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ABSTRACT

Anomaly detection requires detecting abnormal samples in large unlabeled
datasets. While progress in deep learning and the advent of foundation models has
produced powerful unsupervised anomaly detection methods, their deployment in
practice is often hindered by the lack of labeled data—without it, the detection
accuracy of an anomaly detector cannot be evaluated reliably. In this work, we
propose a general-purpose framework for evaluating image-based anomaly detec-
tors with synthetically generated validation data. Our method assumes access to a
small support set of normal images which are processed with a pre-trained diffu-
sion model (our proposed method requires no training or fine-tuning) to produce
synthetic anomalies. When mixed with normal samples from the support set, the
synthetic anomalies create detection tasks that compose a validation framework
for anomaly detection evaluation and model selection. In an extensive empirical
study, we find that our synthetic validation framework selects the same models and
hyper-parameters as selection with a ground-truth validation set when evaluated
on natural images (i.e., images of flowers and birds). We also find that prompts
selected by our method for CLIP-based anomaly detection outperforms all other
prompt selection strategies and leads to the overall best detection accuracy on all
datasets, including the challenging MVTec-AD dataset.

1 INTRODUCTION

Anomaly detection, automatically identifying samples that deviate from normal behavior, is an im-
portant technique for supporting medical diagnosis (Fernando et al., 2021), safeguarding financial
transactions (Ahmed et al., 2016), bolstering cybersecurity (Mirsky et al., 2018; Siadati & Memon,
2017), and ensuring smooth industrial operations (Bergmann et al., 2019). There has been signif-
icant progress in data-driven approaches for unsupervised anomaly detection (Deecke et al., 2021;
Liznerski et al., 2022; Jeong et al., 2023b; Li et al., 2023a; 2021; Reiss et al., 2021). Before an
anomaly detection method can be safely deployed in a new application, one must trust that it per-
forms as well as expected, but performing such an evaluation is often hindered by a major barrier:
the absence of labeled validation data. In many applications, validation data is typically absent be-
cause anomalies are rare and the large volume of available data is too expensive to label (Görnitz
et al., 2013; Trittenbach et al., 2021).

Labeled validation data is also beneficial for zero-shot anomaly detection. With recent developments
in foundation models, it has become possible to pre-train a large model on large-scale data from one
domain and then to deploy it for a new anomaly detection task. Specifically, CLIP-based anomaly
detection approaches (Jeong et al., 2023b; Liznerski et al., 2022; Zhou et al., 2021; Esmaeilpour
et al., 2022) have shown great performance in a variety of domains. While these approaches provide
the exciting possibility to construct new anomaly detectors for new applications on demand, they
could be more readily deployed in real-world applications if labeled validation data could aid with
prompt selection and model evaluation.

In this work, we study the efficacy of synthetically generated anomalies for model selection of
image-based anomaly detectors. Given a new image-based anomaly detection task, such as detect-
ing faulty objects in a manufacturing plant, we assume access to a small set of normal samples (Zhao
et al., 2021). Our approach leverages diffusion models (Ho et al., 2020; Song et al., 2021; Jeong
et al., 2023a) to generate synthetic anomalies from this small set of examples. The synthetic anoma-
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lies are then mixed with the normal examples to provide a synthetic validation set. In extensive
experiments, ranging from natural images to industrial applications, we show, that the performance
on anomaly detection benchmarks with synthetically generated validation sets often matches results
on a validation set with ground truth labels.

Importantly, we develop a method for anomaly generation, that does not require training or fine-
tuning a new diffusion model for the specialized anomaly detection task. Instead, we use the avail-
able normal samples and a diffusion model pre-trained on ImageNet (Deng et al., 2009; Dhari-
wal & Nichol, 2021) to interpolate between those normal samples (Jeong et al., 2023a). We find
that even for domains that are far from ImageNet, such as the industrial images in the MVTec-
AD dataset (Bergman & Hoshen, 2020), this scheme generates synthetic anomalies with realistic
backgrounds and consistent visual patterns.

Our work makes the following contributions:

• In Sec. 3.1, we present a framework for selecting image-based anomaly detection models based
on synthetically generated anomalies. Figure 1 shows the outline of our approach.

• We propose a practical technique for generating synthetic anomalies that uses a general-purpose
pre-trained diffusion model—without any fine-tuning or auxiliary datasets, described in Sec. 3.2.

• We empirically evaluate our method on a wide range of anomaly detection tasks and demonstrate
its success on two use-cases: model selection amongst candidate anomaly detectors (Sec. 4.2) and
prompt selection for anomaly detection with CLIP (Sec. 4.3).

