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ABSTRACT

Deep learning-based vulnerability detection models have recently been shown
to be effective and, in some cases, outperform static analysis tools. However,
the highest-performing approaches use token-based transformer models, which
do not leverage domain knowledge. Classical program analysis techniques such
as dataflow analysis can detect many types of bugs and are the most commonly
used methods in practice. Motivated by the causal relationship between bugs and
dataflow analysis, we present DeepDFA, a dataflow analysis-guided graph learn-
ing framework and embedding that use program semantic features for vulnera-
bility detection. We show that DeepDFA is performant and efficient. DeepDFA
ranked first in recall, first in generalizing over unseen projects, and second in F1
among all the state-of-the-art models we experimented with. It is also the small-
est model in terms of the number of parameters, and was trained in 9 minutes,
69x faster than the highest-performing baseline. DeepDFA can be used with other
models. By integrating LineVul and DeepDFA, we achieved the best vulnerability
detection performance of 96.4 F1 score, 98.69 precision, and 94.22 recall.

1 INTRODUCTION

Software vulnerabilities cause great harm to people and corporations. Many Internet users have
had their personal information breached because of security vulnerabilities, with common reports of
breaches exposing millions of records (wik, 2021). The average data breach costs the target company
$4.24 million, according to IBM’s 2021 report (ibm, 2021). The number of vulnerabilities is growing
every year, as reported by the Common Vulnerability Enumeration (CVE) from 2016-2021 (cve,
2021). Because of its importance, software companies invested heavily to develop vulnerability
detection tools that can scan software before its release (Lu et al., 2021; Zheng et al., 2021).

Deep neural networks have reported great progress for vulnerability detection, with the recent Line-
Vul paper (Fu & Tantithamthavorn, 2022) reporting 0.91 F1 score on a commonly used real-world
vulnerability dataset (Fan et al., 2020), and many deep learning-based tools outperforming static
analysis (Li et al., 2018; Ding et al., 2022; Cao et al., 2022). Current state-of-the-art models use
graph neural networks (GNNs) with unsupervised word embeddings and large pretrained transform-
ers, which can perform well on this task. However, these models are large and expensive to train,
and we showed that they did not generalize well beyond unseen projects. Empirical studies have
discovered that the models can focus on spurious features which are not relevant to the cause of the
bug, such as variable names (Chakraborty et al., 2021).

Inspired by the work done by Xu et al. (2019) and by Cranmer et al. (2020), we designed a novel
graph learning framework and embedding technique that is guided by program analysis algorithms
of vulnerability detection, namely Dataflow Analysis (DFA). DFA computes the data usage patterns
and relations in the control flow graph (CFG) of a program and reports a vulnerability based on its
root cause, i.e., whether the values and data relations collected from the program indicate the occur-
rence of the vulnerable conditions. We explored an analogy between DFA and the GNN message-
passing algorithm, and designed an embedding technique that encodes dataflow information at each
node of the CFG. Graph learning on such embedding thus simulates the dataflow computation in
DFA.

We propose DeepDFA, a Deep Learning Framework guided by DFA, shown in Figure 1. Given
the source code of a potentially vulnerable program, we convert it to a CFG and encode the nodes
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int main(int argc, char **argv)


{

  char *str = NULL;

  if (argc > 1)

  {

    str = malloc(10 * argc);

  }

  str[(10 * argc)-1] = 0;

  //...

}

Source code

: str[(10 * argc)-1] = 0

Dataflow analysis-guided

Graph learning

: char *str = NULL

(definition )

: (char *) str = malloc(10 * argc)

(definition )

TRUE

: if (argc > 0)

: str[(10 * argc)-1] = 0

(definition )

FALSE

CFG + abstract dataflow embedding

: str = malloc(10 * argc): if (argc > 0)

datatype API constant

operator

datatype constant

Figure 1: Overview of our DeepDFA approach

using an abstract dataflow embedding we designed. Our abstract dataflow embedding represents
variable definitions using the properties which are most important for vulnerability detection, based
on domain knowledge from program analysis, e.g., the data types, API calls, constants, and operators
present in the definition. Then, we apply graph learning and its message passing mechanism on the
CFG edges to propagate such information across the edges of the graph, similar to what is done in a
dataflow analysis. We then use the learned graph representation to classify whether the function is
vulnerable or not.

Our evaluation shows that DeepDFA is significantly faster than our baseline models, both in terms
of training and inference time. It only took 9 minutes to train and 1.92 ms/example for inference
on CPU. Yet, DeepDFA still achieved top one for recall, ranked second for F1 and generalized to
unseen projects the best, compared with other baseline models. Importantly, we show that DeepDFA
embedding can be used with other models to further improve their performance. We created the top
state-of-the-art vulnerability detection model by combining LineVul and DeepDFA and achieved
96.40 F1 score, 98.69 precision and 94.22 recall.

