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ABSTRACT

We provide attainable analytical tools to estimate the error of flow-based gener-
ative models under the Wasserstein metric and to establish the optimal sampling

iteration complexity bound with respect to dimension as O(\/E) We show this
error can be explicitly controlled by two parts: the Lipschitzness of the push-
forward maps of the backward flow which scales independently of the dimension;
and a local discretization error scales O(1/d) in terms of dimension. The former
one is related to the existence of Lipschitz changes of variables induced by the
(heat) flow. The latter one consists of the regularity of the score function in both
spatial and temporal directions.

These assumptions are valid in the flow-based generative model associated with
the Follmer process under the Gaussian tail assumption. As a consequence, we
show that the sampling iteration complexity grows linearly with the square root of
the trace of the covariance operator, which is related to the invariant distribution
of the forward process.

1 INTRODUCTION

The landscape of deep learning has been fundamentally reshaped by the emergence of powerful
generative models, including Generative Adversarial Networks (GANs) (Goodfellow et al., 2014
Arjovsky et al.,[2017)), Variational Auto-encoders (VAEs) (Kingma & Welling} 2014; Kingma et al.,
2019), and Normalizing Flows (Papamakarios et al., [2021; Wang et al., [2023; |Wan & Wei, |2022),
which have achieved remarkable success in a wide range of applications across modalities like im-
ages, audio, and text. These models are capable of learning complex data distributions, allowing
them to generate high-quality samples (Achiam et al., [2023; Song et al., 2021)).

Diffusion models (DM) are the state-of-the-art generative models, which can be analyzed via the
SDE framework (Song et al., 2021). With the same forward and backward marginal as DM, flow-
based models (Chen et al) [2023bfc) are generative models with deterministic flow given initial,
offering a strong basis for statistical inference. This unique feature makes them highly effective in
applications such as image and audio synthesis, as well as density estimation (Cheng et al., 2024)).

Early works on DMs and flow-based models provide reverse KL guarantees (Chen et al., [2023aj
Benton et al.| [2024; |Conforti et al. [2025; L1 et al.| [2024). While for structured data, where the
target typically lies on a compact sub-manifold (Tenenbaum et al.| [2000; Bengio et al., |2017), the
KL divergence between the backward process and the target is ill-defined. Therefore, one may
turn to the analysis of flow-based models under the Wasserstein metric, and in this paper, we will
consider the W5 distance in Euclidean space, which is well-defined among distributions with finite
second-order moments. One of the central difficulties in the analysis under the W5 distance is
the accumulation of local error in the Lyapunov-type estimate. This is in sharp contrast with KL-
based analysis (Altschuler & Chewil 2024; |Zhul 2025; |Kim & Milman, 2012) which admits the
Girsanov’s theorem (for instance, one in |(Chen et al.[(2023a)) showing the constant scaling of the
local error.

In light of this, the main contribution of this paper is to provide analytical tools that study the
accumulation error along the sampling flow under the Wasserstein metric and hence ensure the op-
timal iteration complexity bound O(\/&) More precisely, we first analyze the potential asymptotic
scaling of the truncation error in terms of the temporal variable and the ambient dimension. Then
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we bound the accumulation of error by the Lipschitz properties of the push-forward maps of the
backward flow. As a justification, we illustrate the attainability of the assumptions by showing the
optimal complexity bound in Follmer flow under the Gaussian tail assumption. Such an assumption
applies to both regular and singular targets (when early stopping is applied), extendable to infinite-
dimensional settings, with further implications for Bayesian inverse problems.

1.1 RELATED WORK

Lipschitz changes of variables In the field of PDE, the Lipschitzness of transport maps was initiated
by [Caffarellil (2000), who constructed such maps between log-concave probability measures. Build-
ing on this, /Colombo et al.|(2017)) developed global Lipschitz maps for compactly supported pertur-
bations of log-concave measures. An alternative approach beyond optimal transport involves diffu-
sion processes. By leveraging the maximum principle for parabolic PDEs, one can show that log-
concavity is preserved along the associated diffusion semigroup (Kim & Milman, [2012). Mikulincer
& Shenfeld| (2023) obtained a sharper Lipschitz constant for measures with bounded support and
Gaussian mixtures, improving Caffarelli’s result. Based on this, Dai et al.|(2023) assume a finite third
moment and semi-log-convexity to construct a well-posed unit-time Follmer flow whose terminal
map is Lipschitz and pushes a Gaussian to a target measure in the unit time interval [0, 1]. Neeman
(2022) relaxed Colombo’s compact support requirement to boundedness, and |[Fathi et al.[ (2024) ex-
tended it to Gaussian in R? and uniform spherical measures. Furthermore, Brigati & Pedrotti| (2024
obtained the sharpest Lipschitz bound in this setting without controlling the third-order derivative
tensor of potential V3W. For clarity, we summarize the assumptions on target distributions and
their Lipschitz constants in Table [2] with details in Appendix [A] Despite these results shed light on
potential minimal assumption for the convergence guarantee of flow-based models, in later context,
we will demonstrate that estimation of the time derivative of velocity field 9,V is also crucial on the
pathway of optimal complexity bounds.

