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ABSTRACT

We provide attainable analytical tools to estimate the error of flow-based gener-
ative models under the Wasserstein metric and to establish the optimal sampling

iteration complexity bound with respect to dimension as O(\/E) We show this
error can be explicitly controlled by two parts: the Lipschitzness of the push-
forward maps of the backward flow which scales independently of the dimension;
and a local discretization error scales O(1/d) in terms of dimension. The former
one is related to the existence of Lipschitz changes of variables induced by the
(heat) flow. The latter one consists of the regularity of the score function in both
spatial and temporal directions.

These assumptions are valid in the flow-based generative model associated with
the Follmer process and 1-rectified flow under the Gaussian tail assumption. As
a consequence, we show that the sampling iteration complexity grows linearly
with the square root of the trace of the covariance operator, which is related to the
invariant distribution of the forward process.

1 INTRODUCTION

The landscape of deep learning has been fundamentally reshaped by the emergence of powerful
generative models, including Generative Adversarial Networks (GANs) (Goodfellow et al., 2014
Arjovsky et al.,[2017)), Variational Auto-encoders (VAEs) (Kingma & Welling} 2014; Kingma et al.,
2019), and Normalizing Flows (Papamakarios et al., [2021; Wang et al., [2023; |Wan & Wei, |2022),
which have achieved remarkable success in a wide range of applications across modalities like im-
ages, audio, and text. These models are capable of learning complex data distributions, allowing
them to generate high-quality samples (Achiam et al., [2023; Song et al., 2021)).

Diffusion models (DM) are the state-of-the-art generative models, which can be analyzed via the
SDE framework (Song et al., 2021). With the same forward and backward marginal as DM, flow-
based models (Chen et all [2023bjc) are generative models with deterministic flow given initial
distribution, offering a strong basis for statistical inference. This unique feature makes them highly
effective in applications such as image and audio synthesis, as well as density estimation (Cheng
et al., [2024).

Early works on DMs and flow-based models provide reverse KL guarantees (Chen et al., [2023a;
Benton et al., 2024} |Conforti et al., [2025a}; [L1 et al., 2024). However, for structured data, where
the target typically lies on a compact sub-manifold (Tenenbaum et al.l [2000; Bengio et al., |2017),
the KL divergence between the backward process and the target is ill-defined. Therefore, one may
turn to the analysis of flow-based models under the Wasserstein metric, and in this paper, we will
consider the Wy distance in Euclidean space, which is well-defined among distributions with finite
second-order moments. One of the central difficulties in the analysis under the W, distance is
the accumulation of local error in the Lyapunov-type estimate. This is in sharp contrast with KL-
based analysis (Altschuler & Chewi, 2024} Zhu| 2025} [Kim & Milman), 2012) which admits the
Girsanov’s theorem (for instance, one in (Chen et al.| (2023a)) showing the constant scaling of the
local error.

In light of this, the main contribution of this paper is to provide analytical tools that study the
accumulation error along the sampling flow under the Wasserstein metric and hence ensure the op-

timal iteration complexity bound 0(\/@ More precisely, we first analyze the potential asymptotic
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scaling of the truncation error in terms of the temporal variable and the ambient dimension. Then
we bound the accumulation of error by the Lipschitz properties of the push-forward maps of the
backward flow. As a justification, we illustrate the attainability of the assumptions by showing the
optimal complexity bound in Follmer flow under the Gaussian tail assumption. Such an assump-
tion applies to both regular and singular targets (when early stopping technique (Lyu et al., 2022) is
applied), extendable to infinite-dimensional settings, with further implications for Bayesian inverse
problems.

