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ABSTRACT

We introduce fs1, a simple yet effective method that improves the factuality of rea-
soning traces by sourcing them from large reasoning models (e.g., DeepSeek-R1)
and grounding them by conditioning on knowledge graph (KG) paths. We fine-
tune eight instruction-tuned Large Language Models (LLMs) on 3.9K factually
grounded reasoning traces and rigorously evaluate them on six complex open-
domain question-answering (QA) benchmarks encompassing 23.9K questions. Our
results demonstrate that our fs1-tuned model (32B parameters) consistently outper-
forms instruction-tuned counterparts with parallel sampling by 6-14 absolute points
(pass@16). Our detailed analysis shows that fs1 considerably improves model
performance over more complex questions (requiring 3 or more hops on KG paths)
and numerical answer types compared to the baselines. Furthermore, in single-pass
inference, we notice that smaller LLMs show the most improvements. While prior
works demonstrate the effectiveness of reasoning traces primarily in the STEM
domains, our work shows strong evidence that anchoring reasoning to factual KG
paths is a critical step in transforming LLMs for reliable knowledge-intensive tasks.

1 INTRODUCTION

Factual consistency of LLM-generated output is a requirement for critical real-world applications.
LLM reasoning in the form of “thinking” has shown promising improvements in model performance
on complex downstream tasks, such as mathematical reasoning and puzzle-like questions using
additional compute resources during inference (e.g., test-time scaling; Wu et al., 2024; Muennighoff
et al., 2025; Zhang et al., 2025). However, it remains an open question whether these reasoning
techniques improve factuality, particularly for complex multi-hop QA (mQA). This task tests a
model’s ability to answer a question by synthesizing information from multiple pieces of evidence,
often spread across different resources and requiring reasoning steps. We hypothesize that reasoning
models should perform better than non-reasoning LLMs on the mQA task. To test this hypothesis, we
source reasoning traces from state-of-the-art reasoning models and fine-tune several non-reasoning
LLMs to attempt to induce reasoning capabilities. However, we have no guarantee that these
reasoning traces from the large reasoning models are factually correct. In order to have a formal
factual grounding in these traces, we condition the models on retrieved knowledge graph (KG) paths
relevant to the questions. This is possible as KGs encode facts as directed, labeled graphs over entities
and relations, which offers a verifiable foundation to inform each step of the reasoning process. We
call our approach fs1 (factual simple test-time scaling; Muennighoff et al., 2025).

We fine-tune eight different LLMs sizes on the original reasoning traces (rt; 3.4K samples) or on
our KG-enhanced traces (fs1; 3.9K samples). We evaluate the fine-tuned models on six QA test sets
spanning 23.9K questions, finding that fine-tuning on this amount of data can improve accuracy by
6-14 absolute points (pass@16) for a 32B parameter model across the benchmarks. A snapshot of our
method is in Figure 1. This setup enables us to address our research question (RQ): To what extent
does grounding the reasoning processes of LLMs in KG paths enhance their factual accuracy for
mQA? To address this question, our contributions are as follows:

1 We demonstrate that with test-time scaling (parallel sampling), our fs1-tuned Qwen2.5-32B
model improves factual accuracy by 6-14 absolute points (at pass@16).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

! ! ! !
<think> 
Okay, so I need to… 
</think>
The answer should be 
Barcelona.

<think> Okay, let me tackle 
this question… </think>

The visual artist who 
created the art series [..] 
The answer is Madrid.

Instruction-
tuned

Chain-of-
Thought

Thinking (rt) Thinking with 
KGs (fs1)

Let me think step-by-
step… 

My answer is Vienna.

The answer is Paris.

❌ ❌ ✅

The visual artist that created the art series of Las Meninas, where did they live?

<Question>  +

❌

Figure 1: Snapshot of Method. We show a snapshot of the experiments executed in this study. There
are four settings on how a question can be answered; (1) direct answer from an instruction-tuned
model, (2) step-by-step reasoning via Chain-of-Thought, (3) original “thinking”, and (4) knowledge-
graph enhanced “thinking”. We show an example of how (4) looks like in Figure 3.

2 We conduct an analysis over the question and answer types (e.g., question difficulty, answer
type, and domains) to investigate where fs1-tuned models provide improvements. We find
that fs1-tuned models perform better on more difficult questions, requiring 3 hops or more.

3 We examine performance of eight fs1-tuned models (360M-32B parameters) in a pass@1
setting against baselines. We find that smaller LLMs have the largest increase in performance,
whereas larger models see less profound improvements.

4 We release 3.4K raw reasoning traces and 3.9K KG-enhanced reasoning traces both sourced
from QwQ-32B and Deepseek-R1.1

2 REASONING DATA

rt: Distilling Reasoning Traces. To obtain reasoning traces, we use ComplexWebQuestions
(CWQ; Talmor & Berant, 2018), a dataset designed for complex mQA. The CWQ dataset is created
by automatically generating complex SPARQL queries based on Freebase (Bollacker et al., 2008).
These queries are then automatically transformed into natural language questions, which are further
refined by human paraphrasing. We take the CWQ dev. set, which consists of 3,519 questions, to
curate the reasoning traces. We query both QwQ-32B (Qwen Team, 2025) and Deepseek-R1
(671B; DeepSeek-AI, 2025). By querying the model directly with a question, e.g., “What art
movement was Pablo Picasso part of?”, we retrieve the reasoning traces surrounded by “think”
tokens (<think>...</think>) and force the model to give the final answer to the question in
\boxed{} format. We extract around 3.4K correct-only traces (final answer is correct), which we
call rt. We show full examples in Figure 8 and Figure 9 (Appendix C).

fs1: Enhancing Reasoning Traces with Knowledge Graph Paths. We attempt to steer the
reasoning traces with KG paths to remove the inaccuracies in the traces. Since the CWQ dataset
consists of entities from Freebase, we align them to their corresponding Wikidata entities. For each
question in the dev. set of the CWQ dataset, relevant KG paths are extracted from Wikidata using
random walks using SPARQL queries as shown in Appendix E. Each mQA pair in the dataset may
contain multiple valid KG paths, which are linearized graphs that retain the structural information of
the KG. The paths are generated by extracting the relevant entities from the question and the gold
answer. These diverse KG paths that can lead to the same answer reflect the possible diversity of
the reasoning traces. Therefore, including linearized graphs improves the interpretability and the
explainability of the reasoning traces. The prompt to obtain the improved reasoning traces is shown

1All code, datasets, and models are publicly available under an MIT license: https://anonymous.
4open.science/r/fs1-3C18/.
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Table 1: Training Data Statistics. Statistics of reasoning traces of QwQ-32B and Deepseek-R1
on CWQ based on the Qwen2.5-32B tokenizer. The original reasoning traces (rt) are from simply
querying the question to the reasoning models, whereas fs1 indicates the statistics when queried with
the knowledge graphs. We calculate the performance of the models’ final answer via LLM-as-a-Judge.
We show that fs1 has higher performance in terms of accuracy compared to rt.