Along the research like GIN Xu et al. (2019) and Cranmer et al. (2020), DeepDFA also demonstrated
that guided by domain algorithms, deep learning can achieve better results with minimal resources.
DeepDFA did not use any token and text level features which hardly reveal the cause of vulnera-
bilities; instead it used abstract dataflow embedding to simulate the dataflow propagation (a casual
domain algorithm) via graph learning, and used the idea of bitvector in dataflow analysis to achieve
the efficiency of embedding and learning.

In summary, we made the following contributions in this paper:

1. We designed an abstract dataflow embedding to efficiently learn the program semantics
relevant to vulnerability detection;

2. We applied graph learning on the control flow graph (CFG) of the program and abstract
dataflow embedding to simulate reaching definition dataflow analysis;

3. We implemented DeepDFA and experimentally demonstrated that DeepDFA outperforms
baselines in vulnerability detection for effectiveness, efficiency, and generalization over
unseen projects;

4. We provided a comprehensive understanding on the analogy of dataflow analysis and graph
learning, which can understand why DeepDFA performs well and is efficient; and

5. We showed that DeepDFA can be used to improve other models, and we delivered the best
vulnerability detection model in the state-of-the-art by combining LineVul and DeepDFA.

2 RELATED WORK

A vulnerability is a flaw in a software program that can be exploited to negatively impact the con-
sumer or system (cve, 2022). In the literature, vulnerability detection is typically framed as a binary
classification problem. Devign (Zhou et al., 2019), ReVeal (Chakraborty et al., 2021), IVDetect (Li
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et al., 2021a), and LineVD (Hin et al., 2022) used GNN on program graph representations such as
AST, CFG, and PDG, and annotated the nodes with unsupervised or pretrained word embeddings.
ReGVD (Nguyen et al., 2022) used GNN on co-occurrence graphs. We also used a graph neural
network, but we designed our graph learning framework using dataflow analysis as guidance. We
therefore are able to understand why our approach is efficient and performant.

Transformer models such as CodeBERT (Feng et al., 2020) and LineVul (Fu & Tantithamthavorn,
2022) used a token-based program representation pretrained on a large body of NL-PL pairs, and
then fine-tuned for vulnerability detection. Using CFGs, our graph learning only propagates the
information along semantically important edges instead of trying to learning the relations of each
pair of tokens. Thus, our approach is significantly more efficient. Since we have used a semantic-
based embedding, we show that we can improve the performance of token based models. The
most recent work, ContraFlow (Cheng et al., 2022), learns embeddings of def-use paths (an output
of dataflow analysis), then predicts vulnerability detection using a transformer model. Our work
directly emulates dataflow analysis and does not require an expensive pretraining phase.

There are also models that used sequence and CNN architectures. VulDeePecker (Li et al., 2018)
used BiLSTM on slices considering data dependencies. SySeVR (Li et al., 2021b) used BiGRU
on slices and adds data dependencies. Draper (Russell et al., 2019) used CNN and RF on a grid
representation of source code.

While we were developing our analogy of DFA and graph learning, we found that Cummins et al.
(2021) have proposed a similar idea, but used it for device mapping and algorithm classification.
However, their PrograML model used an unsupervised embedding which does not explicitly capture
the domain-specific information used by DFA, and they did not target a specific dataflow analysis.
Our abstract dataflow embedding captures the domain-specific information used by DFA and we
applied reaching definition analysis, which is directly linked to vulnerability detection.

Other relevant work that explores dataflow analysis and deep learning include: (1) VenkataKeerthy
et al. (2020) used the output of dataflow analysis, reaching definitions and live variables, to learn
flow-aware embeddings; and (2) Bielik et al. (2017) and Jeon et al. (2019) learned static analysis
formulas from a dataset based on a fixed language. None of these works aims to develop a model
for vulnerability detection.

3 DEEPDFA: EFFICIENT GRAPH LEARNING VIA DOMAIN GUIDANCE

Inspired by Xu et al. (2019) and Cranmer et al. (2020), we aim to design a graph learning framework
that can simulate and thus benefit from the domain algorithms for vulnerability detection.

3.1 DATAFLOW ANALYSIS FOR VULNERABILITY DETECTION

Dataflow analysis (DFA) is a method for computing data usage patterns in a program. In addition
to compiler optimization, dataflow analysis is an important method for vulnerability detection. One
instance of dataflow analysis, called reaching definition analysis, reports at which program points,
a particular variable definition can reach. A definition reaches a node when there is a path in the
CFG that connects the definition and the node, and the variable is not redefined along the path.
The reaching definition analysis can detect a null-pointer deference vulnerability based on its root
cause, when it identifies that a definition of an NULL pointer reaches a dereference of the pointer.
Similarly, it is a causal step to detect many other vulnerabilities such as buffer overflows, integer
overflow, uninitialized variables, double-free and use-after-free (Cesare, 2013).