Continuous flow-based generative models Building on score-based (Song et al., [2021) and denois-
ing diffusion models (Gao & Zhu}[2025)),[Salimans & Ho|(2022) introduces stable parameterizations
and a distillation method to reduce sampling steps while maintaining sample quality. Flow match-
ing (FM) (Lipman et al., |2023) extends continuous normalizing flows (CNFs) (Chen et al., [2018])
by training a neural ODE-parameterized vector field vg(x, t) to match a target velocity v(z, t) along
fixed probability paths, unifying diffusion and non-diffusion models for efficient and stable gener-
ation. Rectified flow (Liu et al., 2023) learns neural ODEs that transport distributions along nearly
straight paths by minimizing

1
mln/ E“|X1 — Xo - U(Xt,t)Hﬂ dt, where Xt = tXl + (1 - t)Xo,
0
yielding deterministic couplings with reduced transport cost and efficient one-step simulation. In
addition, stochastic interpolants (Albergo et al.,|2023;|Albergo & Vanden-Eijnden,2023)) unify flow-
based and diffusion-based methods to bridge arbitrary densities,

Xt:I(t7X07X1)+’Y(t)z7 te [07 1]7 (1)

recovering the Schrodinger bridge when the interpolant is optimized (Léonard, |2013). Recently,
Flow Map Matching (FMM) (Boffi et al., [2025) has accelerated sampling by learning the two-time
flow map of generative dynamics, thereby alleviating the computational cost associated with con-
tinuous models. Geng et al.| (2025) connect one-step generative modeling to multiscale physical
simulations via average velocity, achieving leading performance on ImageNet 256256 without
pre-training or distillation.

Convergence bounds Recent studies control the KL, W5, and TV distances between the generative
and target distributions to guarantee convergence and measure training discretization errors. |Al-
bergo & Vanden-Eijnden| (2023) bounded the W3 distance by e!*2X H (%) under the smoothness
and Lipschitz assumptions, where H (¢) measures discrete velocity error. |Albergo et al.|(2023) de-
rived KL-based perturbation bounds for CNF estimators, while FMM (Boffi et al., |[2025) improved
W bounds for pre-trained models via Lagrangian and Eulerian distillation losses controlling the
teacher-student Wasserstein gap. The estimation error of the FM has been analyzed for typical data
distributions (e.g., manifold-supported) by [Benton et al.|(2023), and a nonparametric O(n_l/ (‘i+5))
convergence rate under early stopping was established by |Gao et al.| (2024). Subsequently, |Cheng
et al|(2024) showed JKO flows reach O(e?) KL error in N < log(1/e) steps, extending to non-
density cases and yielding mixed KL-W, guarantees. We summarize recent complexity results for
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diffusion models and flow-based models (under Wasserstein distance) in Table[T] Detailed theorems

appear in Lemmas |A.101A.16] In this work, we achieve an optimal dependence of O (\/E) on the

data dimension d without the assumption of log-concaveness of the target.

Table 1: Complexity bounds for DM/flow-based models in d dimensions: previous results vs. ours.

Target P Complexity Result
P, log-concave* o (Eiod(log %)2) Gao & Zhu|(2025)) Tab. 1
G-tail Ass.* o (ﬁ log i) Wang & Wang](2024) Cor. 3.5
0
weakly log-concave™ O 6%) Bruno & Sabanis|(2025) Thm.3.12
0
Supp Bp(g)/log-concave/GM ~ O(n~1/(d+9)) Gao et al|(2024) Thm. 1.2

G-tail Ass. o (ﬁ> This work Thm[3.15

* denotes works on diffusion models; n is the sample size.

1.2  CONTRIBUTIONS

* We point out that the W5s-distance between the generative and target distributions is con-
trolled by the Lipschitzness of the push-forward maps introduced by sampling flow. By
providing concrete bounds on the Lipschitz coefficient, we obtain an explicit estimate of
the accumulation error.