QwQ-32B R1-685B TOTAL

rt fs1 rt fs1 rt fs1

Exact Match 0.46 ↑0.63 0.56 ↑0.72 0.51 ↑0.67
Sem. Match (all-MiniLM-L6-v2) 0.50 ↑0.58 0.55 ↑0.63 0.52 ↑0.60
LLM-as-a-Judge (gpt-4o-mini) 0.44 ↑0.61 0.54 ↑0.70 0.49 ↑0.65

Samples with only correct answers
Number of Samples 1,533 1,972 1,901 1,914 3,434 3,886
Avg. Reasoning Length (subwords) 937 897 1,043 637 990 767
Avg. Answer Length (subwords) 40 93 64 116 52 104
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Q1: 392
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Q1: 386
Median: 553
Q3: 1039

QwQ-32B

rt fs1
Data Source

Q1: 431
Median: 635

Q3: 1274

Q1: 359Median: 496
Q3: 792

DeepSeek-R1

Figure 2: Distribution of Reasoning Traces. We show the distribution of the reasoning length
among the queried models. In the left plot, we show rt and in the right plot, we show fs1. We show
that particularly for fs1 and Deepseek-R1, the reasoning length is shorter in terms of subwords.

in Figure 3, by prompting QwQ-32B and Deepseek-R1 again. Full examples are in Figure 10 and
Figure 11 (Appendix C).

Data Statistics. In Table 1 and Figure 2, we compare the reasoning trace accuracy and statistics
of rt and fs1. We evaluate reasoning traces using three methods: (1) Exact Match, checking if the
\boxed{} answer exactly matches or is a sub-phrase of any gold answer; (2) Semantic Match,
accepting answers with a cosine similarity score >0.5; and (3) LLM-as-a-Judge, verifying entity
alignment using gpt-4o-mini-2024-07-18. Results show that fs1 achieves higher accuracy,
indicating that it contains more factual answers. Traces from rt are longer (up to 1K subwords), fs1
traces are typically shorter (around 800 subwords). The median length in subwords is similar for
QwQ-32B (552 for rt and 553 for fs1), while there is a difference for Deepseek-R1 (635 median
for rt and 496 for fs1). Spot-checking reveals that fs1 yields a more definitive answer.

3 METHODOLOGY

3.1 TRAINING AND INFERENCE

We fine-tune six Qwen2.5-Instruct models (0.5B to 32B) on rt and fs1, using only reasoning
traces with correct final answers. During inference, we evaluate the model on the original questions
to test its performance. Following Muennighoff et al. (2025), we train for 5 epochs with a sequence
length of 8,192, a batch size of 16, a learning rate of 1× 10−5 (cosine schedule, 5% warmup), and a
weight decay of 1× 10−4. The models are optimized with a standard supervised fine-tuning (SFT)
loss, which minimizes the negative log-likelihood (implemented as the cross-entropy function) of

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

fs1 Prompt Example

When did the sports team owned by Leslie
Alexander win the NBA championship?

While answering the question, make use of the
following linearised graph as an inspiration in
your reasoning, not as the only answer:

1994 NBA Finals, winner, Houston Rockets
Houston Rockets, owned by, Leslie Alexander
1995 NBA Finals, winner, Houston Rockets
Houston Rockets, owned by, Leslie Alexander.

Put your final answer within \boxed{}.
−−
(For illustration) Gold Answer: [”1994 and 1995”]

Figure 3: fs1 Prompt Example. We depict how
we prompt both Deepseek-R1 and QwQ-32B
to obtain better reasoning traces with KG paths.

LLM-as-a-Judge (Llama-3.3-70B)

gold answer: [”Joule per gram per kelvin”, ”Joule per
kilogram per kelvin”]

predicted answer: ”J/(kg $\cdot$ K)”

Is the gold answer entity or value contained in the
predicted answer? Respond only with 0 (no)
or 1 (yes).

# Llama−3.3−70B−Instruct outputs ”1”

Figure 4: Prompt for LLM-as-a-Judge. We
show the LLM-as-a-Judge prompt for evaluating
whether the predicted and gold answer refer to
the same real-world entity, where regular exact
string matching will not capture the alignment
between the gold and predicted answer in this
example (i.e., the measurement unit).

Table 2: Test Benchmark. Overview of the mQA test sets used in our evaluation.

Dataset License Test Size Description

CWQ (Talmor & Berant, 2018) apache-2.0 3.5K Multi-hop QA from WebQuestionsSP with compositional SPARQL
queries for Freebase paraphrased by crowd workers.

ExaQT (Jia et al., 2021) cc-by-4.0 3.2K Temporal-QA benchmark combining eight KB-QA datasets, focusing on
time-specific queries.

GrailQA (Gu et al., 2021) apache-2.0 6.8K Freebase QA dataset with annotated answers and logical forms
(SPARQL/S-expressions) across 86 domains.

SimpleQA (Wei et al., 2024a) MIT 4.3K Fact-seeking questions with verified answers, designed to measure and
challenge the factual accuracy of language models.

Mintaka (Sen et al., 2022) cc-by-4.0 4.0K Multilingual QA (9 languages), entity-linked pairs across diverse do-
mains (English test split).

WebQSP (Yih et al., 2016) apache-2.0 2.0K Enhanced WebQuestions with Freebase QA annotated with SPARQL
(∼82% coverage).

TOTAL 23.9K

target tokens in an autoregressive manner. Let y∗t be the correct token and pθ(y
∗
t | x, y<t) be the

model’s probability of predicting it. The model optimizes the function:

LSFT(θ) = − 1

T

T∑
t=1

log pθ (y
∗
t | x, y<t) . (1)

For inference, we use a temperature (T ) of 0.7 and top_p of 0.8 for original instruct models. Other-
wise, we use T = 0.6 and top_p of 0.95. Further details on hardware and costs are in Appendix B.