DFA uses two equations to propagate the dataflow information through the neighbouring nodes
in the CFG, namely meet-over-path and transfer function (Aho & Aho, 2007). Meet-over-path
aggregates the dataflow sets from its neighbours. Transfer function updates the dataflow set using
the information available in node v. In the reaching definition analysis, the dataflow set is a set
of definitions that reach a program point. A simple approach of performing a DFA is the Kildall
method (Kildall, 1973) (the full algorithm is given in Appendix B). It iteratively propagates the
dataflow information to the neighbours of v in the CFG, a step at a time. The algorithm terminates
when the dataflow information of all nodes stops changing, denoted a fixpoint. At termination, all
nodes will incorporate the dataflow information from all other relevant nodes. This information is
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then compared to the vulnerability conditions to determine whether a vulnerability has occurred in
the program.

3.2 ANALOGY OF GRAPH LEARNING AND DATAFLOW ANALYSIS

Figure 2a shows a snippet of CFG where DFA is performed. In the CFG, each node is a statement,
and each edge indicates the order of execution between two statements. The two dataflow equations
that define a reaching definition dataflow analysis are shown in the figure:

• meet-over-path: IN [v] =
⋃

u∈pred(v) OUT [u]

• transfer function: OUT [v] = GENv

⋃
(IN [v]−KILLv)

where IN [v] and OUT [v] are the sets of dataflow located at the beginning and end of a statement.
GENv and KILLv represent the dataflow generated (new definitions) and killed (overwritten defi-
nition) in node v.

Figure 2b shows an analogous behavior of graph learning. Graph learning performs a fixed number
of iterations of message-passing. At each iteration, each node aggregates information from its neigh-
bors, and then updates its state to integrate the information. Here, the AGGREGATE and UPDATE
functions serve a similar role to the two dataflow equations of meet-over-path and transfer function:

• aggregate: atv = AGGREGATE({ht−1
u |u ∈ pred(v)})

• update: ht
v = UPDATE(ht−1

v , atv)

where atv denotes the aggregated information from the neighbors, ht
v denotes the state of node v

after t iterations of message-passing (analogous to OUT [v]).

(a) Dataflow Analysis (b) Graph Learning

Figure 2: Analogy of Dataflow Analysis and Graph Learning

3.3 GRAPH LEARNING TO SIMULATE DATAFLOW ANALYSIS

Based on the analogous behaviors of DFA and GNN, we developed DeepDFA. It conducts graph
learning on the CFG of a program, guided by the traditional DFA algorithm. In addition, we designed
a node embedding that can represent the dataflow set at each node.

Designing Abstract Dataflow Embedding: In dataflow analysis, we use a bit vector to represent
the dataflow set at each node. A bit vector consists of n bits of 0s and 1s. Its length is the size of
the domain. A bit is set to 1 if its corresponding element is present in the set. In reaching definition
analysis, the domain consists of all the definitions in the program, and the bits are set to “1” if the
corresponding definitions reach the node. For example, in Figure 1, the program contains three
definitions at nodes v1, v3, and v4 so the reaching definition analysis uses a bit vector [0 0 0] to
initialize each node before the analysis. The bit vector represents OUT[v] in the dataflow equation.
It is updated at each step of propagation, and when the analysis terminates, the bit vectors for each
node represent all possible definitions which reach that node.

The bit vector representation efficiently encodes program semantic features relevant to vulnerability
detection. It can be quickly obtained at the node via lightweight program analysis. However, in
graph learning, we cannot directly use it as the node embedding for two reasons. First, the domain
of definitions is specific to a program. Different programs contain different variable definitions; their
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Extract properties

datatype

0:   NONE
1:   UNKNOWN
2: int

3: char *

4: double

API

0:   NONE
1:   UNKNOWN
2: malloc

3: getchar

4: getline

constant

0:   NONE
1:   UNKNOWN
2: NULL

3: 0

4: 10

(char *) str = malloc(10 * argc)

operator

0:   NONE
1:   UNKNOWN
2: +

3: -

4: *

Build dictionaries for
the 4 properties

 char *foo = NULL;

 char *p = "https://...";

 int i = 0; str = malloc(10 * argc)

Abstract dataflow embedding

Source code
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0
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1
0
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0
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Figure 3: Abstract dataflow embedding generation

bit vectors have different lengths and the elements are not comparable. In graph learning, we want to
extract dataflow patterns from all the programs and we need to have a “global” embedding that can
be compared across programs. Second, bit vectors are changed in a discrete fashion during dataflow
analysis; however, during graph learning, the node embedding needs to be changed in continuous
increments.

