory banks: These are structures designed to store and manage large amounts of in-
formation, such as features or historical data learned by the model during training. Mem-
ory banks are dynamically updated or replaced throughout the training process, improving
training efficiency and representational capacity.

In summary, while our designed Average Buffer shares similarities with traditional prototypes and
memory banks, it differs by emphasizing the computation of average representations and their dy-
namic updates, which are central to its functionality.
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