3.2 BENCHMARKS AND EVALUATION

We show the test datasets, licenses, size and a short description in Table 2. We
have four baselines, namely Qwen2.5-72B-Instruct (Qwen Team, 2024), QwQ-32B,
Deepseek-R1, and o3-mini (OpenAI, 2025). To evaluate our models, we select a
suite of six mQA benchmarks with a total of 23.9K questions. We have four setups for
benchmarking the models: (1) All models including baselines are evaluated zero-shot (i.e.,
only querying the question); (2) the models are queried using zero-shot chain-of-thought
prompting (Kojima et al., 2022; Wei et al., 2022), where we simply append the prompt
“Put your final answer within \boxed{}. Think step-by-step.”; (3) we
benchmark the models fine-tuned on rt; (4) we benchmark the models fine-tuned on fs1. In Figure 12
(Appendix D.1), we show an example of each dataset in the test benchmark.

Possible Data Leakage. In Figure 5, we show the overlap of the questions in the training set of
ComplexWebQuestions (CWQ train) versus all the other benchmarks used in our study (all

4
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Figure 5: Data Overlap. We show data overlap between the train set and benchmark. On the left,
one can observe the count of similar questions when the cosine similarity >0.90 (measured with
paraphrase-MiniLM-L6-v2; Reimers & Gurevych, 2019). In the middle, we measure exact
match counts. On the right, we show the average pairwise cosine similarity across the full test sets.

questions lower-cased). On the left, we count the times that the cosine similarity between questions
exceeds 0.90. We can see that there is the most overlap between CWQ train and CWQ test (109
questions), and the second most is between WebQSP and ExaQT (83 questions). In the middle, we
show that there is almost to none exact string match between the questions. On the right, we show
the average pairwise cosine similarity across the benchmarks is lower or equal to 0.15.

Evaluation Metric. Similar to previous studies, e.g., Ma et al. (2025), we report pass@k, which
reflects the probability that at least one out of k randomly selected completions (drawn from a
total of n completions per problem) is correct. As such, it serves as an upper-bound on practical
performance, which would require a subsequent selection mechanism. Formally, pass@k is given by:

Eproblems

[
1− (n−c

k )
(nk)

]
, where n is the number of generated completions per problem and c is the count

of correct completions (Chen et al., 2021). For our benchmarks, we evaluate k = {1, 2, 4, 8, 16}. In
practice, pass@32 is typically reported for formal theorem-proving tasks, while pass@1 (reducing to
standard top-1 accuracy) is standard for math and coding tasks as mentioned by Ma et al. (2025). In
this work for factual mQA, we report until k = 16.

LLM-as-a-Judge. To decide whether an answer is correct or not (1 or 0), our main evaluation
approach is using LLM-as-a-judge with Llama-3.3-70B-Instruct2 to determine whether a
predicted answer obtained from the \boxed{} output is referring to the same real-world entity as
the gold answer. An example of this is shown in Figure 4. When the model does not generate a
\boxed{} output, we take the last 10 subwords as predicted answer, which LLM-as-a-judge can
infer what the predicted real-world entity is when there is not exact string matching. This same
approach is used in Table 1. Compared to exact string matching and semantic similarity evaluation
methods, LLM-as-a-Judge rates the quality of output similarly compared to the other methods.

4 RESULTS AND DISCUSSION

4.1 RESULTS WITH TEST-TIME SCALING

Parallel scaling can achieve lower latency by enabling multiple (identical) models to run simultane-
ously locally (via e.g., multiple GPUs or batching techniques) or via API based methods to generate
multiple answers. Formally, parallel sampling entails an aggregation technique that combines N inde-
pendent solutions into a single final prediction, commonly known as a best-of-N approach (Chollet,

2We compare both gpt-4o-mini-2024-07-18 and Llama-3.3-70B-Instruct on a large sub-
sample of our outputs and saw there there is almost no difference in predictions. Additionally, Llama-3.3-70B
is rated higher in LM Arena than gpt-4o-mini (at time of writing 79th vs. 83rd respectively).
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Figure 6: Upper-bound Test-Time Scaling for Factual Reasoning. We show with Qwen2.5-32B
that parallel scaling is beneficial for complex mQA, measured by pass@k, especially when fine-tuned
on fs1, instead of conducting single-pass inference.

2019; Irvine et al., 2023; Brown et al., 2024a; Li et al., 2022). Formally, given a set of N predictions
P = {p1, . . . , pN}, the best-of-N method selects a prediction p ∈ P as the final output.

CWQ test QwQ-32B R1-685B

pass@1 0.4549 0.4545
pass@2 0.5490 0.5491
pass@4 0.6223 0.6195
pass@8 0.6779 0.6741
pass@16 0.7195 0.7195

Table 3: Ablation Teacher Model. We show
pass@k performance of Qwen2.5-32B trained on
separate subsets of fs1 separated by teacher model
applied to CWQ. We demonstrate that there is al-
most no difference in performance. Indicating that
fs1 is the source of improvement.

In this work, we present results using pass@k
(see Section 3.2), extending the number of
sampled k (until k = 16). In Figure 6, we
show parallel scaling results by performing 16
inference runs with Qwen2.5-32B-Instruct,
CoT, rt, fs1 on each test dataset.3 As k in-
creases, pass@k (indicating whether at least
one generation is correct) rises steadily across
all benchmarks. Parallel sampling boosts the
chance of producing a correct answer, espe-
cially when fine-tuned on fs1. For example,
on CWQ, we see a performance increase of
16 absolute points at k = 16 and on SimpleQA
around 6 absolute points at the same k com-
pared to their original instruction-tuned coun-
terpart.

4.2 ARE THE GAINS COMING FROM A SUPERIOR TEACHER MODEL OR FS1?

It is not uncommon to assume that QwQ-32B is a weaker model than Deepseek-R1 (685B).
Therefore, it might be unclear how much the final performance gain comes from the superior
reasoning of the teacher model or the factual grounding provided by the KG paths. To disentangle
the effect of teacher model capabilities and fs1, we train Qwen2.5-32B on two separate fs1 subsets.
We take the subset of QwQ-32B and Deepseek-R1 reasoning traces with the same questions
(from Table 1) and fine-tune on these subsets. In Table 3, we show that there is almost no difference

3For parallel sampling, we limit ourselves to Qwen2.5-32B as running 16 inferences for 8 models for all 4
settings would require 12.2M model inferences for the test benchmarks, which is computationally prohibitive.
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Figure 7: Relative Improvements across Different Axes. We show the relative performance
improvement (%) at pass@16 of different Qwen-32B (i.e., CoT, rt and fs1) against the original
instruct model. In (a), we show the performance of the models by the number of hops required to
answer the question. In (b), we show the performance of the models by answer type. In (c), we show
the performance by domain of the question. Absolute numbers are in Figure 13 (Appendix F).

in performance when using a different teacher model, when evaluated on CWQ, showing that fs1
works as a method by using KG paths to steer the reasoning behaviour of LLMs.