To address the challenges, we map all the concrete definitions in the programs in the training dataset
to abstract definitions using the common properties of the definitions. Thus, the definitions from
different programs can be compared and generalized. Using domain knowledge, we believe that
the following four properties are important to the cause of a vulnerability and can be shared across
programs, so we use them to represent a definition:

• API call: the call to library or system functions used in the definition, e.g. malloc,
strlen

• Data type: the data type of the variable being assigned, e.g. int, char*.
• Constant: the constant values assigned in the definition, e.g. NULL, -1, "foo".
• Operator: the operators used in the definition, e.g. +, -, *.

We analyze a large corpus of programs, e.g., training set, and collect top k frequently used API
calls, data types, constants and operators to construct the dictionaries. For a particular definition, we
identified its API call, data type, constant and operator, found their indices in the dictionaries, and
converted each index to a vector using one-hot encoding. The generated embedding is a matrix of k
rows and 4 columns (each column is a one-hot vector representing one of the 4 properties), which
we name Abstract Dataflow Embedding. Note that k is a hyper-parameter of DeepDFA that we
can tune. Using larger k, we can represent more definitions using our embedding precisely, and of
course, with larger overhead. If the property’s value was not in the top-k, we used an UNKNOWN
token to represent its value; if the property is not present in the definition, we used a NONE token.

Figure 3 describes an abstract dataflow embedding for an example d2: str = malloc(10 *
argc), which used an API call malloc, with the constant 10, operator * and data type char*.
Contrasted with the 3-bit bit vector that represents a concrete definition in data flow analysis, the
abstract embedding is larger (5x4 elements), but it is still a fixed size, so it will scale to any size
of dataset without impacting the model’s efficiency. The embedding keys have consistent meanings
among all programs in the dataset so the model can capture the dataflow patterns across programs.

Graph learning guided by Dataflow Analysis: Given the CFG with abstract dataflow embeddings,
DeepDFA performs message-passing on the CFG edges, which parallels the dataflow propagation
in the DFA algorithm.

In Table 1, we stepped through the reaching definition analysis for the CFG example in Figure
1 in order to further demonstrate the analogy between the two, and to help understand how our
graph learning framework can benefit from the DFA guidance: (1) we only focus on the semantic
information relevant to the vulnerability (2) the rules are simple and thus possible to learn (3) the
iterative propagation can integrate information along the paths of a CFG to detect bugs based on its
causes.
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Table 1: OUT[v] at each iteration of DFA

Iteration v1 v2 v3 v4
0 [0 0 0] [0 0 0] [0 0 0] [0 0 0]

1 [1 0 0] [0 0 0] [0 1 0] [0 0 1]

2 [1 0 0] [1 0 0] [0 1 0] [0 1 1]

3 [1 0 0] [1 0 0] [0 1 0] [1 1 1]

The row Iteration 0 shows the initializa-
tion of each node in the reaching definition
analysis. At iteration 1, the DFA updates
OUT[v1], OUT[v3] and OUT[v4] using the
transfer function to indicate that the new def-
initions are introduced at the nodes. At it-
eration 2, OUT[v1](including d1) propagates
to v2 and OUT[v3](including d2) propagates
to v4, through the CFG edges. At iteration
3, the meet-over-path is used to combine OUT[v2] and OUT[v3]. Specifically, IN[v4] =⋃
{OUT[v2],OUT[v3]}, computed as [1 0 0] ∨ [0 1 0] = [1 1 0] ; then the transfer function combines

IN[v4] with GENv4 , resulting in OUT[v4] = [1 1 1] .

In graph learning, the analogous functions of AGGREGATE and UPDATE are learned using the
neural networks. For example, in GGNN (Li et al., 2016), AGGREGATE is an MLP and UPDATE
is a GRU. AGGREGATE combines the representations of multiple neighboring nodes into one
vector, similar to meet-over-path. UPDATE uses GRU to preserve or forget portions of the previous
state ht−1

v and integrate new information from atv , similar to the operations performed in the transfer
function. Within 2 iterations, v4 will integrate the information from nodes v2 and v3 (i.e., the
definitions of d1 and d2 respectively) with its initial dataflow information d3.

After the DFA algorithm terminates, the final state of the nodes is used to detect vulnerabilities. The
state of v4 is [1 1 1] , which indicates that both d1 and d2 may reach v4 depending on the program
values. Because the definition d1 : str = NULL can reach the dereference at v4, we can conclude
that this program has a null-pointer dereference vulnerability. Similarly, in graph learning, after a
fixed number of iterations, all the node representations are combined using a graph readout operation
to produce a graph-level classification for vulnerability detection.