2 RELATED WORK

Unsupervised anomaly detection. Recent advances in anomaly detection models include
autoencoder-methods (Chen & Konukoglu, 2018; Principi et al., 2017), deep one-class classifica-
tion (Ruff et al., 2018; 2019), and self-supervised learning-based methods (Bergman & Hoshen,
2020; Hendrycks et al., 2019b; Qiu et al., 2021; Sohn et al., 2020; Qiu et al., 2022a; Schneider et al.,
2022). While these methods are unsupervised, their architectures and training frameworks involve
various hyperparameters, which can have a strong impact on detection accuracy (Campos et al.,
2016; Goldstein & Uchida, 2016; Han et al., 2022). While Ding et al. (2022) propose to circumvent
model selection by building an ensemble of candidate methods, model selection typically requires
labeled validation data.

In outlier exposure (Hendrycks et al., 2019a), which has been extended to anomaly detection with
contaminated data (Qiu et al., 2022b) and to meta-learning (Li et al., 2023b), further improvements
in detection accuracy come from using samples from an auxiliary dataset, usually Tiny-ImageNet.
Although these auxiliary samples provide valuable additional training signal, they are too dissimilar
from normal samples and can be easily detected; therefore, they are not useful for model evaluation
or selection. Work in semi-supervised anomaly detection (Görnitz et al., 2013; Das et al., 2016; Trit-
tenbach et al., 2021; Li et al., 2023a) assumes access to a training set with some labeled anomalies
but obtaining such data is unrealistic in most real-world applications.

Anomaly detection with foundation models. Nowadays, large models can be pre-trained on mas-
sive datasets to learn rich semantic image features which have proven useful for anomaly detectors
in other vision domains—little to no additional training required. Large vision models such as vi-
sion transformers (ViT, Dosovitskiy et al. (2021)) or residual networks (ResNet, He et al. (2016))
pre-trained on ImageNet (Deng et al., 2009), can often be used as anomaly detectors in other vision
domains, either without fine-tuning or by fine-tuning an outlier exposure objective (Deecke et al.,
2021; Fort et al., 2021; Mirzaei et al., 2023; Reiss et al., 2021).

Another powerful class of foundation models are vision-language models like CLIP (Radford et al.,
2021). Esmaeilpour et al. (2022) use a support set of normal samples to learn a text description
generator for CLIP-based out-of-distribution detection. With hand-crafted text prompts CLIP can be
employed on a new anomaly detection (Liznerski et al., 2022) or anomaly segmentation task (Jeong
et al., 2023b; Zhou et al., 2021) without any training, i.e. in a zero-shot manner, which means
no training data for the new task is required. However, detection performance depends on several
key hyperparameters, especially the choice of prompts (Liznerski et al., 2022; Jeong et al., 2023b),
which implies that labeled validation data for prompt selection would be highly beneficial. However,
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Figure 1: We propose to use a pretrained diffusion model to turn a small dataset of normal sam-
ples into a synthetic validation set containing both real normal samples and synthetic anomalies,
described in Sec. 3.2. The synthetic validation set is then used for model selection and validation,
as described in Sec. 3.1. Components in blue are frozen, components in green are real data, and
components in orange are our techniques.

in the age of foundation models, when task-specific instances of foundation models require little to
no data, it does not make sense to assume access to labeled validation data.

Evaluation of tabular and time-series anomaly detection. Nguyen et al. (2016); Marques et al.
(2015; 2020) propose unsupervised model selection strategies with so called “internal metrics” that
can be computed from predicted anomaly scores on unlabeled data. (See Ma et al. (2023) for a
review.) Meta-training can offer another set of approaches for unsupervised anomaly detector selec-
tion (Schubert et al., 2023; Zhao et al., 2021; 2022). However, since meta-learning requires a large
number of related labeled datasets, their application has been limited to tabular data, and prior work
on internal metrics has been applied to tabular anomaly detection only (Nguyen et al., 2016; Mar-
ques et al., 2015; 2020; Ma et al., 2023). In contrast, we exploit recent advances in diffusion models
to enable anomaly detection model selection without labeled validation data in the vision domain.
In time-series anomaly detection, model evaluation is also known to be biased and unreliable due to
poorly labeled test data (Wu & Keogh, 2020; Wagner et al., 2023). Here, hand-crafted anomalies
can be useful (Lai et al., 2021). But for the evaluation of vision-based anomaly detectors, synthetic
anomalies need to go beyond pixel-wise manipulation and are instead required to reflect abnormal
patterns in a more complex, and often semantic, level of abstraction.