1.1 RELATED WORK

Lipschitz changes of variables In the field of PDE, the Lipschitzness of transport maps was initiated
by [Caffarelli (2000), who constructed such maps between log-concave probability measures. Build-
ing on this, |Colombo et al.|(2017)) developed global Lipschitz maps for compactly supported pertur-
bations of log-concave measures. An alternative approach beyond optimal transport involves diffu-
sion processes. By leveraging the maximum principle for parabolic PDEs, one can show that log-
concavity is preserved along the associated diffusion semigroup (Kim & Milman| [2012). Mikulincer
& Shenfeld| (2023) obtained a sharper Lipschitz constant for measures with bounded support and
Gaussian mixtures, improving Caffarelli’s result. Based on this,Dai et al.|(2023)) assume a finite third
moment and semi-log-convexity to construct a well-posed unit-time Follmer flow whose terminal
map is Lipschitz and pushes a Gaussian to a target measure in the unit time interval [0, 1]. Neeman
(2022) relaxed Colombo’s compact support requirement to boundedness, and |[Fathi et al.| (2024) ex-
tended it to Gaussian in R? and uniform spherical measures. Furthermore, Brigati & Pedrotti| (2024)
obtained the sharpest Lipschitz bound in this setting without controlling the third-order derivative
tensor of potential V3W. For clarity, we summarize the assumptions on target distributions and
their Lipschitz constants in Table [2] with details in Appendix [A] Despite these results shed light on
potential minimal assumption for the convergence guarantee of flow-based models, in later context,
we will demonstrate that estimation of the time derivative of velocity field 9,V is also crucial on the
pathway of optimal complexity bounds.

Continuous flow-based generative models Building on score-based (Song et al., [2021) and denois-
ing diffusion models (Gao & Zhu| [2025), [Salimans & Ho| (2022)) introduces stable parameteriza-
tions and a distillation method to reduce sampling steps while maintaining sample quality. Flow
matching (FM) (Lipman et al., |2023) extends continuous normalizing flows (CNFs) (Chen et al.,
2018)) by training a neural ODE-parameterized vector field vg(z, ¢) to match a target velocity v(z, t)
along fixed probability paths, unifying diffusion and non-diffusion models for efficient and stable
generation. Rectified flow (Liu et al., 2023; Rout et al., |2024) learns neural ODEs that transport
distributions along nearly straight paths through iterative rectification processes, yielding determin-
istic couplings with reduced transport cost and enabling efficient one-step simulation. In addition,
stochastic interpolants (Albergo et al., 2023} |Albergo & Vanden-Eijnden, 2023) unify flow-based
and diffusion-based methods to bridge arbitrary densities,

Xt:I(t7X0aX1)+’7(t)Z7 te [07 1]7 (D

recovering the Schrodinger bridge when the interpolant is optimized (Léonard, [2013)). Recently,
Flow Map Matching (FMM) (Boffi et al., [2025) has accelerated sampling by learning the two-time
flow map of generative dynamics, thereby alleviating the computational cost associated with con-
tinuous models. Geng et al.| (2025) connect one-step generative modeling to multiscale physical
simulations via average velocity, achieving leading performance on ImageNet 256256 without
pre-training or distillation.

Convergence bounds Recent studies control the KL, W5, and TV distances between the generative
and target distributions to guarantee convergence and measure training discretization errors. |Al-
bergo & Vanden-Eijnden| (2023) bounded the W3 distance by e!*2X H (%) under the smoothness
and Lipschitz assumptions, where H (¢) measures discrete velocity error. |Albergo et al.|(2023) de-
rived KL-based perturbation bounds for CNF estimators, while FMM (Boffi et al., [2025) improved
W5 bounds for pre-trained models via Lagrangian and Eulerian distillation losses controlling the
teacher-student Wasserstein gap. The estimation error of the FM has been analyzed for typical data
distributions (e.g., manifold-supported) by Benton et al.|(2023)), and a nonparametric O(n_l/ (d+5))
convergence rate under early stopping (Lyu et al.,2022)) was established by|Gao et al.| (2024), where
n denotes the sample size. Subsequently, (Cheng et al.| (2024) showed JKO flows reach O(¢?) KL
error in N < log(1/e) steps, extending to non-density cases and yielding mixed KL-W5 guaran-
tees. We summarize recent complexity results for diffusion models and flow-based models (under
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Wasserstein distance) in Table [I] Detailed theorems appear in Lemmas [A.TOA.T6 In this work,
we achieve an optimal dependence of O (\/&) on the data dimension d without the assumption of

log-concaveness of the target.

Table 1: Complexity bounds for DM/flow-based models in d dimensions: previous results vs. ours.

Target P Complexity Result
Py log-concave* o (Eiod(log 5)2) Gao & Zhul (2025) Tab. 1
G-tail Ass.* O (ﬁ log i) Wang & Wang| (2024) Cor. 3.5
one-side Lip+weakly log-concave* @) % Gentiloni-Silveri & Ocello|(2025) Thm.3.5
weakly log-concave™ (@) dg Bruno & Sabanis (2025) Thm.3.12
G-tail Ass.[3.7 o () This work Thm[3.15

* denotes works on diffusion models; n is the sample size.