4.3 WHAT TYPE OF SAMPLES DO MODELS SEEM TO FAIL ON?

In Figure 7, we investigate what kind of questions the model (Qwen2.5-32B) seems to fail on.
We take metadata information from SimpleQA (Wei et al., 2024a), which indicates the question
difficulty in number of hops required to answer the question (Figure 7a), type of answer (Figure 7b)
and the domain of the question (Figure 7c). For question difficulty, we source the number of hops for
each question in SimpleQA from Lavrinovics et al. (2025). We count the number of relations (P)
from Wikidata, which would indicate the number of hops required to go from entity A to B. When a
question does not contain any relations, we assume it takes more than 3 hops to answer the question.

In Figure 7a, we observe that fs1 has lower relative improvements on easier questions (e.g., 1 or 2 hops
required), but outperforms the other models when the question gets more complex (3 or more hops
required). This indicates that inducing KG paths helps answering complex questions. In Figure 7b,
we show that fs1 has the most relative improvement on numerical answers, such as numbers, dates
and also miscellaneous answer types. Last, in Figure 7c, fs1 performs best on questions related to
video games, geography, politics, music, and miscellaneous questions. Additionally, rt performs best
on art and history-related questions. Last, CoT performs best on questions related to sports.

4.4 SINGLE PASS RESULTS ACROSS SCALE

In Table 4, we show results in terms of accuracy via LLM-as-a-Judge at pass@1 (i.e., one inference
run per question) on all test datasets. For the baselines, we observe that o3-mini is the dominant
model, achieving the highest score on five out of six datasets, such as its 0.774 accuracy on Mintaka

7
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and 0.680 on WebQSP. The only exception is SimpleQA, where R1-70B performs best with a score
of 0.188. These are followed by Qwen2.5-72B-Instruct and QwQ-32B in overall performance.

Observing the Qwen2.5 results, the benefits of fine-tuning on rt and fs1 are most pronounced at
the sub-billion parameter scale. For instance, fine-tuning the 0.5B model on fs1 yields substantial
relative gains across all tasks, peaking at a +74.6% on WebQSP. However, as model size increases,
the performance differences become more nuanced. For the 1.5B model, the same fs1 fine-tuning
leads to performance degradation on four out of six datasets, such as ExaQT (-4.7%) and WebQSP
(-1.1%). While larger models like the 32B still benefit from fine-tuning (e.g., rt and fs1 are often the
best performers in their group), the relative gains are smaller than those seen at the 0.5B scale.

Our results also show that fine-tuning improvements do not uniformly generalize across different
model families at the sub-billion parameter scale. A comparison between the fine-tuned Qwen2.5
and SmolLM2 models reveals a significant performance divergence. Specifically, fine-tuning on fs1
provided consistent enhancements for the Qwen2.5-0.5B model, improving its CWQ score from
0.135 to 0.209. In contrast, the same fine-tuning on SmolLM2-360M yielded mixed results; while it
improved performance on most tasks, it caused a notable degradation of -15.9% on GrailQA.

This variance diminishes with scale, as models at the 1.5B/1.7B parameter scale exhibit more
convergent behavior. For example, fine-tuning with rt on GrailQA provides a nearly identical small
boost to both Qwen2.5-1.5B (+1.9%) and SmolLM2-1.7B (+1.8%). Overall, We hypothesize this
scale-dependent effect may occur because larger models (e.g., 32B) possess stronger parametric
knowledge, making them less reliant on the explicit guidance from KG paths.

5 RELATED WORK

Different methods that involve long chain-of-thought processes (Kojima et al., 2022; Wei et al.,
2022) involving reflection, backtracking, thinking (e.g., DeepSeek-AI, 2025; Muennighoff et al.,
2025), self-consistency (e.g., Wang et al., 2023), and additional computation at inference time, such
as test-time scaling (Wu et al., 2024; Muennighoff et al., 2025; Zhang et al., 2025), have shown
promising improvements in LLM performance on complex reasoning tasks. Our work intersects with
efforts in factuality, knowledge graph grounding, and test-time scaling.

Graph-enhanced In-context Learning. Enhancing the factual consistency of LLMs using KGs
has been explored in different directions, including semantic parsing methods that convert natural
language questions into formal KG queries (Lan & Jiang, 2020; Ye et al., 2022). Retrieval-augmented
methods (KG-RAG) (Li et al., 2023; Jiang et al., 2023; Sanmartin, 2024; Sun et al., 2024; He
et al., 2024) aim to reduce LLMs’ reliance on latent knowledge by incorporating explicit, structured
information from a KG; reasoning on graphs (RoG) models (Luo et al., 2024) generate relation paths
grounded by KGs as faithful paths for the model to follow. Sun et al. (2024) uses LLM as an agent
that iteratively performs a beam search on a knowledge graph, exploring, pruning, and reasoning
over multiple paths until it determines enough information has been gathered to answer the question.
G-Retriever (He et al., 2024) is a RAG framework that answers questions about textual graphs by first
retrieving a relevant, connected subgraph using a tree optimization formulation, and then generating
a textual answer based on that subgraph. Mavromatis & Karypis (2025) might be the closest to our
work, they use a graph neural net to process a dense subgraph and identify relevant answer candidate
nodes, then retrieves the shortest paths connecting these candidates to the question entities, and finally
provides these paths as verbalized context to an LLM for reasoning.

The earlier mentioned methods primarily focus on inference-time retrieval mechanisms, like iterative
beam search (Sun et al., 2024) or subgraph optimization (He et al., 2024; Mavromatis & Karypis,
2025). Other works like Tan et al. (2025) also use KG paths to guide reasoning. Our work addresses
a different aspect: We focus on improving the model’s intrinsic reasoning skill. Instead of inference-
time retrieval, our method uses KG paths as a one-time, offline process to create higher-quality
training data. This data teaches the model to ‘think’ more effectively on its own.

