

000 001 PATHWAY TO $O(\sqrt{d})$ COMPLEXITY BOUND UNDER 002 WASSERSTEIN METRIC OF FLOW-BASED MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 We provide attainable analytical tools to estimate the error of flow-based gener-
012 ative models under the Wasserstein metric and to establish the optimal sampling
013 iteration complexity bound with respect to dimension as $O(\sqrt{d})$. We show this
014 error can be explicitly controlled by two parts: the Lipschitzness of the push-
015 forward maps of the backward flow which scales independently of the dimension;
016 and a local discretization error scales $O(\sqrt{d})$ in terms of dimension. The former
017 one is related to the existence of Lipschitz changes of variables induced by the
018 (heat) flow. The latter one consists of the regularity of the score function in both
019 spatial and temporal directions.

020 These assumptions are valid in the flow-based generative model associated with
021 the Föllmer process and 1-rectified flow under the Gaussian tail assumption. As
022 a consequence, we show that the sampling iteration complexity grows linearly
023 with the square root of the trace of the covariance operator, which is related to the
024 invariant distribution of the forward process.

025 026 1 INTRODUCTION 027

028 The landscape of deep learning has been fundamentally reshaped by the emergence of powerful
029 generative models, including Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
030 Arjovsky et al., 2017), Variational Auto-encoders (VAEs) (Kingma & Welling, 2014; Kingma et al.,
031 2019), and Normalizing Flows (Papamakarios et al., 2021; Wang et al., 2023; Wan & Wei, 2022),
032 which have achieved remarkable success in a wide range of applications across modalities like im-
033 ages, audio, and text. These models are capable of learning complex data distributions, allowing
034 them to generate high-quality samples (Achiam et al., 2023; Song et al., 2021).

035 Diffusion models (DM) are the state-of-the-art generative models, which can be analyzed via the
036 SDE framework (Song et al., 2021). With the same forward and backward marginal as DM, flow-
037 based models (Chen et al., 2023b;c) are generative models with deterministic flow given initial
038 **distribution**, offering a strong basis for statistical inference. This unique feature makes them highly
039 effective in applications such as image and audio synthesis, as well as density estimation (Cheng
040 et al., 2024).

041 Early works on DMs and flow-based models provide reverse KL guarantees (Chen et al., 2023a;
042 Benton et al., 2024; Conforti et al., 2025a; Li et al., 2024). **However**, for structured data, where
043 the target typically lies on a compact sub-manifold (Tenenbaum et al., 2000; Bengio et al., 2017),
044 the KL divergence between the backward process and the target is ill-defined. Therefore, one may
045 turn to the analysis of flow-based models under the Wasserstein metric, and in this paper, we will
046 consider the W_2 distance in Euclidean space, which is well-defined among distributions with finite
047 second-order moments. One of the central difficulties in the analysis under the W_2 distance is
048 the accumulation of local error in the Lyapunov-type estimate. This is in sharp contrast with KL-
049 based analysis (Altschuler & Chewi, 2024; Zhu, 2025; Kim & Milman, 2012) which admits the
050 **Girsanov**'s theorem (for instance, one in Chen et al. (2023a)) showing the constant scaling of the
051 local error.

052 In light of this, **the main contribution of this paper** is to provide analytical tools that study the
053 accumulation error along the sampling flow under the Wasserstein metric and hence ensure the
054 optimal iteration complexity bound $O(\sqrt{d})$. More precisely, we first analyze the potential asymptotic

054 scaling of the truncation error in terms of the temporal variable and the ambient dimension. Then
 055 we bound the accumulation of error by the Lipschitz properties of the push-forward maps of the
 056 backward flow. As a justification, we illustrate the attainability of the assumptions by showing the
 057 optimal complexity bound in Föllmer flow under the Gaussian tail assumption. Such an assump-
 058 tion applies to both regular and singular targets (when early stopping technique (Lyu et al., 2022) is
 059 applied), extendable to infinite-dimensional settings, with further implications for Bayesian inverse
 060 problems.

061 **1.1 RELATED WORK**

062 **Lipschitz changes of variables** In the field of PDE, the Lipschitzness of transport maps was initiated
 063 by Caffarelli (2000), who constructed such maps between log-concave probability measures. Build-
 064 ing on this, Colombo et al. (2017) developed global Lipschitz maps for compactly supported pertur-
 065 bations of log-concave measures. An alternative approach beyond optimal transport involves diffu-
 066 sion processes. By leveraging the maximum principle for parabolic PDEs, one can show that log-
 067 concavity is preserved along the associated diffusion semigroup (Kim & Milman, 2012). Mikulincer
 068 & Shenfeld (2023) obtained a sharper Lipschitz constant for measures with bounded support and
 069 Gaussian mixtures, improving Caffarelli’s result. Based on this, Dai et al. (2023) assume a finite third
 070 moment and semi-log-convexity to construct a well-posed unit-time Föllmer flow whose terminal
 071 map is Lipschitz and pushes a Gaussian to a target measure in the unit time interval $[0, 1]$. Neeman
 072 (2022) relaxed Colombo’s compact support requirement to boundedness, and Fathi et al. (2024) ex-
 073 tended it to Gaussian in \mathbb{R}^d and uniform spherical measures. Furthermore, Brigati & Pedrotti (2024)
 074 obtained the sharpest Lipschitz bound in this setting without controlling the third-order derivative
 075 tensor of potential $\nabla^3 W$. For clarity, we summarize the assumptions on target distributions and
 076 their Lipschitz constants in Table 2, with details in Appendix A. Despite these results shed light on
 077 potential minimal assumption for the convergence guarantee of flow-based models, in later context,
 078 we will demonstrate that estimation of the time derivative of velocity field $\partial_t V$ is also crucial on the
 079 pathway of optimal complexity bounds.

080 **Continuous flow-based generative models** Building on score-based (Song et al., 2021) and denois-
 081 ing diffusion models (Gao & Zhu, 2025), Salimans & Ho (2022) introduces stable parameteriza-
 082 tions and a distillation method to reduce sampling steps while maintaining sample quality. Flow
 083 matching (FM) (Lipman et al., 2023) extends continuous normalizing flows (CNFs) (Chen et al.,
 084 2018) by training a neural ODE-parameterized vector field $v_\theta(x, t)$ to match a target velocity $v(x, t)$
 085 along fixed probability paths, unifying diffusion and non-diffusion models for efficient and stable
 086 generation. **Rectified flow** (Liu et al., 2023; Rout et al., 2024) learns neural ODEs that transport
 087 distributions along nearly straight paths through iterative rectification processes, yielding determin-
 088 istic couplings with reduced transport cost and enabling efficient one-step simulation. In addition,
 089 stochastic interpolants (Albergo et al., 2023; Albergo & Vanden-Eijnden, 2023) unify flow-based
 090 and diffusion-based methods to bridge arbitrary densities,

$$X_t = I(t, X_0, X_1) + \gamma(t)z, \quad t \in [0, 1], \quad (1)$$

091 recovering the Schrödinger bridge when the interpolant is optimized (Léonard, 2013). Recently,
 092 Flow Map Matching (FMM) (Boffi et al., 2025) has accelerated sampling by learning the two-time
 093 flow map of generative dynamics, thereby alleviating the computational cost associated with con-
 094 tinuous models. Geng et al. (2025) connect one-step generative modeling to multiscale physical
 095 simulations via average velocity, achieving leading performance on ImageNet 256×256 without
 096 pre-training or distillation.