Generating images with guidance. Diffusion models (Ho et al., 2020; Song et al., 2021) have
recently been found to outperform other generative models (Dhariwal & Nichol, 2021). Although
generative models are traditionally used to generate in-distribution data, a variety of prior work
has proposed techniques that guide generative models to generate new distributions. Specifically,
text-guided generation (Kim et al., 2022; Kwon et al., 2023; Kawar et al., 2023; Mokady et al.,
2023; Tumanyan et al., 2023) with CLIP (Radford et al., 2021) guided the diffusion-based image
generation process with text prompts to generate samples from a distribution of interest, e.g. “cat
with glasses”. Luo et al. (2023) use CLIP embeddings of the labels of different classes to guide
StyleGAN (Karras et al., 2019; 2020) to generate images for the evaluation of image classifiers.
Similarly, Jain et al. (2023) use CLIP for model diagnosis. These approaches require the target labels
(e.g, gender, glasses, etc.) as inputs, but the nature of anomalies is typically unknown. Instead, we
rely on DiffStyle (Jeong et al., 2023a), which provides training-free guidance for image generation
by interpolating two images using the reverse DDIM process (Song et al., 2021). We find that
interpolating between two normal samples will typically preserve the dominant visual features, such
as realistic textures and background, while introducing slight manipulations that make the generated
images promising candidates for synthetic anomalies in our proposed model selection framework.

3 METHOD

In this section, we propose to use existing diffusion-based image generation techniques to generate
synthetic anomalies. By using these synthetic anomalies as a synthetic validation dataset, we enable
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model selection in domains where a real validation dataset does not exist. In Sec. 3.1, we describe
how synthetic anomalies can be used for model selection. We then propose a synthetic anomaly
generation approach in Sec. 3.2. Figure 1 demonstrates the overall process used by our method.

3.1 MODEL SELECTION WITH SYNTHETIC ANOMALIES

The absence of labeled validation data is a major roadblock in the deployment of anomaly detection
methods. However, normal data can usually be obtained. For this reason, we follow Zhao et al.
(2021), and assume access to a set of normal samples we call the support set Xsupport. In our empir-
ical study, we show that the support set can have as few as 10 normal samples. Using this support
set, we wish to construct a synthetic validation set that can aid model selection.

Creating a synthetic validation set and using it for model selection entails the following steps:

Step 1: Partitioning the support set. The support set Xsupport, is randomly partitioned into style
images Xstyle, content images Xcontent, and normal validation images Xin. Xstyle and Xcontent are used
for anomaly generation, and Xin is held out for evaluation.

Step 2: Generating synthetic anomalies. The style and content images are processed with Diff-
Style (Jeong et al., 2023a) to produce synthetic anomalies X̃out. Details will be given in Sec. 3.2.

Step 3: Mixing the synthetic validation set. The normal validation images Xin are combined with
the synthetic anomalies X̃out to produce a labeled synthetic validation set,

D = {(x, 1)|x ∈ X̃out} ∪ {(x, 0)|x ∈ Xin}, (1)

where the label 1 indicates an anomaly and 0 a normal image.

Step 4: Evaluating detection accuracy of candidate models. In a final step, candidate models
are evaluated in terms of their detection accuracy on the syntehtic validation set D. Anomaly de-
tection methods are typically evaluated in terms of AUROC, the area under the receiving operator
characteristic curve (Emmott et al., 2015; Maxion & Tan, 2000).

Since we assume a small support set, training or fine-tuning a generative (diffusion) model is infea-
sible. Instead, in Sec. 3.2, we propose to use a DDIM (Song et al., 2021) pre-trained on ImageNet
and DiffStyle, a training-free method for diffusion-based image-to-image style transfer, and adapt it
for generating synthetic anomalies. Our method does not perform any model training or fine-tuning
and does not require any data outside of the support set.

3.2 GENERATING SYNTHETIC ANOMALIES

We use DiffStyle (Jeong et al., 2023a) to generate synthetic anomalies with a pretrained DDIM.
From style images Xstyle, content images Xcontent, DiffStyle takes any style-context images pair as
input—a “style image” I(1) and a “content image” I(2)—and produces a new, generated image with
I(2)’s content and I(1)’s style. To achieve this, I(1) and I(2) are mapped into the diffusion model’s
latent space through the forward diffusion process, producing latent vectors x(1)

T and x
(2)
T . We refer

to the h-space (i.e., the inner-most layer of the UNet) of x(1)
T and x

(2)
T as h(1) and h(2) respectively.