1.2 CONTRIBUTIONS

* We point out that the W5-distance between the generative and target distributions is con-
trolled by the Lipschitzness of the push-forward maps introduced by sampling flow. By
providing concrete bounds on the Lipschitz coefficient, we obtain an explicit estimate of
the accumulation error.

* While prior works often rely on smoothness or strict log-concavity, we adopt a general
condition in applications-the Gaussian tail Assumption to provide the well-posedness
and Lipschitz regularity of Follmer flow, with explicit, dimension-free Lipschitz bounds

(Corollary and Corollary [3.14).

* By leveraging the Gaussian tail Assumption to obtain accurate upper bounds on the
time derivative of velocity field |0;V'| (Theorem [3.8)), our framework avoids the need for
end-point constraints or early stopping (Lyu et al.l 2022), enabling training and sampling

throughout the entire interval ¢ € [0, 1]. This framework naturally extends the O (\/ﬁ)

complexity results of the SDE flow to the deterministic flow, achieving even better com-
plexity than previous approaches (Wang & Wang, [2024).

2 FLOW-BASED MODEL

We begin by introducing a unified formulation of flow-based generative models. This general frame-
work allows the convergence analysis in Section[3]to apply seamlessly to both the Féllmer flow and
more general sampling dynamics. Consider a continuous flow governed by a velocity field V' via the
o dx
— —

Wt:V(t,Xt), Xo==x, tel0,1]. 2)
With the N steps discretization in time, 0 = tg < t; < --- < ty = 1, the ODE @]) in each
sub-interval [t,,, t,+1], can be interpreted as a local transport map,

+— +—
Tn(th) = th+1' 3)
-
The overall flow-based model X4 (z) is then obtained by the composition of transport maps
—
X1(.”L') = (TN,1 9] TN,Q ©---0 To)(fL‘)

+— —
An approximation of X (z) can be interpreted as approximation of {7}, }_! by {T;,}V_!. To
—

quantify the error of the approximation, we denote the marginal distribution of the actual state X, ,

'We used the left arrow < to represent its connections to the backward process in the score based model.
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“— «—
by Py, .., and Qthrl of the approximated state. Correspondingly we have,

“— — — ~ “—

Ptn+1 = (Tn)#(Ptn)7 Qtn+1 = (Tn)#(Qtn)' “4)

o
Follmer flow For any ¢ € (0,1), we consider a diffusion process (X;);c0,1—<] that gradually
transforms the target distribution v into a Gaussian A/ (0, C') over time by the following 1td SDE

— 20 —
dX; = _ﬁX +dt + 1 th, Xo ~ v, t€[071_€]7 o)

where W, is a standard Brownian motion, C’ 1S a symmetnc positive-definite covariance matrix.
The transition probability distribution from X o to X ¢ 1s given by
Xt|X0 =z0 ~ N ((1 = t)zo,t(2 — 1)C). (6)
The marginal distribution flow (ﬁt)te[o’l,a] of the forward diffusion process satisfies the Fokker-
Planck-Kolmogorov (FPK) equation in an Eulerian framework
1
Oipy =V - (pt 1 —t[m + C’Vlogpt(x)]) on[0,1 —¢] xRY Py =vr. )
Then Follmer flow is formally defined as the backward process of such a forward diffusion (3)), while
preserving the same marginal distributions in (7).
Definition 2.1 (Follmer flow in formal sense). A Follmer flow (Yt)te[o,l] solves the IVP
< <« —
dgit = V(taXt)v XO ~c, te [07 1]7 (8)
V(t,z) =3[z +S(t )], Vte(0,1]; V(0,z) := VCE,[X],

S(t,z) := CVlogpi(x) is the score function with probability density p; = Py in forward FKP
equation (7). We call V (t,x) a Féllmer velocity field.

— —

Following (@), we define P, as the marginal distribution of X, in the forward diffusion process.
— — —

Given the initial distribution Py = Pyata, then forall ¢ € [0,1], Py, = P1_¢, .