Long Form Factuality. Factuality in NLP involves multiple challenges (Augenstein et al., 2024),
and while prior efforts have established reasoning datasets like SAFE (Wei et al., 2024b) and
SimpleQA (Wei et al., 2024a), they often lack explicit grounding in structured knowledge subgraphs.
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Table 4: Single Pass (pass@1) Results on mQA Benchmarks. We show accuracy and relative
performance gains on our benchmarks for several baselines, Qwen2.5, and SmolLM2 models. For
each size, we show the original instruction-tuned model followed by versions fine-tuned with chain-
of-thought, rt, and fs1. Parentheses indicate the relative improvement over the instruction-tuned
counterpart. The benefits of fine-tuning are most pronounced for smaller models.

MODEL CWQ ExaQT GrailQA SimpleQA Mintaka WebQSP

Large Language Model Baselines

Qwen2.5-72B 0.481 0.440 0.361 0.117 0.736 0.653
QwQ-32B 0.479 0.390 0.358 0.097 0.708 0.612
R1-70B 0.501 0.476 0.340 0.188 0.755 0.549
o3-mini 0.558 0.497 0.438 0.138 0.774 0.680

Small Language Models (0.36B-1.7B)

SmolLM2-360M 0.148 0.088 0.164 0.024 0.175 0.235
+ cot 0.151 (+2.0%) 0.101 (+14.8%) 0.169 (+3.0%) 0.025 (+4.2%) 0.188 (+7.4%) 0.230 (-2.1%)
+ rt 0.192 (+29.7%) 0.111 (+26.1%) 0.156 (-4.9%) 0.029 (+20.8%) 0.202 (+15.4%) 0.293 (+24.7%)
+ fs1 0.179 (+20.9%) 0.093 (+5.7%) 0.138 (-15.9%) 0.027 (+12.5%) 0.197 (+12.6%) 0.264 (+12.3%)

Qwen2.5-0.5B 0.135 0.058 0.127 0.023 0.131 0.173
+ cot 0.161 (+19.3%) 0.104 (+79.3%) 0.141 (+11.0%) 0.031 (+34.8%) 0.214 (+63.4%) 0.234 (+35.3%)
+ rt 0.190 (+40.7%) 0.089 (+53.4%) 0.155 (+22.0%) 0.022 (-4.3%) 0.178 (+35.9%) 0.286 (+65.3%)
+ fs1 0.209 (+54.8%) 0.101 (+74.1%) 0.166 (+30.7%) 0.035 (+52.2%) 0.202 (+54.2%) 0.302 (+74.6%)

Qwen2.5-1.5B 0.234 0.170 0.208 0.031 0.316 0.360
+ cot 0.252 (+7.7%) 0.179 (+5.3%) 0.216 (+3.8%) 0.041 (+32.3%) 0.318 (+0.6%) 0.391 (+8.6%)
+ rt 0.255 (+9.0%) 0.173 (+1.8%) 0.212 (+1.9%) 0.038 (+22.6%) 0.294 (-7.0%) 0.360 (+0.0%)
+ fs1 0.263 (+12.4%) 0.162 (-4.7%) 0.204 (-1.9%) 0.035 (+12.9%) 0.301 (-4.7%) 0.356 (-1.1%)

SmolLM2-1.7B 0.248 0.176 0.219 0.032 0.293 0.408
+ cot 0.285 (+14.9%) 0.177 (+0.6%) 0.209 (-4.6%) 0.032 (+0.0%) 0.295 (+0.7%) 0.409 (+0.2%)
+ rt 0.306 (+23.4%) 0.184 (+4.5%) 0.223 (+1.8%) 0.038 (+18.7%) 0.366 (+24.9%) 0.454 (+11.3%)
+ fs1 0.305 (+23.0%) 0.179 (+1.7%) 0.218 (-0.5%) 0.036 (+12.5%) 0.341 (+16.4%) 0.426 (+4.4%)

Large Language Models (3B-32B)

Qwen2.5-3B 0.317 0.214 0.252 0.044 0.396 0.466
+ cot 0.302 (-4.7%) 0.222 (+3.7%) 0.248 (-1.6%) 0.048 (+9.1%) 0.431 (+8.8%) 0.477 (+2.4%)
+ rt 0.363 (+14.5%) 0.235 (+9.8%) 0.279 (+10.7%) 0.053 (+20.5%) 0.495 (+25.0%) 0.483 (+3.6%)
+ fs1 0.330 (+4.1%) 0.205 (-4.2%) 0.253 (+0.4%) 0.045 (+2.3%) 0.444 (+12.1%) 0.406 (-12.9%)

Qwen2.5-7B 0.376 0.281 0.299 0.070 0.548 0.580
+ cot 0.383 (+1.9%) 0.292 (+3.9%) 0.295 (-1.3%) 0.062 (-11.4%) 0.580 (+5.8%) 0.565 (-2.6%)
+ rt 0.401 (+6.6%) 0.296 (+5.3%) 0.300 (+0.3%) 0.067 (-4.3%) 0.576 (+5.1%) 0.517 (-10.9%)
+ fs1 0.408 (+8.5%) 0.272 (-3.2%) 0.303 (+1.3%) 0.053 (-24.3%) 0.551 (+0.5%) 0.492 (-15.2%)

Qwen2.5-14B 0.392 0.336 0.318 0.068 0.624 0.599
+ cot 0.422 (+7.7%) 0.356 (+6.0%) 0.322 (+1.3%) 0.080 (+17.6%) 0.664 (+6.4%) 0.592 (-1.2%)
+ rt 0.451 (+15.1%) 0.352 (+4.8%) 0.331 (+4.1%) 0.082 (+20.6%) 0.678 (+8.7%) 0.562 (-6.2%)
+ fs1 0.454 (+15.8%) 0.339 (+0.9%) 0.328 (+3.1%) 0.079 (+16.2%) 0.654 (+4.8%) 0.558 (-6.8%)

Qwen2.5-32B 0.428 0.362 0.334 0.087 0.674 0.621
+ cot 0.435 (+1.6%) 0.366 (+1.1%) 0.332 (-0.6%) 0.099 (+13.8%) 0.696 (+3.3%) 0.614 (-1.1%)
+ rt 0.471 (+10.0%) 0.366 (+1.1%) 0.342 (+2.4%) 0.094 (+8.0%) 0.680 (+0.9%) 0.563 (-9.3%)
+ fs1 0.477 (+11.4%) 0.361 (-0.3%) 0.344 (+3.0%) 0.078 (-10.3%) 0.682 (+1.2%) 0.576 (-7.2%)

In contrast, Tian et al. (2024) directly address factual accuracy by fine-tuning models on automatically
generated preference rankings that prioritize factual consistency.