The h-space has been shown to be a meaningful semantic space in the image domain, enabling prop-
erties such as linearity and composition between images and can be manipulated during a diffusion
model’s image generation process to achieve desired properties. We refer readers for more details
related to h-space to Kwon et al. (2023) and Jeong et al. (2023a).

Given two latent vectors h(1) and h(2), a simple linear interpolation is performed to style-transfer
between two images: h(gen) = (1 − γ)h(1) + γh(2) where γ represents the relative strength of the
content image during style transfer1. We use γ = 0.7 as the default in our experiments. We then
perform the asymmetric reverse diffusion process using x

(1)
T , replacing the h-space with h(gen):

xt−1 =
√
αt−1Pt(ϵ

θ
t (x

(1)
T |h(gen))) +Dt(ϵ

θ
t (x

(1)
T )). (2)

1The original DiffStyle work implements a spherical interpolation strategy to produce higher-quality im-
ages, but we found this was not necessary for our use case
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(a) CUB class 1 (b) MVTec-AD cable

Figure 2: Example pairwise interpolations for CUB class 1 (”Black Footed Albatross”) (left) and
MVTec-AD product ”cable” (right). For each example, the top row of images (in green) are used
as source “style” images, and the left column of images (in cyan) are used as source “content”
images. The inner grid (in red) shows each pairwise interpolation between the source style and
content image, performed with our modified DiffStyle process. All source images are drawn from
the distribution of class 1 support images; no validation data or images from other classes are used.

Once the reverse process is completed (i.e., at t = 0), the final output x0 is saved as a synthetic
anomaly. To generate the full set of synthetic anomalies X̃out, we apply all possibilities of (I(1), I(2))
in the cross product of Xstyle and Xcontent. Figure 2 shows examples of anomalies generated with
this approach; we find that our generated images have realistic backgrounds and textures, but can
contain various semantic corruptions expected of anomalous images. Our synthetic anomaly gener-
ation method assumes no knowledge of the distribution of potential anomalies: the general-purpose
diffusion model is not fine-tuned and only images from the support set Xsupport are used as inputs.

4 EMPIRICAL STUDY

To study the efficacy of synthetic anomalies for model selection, we develop an anomaly detec-
tion validation benchmark and investigate whether our synthetic validation delivers similar results
to ground-truth validation sets. Our evaluation spans various vision domains, including natural and
industrial images. We first describe the datasets, anomaly detection tasks, and anomaly genera-
tion details in Sec. 4.1. Next, we showcase two use cases of synthetic data in anomaly detection
validation—we find that our method selects the true best-performing model in five of six cases
(Sec. 4.2) and outperforms all other strategies for CLIP prompt selection (Sec. 4.3); these results are
achieved without any access to the real validation data.

4.1 EXPERIMENTAL SETUP

We present an experimental setup that can be used as a benchmark to evaluate synthetic validation
data. Our benchmark uses a set of anomaly detectors and anomaly detection tasks spanning three
vision domains. The tasks vary by difficulty from the easier one-vs-rest to the more difficult one-
vs-one anomaly detection setting. The goal of this benchmark is to evaluate how well results on
synthetic validation data correspond to results one would obtain with ground-truth validation data;
we estimate the absolute detection performance, the relative ranking of anomaly detectors, and the
optimal hyper-parameters (such as prompts for CLIP-based anomaly detection).

Datasets. Our benchmark spans three frequently-used image datasets: MVTec Anomaly Detection
dataset (MVTec-AD) (Bergmann et al., 2019), Caltech-UCSD Birds (CUB) (Wah et al., 2011), and
Flowers (Nilsback & Zisserman, 2008); all three datasets were used for the baseline evaluation in
(Mirzaei et al., 2023). MVTec-AD contains 15 real industrial product categories; for each category,
the training subset contains images of defect-free products, and the testing subset contains labeled
images of both good and defective products. CUB and Flowers are multi-class datasets containing
200 bird species and 102 flower species respectively.
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Anomaly detection tasks. Our benchmark contains 317 anomaly detection tasks: 15 from
MVTec-AD, 200 from CUB, and 102 from Flowers, where each class or category is iteratively
treated as normal. Besides considering the usual one-vs-rest anomaly detection setup for multi-
class datasets CUB and Flowers, we also adopt the one-vs-one setup used in Mirzaei et al. (2023)
to simulate more difficult anomaly detection tasks. Specifically, we individually select each class
as the inlier class and treat all other images as anomalies—both when considering each out-class
individually (one-vs-one) and when considering all out-classes as a single class (one-vs-rest). For
MVTec-AD, we predict images of defective products from good products for each product; each
product contains multiple defect types, which can be used as different out-classes for one-vs-one
measurements or represented as a single class for one-vs-rest. For all tasks, images from the in-class
training subset are used as the support set, and images from the relevant in-class and out-class test-
ing subsets are used for constructing the ground-truth validation set. In summary, we report three
variants of each task:

• One-Vs-Rest: the AUROC when considering all other classes as a single anomaly class

• One-Vs-One Average: the average AUROC when considering each out-class individually

• One-Vs-One Closest: the worst AUROC when considering each out-class individually

Generating synthetic anomalies. For all three datasets and all 317 anomaly detection tasks, we
generate synthetic anomalies with training examples from the in-class distribution only. For the
CUB and MVTec-AD datasets, we sample 10 images for Xstyle and 10 images for Xcontent images
from the training set, generating 100 synthetic anomalies. For the Flowers dataset, only 10 images
are included in the training set for each class, so we generate 25 synthetic anomalies, using five
images for Xstyle and five images for Xcontent. Figure 2 shows 15 examples of generated synthetic
anomalies for a single CUB class (left) and a single MYTec-AD product (right).

Although prior results in Kwon et al. (2023) and Kim et al. (2022) suggest that using a diffusion
model trained on the same dataset is required to generate high-quality images, we find that using
a single, common diffusion model is sufficient to generate synthetic anomalies. We use the same
pre-trained model (the 256x256 diffusion model trained on ImageNet without class conditioning
from Dhariwal & Nichol (2021)) for all datasets and anomaly detection tasks.

4.2 MODEL SELECTION ON SYNTHETIC DATA

We first demonstrate the effectiveness of our synthetic validation framework for model selection.
Given a set of candidate models, we show that one can select the suitable anomaly detection model
with the help of our synthetic anomalies generated with DiffStyle.2

Candidate anomaly detection models. We experiment across five pre-trained ResNet models
(ResNet-152, ResNet-101, ResNet-50, ResNet-34, ResNet-18) and five pre-trained Vision Trans-
formers (ViT-H-14, ViT-L-32, ViT-L-16, ViT-B-32, ViT-B-16). We use the ImageNet pre-trained
model weights of Dosovitskiy et al. (2021); He et al. (2016). To perform anomaly detection, we
follow the methodology of Mirzaei et al. (2023). First, a small set of examples are used to establish
a feature bank. Then, to perform detection, each input example is compared to the feature bank: the
total Euclidean distance to the 3-nearest neighbors is used as an anomaly score.

Evaluation setup. For each task, we vary the number of synthetic anomalies used in the synthetic
validation set—from the full set of synthetic anomalies (i.e., K = 100 for CUB) to as few as three
synthetic anomalies (K = 3). When reducing the number of synthetic anomalies, we always use the
K anomalies with the lowest anomaly score. We compute the AUROC for each task and candidate
model. For each dataset, we average the AUROC across tasks to compute the “synthetic AUROC”.
We repeat this process with real validation datasets, again averaging over tasks to compute the “real
validation AUROC”. Lastly, we compare real and synthetic AUROCs to investigate if the rankings
of candidate models are similar.

2We compare with using Tiny-ImageNet as synthetic anomalies for model selection in Appendix A.1. We
found that Tiny-ImageNet images do not serve as effective anomalies for model selection.

6



(a) CUB: One-vs-one Closest (b) Flowers: One-vs-one Closest

(c) CUB: One-vs-one Average (d) Flowers: One-vs-one Average

(e) CUB: One-vs-rest (f) Flowers: One-vs-rest

Figure 3: For most anomaly-detection benchmarks, our synthetic validation can be used to select the
same best-performing model as with real data. We compare the AUROC with synthetic validation
data (y-axis) and real validation data (x-axis) on all three benchmarks: one-vs-one closest (top),
one-vs-one average (middle), and one-vs-rest (bottom). Results are shown for the CUB (left) and
Flowers (right) datasets. Our synthetic validation is most effective for the one-vs-one average and
one-vs-rest benchmarks.