* While prior works often rely on smoothness or strict log-concavity, we adopt a general
condition in applications-the Gaussian tail Assumption to provide the well-posedness
and Lipschitz regularity of Follmer flow, with explicit, dimension-free Lipschitz bounds

(Corollary [3.TT]and Corollary [3.14).

* By leveraging the the Gaussian tail Assumption to obtain accurate upper bounds on
the time derivative of velocity field |9;V'| (Theorem [3.8), our framework avoids the need
for end-point constraints or early stopping, enabling training and sampling throughout the

entire interval ¢ € [0, 1]. This framework naturally extends the O (\/8) complexity results

of the SDE flow to the deterministic flow, achieving even better complexity than previous
approaches (Wang & Wang| 2024)).

2 FLOW-BASED MODEL

Consider a continuous flow governed by a velocity field V' via the ODEﬂ
—

dX;
dt

With the N steps discretization in time, 0 = tg < t; < --- < ty = 1, the ODE @]) in each
sub-interval [t,,, t,+1], can be interpreted as a local transport map,

$— —
=V(tX:), Xo=uz, tel0,1]. (2)

— —
TTL(th) = thJrl- (3)

-
The overall flow-based model X (z) is then obtained by the composition of transport maps

—

Xi(z)=(In-10TN-20 - 0Tp)(x).

< —
An approximation of X (z) can be interpret as approximation of {7}, }\ = by {T,,})=". To quan-
—
tify the error of the approximation, we denote the marginal distribution of the actual state X, by

— —
Py,.,,and @, . of the approximated state. Correspondingly we have,

Ptn+1 = (Tn)#(Ptn)> Qt"+1 = (Tn)#(Qtn)' 4)

'We used the left arrow < to represent its connections to the backward process in the score based model.
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=
Follmer flow For any ¢ € (0,1), we consider a diffusion process (X;);c[o,1—<] that gradually
transforms the target distribution v into a Gaussian A/ (0, C') over time by the following 1td SDE

2 1 2 2C pd
dXt:fl—XtdtJr 1—th, Xo~v, tel0,1—¢], (5)

where W, is a standard Brownian motion, C’ 1s a symmetnc positive-definite covariance matrix.
The transition probability distribution from X o to X ¢ 1s given by
XtIX():iL'O NN((l—t)l’o,t(Q—t)C) (6)

The marginal distribution flow (p¢)¢c[0,1—<] Of the forward diffusion process satisfies the Fokker-
Planck-Kolmogorov (FPK) equation in an Eulerian framework

1
Opr =V - (pt 1_t[I+CV10gpt( )]) on[0,1 —¢] xRY, Hp=v (7)

Then Follmer flow is formally defined as the backward process of such a forward diffusion (3]), while
preserving the same marginal distributions in (7).

Definition 2.1 (Follmer flow in formal sense). A Follmer flow (Z)te[o,l] solves the IVP
dx e P
dtt = V(t7Xt)a XU ~c, te [Oa 1]7 (8)
V(t,z) = ¢ [z +S(tx)], vie(0,1;  V(0,2):=VCE,[X],

S(t,x) :— CV log pi(x) is the score function with probability density p; = p1— in forward FKP
equation (I). We call V (t, x) a Féllmer velocity field.

Following (@), we define Pt as the marginal distribution of X te in the forward diffusion process.
Given the initial distribution PO = Piata, then for all ¢ € [0, 1], Pt = P1 ‘-

In practice, the velocity field V(1 — ¢t,2) = & [z + CV log i, (z)] is not available since no closed

form expression of p; is known. To this end, one approximates V' by a neural network V. The
network is trained by minimizing an L, estimation loss,

~ 1
EslV(A —t,2) - 1—¢ [z + CV log p; ()] 2.

After training, with ‘7(1 —t,x), one can generate samples of the target distribution via an Euler-type
discretization of the continuous-time process, starting from the Gaussian initialization ¢,

dY

dt

Note that (9)) defines the transport map T for the learned Follmer flow, governed by the appr0x1mate

.
t—V(tn,Yt) Y, ~vc, tE€[tn,tnt], n=01...,N—1. )

velocity field V(tn, Ytn) over the sub-interval [¢,,, t,4+1] C [0, 1]. Distribution of generation Qt is
then defined by ().

Well-posedness of Follmer flow Under appropriate assumptions on the target distribution v, one
can show the Follmer flow being the time-reversal of the forward diffusion process (3). For instance,
under third moment (Assumption [3.6), semi-log-convexity (Assumption [A.19) and the structural
assumptions (Assumption@]) on v, Dai et al.|(2023)) studied the Follmer flow in the case C' = I,
where the score function is given by

S(t,x) := Vlog /Rd(27r(1 - t2))_% exp (—';él__ti;)) v(dy).