097 **Convergence bounds** Recent studies control the KL, W_2 , and TV distances between the generative
 098 and target distributions to guarantee convergence and measure training discretization errors. Al-
 099 bergo & Vanden-Eijnden (2023) bounded the W_2^2 distance by $e^{1+2K} H(\hat{v})$ under the smoothness
 100 and Lipschitz assumptions, where $H(\hat{v})$ measures discrete velocity error. Albergo et al. (2023) de-
 101 rived KL-based perturbation bounds for CNF estimators, while FMM (Boffi et al., 2025) improved
 102 W_2 bounds for pre-trained models via Lagrangian and Eulerian distillation losses controlling the
 103 teacher-student Wasserstein gap. The estimation error of the FM has been analyzed for typical data
 104 distributions (e.g., manifold-supported) by Benton et al. (2023), and a nonparametric $\mathcal{O}(n^{-1/(d+5)})$
 105 convergence rate under early stopping (Lyu et al., 2022) was established by Gao et al. (2024), where
 106 n denotes the sample size. Subsequently, Cheng et al. (2024) showed JKO flows reach $\mathcal{O}(\epsilon^2)$ KL
 107 error in $N \lesssim \log(1/\epsilon)$ steps, extending to non-density cases and yielding mixed KL- W_2 guar-
 108antees. We summarize recent complexity results for diffusion models and flow-based models (under

Wasserstein distance) in Table 1. Detailed theorems appear in Lemmas A.10-A.16. In this work, we achieve an optimal dependence of $\mathcal{O}(\sqrt{d})$ on the data dimension d without the assumption of log-concaveness of the target.

Table 1: Complexity bounds for DM/flow-based models in d dimensions: previous results vs. ours.

Target P_0	Complexity	Result
P_0 log-concave*	$\mathcal{O}\left(\frac{\sqrt{d}}{\epsilon_0}(\log \frac{d}{\epsilon_0})^2\right)$	Gao & Zhu (2025) Tab. 1
G-tail Ass.*	$\mathcal{O}\left(\frac{\sqrt{d}}{\epsilon_0} \log \frac{d}{\epsilon_0^2}\right)$	Wang & Wang (2024) Cor. 3.5
one-side Lip+weakly log-concave*	$\mathcal{O}\left(\frac{d^2}{\epsilon_0^2}\right)$	Gentiloni-Silveri & Ocello (2025) Thm.3.5
weakly log-concave*	$\mathcal{O}\left(\frac{d}{\epsilon_0^2}\right)$	Bruno & Sabanis (2025) Thm.3.12
G-tail Ass. 3.7	$\mathcal{O}\left(\frac{\sqrt{d}}{\epsilon_0}\right)$	This work Thm.3.15

* denotes works on diffusion models; n is the sample size.

1.2 CONTRIBUTIONS

- We point out that the W_2 -distance between the generative and target distributions is controlled by the Lipschitzness of the push-forward maps introduced by sampling flow. By providing concrete bounds on the Lipschitz coefficient, we obtain an explicit estimate of the accumulation error.
- While prior works often rely on smoothness or strict log-concavity, we adopt a general condition in applications—the Gaussian tail Assumption 3.7 to provide the well-posedness and Lipschitz regularity of Föllmer flow, with explicit, dimension-free Lipschitz bounds (Corollary 3.11 and Corollary 3.14).
- By leveraging the Gaussian tail Assumption 3.7 to obtain accurate upper bounds on the time derivative of velocity field $|\partial_t V|$ (Theorem 3.8), our framework avoids the need for end-point constraints or early stopping (Lyu et al., 2022), enabling training and sampling throughout the entire interval $t \in [0, 1]$. This framework naturally extends the $\mathcal{O}(\sqrt{d})$ complexity results of the SDE flow to the deterministic flow, achieving even better complexity than previous approaches (Wang & Wang, 2024).

2 FLOW-BASED MODEL

We begin by introducing a unified formulation of flow-based generative models. This general framework allows the convergence analysis in Section 3 to apply seamlessly to both the Föllmer flow and more general sampling dynamics. Consider a continuous flow governed by a velocity field V via the ODE¹

$$\frac{d\overset{\leftarrow}{X}_t}{dt} = V(t, \overset{\leftarrow}{X}_t), \quad \overset{\leftarrow}{X}_0 = x, \quad t \in [0, 1]. \quad (2)$$

With the N steps discretization in time, $0 = t_0 < t_1 < \dots < t_N = 1$, the ODE (2) in each sub-interval $[t_n, t_{n+1}]$, can be interpreted as a local transport map,

$$T_n(\overset{\leftarrow}{X}_{t_n}) = \overset{\leftarrow}{X}_{t_{n+1}}. \quad (3)$$

The overall flow-based model $\overset{\leftarrow}{X}_1(x)$ is then obtained by the composition of transport maps

$$\overset{\leftarrow}{X}_1(x) = (T_{N-1} \circ T_{N-2} \circ \dots \circ T_0)(x).$$

An approximation of $\overset{\leftarrow}{X}_1(x)$ can be interpreted as approximation of $\{T_n\}_{n=0}^{N-1}$ by $\{\widetilde{T}_n\}_{n=0}^{N-1}$. To quantify the error of the approximation, we denote the marginal distribution of the actual state $\overset{\leftarrow}{X}_{t_{n+1}}$

¹We used the left arrow $\overset{\leftarrow}{\cdot}$ to represent its connections to the backward process in the score based model.

162 by $\overleftarrow{P}_{t_{n+1}}$, and $\overleftarrow{Q}_{t_{n+1}}$ of the approximated state. Correspondingly we have,
 163

$$164 \quad \overleftarrow{P}_{t_{n+1}} = (T_n)_{\#}(\overleftarrow{P}_{t_n}), \quad \overleftarrow{Q}_{t_{n+1}} = (\tilde{T}_n)_{\#}(\overleftarrow{Q}_{t_n}). \quad (4)$$

166 **Föllmer flow** For any $\varepsilon \in (0, 1)$, we consider a diffusion process $(\vec{X}_t)_{t \in [0, 1-\varepsilon]}$ that gradually
 167 transforms the target distribution ν into a Gaussian $\mathcal{N}(0, C)$ over time by the following Itô SDE
 168

$$169 \quad d\vec{X}_t = -\frac{1}{1-t}\vec{X}_t dt + \sqrt{\frac{2C}{1-t}} dW_t, \quad \vec{X}_0 \sim \nu, \quad t \in [0, 1-\varepsilon], \quad (5)$$

171 where W_t is a standard Brownian motion, C is a symmetric, positive-definite covariance matrix.
 172 The transition probability distribution from \vec{X}_0 to \vec{X}_t is given by
 173

$$174 \quad \vec{X}_t | \vec{X}_0 = x_0 \sim \mathcal{N}((1-t)x_0, t(2-t)C). \quad (6)$$

175 The marginal distribution flow $(\bar{p}_t)_{t \in [0, 1-\varepsilon]}$ of the forward diffusion process satisfies the Fokker-
 176 Planck-Kolmogorov (FPK) equation in an Eulerian framework

$$177 \quad \partial_t \bar{p}_t = \nabla \cdot \left(\bar{p}_t \cdot \frac{1}{1-t} [x + C \nabla \log \bar{p}_t(x)] \right) \quad \text{on } [0, 1-\varepsilon] \times \mathbb{R}^d, \quad \bar{p}_0 = \nu. \quad (7)$$

179 Then Föllmer flow is formally defined as the backward process of such a forward diffusion (5), while
 180 preserving the same marginal distributions in (7).