Evaluation results. Figure 3 shows the results for the CUB (left) and Flowers (right) datasets. For
our synthetic validation to be successful, the model ranking with synthetic data (along the y-axis)
should closely match the model ranking with real data (along the x-axis). We find that our synthetic
validation best approximate the one-vs-one average and one-vs-rest benchmarks, as they are more
robust to variations between classes. Figures 3c–3f show that the rankings of models are consistent:
the best-performing model is the same whether real or synthetic validation data is used, and relative
rankings of models are similar. We find that the one-vs-one closest benchmark, an approximation of
worst-case performance, is more difficult to estimate with synthetic anomalies. Figures 3a and 3b
show that, although the real and synthetic AUROCs are relatively aligned for the Flowers dataset,
the ranking is less consistent for the one-vs-one benchmark on the CUB dataset.

When performing model selection on the MVTec-AD dataset, we found that our results were inef-
fective at approximating the real AUROC and selecting the true best models. The results for this
experiment are shown in Appendix A.1 and Figure 5. We remark on potential reasons why synthetic
validation on the MVTec-AD dataset is more difficult. First, the MVTec-AD dataset presents the
fewest tasks (only 15 tasks, compared to 100+ for other datasets), leading to higher variance when
averaging. Second, MVTec-AD anomalies are more fine-grained and subtle; Appendix A.2 presents
a visualization of the embeddings for all three datasets, and we find that anomalies in the MVTec-
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Table 1: Synthetic outliers can effectively select CLIP prompts in the absence of real validation
data. We compare five methods for selecting CLIP prompts: (i) our method (described in Sec. 4.3),
(ii) a random choice of candidate prompt, (iii) always choosing the default prompt, (iv) our method
with Tiny-ImageNet as the synthetic anomalies, and (iv) the single, global best candidate prompt
an oracle would provide (grayed out as this cannot be obtained in practice). For each method, we
record the tasks where the selected prompt matches the best task-specific prompt, reporting the accu-
racy and raw count (in parentheses) for the one-vs-one closest and one-vs-one average benchmarks.
Across three datasets and two benchmarks, our method outperforms all other strategies, and even
outperforms the global best prompt in three out of six cases.

Flowers
(102 tasks)

CUB
(200 tasks)

MVTec-AD
(15 tasks)

One-Vs-One
Closest

Random Choice 10.0% 10.0% 10.0%
Default Prompt 0.0% (1) 2.5% (5) 6.7% (1)

Tiny-ImageNet Choice 17.6% (18) 17.0% (34) 6.7% (1)
Global Best Prompt (Oracle) 41.2% (42) 18.5% (37) 26.7% (4)

Our Method 37.2% (38) 23.0% (46) 40.0% (6)

One-Vs-One
Average

Random Choice 10.0% 10.0% 10.0%
Default Prompt 0.0% (1) 0.0% (0) 6.7% (1)

Tiny-ImageNet Choice 17.6% (18) 13.5% (27) 6.7% (1)
Global Best Prompt (Oracle) 44.1% (45) 32.5% (65) 40.0% (6)

Our Method 40.2% (41) 32.0% (64) 46.7% (7)

Table 2: Using our synthetic outliers to select CLIP prompts always results in the best average
AUROC, even in the absence of real validation data. We compare our method for selecting CLIP
prompts (described in Sec. 4.3) to the default prompt, the prompt choice made with Tiny-ImageNet,
the average of prompts, the hypothetical worst-case (always picking the worst prompt), and the
hypothetical best-case (always picking the best prompt). Oracle results are grayed out since they
cannot be obtained in practice, but we include them for reference.

Flowers
(102 tasks)

CUB
(200 tasks)

MVTec-AD
(15 tasks)

One-Vs-One
Closest

Default Prompt 0.697 0.570 0.436
Tiny-ImageNet Choice 0.718 0.582 0.438

Average of Prompts 0.708 0.577 0.441
Worst Prompt (Oracle) 0.658 0.527 0.367

Best Prompt (Oracle) 0.759 0.626 0.511

Our Method 0.729 0.590 0.463

One-Vs-One
Average

Default Prompt 0.954 0.970 0.585
Tiny-ImageNet Choice 0.964 0.971 0.592

Average of Prompts 0.957 0.971 0.582
Worst Prompt (Oracle) 0.948 0.964 0.522

Best Prompt (Oracle) 0.968 0.976 0.646

Our Method 0.964 0.973 0.598

AD dataset are the closest to their corresponding benign images. Finally, since our method relies on
ImageNet-trained artifacts (ViT, ResNet, CLIP, and our pre-trained diffusion models were all trained
with ImageNet) we expect synthetic validation to improve with foundation models that are more rep-
resentative of the close-up images of industrial products found in the MVTec-AD dataset. However,
as shown in the next section, our synthetic validation is still extremely effective for selecting CLIP
prompts for all datasets, including MVTec-AD.
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4.3 CLIP PROMPT SELECTION ON SYNTHETIC DATA