It can be shown that the velocity field V' is Lipschitz continuous in « with a well-defined initial
condition V' (0, z). By the Cauchy-Lipschitz theory (Ambrosio & Crippal 2014)), one can define a
Lagrangian flow (X}").c[0,1] governed by the well-posed ODE system,

dX; =-V({Q —t,X[)dt, Xi~v, tel0,1],
sharing the same marginal distribution with (3)).

In this work, we study the Follmer flow with correlated Gaussian initial based on the Gaussian
tail Assumption and retain the spatially anisotropic noise assumption (C' # I); later in see
Theorem [3.8]for the regularity of the velocity field and Lemma for the proof of well-posedness.
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General Notations Let ¢ denote the density of N'(0,C). For an n x n matrix A, the operator
norm || - || is defined as

A
|All = sup ||T = largest eigenvalue of vV AT A.
v#0 v

For symmetric positive-definite A, define the weighted ¢ norm
|25 == (A7, A7V %),
which reduces to the standard ¢ norm | - | when A = I. For a vector (matrix)-valued function f(x),

Ml =sw @, (1]l = sup [ @)).

3 MAIN RESULTS

In this section, we present the main results. We first analyze a general flow-based model, not nec-
essarily restricted to the Follmer flow. We then validate the assumptions and present the complexity
results for the Follmer flow under the Gaussian tail assumption.

3.1 LIPSCHITZ CHANGES OF VARIABLES IMPLIES WASSERSTEIN BOUND OF FLOW-BASED
MODELS

For the sake of compactness, we impose the following assumption on the second-order moment.

Assumption 3.1 (Second moment). The data distribution has a bounded second moment, Mo :=
E,,|2|? < 0o. We further denote,

My = max{Tr(C), M},

relates to the maximum second-order moment, where C'is a symmetric, positive-definite covariance
matrix.

Next, we assume that the following bound holds with some dimension-free constant.
Assumption 3.2 (Lipschitzness of 7). Vn =0,..., N —1, Lip(T,,) < oo, and H?:o Lip(T;) < oo.

We will justify the attainability of the Assumption[3.2]in Corollary [3.T1]
Assumption 3.3 (Lipschitzness of T'). Vn =0, ..., N —1, Lip(T})) < oo, and [[" =0 sz(T ) < oc.

We will verify Assumption [3.3]in Corollary [3.14]

Assumption 3.4 (Accuracy of approximation). There exists constants K, K., Ko, €, such that

\/IE e |Tu(z) = Tl |2<h<(K\ﬁ+

x~ Py,

+K2)h+e>,

with time step size h = t, 11 — tp.
This scaling follows since
T (2) — Tn(z) = h(V(z) — V(z)) + O(h?),

as verified in the Follmer case Theorem The term O(h) reflects the e-accuracy of the learned

velocity V() (Assumption , while the term O(h?) stems from the Taylor expansion of T}, (z)
over [ty, t,+1] and depends on its regularity, possibly also on ambient dimension d and time t.

Next, we outline the core proof strategy of this work. The key step is to demonstrate the Lipschitz
continuity of both the original and discretized flows, which is critical for guaranteeing the conver-
gence of flow-based generative models.
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Theorem 3.5. Assume that the target distribution satisfies Assumption and follows Lipschitz-
ness Assumption and approximation error Assumption With constant step size h, the
— — —

Wasserstein-2 distance between the target distribution Py = P1 and the generation () is bounded
as,

N—-1
Wa(P1,Q) < | [ Lin(T)) | Wa(Po. Q)
j=0

N—-2N-2 (10)

A -
+h Lip(T; K/My+ —— + Ky |h +
o s

This result shows that the first term in the bound scales the initial discrepancy
— ~
Wa(Py,Q,) by the product of Lipschitz constants (vaz_ol Lip(Tj)), and the second term

Proof see Appendix [B.1]

((K VMo + \/% + E) h+ e), captures accumulated discretization errors (Assumption .

Similar results (T7) and (T8) are listed in Proposition [A.10] and Proposition [A.13} while the

precise scaling of the second term remains unspecified. To be noted, in the limit of A — 0,
N-2 1 s

h3 k=0 Jie

Notably, Theorem [3.5]is of general validity: it applies to all flow-based models and their discrete

counterparts satisfying the relevant assumptions, and is not limited to the Follmer case.

3.2 ANALYSES OF FOLLMER FLOW UNDER GAUSSIAN TAIL ASSUMPTION

In this section, we focus on the Follmer flow and derive the main convergence result based on
Theorem [3.5]through Lipschitz changes of variables, which plays a central role in our analysis.