181 **Definition 2.1** (Föllmer flow in formal sense). A Föllmer flow $(\overleftarrow{X}_t)_{t \in [0, 1]}$ solves the IVP
 182

$$183 \quad \begin{cases} \frac{d\overleftarrow{X}_t}{dt} = V(t, \overleftarrow{X}_t), & \overleftarrow{X}_0 \sim \gamma_C, \quad t \in [0, 1], \\ V(t, x) := \frac{1}{t} [x + S(t, x)], & \forall t \in (0, 1]; \quad V(0, x) := \sqrt{C} \mathbb{E}_{\nu}[X], \end{cases} \quad (8)$$

185 $S(t, x) := C \nabla \log p_t(x)$ is the score function with probability density $p_t = \bar{p}_{1-t}$ in forward FKP
 186 equation (7). We call $V(t, x)$ a Föllmer velocity field.
 187

188 Following (4), we define \vec{P}_{t_n} as the marginal distribution of \vec{X}_{t_n} in the forward diffusion process.
 189 Given the initial distribution $\vec{P}_0 = P_{\text{data}}$, then for all $t \in [0, 1]$, $\overleftarrow{P}_{t_n} = \vec{P}_{1-t_n}$.

190 In practice, the velocity field $V(1-t, x) = \frac{1}{1-t} [x + C \nabla \log \bar{p}_t(x)]$ is not available since no closed
 191 form expression of \bar{p}_t is known. To this end, one approximates V by a neural network \tilde{V} . The
 192 network is trained by minimizing an \mathbb{L}_2 estimation loss,
 193

$$194 \quad \mathbb{E}_{\bar{p}_t(x)} \left\| \tilde{V}(1-t, x) - \frac{1}{1-t} [x + C \nabla \log \bar{p}_t(x)] \right\|^2. \quad (9)$$

195 For simplicity, we introduce the notation $X_t := (1-t)X_0 + \sqrt{t(2-t)C} \mathcal{N}$, which shares the
 196 same marginal distribution as \vec{X}_t in (6). Then the velocity field $V(1-t, x)$ can be expressed as a
 197 conditional expectation (Yubin et al., 2025),
 198

$$199 \quad V(1-t, X) := \frac{1}{1-t} [X + S(1-t, X)] = \mathbb{E}_{X_0|X_t} \left[\frac{1}{1-t} X_t - \frac{X_t - (1-t)X_0}{(1-t)t(2-t)} \mid X_t = X \right].$$

200 With an appropriate weight of the t -variable, the loss in (9) becomes an approximation of this con-
 201 ditional expectation via mean-squared prediction error,
 202

$$203 \quad \mathbb{E}_{X_0, N \sim \mathcal{N}(0, I_d), t} \left[\lambda(t) \left\| \tilde{V}(1-t, X_t) - \frac{1}{1-t} X_t + \frac{\sqrt{C} \mathcal{N}}{(1-t)\sqrt{t(2-t)}} \right\|^2 \right].$$

204 After training, with $\tilde{V}(1-t, x)$, one can generate samples of the target distribution via an Euler-type
 205 discretization of the continuous-time process, starting from the Gaussian initialization γ_C ,
 206

$$207 \quad \frac{d\overleftarrow{Y}_t}{dt} = \tilde{V}(t_n, \overleftarrow{Y}_{t_n}), \quad \overleftarrow{Y}_{t_0} \sim \gamma_C, \quad t \in [t_n, t_{n+1}], \quad n = 0, 1, \dots, N-1. \quad (10)$$

208 Note that (10) defines the transport map \tilde{T}_n for the learned Föllmer flow, governed by the approxi-
 209 mate velocity field $\tilde{V}(t_n, \overleftarrow{Y}_{t_n})$ over the sub-interval $[t_n, t_{n+1}] \subset [0, 1]$. Distribution of generation
 210 \overleftarrow{Q}_t is then defined by (4).

216 **Well-posedness of Föllmer flow** Under appropriate assumptions on the target distribution ν , one
 217 can show the Föllmer flow being the time-reversal of the forward diffusion process (5). For instance,
 218 under third moment (Assumption 3.6), semi-log-convexity (Assumption A.19) and the structural
 219 assumptions (Assumption A.20) on ν , Dai et al. (2023) studied the Föllmer flow in the case $C = I_d$,
 220 where the score function is given by

$$221 \quad S(t, x) := \nabla \log \int_{\mathbb{R}^d} (2\pi(1-t^2))^{-\frac{d}{2}} \exp\left(-\frac{|x-ty|^2}{2(1-t^2)}\right) \nu(dy).$$

224 It can be shown that the velocity field V is Lipschitz continuous in x with a well-defined initial
 225 condition $V(0, x)$. By the Cauchy-Lipschitz theory (Ambrosio & Crippa, 2014), one can define a
 226 Lagrangian flow $(X_t^*)_{t \in [0,1]}$ governed by the well-posed ODE system,

$$227 \quad dX_t^* = -V(1-t, X_t^*)dt, \quad X_0^* \sim \nu, \quad t \in [0, 1],$$

228 sharing the same marginal distribution with (5).

229 In this work, we study the Föllmer flow with correlated Gaussian initial based on the Gaussian tail
 230 Assumption 3.7, and **retain the spatially anisotropic noise assumption ($C \neq I_d$) to allow our theory**
 231 **to generalize to infinite-dimensional settings requiring compactification (Lim et al., 2025); We refer**
 232 **the reader to** Theorem 3.8 for the regularity of the velocity field and Lemma 3.10 for the proof of
 233 well-posedness.

234 **General Notations** Let γ_C denote the density of $\mathcal{N}(0, C)$. For an $n \times n$ matrix A , the operator
 235 norm $\|\cdot\|$ is defined as

$$237 \quad \|A\| = \sup_{v \neq 0} \frac{|Av|}{|v|} = \text{largest eigenvalue of } \sqrt{A^T A}.$$

239 For symmetric positive-definite A , define the weighted ℓ_2 norm

$$241 \quad |x|_A^2 := (A^{-1/2}x, A^{-1/2}x),$$

242 which reduces to the standard ℓ_2 norm $|\cdot|$ when $A = I$. For a vector (matrix)-valued function $f(x)$,

$$243 \quad |f|_\infty = \sup_x |f(x)|, \quad (\|f\|_\infty = \sup_x \|f(x)\|).$$

245 3 MAIN RESULTS

248 In this section, we present the main results. **Our analysis begins with a general flow-based frame-**
 249 **work (not necessarily restricted to the Föllmer flow), through which we develop Wasserstein-based**
 250 **analytical tools that yield an optimal iteration complexity bound of \sqrt{d} .** We then validate the as-
 251 **ssumptions and present the complexity results for the Föllmer flow and 1-rectified flow under the**
 252 **Gaussian tail assumption.**

253 3.1 LIPSCHITZ CHANGES OF VARIABLES IMPLIES WASSERSTEIN BOUND OF FLOW-BASED 254 MODELS

256 For the sake of compactness, we impose the following assumption on the second-order moment.

257 **Assumption 3.1** (Second moment). *The data distribution has a bounded second moment, $M_2 :=$
 258 $\mathbb{E}_{p_0}|x|^2 < \infty$. We further denote,*

$$260 \quad M_0 = \max\{\text{Tr}(C), M_2\},$$

261 *relates to the maximum second-order moment, where C is a symmetric, positive-definite covariance
 262 matrix.*

263 We consider a general covariance matrix C to cover both the identity case $C = I_d$ and the correlated
 264 case $C \neq I_d$. In the main text, we primarily focus on the former, yielding $\text{Tr}(C) = d$ and thus
 265 $M_0 = \mathcal{O}(d)$ with dimension d . At the same time, we retain $C \neq I_d$ in the derivation to extend our
 266 theory to infinite-dimensional settings (Lim et al., 2025), with the general case further discussed in
 267 Appendix D for Bayesian inverse problems.