Zero-shot anomaly detection methods (Jeong et al., 2023b; Liznerski et al., 2022) save the effort on
collecting training samples. However, the performance of CLIP-based anomaly detection models
depend on the choice of prompts. Prior works evaluate across a variety of candidate CLIP prompts
for zero-shot image anomaly detection on real labeled validation data. Validation data might be also
absent in the zero-shot setting. Next, we evaluate the efficacy of our generated synthetic anomalies
for selecting CLIP prompts on our 317 anomaly detection benchmark tasks.

Zero-shot anomaly detection with CLIP. We perform zero-shot image anomaly detection with
CLIP (with the ViT-B/16 backbone) as suggested by Liznerski et al. (2022); Jeong et al. (2023b):
given an input, we submit two text prompts and predict the class with the higher similarity. We
assume that the name of the inlier class is known, and use “some” or “something” for anomalous
classes. For example, for the CUB dataset, if “red cardinal” is the name of the inlier class, we
compare the CLIP similarities of “a photo of a red cardinal” to “a photo of some
bird”. We select amongst a pool of prompt templates from Jeong et al. (2023b) for our anomaly
detection tasks. A full list of candidate prompts used for each dataset can be found in Appendix A.5.

Evaluation setup. We consider a set of ten candidate prompt templates shown in Ap-
pendix A.5.We evaluate each candidate prompt for the one-vs-one closest and one-vs-one average
task variants of the 317 anomaly detection tasks and select the prompt with the best AUROC com-
puted on three validation sets: our proposed synthetic validation set, an alternative validation set
with anomalies sampled from Tiny-ImageNet, and the ground-truth validation dataset. We measure
how often each strategy’s selected prompt matches the prompt selected with real validation data. For
comparison, we also include two baseline strategies: Random Choice that randomly selects a can-
didate prompt and Default Prompt that always selects the default prompt template (e.g., “a photo
of a [class name] bird” vs “a photo of some bird”). For reference, as an oracle
result, we also report how often a global best prompt matches the task-specific best prompts.

Evaluation results. For all three datasets, we report the prompt selection accuracy in Table 1 and
averaged AUROCs for different prompt-selection strategies in Table 2. In Table 1, compared to
all baselines, our method performs best for all tasks, outperforming all other strategies by 6–40%.
This suggests that our generated synthetic anomalies are helpful in selecting the best prompts for
tuning CLIP-based anomaly detectors on various tasks. Furthermore, our method outperforms the
single-best-prompt strategy on in three out of six settings (two task variants in three datasets shown
in Table 1). In these cases, the prompt selection accuracy difference ranges from -4% to +16%. We
emphasize that selecting the single best-performing prompt relies on access to the real validation
data, whereas our method only uses synthetic anomalies generated from in-class training sources.

As shown in Table 2, by selecting better prompts with our generated synthetic anomalies, we im-
prove the zero-shot anomaly detection results in the challenging one-vs-one closest setting over the
popular default choice of prompt, i.e., “a photo of a [class name]” by 3.4% on Flowers,
2% on CUB, and 2.7% on MVTec-AD. Our proposed prompt selection also provides a consistent
performance improvement over the averaged results of various prompts and the results of prompts
selected with Tiny-ImageNet, showcasing the general effectiveness of our method.

5 CONCLUSION

In this work, we investigate an approach for anomaly detection model selection and validation with-
out any validation data. To substitute for a validation dataset, we propose that a general-purpose
diffusion model can be used generate synthetic outliers, using only a small support set of in-class
examples as input. Unlike prior methods for synthetic anomaly generation, we do not rely on any
model training, fine-tuning, or any domain-specific architectures or techniques. Our empirical study
shows that synthetic validation datasets constructed with this approach can be used effectively in
two ways: for selecting amongst a set of candidate anomaly detection models, and for selecting
hyper-parameters for zero-shot anomaly detection models, specifically CLIP prompt templates.
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Erich Schubert, Ira Assent, and Michael E Houle. On the evaluation of unsupervised outlier
detection: measures, datasets, and an empirical study. Data mining and knowledge discovery, 30:
891–927, 2016.

Xiaoran Chen and Ender Konukoglu. Unsupervised detection of lesions in brain mri using con-
strained adversarial auto-encoders. In MIDL Conference book. MIDL, 2018.