Assumption 3.6 (Third moment). The data distribution has a bounded third moment, i.e. E,,|z|> <
0.

We note that the third-moment assumption [3.6]is only required to ensure well-posedness of Follmer
flow at ¢ = 0 in the proof of Lemma[3.10|(see Appendix[B.3). For our complexity bound, the second
moment Assumption [3.1]is sufficient.

Our analysis is based on the following key assumption that the tail distribution of the target is similar
to a Gaussian distribution with covariance matrix A.

Assumption 3.7 (G-tail). The density of target distribution py € C%(R?) and has the following tail
decomposition:
212
Po(x) = exp (—2|A) exp(h(x)),

where there are independent of dimension constants such that,

(i) A is a symmetric, positive-definite matrix which can be simultaneously diagonalized with
C, and
A <oo, [ICll<oo, [ACTH| < oo, [CAT| < co.

(ii) the remainder term h follows

IVCOVh|s < 00, [|[CV3h|s < c0.

The Gaussian tail Assumption[3.7]generalizes the log-concavity condition in|Ding et al.| (2023);/Gao
et al.| (2024)) to heavier-than-sub-Gaussian tails while ensuring sufficient decay for well-posedness
and convergence. Although stronger than the weak semi-log-concavity assumption of |Bruno &
Sabanis| (2025), it yields sharper guarantees: weak semi-log-concavity implies O(d) sampling com-
plexity, whereas the Gaussian tail assumption achieves O(1/d) scaling in a non-log-concave setting
and also accommodates realistic distributions such as early stopping, see (16)).
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The following theorem bounds the Lipschitz constant and the time derivative of the Follmer velocity
field in (8) under the Gaussian tail Assumption supporting the Lipschitz changes of variables in
Corollary [3.1T]and convergence rate in Theorem [3.13]

Theorem 3.8 (Regularity of the velocity field). The Gaussian tail Assumption implies the
Follmer velocity field V (t, -) has the following regularity properties:

V(t,2)| < Ko+ Katla], Vi e [0,1],
[VV(t, )loo < (K + K2)t, vt € [0,1],
K (11
6

|0:V (¢, )| < Ks|x| +

= + K7  Vte[0,1),

where the coefficients are dimension-free constants given explicitly in Table[3]

To handle the blow-up of |0,V (¢, z)| near t = 0,1, Ding et al.[(2023) restrict ¢ to [§,1 — §]. In
particular, |Gao et al.| (2024) shows Lipschitz continuity of V' in ¢ over [0,1 — dp] with constant
scaling as O(dy 2). In contrast, under our Gaussian tail assumption, we employ different techniques,
such as the Brascamp-Lieb inequality (Brascamp & Liebl [1976)), to bound |9;V (¢, x)|. This analysis
reveals that the term \/1%7 is integrable on [0, 1], thus posing no obstacle to convergence, allowing
training and sampling over the full interval ¢ € [0, 1].

Detailed proof of Theorem [3.8]is provided in Appendix

Remark 3.9. Our theoretical bound also applies to MeanFlow (Geng et al.||2025), a single-
step generative model leveraging the averaged velocity

t
V(z,rt) = ! /V(x,T)dT.

t—r

t
Direct calculation by shows, |V (z,r,t)] < Ko+ %K2‘$|

Lemma 3.10 (Well-posedness). Suppose that the third moment Assumption and the Gaussian
tail Assumption[3.7|hold. Then the Féllmer velocity field is well-defined at the t = 0, in the sense
that

V(0,2) i lim V(t,2) — lim 25502 _ a1y (12)
t—0 t—0 t

-
Consequently, the Follmer flow (Xt)ie[o,1) is a unique solution to IVP ). Moreover, the push-

forward measure satisfies
—

Yoo (X1)™h = Po.
Proof see Appendix [B.3]
Corollary 3.11 (Lipschitzness of continuous flow). If po follows the Gaussian tail Assumption[3.7]

+—
then the Follmer flow (X)ic(o,1) is Lipschitz with a dimension-free constant, more precisely,

K1+K2)

+—

Lip(X1(2)) < VX1 (2)lop < exp < (13)

2

Proof see Appendix [B.4]

Bound like (T3] can also be achieved in [Caffarelli| (2000); [Colombo et al] (2017); [Kim & Milman
(2012); Mikulincer & Shenfeld (2023); Brigati & Pedrotti| (2024) under various assumptions, as
detailed in Appendix [A| In general, the constants involved are dimension-free.

To analyze the stability and convergence of the discrete flow, we first assume the following bound
on the velocity field approximation error at the discretization points.