268 Next, we make three assumptions, each holding with some dimension-free constants. We regard
 269 these assumptions as generally valid, and under them, our convergence result Theorem 3.5 can be
 established.

270 **Assumption 3.2** (Lipschitzness of T). $\forall n = 0, \dots, N-1$, $\text{Lip}(T_n) < \infty$, and $\prod_{j=0}^n \text{Lip}(T_j) < \infty$.
 271

272 We will justify the attainability of the Assumption 3.2 in Corollary 3.11 by invoking the lipschitz
 273 property of the velocity field established in Theorem 3.8. Similar to Assumption 3.2 which imposes
 274 Lipschitz continuity of T , we also assume the Lipschitz continuity of \tilde{T} as stated below.
 275

276 **Assumption 3.3** (Lipschitzness of \tilde{T}). $\forall n = 0, \dots, N-1$, $\text{Lip}(\tilde{T}_n) < \infty$, and $\prod_{j=0}^n \text{Lip}(\tilde{T}_j) < \infty$.
 277

278 We will verify Assumption 3.3 in Corollary 3.14 by leveraging the lipschitz property of the learned
 279 velocity field stipulated in Assumption 3.13. The final assumption concerns the local discretization
 280 error between T and \tilde{T} at each time step h , as described below.
 281

282 **Assumption 3.4** (Accuracy of approximation). *There exists constants $\bar{K}, \bar{K}_1, \bar{K}_2, \epsilon$, such that*
 283

$$\sqrt{\mathbb{E}_{x \sim \tilde{P}_{t_n}} |\tilde{T}_n(x) - T_n(x)|^2} \leq h \left(\left(\bar{K} \sqrt{M_0} + \frac{\bar{K}_1}{\sqrt{1-t_n^2}} + \bar{K}_2 \right) h + \epsilon \right),$$

284 with time step size $h = t_{n+1} - t_n$.
 285

286 This scaling follows since
 287

$$288 \tilde{T}_n(x) - T_n(x) = h(V(x) - \tilde{V}(x)) + \mathcal{O}(h^2),$$

289 as verified in the Föllmer case Theorem 3.15. The term $\mathcal{O}(h)$ reflects the ϵ -accuracy of the learned
 290 velocity $\tilde{V}(x)$ (Assumption 3.12), while the term $\mathcal{O}(h^2)$ stems from the Taylor expansion of $T_n(x)$
 291 over $[t_n, t_{n+1}]$ and depends on its regularity, possibly also on ambient dimension d and time t .
 292

293 Next, we outline the core proof strategy of this work. The key step is to demonstrate the Lipschitz
 294 continuity of both the original and discretized flows, which is critical for guaranteeing the conver-
 295 gence of flow-based generative models.
 296

297 **Theorem 3.5.** *Assume that the target distribution satisfies Assumption 3.1 and follows Lipschitz-
 298 ness Assumption 3.2, 3.3, and approximation error Assumption 3.4. With constant step size h , the
 299 Wasserstein-2 distance between the target distribution $\vec{P}_0 = \tilde{P}_1$ and the generation \tilde{Q}_1 is bounded
 300 as,*

$$300 \mathcal{W}_2(\tilde{P}_1, \tilde{Q}_1) \leq \left(\prod_{j=0}^{N-1} \text{Lip}(\tilde{T}_j) \right) \mathcal{W}_2(\tilde{P}_0, \tilde{Q}_0) \\ 301 + h \sum_{k=0}^{N-2} \prod_{j=k}^{N-2} \text{Lip}(\tilde{T}_j) \left(\left(\bar{K} \sqrt{M_0} + \frac{\bar{K}_1}{\sqrt{1-t_j^2}} + \bar{K}_2 \right) h + \epsilon \right). \quad (11)$$

302 Proof see Appendix B.1.
 303

304 This result shows that the first term in the bound scales the initial discrepancy
 305 $\mathcal{W}_2(\tilde{P}_0, \tilde{Q}_0)$ by the product of Lipschitz constants $\left(\prod_{j=0}^{N-1} \text{Lip}(\tilde{T}_j) \right)$, and the second term
 306 $\left(\left(\bar{K} \sqrt{M_0} + \frac{\bar{K}_1}{\sqrt{1-t_j^2}} + \bar{K}_2 \right) h + \epsilon \right)$, captures accumulated discretization errors (Assumption 3.4)
 307 and a local discretization error scales $\mathcal{O}(\sqrt{M_0})$, yielding the $\mathcal{O}(\sqrt{d})$ dependence in the isotropic
 308 case $C = I_d$. Similar results (17) and (18) are listed in Proposition A.10 and Proposition A.13,
 309 while the precise scaling of the second term remains unspecified. To be noted, in the limit of $h \rightarrow 0$,
 310 $h \sum_{k=0}^{N-2} \frac{1}{\sqrt{1-t_k^2}} \rightarrow \frac{\pi}{2}$.
 311

312 Notably, Theorem 3.5 is of general validity: it applies to all flow-based models and their discrete
 313 counterparts satisfying the relevant assumptions, and is not limited to the Föllmer case.
 314

321 3.2 ANALYSES OF FÖLLMER FLOW UNDER GAUSSIAN TAIL ASSUMPTION

322 In this section, we focus on the Föllmer flow and derive the main convergence result based on
 323 Theorem 3.5 through Lipschitz changes of variables, which plays a central role in our analysis.
 324

324 **Assumption 3.6** (Third moment). *The data distribution has a bounded third moment, i.e. $\mathbb{E}_{p_0}|x|^3 < \infty$.*

327 We note that the third-moment assumption 3.6 is only required to ensure well-posedness of Föllmer
328 flow at $t = 0$ in the proof of Lemma 3.10 (see Appendix B.3). For our complexity bound, the second
329 moment Assumption 3.1 is sufficient.

330 Our analysis is based on the following key assumption that the tail distribution of the target is similar
331 to a Gaussian distribution with covariance matrix A .