Test-Time Scaling as a Performance Upper-Bound. Our evaluation using pass@k is situated
within the broader context of test-time scaling, which seeks to improve performance by dedicating
more compute at inference. This field encompasses parallel scaling (e.g., Best-of-N), where multiple
candidate solutions are generated to increase the probability of finding a correct one (Chollet, 2019;
Irvine et al., 2023; Brown et al., 2024a; Li et al., 2022), and sequential scaling, where a single solution
is iteratively refined through techniques like chain-of-thought prompting and revision (Wei et al.,
2022; Nye et al., 2021; Madaan et al., 2023; Lee et al., 2025; Hou et al., 2025; Huang et al., 2023; Min
et al., 2024; Muennighoff et al., 2025; Wang et al., 2024b; Li et al., 2025; Jurayj et al., 2025). While
practical applications of parallel scaling depend on a selection mechanism (e.g., majority voting or
reward-model-based scoring) to choose the final answer (Wang et al., 2023; Christiano et al., 2017;
Lightman et al., 2024; Wang et al., 2024a; Wu et al., 2024; Beeching et al., 2025; Pan et al., 2024;
Hassid et al., 2024; Stroebl et al., 2024), the performance of any such method is fundamentally limited
by the quality of the underlying generations, often facing diminishing returns (Brown et al., 2024b;
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Snell et al., 2024; Wu et al., 2024; Levi, 2024). Our work, therefore, focuses on improving the quality
of each individual reasoning trace through fine-tuning, thereby directly boosting the upper-bound
potential that is measured by pass@k.

Domain-specific Test-Time Scaling. Test-time scaling also spans specific domains like coding
and medicine. Z1-7B optimizes coding tasks through constrained reasoning windows, reducing
overthinking while maintaining accuracy (Yu et al., 2025). In medicine, extended reasoning boosts
smaller models’ clinical QA performance significantly (Huang et al., 2025), complemented by
structured datasets like MedReason, which enhance factual reasoning via knowledge-graph-guided
paths (Wu et al., 2025), similar to our work.

6 CONCLUSION

In this work, we have investigated whether grounding reasoning traces on knowledge graph paths and
training models on them yield tangible gains in factual accuracy on complex open-domain QA tasks.
After distilling over 3K original and knowledge-graph-enhanced reasoning traces from models such
as QwQ-32B and Deepseek-R1, we fine-tuned 8 LLMs on rt and fs1 and evaluated them across 6
diverse benchmarks. In short, with parallel sampling, we consistently improve 6-14 absolute points
in accuracy over their instruction-tuned counterpart. Particularly, using SimpleQA, we highlight that
CoT and rt perform better on simpler questions (1 or 2 hops required), whereas our fs1-tuned model
performs better on more complex questions, requiring 3 hops or more. Lastly, we examined the
performance of eight fs1-tuned models across different parameter scales, finding that smaller models
(below the 1.7B parameter range) show the largest increase in performance, while larger models
see less profound improvements in a pass@1 setting. By releasing all code, models, and reasoning
traces, we provide a rich resource for future work on process-level verification and the development
of factuality-aware reward models. In turn, we hope this work facilitates more factual large language
models, making them more useful for real-world usage.

Limitations. Our approach assumes that conditioning on KG paths improves the accuracy of
reasoning traces, though it does not guarantee perfect intermediate processes. Additionally, accurately
evaluating entity answers poses challenges; we attempted to mitigate this limitation using LLM-based
judgments, but these methods have their own inherent limitations. For evaluation, we note that
pass@k is an upper-bound performance measure. A practical implementation would require an
additional selection mechanism, such as majority voting or a verifier model, to choose the final
answer. Last, some of the the test datasets used might be on the older side and English only, where we
do not have control on whether the data has been included in any type of LLM pre- or post-training.

Future Work. Several future research directions emerge from both the KG and test-time scaling
perspectives. One promising avenue is leveraging these reasoning traces to develop process reward
models, which are designed for complex reasoning and decision-making tasks where evaluating
intermediate (factual reasoning) steps is critical to achieving the desired outcomes. This in fact is a
crucial step towards more factual LLMs. This can be done together with KGs, one possible example
could be (Amayuelas et al., 2025), where they attempt to ground every generation with a knowledge
graph entry. This can possibly be done during the generation of long reasoning.

ETHICS STATEMENT

The primary ethical motivation for this research is to enhance the factuality and reliability of LLMs.
By addressing the probability of these models to generate incorrect information, our work aims
to contribute positively to the development of more trustworthy AI systems. We do not foresee
any direct negative ethical implications arising from this research. Instead, our goal is to provide a
methodology that mitigates existing risks associated with misinformation, thereby promoting a safer
and more beneficial application of language technologies.
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REPRODUCIBILITY STATEMENT

We are committed to full reproducibility. All associated artifacts, such as source code, datasets, and
pretrained model weights, will be made publicly available via GitHub and the Huggingface Hub
upon publication. Further details regarding the computational environment, including hardware
specifications, software dependencies, and hyperparameters used for fine-tuning and inference, are
documented in Section 3 and Appendix B. We acknowledge that minor variations in numerical results
may arise from discrepancies in hardware or software versions; however, we have provided sufficient
detail to allow for a faithful replication of our experimental setup.
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A LARGE LANGUAGE MODEL USE

We made use of LLMs to polish our writing and plotting our figures.

B TRAINING AND INFERENCE

For running Deepseek-R1, o3-mini, and some LLM-as-a-Judge experiments with
gpt-4o-mini, we use API-based solutions via OpenAI4 or TogetherAI5. The costs of running
inference on all data took around 250 USD. For fine-tuning and running inference of the local
models, we make use of a large HPC cluster with hardware configurations comprising multiple nodes
(depending on model size; e.g., 32B models require 4 nodes for training and 1 node for inference),
each with node contains eight AMD MI250x GPU modules alongside a single 64-core AMD EPYC
“Trento” CPU. The library we use for inference is vllm (Kwon et al., 2023). For all the experiments
it resulted in around 6,500 GPU hours spent.