As Cummins et al. (2021) noted, one minor difference between the two algorithms is that DFA
iterates until it reaches a fixpoint, while GNN performs a fixed number of iterations. Kam & Ullman
(1977) showed that DFA converges within d(G) + 3 passes, where d is the loop connectedness of
G (defined in Cummins et al. (2021)). We set the hyperparameter t based on the best validation
performance through our experimentation.

4 EVALUATION

We studied the 3 research questions: (1) Is DeepDFA effective for finding vulnerabilities? (2) How
efficient is DeepDFA compared to other models? (3) Can DeepDFA generalize to unseen projects?

4.1 EXPERIMENT SETUP

Model Implementation: To explore whether DeepDFA can advance the state-of-the-art, we cre-
ated two settings, DeepDFA and DeepDFA+LineVul. DeepDFA is implemented using the GGNN
architecture (Li et al., 2016). DeepDFA+LineVul is created by concatenating LineVul’s RoBERTa
encoder output to DeepDFA’s graph stage output after readout. To avoid data leakage, we trained
the abstract dataflow embedding on the training set. We used a threshold of k = 1000, and it has
covered (79.38%) of the definitions in the test dataset. Future work may train the abstract dataflow
embedding on a large unsupervised dataset of code in order to learn a more general representation.
See Appendix A for the further details of our hyperparameters and training.

Dataset: In the recent literature (Fu & Tantithamthavorn, 2022; Li et al., 2021a; Chakraborty et al.,
2021), vulnerability detection models are typically evaluated with Devign (Zhou et al., 2019) or
Big-Vul (Fan et al., 2020) datasets, both of which contains real-world open-source C/C++ projects.
In our evaluation, we used the Big-Vul dataset because (1) it is bigger compared to Devign and
consists of 188,636 functions, and 10,900 (6%) vulnerable labels, and (2) it reflects the imbalanced
distribution of real-world code (Devign is a balanced dataset), with the minority of code containing
vulnerabilities (Chakraborty et al., 2021).

We used the train/validation/test splits of 80/10/10% generated by the LineVul paper (Fu & Tan-
tithamthavorn, 2022). To address class imbalance, we undersampled the majority class (non-
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vulnerable) of the training set without changing the validation and test sets. We used Joern (Ya-
maguchi et al., 2014)1 to parse the code into its CFG representation. Because Joern cannot parse
some programs (7%) in the dataset, we used the rest of the 93% of the data in our experiments.

We also created a datasest to evaluate the generalization of the models. This dataset consists of
the mixed-project and cross-project two settings. Our approach is to hold out 10k examples from
randomly selected projects in Big-Vul as a validation and test set of the cross-project setting. We
then randomly partitioned the remaining data into train/validation/test sets with 10k examples in the
validation and test data, and the remaining examples in training. The second 10k examples can come
from the same projects as the examples used in training, which we call the mixed-project setting. To
mitigate the potential bias caused by the selection of projects, we repeated this process 5 times with
different selections of the cross-project data and performed 5-fold cross validation.

Baselines: We compared against 7 non-transformer models: VulDeePecker, SySeVR, Draper, De-
vign, ReVeal, ReGVD, IVDetect, and 2 transformer models: CodeBERT and LineVul2. These
models are developed recently with different architectures and represent the state-of-the-art of vul-
nerability detection models. See Section 2 for an overview of the models and Appendix A for the
details of our reproductions.

Metrics: We evaluated model performance and efficiency using metrics from the literature. Specifi-
cally, Precision reports the portion of positive predictions which were correct: P = TP

TP+FP . Recall
calculates the portion of positive examples which were recalled: R = TP

TP+FN . F1 is the harmonic
mean between Precision and Recall: F1 = 2 ∗ P∗R

P+R . We used F1 to decide the highest performing
model because it balances precision and recall, which are both important in an imbalanced dataset.

For efficiency, we reported the Training time: the wall-clock time to execute one training run
with one validation run per epoch, and the Inference time: the average wall-clock time to predict
for one example. We also used MACs: the average number of Multiply-Accumulate operations3

(Tan & Le, 2020; Howard et al., 2017) to predict for one example; this measures the performance
independently of the computing platform. Finally, we listed the model size in terms of Parameter
count: the number of trainable parameters in the neural network model.

We trained the models 3 times with different random seeds and reported the mean score and standard
deviation for each metric. We ran the runtime benchmarks on an AMD Ryzen 5 1600 3.2 GHz
processor with 48GB of RAM and an Nvidia 3090 GPU with 24GB of GPU memory.