In practice, the velocity field V(1 — ¢, 2) = 1% [z + C'V log p;(2)] is not available since no closed

form expression of p, is known. To this end, one approximates V' by a neural network V. The
network is trained by minimizing an LL, estimation loss,
2

V(1 —tz)—

©))

For simplicity, we introduce the notation X; := (1 — )Xy + /t(2 — t)C' N, which shares the

N
same marginal distribution as X in (6). Then the velocity field V(1 — ¢, x) can be expressed as a
conditional expectation (Yubin et al., [2025)),

1
Es, (2) — [z + CV log pi(z))

1 1 X — (1 —1t)Xo
— I X+51-¢tX) =E X —
T XS )] X“'Xt[1—t O =2 —1)
With an appropriate weight of the ¢-variable, the loss in (9) becomes an approximation of this con-
ditional expectation via mean-squared prediction error,

V1 —-1tX):=

Xt_X:|

2

V(l—tX)— L x4 VeN

Exo, vnnto.ta), ¢ | A1) -t (1—0)/t2—10)

After training, with \7(1 —t, x), one can generate samples of the target distribution via an Euler-type
discretization of the continuous-time process, starting from the Gaussian initialization ¢,

+—
dY: -~ . & =

W :V(tn,Yt ), Yto ~ YC, tE [tn7tn+1], TLZO,l,N—l (10)
Note that (T0) defines the transport map T, for the learned Féllmer flow, governed by the approxi-
mate velocity field V (¢, Yt ) over the sub-interval [¢,,,t,+1] C [0, 1]. Distribution of generation

Qt is then defined by (@).



Under review as a conference paper at ICLR 2026

Well-posedness of Follmer flow Under appropriate assumptions on the target distribution v, one
can show the Follmer flow being the time-reversal of the forward diffusion process (3). For instance,
under third moment (Assumption [3.6), semi-log-convexity (Assumption [A-T9) and the structural
assumptions (Assumptionl@[) on v, Dai et al| (2023) studied the Follmer flow in the case C = I,
where the score function is given by

|z — ty|?

S(t,z) := Vlog /Rd(gm —12))"% exp < 2(1—tQ)> v(dy).

It can be shown that the velocity field V' is Lipschitz continuous in x with a well-defined initial
condition V' (0, z). By the Cauchy-Lipschitz theory (Ambrosio & Crippal 2014)), one can define a
Lagrangian flow (X );c[0,1] governed by the well-posed ODE system,

dX; =-V({1 —-t,X)dt, Xi~v, tel0,1],
sharing the same marginal distribution with (3).

In this work, we study the Follmer flow with correlated Gaussian initial based on the Gaussian tail
Assumption 3.7} and retain the spatially anisotropic noise assumption (C' # 1) to allow our theory
to generalize to infinite-dimensional settings requiring compactification (Lim et al.,|2025)); We refer
the reader to Theorem [3.8] for the regularity of the velocity field and Lemma [3.10] for the proof of
well-posedness.

General Notations Let v denote the density of A'(0,C'). For an n x n matrix A, the operator
norm || - || is defined as
A
|A]| = sup ||T = largest eigenvalue of VAT A.
v#0 v

For symmetric positive-definite A, define the weighted /5 norm
2% o= (A2, A7),
which reduces to the standard ¢ norm | - | when A = I. For a vector (matrix)-valued function f(x),

[floo =sup [£(2)], ([ flloc = sup |l£(2)I])-

3 MAIN RESULTS

In this section, we present the main results. Our analysis begins with a general flow-based frame-
work (not necessarily restricted to the Follmer flow), through which we develop Wasserstein-based
analytical tools that yield an optimal iteration complexity bound of v/d. We then validate the as-
sumptions and present the complexity results for the Follmer flow and 1-rectified flow under the
Gaussian tail assumption.

3.1 LIPSCHITZ CHANGES OF VARIABLES IMPLIES WASSERSTEIN BOUND OF FLOW-BASED
MODELS

For the sake of compactness, we impose the following assumption on the second-order moment.

Assumption 3.1 (Second moment). The data distribution has a bounded second moment, My =
E,,|z|? < oo. We further denote,

My = max{Tr(C), My},

relates to the maximum second-order moment, where C' is a symmetric, positive-definite covariance
matrix.