B.1 ENVIRONMENTAL IMPACT

We acknowledge that conducting a large-scale analysis using LLMs comes with an environmental
impact. Experiments were conducted using private infrastructure in [Redacted] running on green
energy. A cumulative of 6,500 GPU hours of computation was performed on AMD MI250x GPU
modules, which has a TDP of 500 Watts. The experiments were ran from February to September
2025. During this time, the average carbon efficiency in [Redacted] was 0.085 kg/kWh.6 This
means we released about 276 kg of CO2 equivalent. Estimations were conducted using the Machine
Learning Impact calculator7 presented in (Lacoste et al., 2019).

C EXAMPLE REASONING TRACES

We show four full examples in Figure 8 and Figure 9 for rt and Figure 10 and Figure 11 for fs1. For
visualization purposes, we split up the specific parts in special tags: <question>Q</question>,
<think>T</think>, <gold>G</gold> to indicate what it refers to.

D TEST BENCHMARK

D.1 EXAMPLES TEST BENCHMARK

In Figure 12, we show for each dataset in the test benchmark an example of how the question and
answers look like.

4https://platform.openai.com/
5https://api.together.ai/
6According to https://app.electricitymaps.com/map.
7Find the tool here: https://mlco2.github.io/impact.
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Deepseek-R1 Example (rt)

<question>
In Family Guy, Seth Macfarlane plays the parent of Chris Griffin. What is his character’s name?
</question>

<think>
Okay, so I need to figure out the name of the character Seth MacFarlane voices who is the parent of Chris Griffin in

Family Guy. Let me start by recalling what I know about the show.\n\nFirst, Family Guy is an animated sitcom
created by Seth MacFarlane. He’s known for voicing several characters in the show. The main family is the
Griffins. The children in the family are Chris, Meg, and Stewie, and there’s also the talking dog Brian. The
parents would be the father and mother of these kids.\n\nI remember that the father is Peter Griffin, who is the
bumbling, overweight patriarch of the family. Seth MacFarlane does voice Peter Griffin, along with other
characters like Stewie and Brian. The mother is Lois Griffin, but I think she’s voiced by Alex Borstein, not Seth
MacFarlane. So, since the question is about the parent of Chris Griffin that Seth MacFarlane plays, it must be
Peter Griffin.\n\nWait, let me double−check. Chris is the son, so his parents are Peter and Lois. Since Seth
MacFarlane voices Peter, that’s the answer. But just to be thorough, are there any other parents in the show that
Seth voices? For example, maybe a grandparent? But Chris’s grandparents would be Peter’s parents or Lois’s
parents. I think Peter’s father is named Francis Griffin, but I don’t recall if Seth voices him. Lois’s parents are
Carter and Babs Pewterschmidt, and they are voiced by other actors. So no, the main parent characters voiced
by Seth would be Peter. \n\nAlso, Stewie is the baby, and Brian is the dog, both voiced by Seth, but they aren’t
parents. So yes, the answer should be Peter Griffin.

</think>

The character voiced by Seth MacFarlane who is the parent of Chris Griffin in *Family Guy* is \\boxed{Peter Griffin}.

<gold>
[”Peter Griffin”, ”Peter Lowenbrou Griffin”]
</gold>

Figure 8: Example Instance (rt). A successful reasoning trace for a simple multi-hop question by
Deepseek-R1.
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QwQ-32B Example (rt)

<question>
What Eastern Europe main religion worshipers also attend St. Mary’s Cathedral, in Batticaloa, Sri Lanka?
</question>

<think>
Okay, so the user is asking about the main religion worshippers in Eastern Europe who attend St. Mary’s Cathedral in

Batticaloa, Sri Lanka. Hmm, first I need to break this down. Let me start by recalling that Batticaloa is a city in
Sri Lanka, which is in South Asia. The cathedral mentioned is a Christian church, specifically a Catholic
cathedral since it’s named St. Mary’s.\n\nNow, the question is about Eastern Europeans who worship there.
Wait, Eastern Europe’s main religions are predominantly Christian, like Eastern Orthodox or Roman Catholic in
some countries. But Sri Lanka’s main religions are Buddhism, Hinduism, Islam, and then there’s a Christian
minority. So why would Eastern Europeans be attending a cathedral there? Maybe there’s a community of
Eastern Europeans living or working in Batticaloa? Or perhaps it’s a question about the cathedral’s affiliation?\n
\nAlternatively, maybe there’s confusion in the question. St. Mary’s Cathedral in Batticaloa is likely part of the
Roman Catholic Church. Eastern Europeans who are Catholic, like from countries such as Poland, Lithuania, or
parts of Croatia, might attend. But Eastern Orthodox Christians would typically go to their own churches. Since
the cathedral is Catholic, the main worshippers there would be local Catholics, but the question specifies
Eastern Europeans. \n\nWait, perhaps the user is thinking of the term \”Eastern Europe\” in a different context.
Maybe they’re referring to the Eastern Catholic Churches, which are in communion with Rome but have Eastern
rites. For example, Ukrainian Catholics or Ruthenian Catholics. But would they be in Sri Lanka? Maybe there’s
a small expat community or missionary group. Alternatively, maybe the question is mixing up terms, and the
answer is Roman Catholic, as that’s the cathedral’s denomination, and Eastern Europeans of that faith would
attend. \n\nAlternatively, could there be a confusion with Batticaloa’s demographics? The area has a significant
Tamil population, but Tamils are mostly Hindu or Christian. The cathedral serves the local Catholic community,
which includes Sri Lankan Tamils and others. But the question specifically asks about Eastern Europeans.
Maybe the answer is Roman Catholics from Eastern Europe, but I need to confirm if there’s a specific group. \n
\nAlternatively, perhaps the question is a trick, and the main religion in Eastern Europe (like Orthodox) isn’t the
one at the cathedral, so the answer is Roman Catholics. Since the cathedral is Catholic, Eastern European
Catholics would be the ones attending. So the main religion worshippers there from Eastern Europe would be
Roman Catholics. \n\nI think that’s the most logical answer here. The cathedral is Catholic, so Eastern
Europeans who are Roman Catholic would attend. The main religions in Eastern Europe include Orthodox and
Catholic, so the Catholic ones from there would be the answer.

</think>

\\boxed{Roman Catholics}.

<gold>
[”Catholicism”, ”Roman Catholic convert”, ”Roman Catholic”]
</gold>

Figure 9: Example Instance (rt). A successful reasoning trace for a simple multi-hop question by
QwQ-32B.
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QwQ-32B Example (fs1)

<question>
What geographic region is the country that used the Ottoman Lira used?