Assumption 3.12 (Accuracy of the learned velocity field). For each time discretization point t,, the

accuracy of learned velocity V (t,,, x) approximates the true velocity field V (t,,, x) with uniformly
bounded error in expectation:

B [V(tn,a) = V(tn,2)]* < €.
1—tn
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Next, we assume that the learned velocity field inherits the regularity of the continuous flow under
the Gaussian tail Assumption
éssumption 3.13 (Regularity of the learned velocity field). Assume the learned velocity field
V(t, z) follows

IVV (s Moo < (K1 + Ko + Ks)t

for some positive constant K.

Corollary 3.14 (Lipschitzness of discrete flow). The regularity of learned velocity field Assump-
+—

tion |3.13|implies the Lipschitz property of the learned flow (Yt)te[o,l] with a dimension-free con-
stant, such that

Lip(Y1(2)) < VY 1(2)]lop < exp (128> |

2
Proof see Appendix [B.3]

3.3 MAIN CONVERGENCE THEORIES

Theorem 3.15. Suppose that the third moment Assumption[3.6] the Gaussian tail Assumption 3.7}
the accuracy and regularity assumptions[3.12} [3.13|on the learned velocity field hold. Using the Eu-
ler method for the Follmer flow with uniform step size h = t,, 41 —t,, < 1 ensures \/Mg convergence
between the target data distribution and the generated distribution:

Wa(Po, Q) < exp (W) <\/§ (K5 Mo + o) o+ 2e>. (14)

where K1, K, ..., Ky are the constants defined in Theorem[3.8 and Assumption[3.13] with explicit
expressions given in Table[3]

Proof see Appendix [B.6|

— —
Corollary 3.16. To reach a distribution Q, such that Wa(Py, Q) = O(g¢) with uniform step size
h =tn4+1 —ty, < 1 requires:

h—(’)< i >, N—l—(’)(' 0>’
F My h €0
and Assumption to hold with € = (’)(60).

The complexity bound established in Corollary grows linearly with the square root of the trace
of the forward process’s covariance operator, independent of dimension, and thus extends naturally
to infinite-dimensional generative models. An illustrative case is provided in Appendix [C] where we
consider Bayesian inverse problems in function spaces restricted to an arbitrary finite dimension.

Relation to Prob ODE The probabilistic ODE (Prob ODE) (Song et al., 2021} Gao & Zhu, [2025))

dX, - 1 PR
I = f(sts) - 59(5)2V10gp8(X8>7 s € [Ta 0]7 (15)

can be viewed as a time-rescaled Follmer flow, via s — In ( ) where T is finite time. Since
Lipschitzness of the transport maps are invariant under time rescaling, the results of Corollary [3.16]
apply directly to the (15). The discretization can be chosen as

1
sn:1n<t), n=1,...,N.

In the forward Prob ODE, the distribution approaches Gaussian only as s — +oo. To realize this
limit in practice, we set so = +oo and initialize the dynamics with Xy, ~ A(0,C), and take

~ <
T=3s =In (%) with X, ~ Q;, = N(0,C) + t1VCE,[X]. The result of Corollary [3.16
indicates that our method improves the computational complexity of the Prob ODE, whereas Wang

3
& Wang|(2024) shows N = O (ngo (log M?ti?(c)) ) under the same setting.
0 0

1
t
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3.4 CONVERGENCE UNDER BOUNDED SUPPORT ASSUMPTION

Real-world data often lie on low-dimensional manifolds, where the distribution is not absolutely
continuous with respect to Lebesgue measure in the ambient dimension, and therefore KL bounds
may diverge (Pidstrigach| [2022). This motivates the adoption and study of the manifold assump-
tion (De Bortoli, 2022;|Yubin et al.,|2025)), which, under compactness, entails the following bounded
support assumption.

Assumption 3.17 (Bounded support assumption). Suppose distribution pg has compact support
with Diam(Supp(po)) < R for some constant R > 0.

Set0 =ty < t1 < --- <ty = 1—J as the discretization points, where the early stopping coefficient
|2
0 < 1. Let g, = exp (—%) * qo, where qq satisfies the bounded support Assumption |3.17

||

Consider g(x) = log gy (z) + 5=, inspired by similar results in (De Bortoli, 2022; Mooney et al.,
2025; Wang & Wang| 2024), we have
R 2R?
Vgl < 30 1V?9llec < - (16)

Applying the above derivation to the forward Follmer process at stopping time d, o2 corresponds
to 1 — (1 — )%, go(x) corresponds to 15po(25z). Then by Theorem , we get the following
Lipschitz bound of the velocity field under Assumption

Corollary 3.18. Suppose that the bounded support Assumption[3.17 holds. Taking C = I, in (8),
and A = (1 — (1 —6)2)1, in Assumption[3.7) then for all t € [0,1 — 6],
V()] < K3+ Kitlel,
IVV (o < (K7 + K3,

K*
oV (t,x)| < Kilz| + —S— + K2,
‘t ( I’)‘_ 5|| m

where coefficients are defined in Table[d)

The proof parallels the corollary in[Wang & Wang| (2024)).