332 **Assumption 3.7 (G-tail).** *The density of target distribution $\bar{p}_0 \in C^2(\mathbb{R}^d)$ and has the following tail
333 decomposition:*

$$334 \quad 335 \quad \bar{p}_0(x) = \exp\left(-\frac{|x|_A^2}{2}\right) \exp(h(x)),$$

336 where there are independent of dimension constants such that,

338 (i) *A is a symmetric, positive-definite matrix which can be simultaneously diagonalized with
339 C, and*

$$340 \quad \|A\| < \infty, \quad \|C\| < \infty, \quad \|AC^{-1}\| < \infty, \quad \|CA^{-1}\| < \infty.$$

342 (ii) *the remainder term h follows*

$$343 \quad 344 \quad |\sqrt{C}\nabla h|_\infty < \infty, \quad \|C\nabla^2 h\|_\infty < \infty.$$

345 The Gaussian tail Assumption 3.7 generalizes the log-concavity condition in Ding et al. (2023); Gao
346 et al. (2024) to heavier-than-sub-Gaussian tails while ensuring sufficient decay for well-posedness
347 and convergence. Although stronger than the weak semi-log-concavity assumption of Chaintron
348 et al. (2025); Bruno & Sabanis (2025), it yields sharper guarantees: weak semi-log-concavity implies
349 $O(d)$ sampling complexity, whereas the Gaussian tail assumption achieves $O(\sqrt{d})$ scaling in a non-
350 log-concave setting and also accommodates realistic distributions such as early stopping, see (16).

351 The following theorem bounds the Lipschitz constant and the time derivative of the Föllmer velocity
352 field in (8) under the Gaussian tail Assumption 3.7, supporting the Lipschitz changes of variables in
353 Corollary 3.11 and convergence rate in Theorem 3.15.

354 **Theorem 3.8** (Regularity of the velocity field). *The Gaussian tail Assumption 3.7 implies the
355 Föllmer velocity field $V(t, \cdot)$ has the following regularity properties:*

$$357 \quad |V(t, x)| \leq K_0 + K_2 t |x|, \quad \forall t \in [0, 1],$$

$$358 \quad \|\nabla V(t, \cdot)\|_\infty \leq (K_1 + K_2) t, \quad \forall t \in [0, 1],$$

$$359 \quad |\partial_t V(t, x)| \leq K_5 |x| + \frac{K_6}{\sqrt{1-t^2}} + K_7, \quad \forall t \in [0, 1], \quad (12)$$

361 where the coefficients are dimension-free constants, given explicitly in Table 3 of Appendix B.2.

363 To handle the blow-up of $|\partial_t V(t, x)|$ near $t = 0, 1$, Ding et al. (2023) restrict t to $[\delta, 1 - \delta]$. In
364 particular, Gao et al. (2024) shows Lipschitz continuity of V in t over $[0, 1 - \delta_0]$ with constant
365 scaling as $\mathcal{O}(\delta_0^{-2})$. In contrast, under our Gaussian tail assumption, the control over the second
366 derivative of the tail allows us to bound $|\partial_t V(t, x)|$ using techniques such as the Brascamp-Lieb
367 inequality (Brascamp & Lieb, 1976). This analysis reveals that the term $\frac{1}{\sqrt{1-t^2}}$ is integrable on
368 $[0, 1]$, thus posing no obstacle to convergence, allowing training and sampling over the full interval
369 $t \in [0, 1]$. More importantly, this approach, to our knowledge, is the first to yield the improved
370 $\mathcal{O}(\sqrt{d})$ complexity bound, as formally stated in Corollary 3.16

371 Detailed proof of Theorem 3.8 is provided in Appendix B.2.

374 **Remark 3.9.** Motivated by the averaged-velocity construction in MeanFlow (Geng et al., 2025), we
375 introduce an analogous notion for the Föllmer flow and define the averaged Föllmer velocity as

$$377 \quad \bar{V}(x, r, t) := \frac{1}{t-r} \int_r^t V(\tau, x) d\tau.$$

378 *Under the regularity condition (12) satisfied by the Föllmer velocity field, a direct calculation gives*
 379 *the uniform bound*

$$380 \quad |\bar{V}(x, r, t)| \leq K_0 + \frac{t+r}{2} K_2 |x|,$$

382 *demonstrating that the averaged Föllmer velocity preserves the same linear growth property as the*
 383 *original velocity field.*

384 Under the preceding assumptions and analysis, we establish the well-posedness of the Föllmer model
 385 $\overset{\leftarrow}{(X_t)}_{t \in [0,1]}$ in the following lemma.

387 **Lemma 3.10** (Well-posedness). *Suppose that the third moment Assumption 3.6 and the Gaussian*
 388 *tail Assumption 3.7 hold. Then the Föllmer velocity field is well-defined at the $t = 0$, in the sense*
 389 *that*

$$390 \quad V(0, x) := \lim_{t \rightarrow 0} V(t, x) = \lim_{t \rightarrow 0} \frac{x + S(t, x)}{t} = \sqrt{C} \mathbb{E}_{\bar{p}_0}[X]. \quad (13)$$

392 *Consequently, the Föllmer flow $\overset{\leftarrow}{(X_t)}_{t \in [0,1]}$ is a unique solution to IVP (8). Moreover, the push-*
 393 *forward measure satisfies*

$$394 \quad \gamma_C \circ (\overset{\leftarrow}{X_1})^{-1} = \bar{p}_0.$$

396 Proof see Appendix B.3. Under Assumption 3.7, we now establish the Lipschitz property of the
 397 continuous flow $\overset{\leftarrow}{(X_t)}_{t \in [0,1]}$.

399 **Corollary 3.11** (Lipschitzness of continuous flow). *If \bar{p}_0 follows the Gaussian tail Assumption 3.7,*
 400 *then the Föllmer flow $\overset{\leftarrow}{(X_t)}_{t \in [0,1]}$ is Lipschitz with a dimension-free constant, more precisely,*

$$402 \quad \text{Lip}(\overset{\leftarrow}{X_1}(x)) \leq \|\nabla \overset{\leftarrow}{X_1}(x)\|_{op} \leq \exp\left(\frac{K_1 + K_2}{2}\right). \quad (14)$$

404 Proof see Appendix B.4. Bound like (14) can also be achieved in Caffarelli (2000); Colombo et al.
 405 (2017); Kim & Milman (2012); Mikulincer & Shenfeld (2023); Brigati & Pedrotti (2024) under
 406 various assumptions, as detailed in Appendix A. In general, the constants involved are dimension-
 407 free.

408 To analyze the stability and convergence of the discrete flow, we first assume the following bound
 409 on the velocity field approximation error at the discretization points.

411 **Assumption 3.12** (Accuracy of the learned velocity field). *For each time discretization point t_n , the*
 412 *accuracy of learned velocity $\tilde{V}(t_n, x)$ approximates the true velocity field $V(t_n, x)$ with uniformly*
 413 *bounded error in expectation:*

$$414 \quad \mathbb{E}_{\vec{P}_{1-t_n}} |V(t_n, x) - \tilde{V}(t_n, x)|^2 \leq \epsilon^2.$$

416 Next, we assume that the learned velocity field inherits the regularity of the continuous flow under
 417 the Gaussian tail Assumption 3.7.

419 **Assumption 3.13** (Regularity of the learned velocity field). *Assume the learned velocity field*
 420 *$\tilde{V}(t, x)$ follows*

$$421 \quad \|\nabla \tilde{V}(t_n, \cdot)\|_\infty \leq (K_1 + K_2 + K_8) t_n$$

422 *for some positive constant K_8 .*

424 Although the bound may not be small in general, the Assumption 3.13 is essential for our theoreti-
 425 cal analysis and remains reasonable. The learned velocity field $\tilde{V}(t_n, x)$ is trained to approximate
 426 the true velocity field $V(t_n, x)$ in Assumption 3.12, which satisfies the required regularity (see
 427 Theorem 3.8); Moreover, neural networks generally inherits the smoothness and controlled growth
 428 induced by the architecture and training process, which prevents uncontrolled behavior in practice.
 429 Assumption 3.13 can further be relaxed in the temporal t direction to require only that the total
 430 discrete-time sum of the score gradient is bounded; see Remark B.1 in Appendix B.7.