We consider a general covariance matrix C' to cover both the identity case C' = I; and the correlated
case C' # I;. In the main text, we primarily focus on the former, yielding Tr(C') = d and thus
My = O(d) with dimension d. At the same time, we retain C' # I in the derivation to extend our
theory to infinite-dimensional settings (Lim et al.| 2025]), with the general case further discussed in
Appendix [D]for Bayesian inverse problems.

Next, we make three assumptions, each holding with some dimension-free constants. We regard
these assumptions as generally valid, and under them, our convergence result Theorem [3.3] can be
established.
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Assumption 3.2 (Lipschitzness of T'). ¥n =0,..., N —1, Lip(T,) < oo, and HJ o Lip(T}) < oo.

We will justify the attainability of the Assumption in Corollary [3.11] by invoking the lipschitz
property of the velocity field established in Theorem Similar to Assumption 2] which imposes

Lipschitz continuity of 7', we also assume the Lipschitz continuity of 7" as stated below.
Assumption 3.3 (Lipschitzness of T'). Vn =0, ..., N —1, Lip(T})) < oo, and [[" =0 sz(T ) < oo

We will verify Assumption [3.3]in Corollary 3.14]by leveraging the lipschitz property of the learned
velocity field stipulated in Assumption B-13] The final assumption concerns the local discretization

error between 7" and T at each time step h, as described below.
Assumption 3.4 (Accuracy of approximation). There exists constants K, Ky, Ko, €, such that

\/EINE%(T;(:E)—T,L( ((K\ﬁ+ \/7+K2)h+e>,

with time step size h = t, 11 — ty.

This scaling follows since
To(x) — Tp(z) = h(V(z) - V(z)) + O(h?),

as verified in the Follmer case Theoremm The term O(h) reflects the e-accuracy of the learned
velocity V() (Assumption [3.12), while the term O(h?) stems from the Taylor expansion of T}, (z)
over [t,,t,+1] and depends on its regularity, possibly also on ambient dimension d and time t.

Next, we outline the core proof strategy of this work. The key step is to demonstrate the Lipschitz
continuity of both the original and discretized flows, which is critical for guaranteeing the conver-
gence of flow-based generative models.

Theorem 3.5. Assume that the target distribution satisfies Assumption [3.1| and follows Lipschitz-
ness Assumption [3.2] [3.3) and approximation error Assumption With constant step size h, the
— — —

Wasserstein-2 distance between the target distribution Py = P1 and the generation () is bounded
as,

e N-1 ~ —
Wa(P1,Q) < | [ Lip(Ty) | Wa(Po, Q)
" (11
N—-2N-2 N o IT L
+0 > I Lin@) | (Bv/Mo+ ——— + Kz )h+e

k=0 j=k W/ 1= t?
Proof see Appendix [B1}

This result shows that the first term in the bound scales the initial discrepancy
— ~
Wa(Pg,Q,) by the product of Lipschitz constants (H;V;Ol Lip(Tj)>, and the second term

((K v My + \/7 + K. 2) h+ e) captures accumulated discretization errors (Assumption

and a local discretization error scales O(y/Mj), yielding the (’)(\/3) dependence in the isotropic
case C = I,. Similar results and (T8) are listed in Proposition [A.10] and Proposition [A-13]
while the precise scaling of the second term remains unspecified. To be noted, in the limit of h — 0,

N-2 1
h3 k=0 e 7
Notably, Theorem [3.5]is of general validity: it applies to all flow-based models and their discrete
counterparts satisfying the relevant assumptions, and is not limited to the Follmer case.

3.2 ANALYSES OF FOLLMER FLOW UNDER GAUSSIAN TAIL ASSUMPTION

In this section, we focus on the Follmer flow and derive the main convergence result based on
Theorem 3.5 through Lipschitz changes of variables, which plays a central role in our analysis.
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Assumption 3.6 (Third moment). The data distribution has a bounded third moment, i.e. E,, |z|> <
0.

We note that the third-moment assumption [3.6]is only required to ensure well-posedness of Follmer
flow at ¢ = 0 in the proof of Lemma[3.10|(see Appendix[B.3). For our complexity bound, the second
moment Assumption [3.1]is sufficient.

Our analysis is based on the following key assumption that the tail distribution of the target is similar
to a Gaussian distribution with covariance matrix A.