While answering the question, make use of the following linearised graph as an inspiration in your reasoning, not as
the only answer:

Konstantin Mikhailovich Bazili, place of birth, Istanbul
Istanbul, work location, Near East.

Put your final answer within \boxed{}.
</question>

<think>
Okay, let’s tackle this question step by step. The user is asking about the geographic region of the country that used

the Ottoman Lira. First, I need to recall what the Ottoman Lira was. From what I remember, the lira was the
currency used in the Ottoman Empire. So the country in question here is the Ottoman Empire. But since the
Ottoman Empire is a historical entity and not a current country, the region would refer to where the empire was
located. Now, the Ottoman Empire was a large and extensive empire that existed from the 14th century until
after World War I. Its heartland was in Anatolia (modern−day Turkey) and Southeast Europe. The capital was
Constantinople, which is now known as Istanbul, Turkey. The empire also controlled much of the Balkans, parts
of North Africa, and the Middle East.

...
(cutoff)
...

Wait, but the question is about the geographic region of the country that used the Ottoman Lira. The country is the
Ottoman Empire. The geographic region that it is in is the Near East. So combining the clues provided (Istanbul
being part of the Near East), the answer would be the Near East. Alternatively, if they want the specific country
now, like Turkey, but since the Ottoman Empire was not Turkey, but Turkey is the successor state. The question
is a bit ambiguous. However, given the clues pointing towards Near East as the work location linked to Istanbul, I
think the intended answer is the Near East region. So the final answer would be Near East.

</think>

The Ottoman Lira was the currency of the Ottoman Empire, which was centered in the geographic region known
historically as the Near East. This region included the empire’s heartland in Anatolia (modern−day Turkey),
Istanbul (then Constantinople), parts of Southeast Europe, and the Middle East. The provided clues about
Istanbul, the former capital, and its association with the Near East further reinforce this connection.

\\boxed{Near East}.

<gold>
[”Near East”]
</gold>

Figure 10: Example Instance (fs1). A successful reasoning trace for a question by QwQ-32B.
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Deepseek-R1 Example (fs1)

<question>
What part of the world map is the Government of the Republic of Seychelles located in?

While answering the question, make use of the following linearised graph as an inspiration in your reasoning, not as
the only answer:

Seychellois Creole, country, Seychelles
Seychelles, continent, Africa
Seychellois Creole, indigenous to, Seychelles
Seychelles, continent, Africa.

Put your final answer within \boxed{}.
</question>

<think>
Okay, so I need to figure out where the Government of the Republic of Seychelles is located on the world map. Let me

start by recalling what I know about Seychelles. I think Seychelles is a country made up of islands. But where
exactly? The user provided a linearised graph that mentions Seychelles is in the continent of Africa. Hmm, that’s
interesting because when I think of Africa, I usually picture the mainland, but there are also island countries

associated with Africa. Let me verify that. Seychelles is an archipelago in the Indian Ocean, right? So it’s a
group of islands northeast of Madagascar. Since Madagascar itself is off the southeastern coast of Africa,
Seychelles being northeast of there would place it in the Indian Ocean, near the African continent. The graph
also mentions Seychellois Creole being indigenous to Seychelles, which makes sense as the local language. So,
putting this together, the Government of the Republic of Seychelles is located in the country of Seychelles,

which is part of the African continent. Even though it’s an island nation, geographically and politically, it’s
considered part of Africa. Therefore, the answer should be that the government is located in Seychelles, which is
in Africa.

</think>

The Government of the Republic of Seychelles is located in the country of Seychelles. According to the provided graph,
Seychelles is part of the continent of Africa. Although geographically situated in the Indian Ocean northeast of

Madagascar, it is politically and regionally classified as part of Africa.

\\boxed{Africa}

<gold>
[ ”Africa”, ”Afrique” ]
</gold>

Figure 11: Example Instance (fs1). A successful reasoning trace for a question by Deepseek-R1.
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Benchmark Test Examples

<cwq>
Who was the president in 2012 of the country where Unidad de Valor Constante is the chosen currency?
Answers: [ ”Rafael Correa”, ”Rafael Correa Delgado”, ”Rafael Vicente Correa Delgado” ]
</cwq>

<exaqt>
what nba team won the back to back championship in 1989 and 1990?
Answer: [ ”Detroit Pistons” ]
</exaqt>

<grailqa>
lonnie wheeler contributed to a book edition published by what publisher?
Answer: [ ”Simon & Schuster” ]
</grailqa>

<simpleqa>
Who received the IEEE Frank Rosenblatt Award in 2010?
Answer: [ ”Michio Sugeno” ]
</simpleqa>

<mintaka>
How many books are in Goosebumps?
Answer: [ ”235” ]
</mintaka>

<webqsp>
where did diego velazquez die?
Answer: [ ”Madrid” ]
</webqsp>

Figure 12: Text Examples. For each dataset in the benchmark, we show an example.
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E SPARQL QUERIES

The query format to retrieve the Wikidata entities for Freebase entities is given by

SELECT ?wikientity
WHERE
{?wikientity wdt:P646 $FREEBASE_ENTITY}

The general structure of the SPARQL queries for 2-hop paths between the source and target entities
are given by

SELECT ?p1 ?p1Label ?o1 ?o1Label ?p2 ?p2Label
WHERE
{wd:$SOURCE_ENTITY ?p1 ?o1.
?o1 ?p2 wd:$TARGET_ENTITY}
SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],mul,en". }

SELECT ?o1 ?o1Label ?p1 ?p1Label ?p2 ?p2Label
WHERE
{ ?p1 ?o1.
?o1 ?p2 wd:$TARGET_ENTITY}
SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],mul,en". }

F ABSOLUTE PERFORMANCE RESULTS FOR ANALYSIS

We show the absolute performance numbers from Figure 7 at pass@16 in Figure 13.
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(a) Performance by number of hops required
to answer the question measured in pass@16.
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(b) Performance by answer type (i.e., what type of entity
the answer is) in pass@16.
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(c) Performance measured per domain in pass@16.

Figure 13: Absolute Performance across Different Axes. We show the absolute performance at
pass@16 of different versions of Qwen-32B (i.e., instruct, CoT, rt and fs1). In (a), we show the
performance of the models by answer type. In (b), we show the performance of the models by the
number of hops required to answer the question. In (c), we show the performance by domain of the
question.
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