Using the Lipschitz bound from Corollary [3.18] we obtain a bounded-support-version W5 bound by
tracking the constants in Theorem [3.15]

Theorem 3.19. Suppose that the bounded support Assumption[3.17|and the accuracy and regularity
Assumptions hold. Take C = 14, 0 < 1, then we have

= < 3R? 1 K,
Wa(Ps,Q1_s) < exp (W to5 Tt 78) <\/§ (Kék\/ Moy + K;) h+ 26),

where KF and K¢ are dimension-free constants, whose explicit forms given in Table 4| and the
constant Ky is defined in Assumption[3.13]

Then we list the complexity bound under the early stopping setup.
«— =
Corollary 3.20. With R and ¢ fixed, achieving a distribution QQ,_;s such that W1 (Ps,Q1_s5) =

O(e) requires:
o)

€0
and Assumption to hold with e = O(ep).

- = — —
Wa(Ps, Po) < VE|Xs — Xo|? < v/2My4,
—

the complexity bound can also be derived with respect to Py. More precisely, we consider the
following practical scenario. Now we assume R? = O(d), My = O(d), My = O(d). Then

-
optimizing § to achieve Wa(Pg, Q1_5) = O(eo) requires the following complexity bound:

3
logN =0 (d4> .
€0

Noticing that,



Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=117geBbCR1t.

Jason M Altschuler and Sinho Chewi. Shifted composition III: Local error framework for KL diver-
gence. arXiv preprint arXiv:2412.17997, 2024.

Luigi Ambrosio and Gianluca Crippa. Continuity equations and ODE flows with non-smooth veloc-
ity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 144(6):1191-1244,
2014.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214-223. PMLR, 2017.

Cesare Arzela. Sulle funzioni di linee. Gamberini e Parmeggiani, 1895.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schonlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

Yoshua Bengio, lan Goodfellow, Aaron Courville, et al. Deep learning, volume 1. MIT press
Cambridge, MA, USA, 2017.

Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching methods.
arXiv preprint arXiv:2305.16860, 2023.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly $d$-linear
convergence bounds for diffusion models via stochastic localization. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=r5njV3BsuDl

Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
with stochastic interpolants: A mathematical framework for consistency models. Transactions on
Machine Learning Research, 2025.

Herm Jan Brascamp and Elliott H Lieb. On extensions of the brunn-minkowski and prékopa-leindler
theorems, including inequalities for log concave functions, and with an application to the diffusion
equation. Journal of functional analysis, 22(4):366-389, 1976.

Giovanni Brigati and Francesco Pedrotti. Heat flow, log-concavity, and lipschitz transport maps.
arXiv preprint arXiv:2404.15205, 2024.

Stefano Bruno and Sotirios Sabanis. Wasserstein convergence of score-based generative models
under semiconvexity and discontinuous gradients. Journal of Machine Learning Research, 26:
1-54, 2025.

Luis A Caffarelli. Monotonicity properties of optimal transportation and the fkg and related inequal-
ities. Communications in Mathematical Physics, 214(3):547-563, 2000.

Patrick Cattiaux and Arnaud Guillin. Semi log-concave markov diffusions. In Séminaire de proba-
bilités XLVI, pp. 231-292. Springer, 2014.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:

User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735-4763. PMLR, 2023a.

10


https://openreview.net/forum?id=li7qeBbCR1t
https://openreview.net/forum?id=r5njV3BsuD
https://openreview.net/forum?id=r5njV3BsuD

Under review as a conference paper at ICLR 2026

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ode is provably fast. Advances in Neural Information Processing Systems, 36:68552-68575,
2023b.

Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions:
A non-asymptotic analysis for ddim-type samplers. In International Conference on Machine
Learning, pp. 4462-4484. PMLR, 2023c.

Xiuyuan Cheng, Jianfeng Lu, Yixin Tan, and Yao Xie. Convergence of flow-based generative models
via proximal gradient descent in wasserstein space. IEEE Transactions on Information Theory,
70(11):8087-8106, 2024.