431 We subsequently establish the Lipschitz property of the discrete flow $\overset{\leftarrow}{(Y_t)}_{t \in [0,1]}$ under Assump-
 432 tion 3.13.

432 **Corollary 3.14** (Lipschitzness of discrete flow). *The regularity of learned velocity field Assumption 433 3.13 implies the Lipschitz property of the learned flow $(\overset{\leftarrow}{Y}_t)_{t \in [0,1]}$ with a dimension-free constant, such that*

$$436 \quad \text{Lip}(\overset{\leftarrow}{Y}_1(x)) \leq \|\nabla \overset{\leftarrow}{Y}_1(x)\|_{op} \leq \exp\left(\frac{K_1 + K_2 + K_8}{2}\right), \\ 437$$

438 Proof see Appendix B.5.

440 3.3 MAIN CONVERGENCE THEORIES

442 With the Lipschitz properties of the flow established (see Corollary 3.11 and Corollary 3.14), we 443 next quantify how these bounds propagate through the discrete dynamics. Building on Theorem 3.5, 444 the following theorem provides a convergence result in Föllmer flow case.

445 **Theorem 3.15.** *Suppose that the third moment Assumption 3.6, the Gaussian tail Assumption 3.7, 446 the accuracy and regularity assumptions 3.12- 3.13 on the learned velocity field hold. Using the Eu- 447 ler method for the Föllmer flow with uniform step size $h = t_{n+1} - t_n \leq 1$ ensures $\sqrt{M_0}$ convergence 448 between the target data distribution and the generated distribution:*

$$449 \quad \mathcal{W}_2(\vec{P}_0, \overset{\leftarrow}{Q}_1) \leq \exp\left(\frac{K_1 + K_2 + K_8}{2}\right) \left(\sqrt{3} \left(K_5 \sqrt{M_0} + K_9 \right) h + 2\epsilon \right). \quad (15) \\ 450$$

451 where K_1, K_2, \dots, K_9 are dimensionless constants defined in Theorem 3.8 and Assumption 3.13, 452 with explicit expressions given in Table 3. Furthermore, with the covariance of base distribution 453 $C = I_d$ in the Assumption 3.1, $\mathcal{W}_2(\vec{P}_0, \overset{\leftarrow}{Q}_1) = \mathcal{O}(\sqrt{d}h + \epsilon)$.

455 Proof see Appendix B.6. Note that the first term in Theorem 3.5, stemming from the time- 456 propagating discrepancy of the semigroup maps, vanishes in Theorem 3.15 because the Föllmer 457 flow $(\overset{\leftarrow}{X}_t)_{t \in [0,1]}$ is well-posed at $t = 0$, giving $\mathcal{W}_2(\overset{\leftarrow}{P}_0, \overset{\leftarrow}{Q}_0) = 0$. Thus, only the accumulated 458 discretization error remains, corresponding to the second term in Theorem 3.5.

460 **Corollary 3.16.** *To reach a distribution $\overset{\leftarrow}{Q}_1$ such that $\mathcal{W}_2(\vec{P}_0, \overset{\leftarrow}{Q}_1) = \mathcal{O}(\epsilon_0)$ with uniform step size 461 $h = t_{n+1} - t_n \leq 1$ requires at most:*

$$462 \quad h = \mathcal{O}\left(\frac{\epsilon_0}{\sqrt{M_0}}\right), \quad N = \frac{1}{h} = \mathcal{O}\left(\frac{\sqrt{M_0}}{\epsilon_0}\right), \\ 463$$

465 and Assumption 3.12 to hold with $\epsilon = \mathcal{O}(\epsilon_0)$. Furthermore, $N = \mathcal{O}\left(\frac{\sqrt{d}}{\epsilon_0}\right)$ under the Assumption 3.1 466 with $C = I_d$.

468 The complexity bound established in Corollary 3.16 grows linearly with the square root of the trace 469 of the forward process's covariance operator, independent of dimension, and thus extends naturally 470 to infinite-dimensional generative models. An illustrative case is provided in Appendix D, where we 471 consider Bayesian inverse problems in function spaces. Proposition 6 in Gao et al. (2025) establishes 472 that for the standard Gaussian as target distribution, $\mathcal{O}(\sqrt{d})$ complexity bound is optimal. This 473 indicates that our \sqrt{d} dependence stems from intrinsic Gaussian concentration, making the dimensional 474 scaling fundamental rather than algorithm-induced. Notably, in efforts to obtain complexity bounds 475 under assumptions more general than log-concavity, recent works (Bruno & Sabanis, 2025) derived 476 an $\mathcal{O}(d)$ bound using the weakly log-concave assumption (Conforti, 2024; Conforti et al., 2025b), 477 while (Gentiloni-Silveri & Ocello, 2025) obtained an $\mathcal{O}(d^2)$ bound under the similar assumption. 478 These related works are summarized in Table 1.

479 Since the probabilistic ODE (Prob ODE) (Song et al., 2021; Gao & Zhu, 2025) can be viewed as a 480 time-rescaled Föllmer flow, the result of Corollary 3.16 also implies that our method improves the 481 computational complexity of the Prob ODE compared to Wang & Wang (2024). We will provide a 482 detailed discussion in Appendix C.

483 We further verified that our method extends to the 1-rectified flow setting (Liu et al., 2023; Rout 484 et al., 2024). In particular, it applies to the interpolation paths used in the flow built by the first 485 step rectification over independent coupling prior to the recursive construction, and retains the same 486 $\mathcal{O}(\sqrt{d})$ complexity stated in Corollary 3.16. The proof is deferred to Appendix B.8.

486 3.4 CONVERGENCE UNDER BOUNDED-SUPPORT ASSUMPTION
487

488 Real-world data often lie on low-dimensional manifolds, where the distribution is not absolutely
489 continuous with respect to Lebesgue measure in the ambient dimension, and therefore KL bounds
490 may diverge (Pidstrigach, 2022). This motivates the adoption and study of the manifold as-
491 sumption (De Bortoli, 2022; Yubin et al., 2025), which, under compactness, entails the following
492 bounded-support assumption.