4.2 RESULTS: EFFECTIVENESS

Comparison with non-transformer models: As shown in Table 2a, DeepDFA performed sig-
nificantly better than the baselines on F1 score; the average difference was 47.51. DeepDFA also
achieved a significantly higher Recall score compared to other models, and its Precision score ranked
4th out of the 7 baselines. Compared to the other 6 models, DeepDFA reported significantly lower
variances for all the three metrics.

DeepDFA’s abstract dataflow embedding encodes the semantic features (dataflow sets) of programs
relevant to the vulnerability detection. On the other hand, the other models used unsupervised word
embeddings such as Word2Vec, Doc2Vec, and GloVe as node embedding, which do not represent
a causal relationship with vulnerabilities. Among the 7 baseline tools, Devign and ReVeal used
CPG which combines AST, CFG, and PDG, while DeepDFA used only the CFG. AST and PDG
information are useful to detect certain classes of bugs (Yamaguchi et al., 2014), but compared
to DeepDFA which directly simulate the dataflow analysis on the CFG, these approaches are less
accurate to model data relations needed for causal vulnerability detection.

Comparison with transformer models: CodeBERT and LineVul are the best among all the trans-
former models that detect vulnerabilities in the BigVul dataset (see Appendix C for the detailed
numbers). Table 2b shows that DeepDFA reported the highest recall and the smallest variances
compared to CodeBERT and LineVul. It ranked second for F1 and performed significantly better
than CodeBERT in F1. We achieved the state-of-the-art performance of F1 score of 96.40 (3.17

1https://joern.io
2We could not reproduce LineVD and ContraFlow on Big-Vul for function-level vulnerability detection.
3We used DeepSpeed profiler to measure MACs. https://www.deepspeed.ai
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Table 2: DeepDFA outperformed the baselines and can be used to further improve the existing model
performance. Note that VulDeePecker, SySeVR, Draper, and IVDetect performance were directly
taken from the IVDetect paper (Li et al., 2021a), so we do not report the variance.

(a) Comparison with non-transformer models.

Model F1 P R
VulDeePecker 12.00 49.00 19.00
SySeVR 15.00 74.00 27.00
Draper 16.00 48.00 24.00
IVDetect 23.00 72.00 35.00
Devign 26.85

(0.97)
29.00
(0.38)

25.03
(1.67)

ReVeal 32.94
(0.75)

34.27
(1.58)

31.73
(0.65)

ReGVD 19.15
(2.65)

63.67
(4.43)

11.33
(1.94)

DeepDFA 68.26
(0.16)

53.98
(0.06)

92.81
(0.40)

(b) Comparison with transformer models.

Model F1 P R
CodeBERT 21.04

(6.72)
68.48

(11.76)
12.91
(5.51)

DeepDFA 68.26
(0.16)

53.98
(0.06)

92.81
(0.40)

LineVul 93.23
(0.31)

97.32
(0.66)

89.48
(0.42)

DeepDFA+LineVul 96.40
(0.13)

98.69
(0.28)

94.22
(0.46)

improvement), Precision score of 98.69 (1.37 improvement), and Recall score of 94.22 (4.75 im-
provement), by adding DeepDFA’s embedding to LineVul. Since DeepDFA is lightweight, it can
be added to improve LineVul at little cost. The improvement suggests that DeepDFA’s embedding
can provide additional useful information even for a very large pretrained models trained from the
tokens of programs.

DeepDFA does not use any text-level/token information such as variable and function names, and
yet it has achieved very good performance. We believe that leveraging the domain algorithm of
reaching definition analysis to guide graph learning indeed plays an important role, and the em-
bedding indeed encodes semantic features (e.g., data relations) that are important for vulnerability
detection. Interestingly, such features can also improve the top-performing model along all metrics.
We further believe that the examples which DeepDFA predicted incorrectly could be due to the fact
that reaching definition analysis cannot handle all types of vulnerabilities. Thus, by adding other
dataflow analyses such as live variable analysis, DeepDFA can further improve its performance. We
will leave this step to our future work.

4.3 RESULTS: EFFICIENCY

Table 3: Runtime of the different models.

Model Train time
(ms)

GPU Inference
(ms/example)

CPU Inference
(ms/example) MACs/example

LineVul 10h19m 11.06 1068.2 48.32 B
DeepDFA 9m 4.64 5.8 40.27 M
DeepDFA+LineVul 10h40m 15.36 1571.5 48.32 B

In Table 3, we present the runtime comparison of DeepDFA and LineVul. Here, we did not list other
models because their performances are much worse (shown in Section 4.2), and they took hours
to train, compared to DeepDFA which finished training in 9 minutes (excluding data preprocessing
time). In Table 4, we also listed the sizes of the models in terms of the number of parameters.