Maria Colombo, Alessio Figalli, and Yash Jhaveri. Lipschitz changes of variables between per-
turbations of log-concave measures. Annali Della Scuola Normale Superiore Di Pisa-Classe Di
Scienze, 17(4):1491-1519, 2017.

Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. KL convergence guarantees for
score diffusion models under minimal data assumptions. SIAM Journal on Mathematics of Data
Science, 7(1):86-109, 2025.

Yin Dai, Yuan Gao, Jian Huang, Yuling Jiao, Lican Kang, and Jin Liu. Lipschitz transport maps via
the Follmer flow. arXiv preprint arXiv:2309.03490, 2023.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothe-
sis. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https:
//openreview.net/forum?id=MhK5aXo3gB.

Zhao Ding, Yuling Jiao, Xiliang Lu, Zhijian Yang, and Cheng Yuan. Sampling via Follmer flow.
arXiv preprint arXiv:2311.03660, 2023.

Ronen Eldan and James R Lee. Regularization under diffusion and anticoncentration of the infor-
mation content. Duke Mathematical Journal, 167(5):969-993, 2018.

Max Fathi, Dan Mikulincer, and Yair Shenfeld. Transportation onto log-lipschitz perturbations.
Calculus of Variations and Partial Differential Equations, 63(3):61, 2024.

Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow ODEs of diffu-
sion models in wasserstein distances. In 28th International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 258, 2025.

Yuan Gao, Jian Huang, Yuling Jiao, and Shurong Zheng. Convergence of continuous normalizing
flows for learning probability distributions. Machine Learning, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, volume 27. Curran Associates, Inc., 2014.

Young-Heon Kim and Emanuel Milman. A generalization of caffarelli’s contraction theorem via
(reverse) heat flow. Mathematische Annalen, 354(3):827-862, 2012.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, 2014.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations
and Trends® in Machine Learning, 12(4):307-392, 2019.

Christian Léonard. A survey of the schrodinger problem and some of its connections with optimal
transport. Discrete and Continuous Dynamical Systems, 34, 2013. doi: 10.3934/dcds.2014.34.
1533.

11


https://openreview.net/forum?id=MhK5aXo3gB
https://openreview.net/forum?id=MhK5aXo3gB

Under review as a conference paper at ICLR 2026

Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating con-
vergence of score-based diffusion models, provably. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=KB6s10UQP9.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PgvMRDCJT9t.

Xingchao Liu, Chengyue Gong, and giang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=XViTT1lnw5z.

Dan Mikulincer and Yair Shenfeld. On the lipschitz properties of transportation along heat flows.
In Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 2020-2022, pp. 269-290.
Springer, 2023.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pp. 666-704, 1781.

Connor Mooney, Zhongjian Wang, Jack Xin, and Yifeng Yu. Global well-posedness and conver-
gence analysis of score-based generative models via sharp lipschitz estimates. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=r3cWg6KKbtl

Joe Neeman. Lipschitz changes of variables via heat flow. arXiv preprint arXiv:2201.03403, 2022.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1-64, 2021.

Jakiw Pidstrigach. Score-based generative models detect manifolds. Advances in Neural Information
Processing Systems, 35:35852-35865, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?i1d=TIdIXIpzhol.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.

Rens van de Schoot, Sarah Depaoli, Ruth King, Bianca Kramer, Kaspar Mirtens, Mahlet G Tadesse,
Marina Vannucci, Andrew Gelman, Duco Veen, Joukje Willemsen, et al. Bayesian statistics and
modelling. Nature Reviews Methods Primers, 1(1):1, 2021.

Xiaoliang Wan and Shuangqing Wei. Vae-krnet and its applications to variational bayes. Communi-
cations in Computational Physics, 31(4):1049-1082, 2022.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47-60, 2023.

Xixian Wang and Zhongjian Wang. Wasserstein bounds for generative diffusion models with gaus-
sian tail targets. arXiv preprint arXiv:2412.11251, 2024.

Lu Yubin, Wang Zhongjian, and Bal Guillaume. Mathematical analysis of singularities in the diffu-
sion model under the submanifold assumption. East Asian Journal on Applied Mathematics, 15
(4):669-700, 2025.

Jia-Jie Zhu. Inclusive KL minimization: A wasserstein-fisher-rao gradient flow perspective.
In Frontiers in Probabilistic Inference: Learning meets Sampling, 2025. URL https://
openreview.net/forum?id=clSHHymeIU.

12


https://openreview.net/forum?id=KB6slOUQP9
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=r3cWq6KKbt
https://openreview.net/forum?id=r3cWq6KKbt
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=clSHHymeIU
https://openreview.net/forum?id=clSHHymeIU