493 **Assumption 3.17** (Bounded-support assumption). *Suppose distribution p_0 has compact support*
494 *with $\text{Diam}(\text{Supp}(p_0)) \leq R$ for some constant $R > 0$.*

495 Let $q_\sigma = \exp\left(-\frac{|x|^2}{2\sigma^2}\right) * q_0$, where q_0 satisfies the bounded-support Assumption 3.17. Consider
496 $g(x) = \log q_\sigma(x) + \frac{|x|^2}{2\sigma^2}$, inspired by similar results in (De Bortoli, 2022; Mooney et al., 2025;
497 Wang & Wang, 2024), we have

$$500 \quad |\nabla g|_\infty \leq \frac{R}{\sigma^2}, \quad \|\nabla^2 g\|_\infty \leq \frac{2R^2}{\sigma^4}. \quad (16)$$

501 Set $0 = t_0 < t_1 < \dots < t_N = 1 - \delta$ as the discretization points, where the early stopping (Lyu
502 et al., 2022) coefficient $\delta \ll 1$. By expressing the distribution of the forward process of Föllmer
503 flow at stopping time δ in the form q_σ , we obtain the correspondences

$$505 \quad \sigma^2 \longleftrightarrow 1 - (1 - \delta)^2, \quad q_0(x) \longleftrightarrow \frac{1}{1 - \delta} \vec{P}_0 \left(\frac{1}{1 - \delta} x \right).$$

506 Then by Theorem 3.8, we get the following Lipschitz bound of the velocity field under Assump-
507 tion 3.17.

508 **Corollary 3.18.** *Suppose that the bounded-support Assumption 3.17 holds. Taking $C = I_d$ in (8),*
509 *and $A = (1 - (1 - \delta)^2)I_d$ in Assumption 3.7, then for all $t \in [0, 1 - \delta]$,*

$$511 \quad |V(t, x)| \leq K_0^* + K_2^* t |x|, \\ 512 \quad \|\nabla V(t, \cdot)\|_\infty \leq (K_1^* + K_2^*) t, \\ 513 \quad |\partial_t V(t, x)| \leq K_5^* |x| + \frac{K_6^*}{\sqrt{1 - t^2}} + K_7^*,$$

515 where coefficients are defined in Table 4 of Appendix B.2.

517 The proof parallels the corollary in Wang & Wang (2024). Using the Lipschitz bound from Corol-
518 lary 3.18, we obtain a bounded-support-version W_2 bound by tracking the constants in Theo-
519 rem 3.15.

520 **Theorem 3.19.** *Suppose that the bounded-support Assumption 3.17 and the accuracy and regularity*
521 *Assumptions 3.12, 3.13 hold. Take $C = I_d$, $\delta \ll 1$, then we have*

$$522 \quad \mathcal{W}_2(\vec{P}_\delta, \vec{Q}_{1-\delta}) \leq \exp\left(\frac{3R^2}{2\delta^2} + \frac{1}{2\delta} + \frac{K_8}{2}\right) \left(\sqrt{3} \left(K_5^* \sqrt{M_0} + K_9^* \right) h + 2\epsilon \right),$$

524 where K_5^* and K_9^* are dimension-free constants, whose explicit forms given in Table 4, and the
525 constant K_8 is defined in Assumption 3.13.

527 With the result in Theorem 3.19, we can directly compute the complexity bound under the bounded-
528 support assumption with early stopping technique.

529 **Corollary 3.20.** *With R and δ fixed, achieving a distribution $\vec{Q}_{1-\delta}$ such that $\mathcal{W}_2(\vec{P}_\delta, \vec{Q}_{1-\delta}) =$
530 $\mathcal{O}(\epsilon_0)$ requires at most: $N = \mathcal{O}\left(\frac{\sqrt{d}}{\epsilon_0}\right)$, and Assumption 3.12 to hold with $\epsilon = \mathcal{O}(\epsilon_0)$.*

532 Noticing that,

$$534 \quad \mathcal{W}_2(\vec{P}_\delta, \vec{P}_0) \leq \sqrt{\mathbb{E}|\vec{X}_\delta - \vec{X}_0|^2} \leq \sqrt{2d\delta},$$

535 the complexity bound can also be derived with respect to \vec{P}_0 . More precisely, we consider
536 the following practical scenario. Now we assume $R^2 = \mathcal{O}(d)$, then optimizing δ to achieve
537 $\mathcal{W}_2(\vec{P}_0, \vec{Q}_{1-\delta}) = \mathcal{O}(\epsilon_0)$ requires at most logarithmic complexity with $\log N = \mathcal{O}\left(\frac{d^3}{\epsilon_0^4}\right)$.

539 The conclusion and the discussion of future research directions are provided in Appendix E.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
546 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

547 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
548 interpolants. In *The Eleventh International Conference on Learning Representations*, 2023. URL
549 <https://openreview.net/forum?id=li7qeBbCR1t>.

550 Jason M Altschuler and Sinho Chewi. Shifted composition III: Local error framework for KL diver-
551 gence. *arXiv preprint arXiv:2412.17997*, 2024.

552 Luigi Ambrosio and Gianluca Crippa. Continuity equations and ODE flows with non-smooth veloc-
553 ity. *Proceedings of the Royal Society of Edinburgh Section A: Mathematics*, 144(6):1191–1244,
554 2014.

555 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
556 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

557 Cesare Arzela. *Sulle funzioni di linee*. Gamberini e Parmeggiani, 1895.

558 Georgios Batzolos, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
559 image generation with score-based diffusion models. *arXiv preprint arXiv:2111.13606*, 2021.

560 Yoshua Bengio, Ian Goodfellow, Aaron Courville, et al. *Deep learning*, volume 1. MIT press
561 Cambridge, MA, USA, 2017.

562 Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching methods.
563 *arXiv preprint arXiv:2305.16860*, 2023.

564 Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly $\$d\$$ -linear
565 convergence bounds for diffusion models via stochastic localization. In *The Twelfth International
566 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=r5njkV3BsuD>.

567 Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
568 with stochastic interpolants: A mathematical framework for consistency models. *Transactions on
569 Machine Learning Research*, 2025.

570 Herm Jan Brascamp and Elliott H Lieb. On extensions of the brunn-minkowski and prékopa-leindler
571 theorems, including inequalities for log concave functions, and with an application to the diffusion
572 equation. *Journal of functional analysis*, 22(4):366–389, 1976.

573 Giovanni Brigati and Francesco Pedrotti. Heat flow, log-concavity, and lipschitz transport maps.
574 *arXiv preprint arXiv:2404.15205*, 2024.

575 Stefano Bruno and Sotirios Sabanis. Wasserstein convergence of score-based generative models
576 under semiconvexity and discontinuous gradients. *Transactions on Machine Learning Research*,
577 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=vS9iVRB7XF>.

578 Luis A Caffarelli. Monotonicity properties of optimal transportation and the fkg and related inequal-
579 ities. *Communications in Mathematical Physics*, 214(3):547–563, 2000.

580 Patrick Cattiaux and Arnaud Guillin. Semi log-concave markov diffusions. In *Séminaire de proba-
581 bilités XLVI*, pp. 231–292. Springer, 2014.

582 Louis-Pierre Chaintron, Giovanni Conforti, and Katharina Eichinger. Propagation of weak
583 log-concavity along generalised heat flows via hamilton-jacobi equations. *arXiv preprint
584 arXiv:2508.07931*, 2025.

594 Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
 595 User-friendly bounds under minimal smoothness assumptions. In *International Conference on
 596 Machine Learning*, pp. 4735–4763. PMLR, 2023a.

597

598 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 599 differential equations. *Advances in neural information processing systems*, 31, 2018.

600 Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
 601 flow ode is provably fast. *Advances in Neural Information Processing Systems*, 36:68552–68575,
 602 2023b.

603

604 Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions:
 605 A non-asymptotic analysis for ddim-type samplers. In *International Conference on Machine
 606 Learning*, pp. 4462–4484. PMLR, 2023c.