Compared to LineVul, DeepDFA took 69x less time to train, had 2.4x faster inference on GPU and
185x faster inference on CPU, and used 333x fewer parameters. DeepDFA had the least number
of parameters of all models, equal to 67% of the smallest model (ReVeal) and 0.3% of the largest
baseline model (LineVul). These results consistently indicate that DeepDFA excels in its efficiency
compared to other models. This is possible because DeepDFA is based on the dataflow analysis’s
compact representation—-bitvector, which represents semantic information in bits and thus is more
efficient compared to tokenized strings. DeepDFA propagated information along only the domain-
specific CFG edges, rather than associating every pair of tokens in an exhaustive fashion.
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Table 4: Size of the models.

Model # parameters
LineVul 125,238,531
DeepDFA 375,938
DDFA+LV 125,679,236
IVDetect 924,165
Devign 1,148,553
ReVeal 560,291
ReGVD 124,794,500
CodeBERT 124,646,401

DeepDFA’s short inference time due to a low number of MAC
operations enables its use in non-GPU environments (which are
common for software development) where larger models such as
LineVul may not be easy to be deploy. DeepDFA’s short training
time enables techniques like per-project fine-tuning and hyperpa-
rameter tuning, which would be much more costly with LineVul’s
training time of over 10 hours. Because of DeepDFA’s small
parameter count, it is ideal for resource-limited computing plat-
forms such as mobile devices, where large models cannot be used
(Howard et al., 2017).

4.4 RESULTS: GENERALIZATION

Table 5: How do the models handle unseen
projects? Note the performance drop (∆ F1) from
the cross-project to mixed-project setting.

Model Mixed F1 Cross F1 ∆ F1
LineVul 84.03 71.37 -12.66
DeepDFA 70.49 68.58 -1.91
DDFA+LV 87.89 71.88 -16.02

We compared the cross-project (shown as Cross
F1) and the mixed-project (shown as Mixed F1)
test F1 scores to evaluate the models’ capabil-
ities of generalizing over unseen projects. Ta-
ble 5 presents the highest-performing baseline
model LineVul compared to DeepDFA (the re-
sults of other models are available in Appendix
D). Shown under Column ∆ F1, DeepDFA
reported the most consistent performance be-
tween cross-project and mixed-project settings.
When applying to unseen projects, DeepDFA
only dropped 1.91 (2.7%) F1 score, compared to 12.66 (15.1%) drop for LineVul and 16.02 (18.2%)
drop for DeepDFA+LineVul. DeepDFA+LineVul reported the best performance for both the mixed-
project and cross-project datasets, improving on LineVul’s mean F1 score by 3.74 and 0.54 points
respectively. Although DeepDFA did not rank the best in terms of the absolute values, its gener-
alization was significantly better than the other models because its performance dropped the least
from the mixed-project set to the cross-project set.

We believe that DeepDFA generalizes better because it does not rely on superfluous features that may
exist at token and text level such as variable names and function names as reported by the previous
research (Chakraborty et al., 2021). For example, LineVul takes as input tokens, which often differ
between different projects and thus are hard to generalize their patterns. On the other hand, our
abstract dataflow embedding encodes the usage patterns of commonly used API calls, operators,
constants, and data types. Such patterns can be directly related to the cause of the vulnerabilities,
and thus might help DeepDFA generalize better over unseen projects.

5 CONCLUSIONS AND FUTURE WORK

We propose DeepDFA, an efficient graph learning framework and embedding technique guided by
dataflow analysis for vulnerability detection. Our abstract dataflow embedding incorporates domain
knowledge and extract semantic features of data usage patterns of commonly used API calls, opera-
tions, constants, and data types that potentially capture the causes of the vulnerabilities. The graph
learning emulates the Kildall method of dataflow analysis using the analogous message-passing
algorithm. Our experimental results confirm that DeepDFA is performant and efficient, and gener-
alizes better than other models. DeepDFA can be trained in 9 minutes and yield a smallest model
compared to all other baseline models, yet still achieving the top ranking for recall and no. 2 ranking
for F1. We show that DeepDFA can be used to improve other models. By combining LineVul and
DeepDFA, we delivered the best vulnerability detection model in the state-of-the-art at 96.40 F1
score, 98.69 precision and 94.22 recall. In the future, we plan to incorporate the guidance of other
dataflow analyses such as live variable analysis for graph learning. These dataflow analyses are also
used for vulnerability detection(Cesare, 2013). We also plan to explore the application of DeepDFA
to precisely pinpoint the vulnerability location at specific lines in the code.