Assumption 3.7 (G-tail). The density of target distribution py € C*(R?) and has the following tail
decomposition:

pote) = exp (1) expina),

where there are independent of dimension constants such that,

(i) A is a symmetric, positive-definite matrix which can be simultaneously diagonalized with
C, and
A <00, [ICll<oo, JACTH| < oo, [CAT| < co.

(ii) the remainder term h follows

IVCOVh|e < 00, [|[CV3h|so < c0.

The Gaussian tail Assumption[3.7]generalizes the log-concavity condition in|Ding et al.| (2023);/Gao
et al.[ (2024)) to heavier-than-sub-Gaussian tails while ensuring sufficient decay for well-posedness
and convergence. Although stronger than the weak semi-log-concavity assumption of |Chaintron
et al.|(2025); Bruno & Sabanis|(2025)), it yields sharper guarantees: weak semi-log-concavity implies
O(d) sampling complexity, whereas the Gaussian tail assumption achieves O(\/&) scaling in a non-
log-concave setting and also accommodates realistic distributions such as early stopping, see (T6).

The following theorem bounds the Lipschitz constant and the time derivative of the Féllmer velocity
field in (8) under the Gaussian tail Assumption[3.7] supporting the Lipschitz changes of variables in
Corollary 3.TT]and convergence rate in Theorem [3.15]

Theorem 3.8 (Regularity of the velocity field). The Gaussian tail Assumption implies the
Follmer velocity field V (t,-) has the following regularity properties:

V(t,2)| < Ko+ Katlal, vt e [0,1],
[IVV(t,)]loo < (K1 + K2)t, vt € [0,1], (12)
K

0,V (¢, 2)| < Ksz| + _+ Ky, Ve [0,1),

v1i—-t

where the coefficients are dimension-free constants, given explicitly in Table [3|of Appendix[B.2)}

To handle the blow-up of |0,V (¢, z)| near ¢ = 0,1, Ding et al.[(2023) restrict ¢ to [J,1 — J]. In
particular, |Gao et al.| (2024) shows Lipschitz continuity of V in ¢ over [0,1 — dp] with constant
scaling as O(dy 2). In contrast, under our Gaussian tail assumption, the control over the second
derivative of the tail allows us to bound |0;V (¢, x)| using techniques such as the Brascamp-Lieb
inequality (Brascamp & Lieb, (1976). This analysis reveals that the term ﬁ is integrable on
[0, 1], thus posing no obstacle to convergence, allowing training and sampling over the full interval
t € [0,1]. More importantly, this approach, to our knowledge, is the first to yield the improved

O(+/d) complexity bound, as formally stated in Corollary
Detailed proof of Theorem [3.8]is provided in Appendix

Remark 3.9. Motivated by the averaged-velocity construction in MeanFlow (Geng et al.| 2025)), we
introduce an analogous notion for the Follmer flow and define the averaged Follmer velocity as

_ 1 t
V(z,rt) = = 7A/ V(r,x)dr.
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Under the regularity condition (12)) satisfied by the Follmer velocity field, a direct calculation gives

the uniform bound

t+r
2

demonstrating that the averaged Follmer velocity preserves the same linear growth property as the

original velocity field.

]V(m,r,t)f < Koy + Ko |z,

Under the preceding assumptions and analysis, we establish the well-posedness of the Follmer model
+—
(Xt)tefo,1) in the following lemma.

Lemma 3.10 (Well-posedness). Suppose that the third moment Assumption 3.6 and the Gaussian
tail Assumption[3.7) hold. Then the Follmer velocity field is well-defined at the t = 0, in the sense
that

V(0,2) i lim V(t,2) — lim 25502 _ a1y (13)
t—0 t—0 t

-
Consequently, the Follmer flow (X¢)icjo,1) is a unique solution to IVP (). Moreover, the push-
forward measure satisfies

—
ve o (X1)™! = po.

Proof see Appendix B3] Under Assumption 3.7} we now establish the Lipschitz property of the

continuous flow (}t)te[o,l]-

Corollary 3.11 (Lipschitzness of continuous flow). If o follows the Gaussian tail Assumption 3.7}

then the Follmer flow (}_(t)te[o,l] is Lipschitz with a dimension-free constant, more precisely,

K+ Ko
)

+—

Lip(X1(2)) < [VX1(2)lop < exp ( (14)

Proof see Appendix Bound like (T4) can also be achieved in |[Caffarelli| (2000); [Colombo et al.
(2017); [Kim & Milman| (2012); [Mikulincer & Shenfeld (2023); Brigati & Pedrotti| (2024)) under

various assumptions, as detailed in Appendix [A] In general, the constants involved are dimension-
free.