607 Xiuyuan Cheng, Jianfeng Lu, Yixin Tan, and Yao Xie. Convergence of flow-based generative models
 608 via proximal gradient descent in wasserstein space. *IEEE Transactions on Information Theory*,
 609 70(11):8087–8106, 2024.

610

611 Maria Colombo, Alessio Figalli, and Yash Jhaveri. Lipschitz changes of variables between per-
 612 turbations of log-concave measures. *Annali Della Scuola Normale Superiore Di Pisa-Classe Di
 613 Scienze*, 17(4):1491–1519, 2017.

614

615 Giovanni Conforti. Weak semiconvexity estimates for schrödinger potentials and logarithmic
 616 sobolev inequality for schrödinger bridges. *Probability Theory and Related Fields*, 189(3):1045–
 617 1071, 2024.

618

619 Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. KL convergence guarantees for
 620 score diffusion models under minimal data assumptions. *SIAM Journal on Mathematics of Data
 621 Science*, 7(1):86–109, 2025a.

622

623 Giovanni Conforti, Daniel Lacker, and Soumik Pal. Projected langevin dynamics and a gradient
 624 flow for entropic optimal transport. *Journal of the European Mathematical Society*, 2025b.

625

626 Yin Dai, Yuan Gao, Jian Huang, Yuling Jiao, Lican Kang, and Jin Liu. Lipschitz transport maps via
 627 the Föllmer flow. *arXiv preprint arXiv:2309.03490*, 2023.

628

629 Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypoth-
 630 esis. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=MhK5aXo3gB>.

631

632 Zhao Ding, Yuling Jiao, Xiliang Lu, Zhijian Yang, and Cheng Yuan. Sampling via Föllmer flow.
 633 *arXiv preprint arXiv:2311.03660*, 2023.

634

635 Ronen Eldan and James R Lee. Regularization under diffusion and anticoncentration of the infor-
 636 mation content. *Duke Mathematical Journal*, 167(5):969–993, 2018.

637

638 Max Fathi, Dan Mikulincer, and Yair Shenfeld. Transportation onto log-lipschitz perturbations.
 639 *Calculus of Variations and Partial Differential Equations*, 63(3):61, 2024.

640

641 Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow ODEs of diffu-
 642 sion models in wasserstein distances. In *28th International Conference on Artificial Intelligence
 643 and Statistics (AISTATS)*, volume 258, 2025.

644

645 Xuefeng Gao, Hoang M Nguyen, and Lingjiong Zhu. Wasserstein convergence guarantees for a
 646 general class of score-based generative models. *Journal of machine learning research*, 26(43):
 647 1–54, 2025.

648

649 Yuan Gao, Jian Huang, Yuling Jiao, and Shurong Zheng. Convergence of continuous normalizing
 650 flows for learning probability distributions. *Machine Learning*, 2024.

651

652 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 653 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

648 Marta Gentiloni-Silveri and Antonio Ocello. Beyond log-concavity and score regularity: Im-
 649 proved convergence bounds for score-based generative models in w_2 -distance. *arXiv preprint*
 650 *arXiv:2501.02298*, 2025.

651

652 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 653 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in Neural Infor-*
 654 *mation Processing Systems*, volume 27. Curran Associates, Inc., 2014.

655 Young-Heon Kim and Emanuel Milman. A generalization of caffarelli's contraction theorem via
 656 (reverse) heat flow. *Mathematische Annalen*, 354(3):827–862, 2012.

657

658 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *2nd International*
 659 *Conference on Learning Representations*, 2014.

660 Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations*
 661 *and Trends® in Machine Learning*, 12(4):307–392, 2019.

662 Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal
 663 transport. *Discrete and Continuous Dynamical Systems*, 34, 2013. doi: 10.3934/dcds.2014.34.
 664 1533.

665

666 Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating con-
 667 vergence of score-based diffusion models, provably. In *Forty-first International Conference on*
 668 *Machine Learning*, 2024. URL <https://openreview.net/forum?id=KB6s1OUQP9>.

669

670 Jae Hyun Lim, Nikola B Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzade-
 671 nesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, et al. Score-based
 672 diffusion models in function space. *Journal of Machine Learning Research*, 26(158):1–62, 2025.

673

674 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 675 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-*
 676 *sentations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

677

678 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
 679 transfer data with rectified flow. In *The Eleventh International Conference on Learning Repre-*
 680 *sentations*, 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.

681

682 Zhaoyang Lyu, Xudong Xu, Ceyuan Yang, Dahua Lin, and Bo Dai. Accelerating diffusion models
 683 via early stop of the diffusion process. *arXiv preprint arXiv:2205.12524*, 2022.

684

685 Dan Mikulincer and Yair Shenfeld. On the lipschitz properties of transportation along heat flows.
 686 In *Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 2020-2022*, pp. 269–290.
 687 Springer, 2023.

688

689 Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad. Royale*
 690 *Sci.*, pp. 666–704, 1781.

691

Connor Mooney, Zhongjian Wang, Jack Xin, and Yifeng Yu. Global well-posedness and conver-
 692 gence analysis of score-based generative models via sharp lipschitz estimates. In *The Thirteenth*
 693 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=r3cWq6KKbt>.

694

Joe Neeman. Lipschitz changes of variables via heat flow. *arXiv preprint arXiv:2201.03403*, 2022.

695

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
 696 shminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Machine*
 697 *Learning Research*, 22(57):1–64, 2021.

698

Jakiw Pidstrigach. Score-based generative models detect manifolds. *Advances in Neural Information*
 699 *Processing Systems*, 35:35852–35865, 2022.

700

Litu Rout, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
 701 Chu. Semantic image inversion and editing using rectified stochastic differential equations. *arXiv*
 702 *preprint arXiv:2410.10792*, 2024.

702 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 703 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=TIdIXIpzhoI>.
 704

705 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 706 Poole. Score-based generative modeling through stochastic differential equations. In *International
 707 Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.
 708

709 Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
 710 nonlinear dimensionality reduction. *science*, 290(5500):2319–2323, 2000.
 711

712 Rens van de Schoot, Sarah Depaoli, Ruth King, Bianca Kramer, Kaspar Märtens, Mahlet G Tadesse,
 713 Marina Vannucci, Andrew Gelman, Duco Veen, Joukje Willemsen, et al. Bayesian statistics and
 714 modelling. *Nature Reviews Methods Primers*, 1(1):1, 2021.
 715

716 Xiaoliang Wan and Shuangqing Wei. Vae-krnet and its applications to variational bayes. *Communi-
 717 cations in Computational Physics*, 31(4):1049–1082, 2022.
 718

719 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
 720 Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
 721 intelligence. *Nature*, 620(7972):47–60, 2023.
 722

723 Xixian Wang and Zhongjian Wang. Wasserstein bounds for generative diffusion models with gaus-
 724 sian tail targets. *arXiv preprint arXiv:2412.11251*, 2024.
 725

726 Lu Yubin, Wang Zhongjian, and Bal Guillaume. Mathematical analysis of singularities in the diffu-
 727 sion model under the submanifold assumption. *East Asian Journal on Applied Mathematics*, 15
 728 (4):669–700, 2025.
 729

730 Jia-Jie Zhu. Inclusive KL minimization: A wasserstein-fisher-rao gradient flow perspective.
 731 In *Frontiers in Probabilistic Inference: Learning meets Sampling*, 2025. URL <https://openreview.net/forum?id=c1SHHymeIU>.
 732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755