9
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6 REPRODUCIBILITY STATEMENT

All code and data used in this paper are available at https://figshare.com/s/
e7953b4d345b00990d17, along with trained model weights and scripts to run the experiments
as we ran them.

• Section 4.1 documents our benchmarking environment.

• Appendix A documents the hyperparameters we used for the GGNN model and abstract
dataflow embedding.

• We used Joern version 1.1.1072 to parse the CFG, available at https://joern.io.
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A TRAINING DETAILS

Hyperparameter Value
λ (learning rate) 1e−3

L2 weight 1e−2

k (threshold) 1000
t (number of GNN steps) 5
Hidden size 32
# output layers 3
Batch size 256

Table 6: Hyperparameters used for training in RQ1.

We trained DeepDFA for 25 epochs and evaluated the checkpoint with the lowest validation loss.
We listed our hyperparameters in Table 6.

We trained DeepDFA+LineVul with the same method as LineVul; we trained for 10 epochs and
evaluated the checkpoint with the highest validation F1 score.

For the baselines,

• We could not reproduce VulDeePecker, SySeVR, Draper, or IVDetect, so we repeated the
performances reported in Li et al. (2021a). Their measurements may vary slightly from our
reproduction.

• We confirmed with Chakraborty et al. (2021) that our results fixed a data leakage bug in the
original implementation, so the results we report may differ from the original paper.

• Zhou et al. (2019) did not release their model code, so we reproduced Devign from the
third-party implementation released by Chakraborty et al. (2021) (https://github.
com/saikat107/Devign).

• Hin et al. (2022) did not report function-level metrics for LineVD, and we could not repro-
duce their statement-level performance from their model code, so we did not compare with
their approach.

• Cheng et al. (2022) did not release their model code and evaluated a different dataset than
ours, so we did not compare with their approach.
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B THE DATAFLOW ANALYSIS ALGORITHM

Algorithm 1 lists the generic Kildall method for dataflow analysis. The meet-over-path ⊓ and trans-
fer function f must be specified in order to compute a specific dataflow analysis.

Algorithm 1 The round-robin iterative algorithm for dataflow analysis (i.e. Kildall method)

Given: graph G = (V,E), meet-over-path ⊓, transfer function f , initial states P 0

for v in V do
OUT[v]← P 0[v] ▷ set initial state for each node

end for
changed← True ▷ denotes whether OUT[v] changed for any v
while changed do

changed← False
for v in V do

IN[v]← ⊓u∈pred(v)OUT[u] ▷ Do AGGREGATE/⊓
OUT′[v]← f(IN[v]) ▷ Do UPDATE/f
if OUT′[v] ̸= OUT[v] then

OUT[v]← OUT′[v]
changed← True ▷ If any OUT[v] changed, iterate again; otherwise terminate

end if
end for

end while
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C EFFECTIVENESS RESULTS ON THE FULL BIG-VUL DATASET

Of the transformer models, we evaluated CodeBERT and LineVul in our experiment for Section 4.2.

Table 7: Initial trial run of performance on 100% of the Big-Vul dataset.

Model type Model F1 Precision Recall

GNN Devign 29.33
(6.58)

32.83
(5.55)

26.59
(7.25)

GNN ReVeal 33.6
(0.69)

33.08
(3.49)

34.67
(3.8)

GNN ReGVD 24.49
(3.16)

63.76
(3.54)

15.26
(2.71)

Transformer CodeBERT 22.68
(8.12)

67.79
(4.9)

19.11
(3.39)

Transformer LineVul 91.58
(0.49)

95.99
(0.85)

87.55
(0.49)

Transformer VulBERTaMLP
(Hanif & Maffeis, 2022)

1.75
(3.03)

19.33
(33.49)

0.92
(1.59)

Transformer VulBERTaCNN
(Hanif & Maffeis, 2022)

10.59
(0)

5.59
(0)

100
(0)

Transformer PLBART
(Ahmad et al., 2021)

25.35
(3.74)

61.84
(6.54)

16.18
(3.52)

D CROSS-PROJECT EVALUATION RESULTS ON THE FULL BIG-VUL DATASET

We only evaluated LineVul in our experiment for Section 4.4 because its absolute performance was
significantly better than the other models on our initial trial with 100% of the Big-Vul dataset (See
Table 8).

Table 8: Initial trial run of cross-project evaluation with 100% of the dataset.

Model Mixed-project F1 Cross-project F1 ∆ F1
LineVul 84.07 71.81 -12.26
Devign 24.32 14.26 -10.06
ReVeal 28.24 6.83 -21.41
ReGVD 33.61 21.70 -11.91
CodeBERT 24.14 4.98 -19.16
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