To analyze the stability and convergence of the discrete flow, we first assume the following bound
on the velocity field approximation error at the discretization points.
Assumption 3.12 (Accuracy of the learned velocity field). For each time discretization point t,,, the

accuracy of learned velocity V(tn, x) approximates the true velocity field V (t,,, x) with uniformly
bounded error in expectation:

Next, we assume that the learned velocity field inherits the regularity of the continuous flow under
the Gaussian tail Assumption [3.7}

Assumption 3.13 (Regularity of the learned velocity field). Assume the learned velocity field

V (t,z) follows
IVV(tn, oo < (K1 + Ky + Kg)tn

for some positive constant Ks.

Although the bound may not be small in general, the Assumption [3.13]is essential for our theoret-
ical analysis and remains reasonable. The learned velocity field V (¢, z) is trained to approximate
the true velocity field V (¢,,,x) in Assumption which satisfies the required regularity (see
Theorem [3.8); Moreover, neural networks generally inherits the smoothness and controlled growth
induced by the architecture and training process, which prevents uncontrolled behavior in practice.
Assumption [3.13] can further be relaxed in the temporal ¢ direction to require only that the total
discrete-time sum of the score gradient is bounded; see Remark [B.T]in Appendix
—

We subsequently establish the Lipschitz property of the discrete flow (Y;);c[o,1) under Assump-

tion[3.131
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Corollary 3.14 (Lipschitzness of discrete flow). The regularity of learned velocity field Assump-
<

tion [3.13|implies the Lipschitz property of the learned flow (Y t);e[0,1] with a dimension-free con-
stant, such that

(Y by K+ K> + K.
Lip(Y1(x)) < VY 1()]|op < exp (128) ’

2
Proof see Appendix [B.3]

3.3 MAIN CONVERGENCE THEORIES

With the Lipschitz properties of the flow established (see Corollary [3.11] and Corollary 3.14)), we
next quantify how these bounds propagate through the discrete dynamics. Building on Theorem[3.3]
the following theorem provides a convergence result in Follmer flow case.

Theorem 3.15. Suppose that the third moment Assumption [3.6] the Gaussian tail Assumption 3.7}
the accuracy and regularity assumptions[3.12} 3.13|on the learned velocity field hold. Using the Eu-
ler method for the Follmer flow with uniform step size h = t, 1 —t,, < 1 ensures /Mg convergence
between the target data distribution and the generated distribution:

5 Ki+ K+ K
Wa(Po, Q) < exp (%) <\/§ (K5\/M0 + Kg) h+ ze>. (15)

where K1, Ko, ..., Ky are dimensionless constants defined in Theorem 3.8 and Assumption [3.13]
with explicit expressions given in Table Furthermore, with the covariance of base distribution

C = 14 in the Assumption|3.1 WQ(PO, ) =0(dh +e).
Proof see Appendix [B.6] Note that the first term in Theorem [3.3] stemming from the time-
propagatmg discrepancy of the semigroup maps, vamshes in Theorem [3.15] because the Follmer

flow (X t)tef0,1] is well-posed at t = 0, giving WQ(PO,QO) = 0. Thus, only the accumulated
discretization error remains, correspondmg to the second term in Theorem@

Corollary 3.16. To reach a distribution Ql such that )/Vg(Po7 Ql) = O(eo) with uniform step size
h =tny1 — tn, < 1 requires at most:

-o(i). v o2

and Assumption|3.12|to hold with e = O(eg). Furthermore, N = O (L) under the Assumption
with C = 1.

The complexity bound established in Corollary [3.16] grows linearly with the square root of the trace
of the forward process’s covariance operator, independent of dimension, and thus extends naturally
to infinite-dimensional generative models. An illustrative case is provided in Appendix[D] where we
consider Bayesian inverse problems in function spaces. Proposition 6 in|Gao et al.| (2025) establishes
that for the standard Gaussian as target distribution, O(\/&) complexity bound is optimal. This indi-
cates that our v/d dependence stems from intrinsic Gaussian concentration, making the dimensional
scaling fundamental rather than algorithm-induced. Notably, in efforts to obtain complexity bounds
under assumptions more general than log-concavity, recent works (Bruno & Sabanis|,[2025)) derived
an O(d) bound using the weakly log-concave assumption (Conforti, 2024; |Conforti et al., [2025b),
while (Gentiloni-Silveri & Ocello, 2025) obtained an O(d*) bound under the similar assumption.
These related works are summarized in Table [Tl

Since the probabilistic ODE (Prob ODE) (Song et al}, 2021}, |[Gao & Zhul [2025) can be viewed as a
time-rescaled Follmer flow, the result of Corollary |3.16]also implies that our method improves the
computational complexity of the Prob ODE compared to|Wang & Wang|(2024). We will provide a
detailed discussion in Appendix [C]

We further verified that our method extends to the 1-rectified flow setting (Liu et all, 2023} [Rout
[2024). In particular, it applies to the interpolation paths used in the flow built by the first
step rectification over independent coupling prior to the recursive construction, and retains the same

O(v/d) complexity stated in Corollary[3.16| The proof is deferred to Appendix
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3.4 CONVERGENCE UNDER BOUNDED-SUPPORT ASSUMPTION

Real-world data often lie on low-dimensional manifolds, where the distribution is not absolutely
continuous with respect to Lebesgue measure in the ambient dimension, and therefore KL bounds
may diverge (Pidstrigach, 2022). This motivates the adoption and study of the manifold as-
sumption (De Bortolil 2022} |Yubin et al., 2025), which, under compactness, entails the following
bounded-support assumption.

Assumption 3.17 (Bounded-support assumption). Suppose distribution pg has compact support
with Diam(Supp(po)) < R for some constant R > 0.

2
Let ¢, = exp (—‘29%) * o, where qo satisfies the bounded-support Assumption |3.17} Consider

||

g(xz) = logqs(x) + 4z, inspired by similar results in (De Bortoli, 2022; Mooney et al., 2025;
Wang & Wang, [2024), we have

2R?

IV%glloe < = (16)
Set0 =ty < t1 < --- <ty = 1—J as the discretization points, where the early stopping (Lyu
et al., [2022) coefficient 6 < 1. By expressing the distribution of the forward process of Follmer
flow at stopping time ¢ in the form g, we obtain the correspondences

1 = 1

2 2
+—1-(1-9 — ——Po(——x).
Then by Theorem [3.8] we get the following Lipschitz bound of the velocity field under Assump-
tion3.171
Corollary 3.18. Suppose that the bounded-support Assumption [3.17 holds. Taking C = I4 in (8),
and A= (1—(1-10)?)1,in Assumption then for all t € [0,1 — 0],
V(t2)| < K + K3tlal,

R
‘Vg|oo < 52

*

‘atv(tvx)‘ < K§|$| + 1 6 2 +K;7

where coefficients are defined in Table [ of Appendix|B.2]
The proof parallels the corollary in Wang & Wang|(2024). Using the Lipschitz bound from Corol-

lary ;1§L we obtain a bounded-support-version W5 bound by tracking the constants in Theo-
rem

Theorem 3.19. Suppose that the bounded-support Assumption[3.17\and the accuracy and regularity
Assumptions[3.12) 313 hold. Take C = 1,4, § < 1, then we have

= 3R? 1 K
W2(P53Q1_§) S exp (W + % + 78) (\/g (K;\/ MO + Kg) h + 26),

where KZ and K are dimension-free constants, whose explicit forms given in Table 4| and the
constant K is defined in Assumption[3.13]

With the result in Theorem[3.19] we can directly compute the complexity bound under the bounded-
support assumption with early stopping technique.

— -
Corollary 3.20. With R and ¢ fixed, achieving a distribution QQ,_g such that Wa(Ps,Q1_s5) =
O(eg) requires at most: N = O (\e/—oa), and Assumption|3.12|to hold with e = O(e).

- = — —
Wh(Ps, Po) < VE|Xs — Xo|? < V2d9,
—

the complexity bound can also be derived with respect to Py,. More precisely, we consider
the following practical scenario. Now we assume R? = O(d), then optimizing § to achieve

Noticing that,

—
Wa(Pg,Q4_s) = O(eo) requires at most logarithmic complexity with log N = O (Q)
€0

The conclusion and the discussion of future research directions are provided in Appendix [E]
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