Shubhomoy Das, Weng-Keen Wong, Thomas Dietterich, Alan Fern, and Andrew Emmott. Incorpo-
rating expert feedback into active anomaly discovery. In 2016 IEEE 16th International Confer-
ence on Data Mining (ICDM), pp. 853–858. IEEE, 2016.

Lucas Deecke, Lukas Ruff, Robert A Vandermeulen, and Hakan Bilen. Transfer-based semantic
anomaly detection. In International Conference on Machine Learning, pp. 2546–2558. PMLR,
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Ad-
vances in neural information processing systems, 34:8780–8794, 2021.

Xueying Ding, Lingxiao Zhao, and Leman Akoglu. Hyperparameter sensitivity in deep outlier
detection: Analysis and a scalable hyper-ensemble solution. Advances in Neural Information
Processing Systems, 35:9603–9616, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong. A meta-
analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158, 2015.

Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot out-of-distribution detec-
tion based on the pretrained model CLIP. In Proceedings of the AAAI conference on artificial
intelligence, 2022.

Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes.
Deep learning for medical anomaly detection–a survey. ACM Computing Surveys, 54(7):1–37,
2021.

Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution
detection. Advances in Neural Information Processing Systems, 34:7068–7081, 2021.

Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised anomaly detection
algorithms for multivariate data. PloS one, 11(4):e0152173, 2016.

Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward supervised anomaly detection.
Journal of Artificial Intelligence Research, 46:235–262, 2013.

10



Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly
detection benchmark. Advances in Neural Information Processing Systems, 35:32142–32159,
2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. In International Conference on Learning Representations, 2019a.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learn-
ing can improve model robustness and uncertainty. Advances in Neural Information Processing
Systems, 32:15663–15674, 2019b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. Distilling model failures as
directions in latent space. In International Conference on Learning Representations, 2023.

Jaeseok Jeong, Mingi Kwon, and Youngjung Uh. Training-free style transfer emerges from h-space
in diffusion models. arXiv preprint arXiv:2303.15403, 2023a.

Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash Ravichandran, and Onkar
Dabeer. WinCLIP: Zero-/few-shot anomaly classification and segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19606–19616, 2023b.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8110–8119, 2020.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017, 2023.

Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. DiffusionCLIP: Text-guided diffusion models
for robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2426–2435, 2022.

Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
space. In International Conference on Learning Representations, 2023.

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
time series outlier detection: Definitions and benchmarks. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Stephan Mandt, and Maja Rudolph. Deep
anomaly detection under labeling budget constraints. In International Conference on Machine
Learning, pp. 19882–19910. PMLR, 2023a.

Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, and Stephan Mandt. Zero-shot
anomaly detection without foundation models. arXiv preprint arXiv:2302.07849, 2023b.

Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning
for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9664–9674, 2021.

Philipp Liznerski, Lukas Ruff, Robert A Vandermeulen, Billy Joe Franks, Klaus Robert Muller, and
Marius Kloft. Exposing outlier exposure: What can be learned from few, one, and zero outlier
images. Transactions on Machine Learning Research, 2022.

11



Jinqi Luo, Zhaoning Wang, Chen Henry Wu, Dong Huang, and Fernando De la Torre. Zero-shot
model diagnosis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11631–11640, 2023.

Martin Q Ma, Yue Zhao, Xiaorong Zhang, and Leman Akoglu. The need for unsupervised out-
lier model selection: A review and evaluation of internal evaluation strategies. ACM SIGKDD
Explorations Newsletter, 25(1), 2023.

Henrique O Marques, Ricardo JGB Campello, Arthur Zimek, and Jörg Sander. On the internal
evaluation of unsupervised outlier detection. In Proceedings of the 27th international conference
on scientific and statistical database management, pp. 1–12, 2015.

Henrique O Marques, Ricardo JGB Campello, Jörg Sander, and Arthur Zimek. Internal evaluation of
unsupervised outlier detection. ACM Transactions on Knowledge Discovery from Data (TKDD),
14(4):1–42, 2020.

R.A. Maxion and K.M.C. Tan. Benchmarking anomaly-based detection systems. In International
Conference on Dependable Systems and Networks, pp. 623–630, 2000.

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an ensemble of au-
toencoders for online network intrusion detection. In Network and Distributed System Security
Symposium, 2018.

Hossein Mirzaei, Mohammadreza Salehi, Sajjad Shahabi, Efstratios Gavves, Cees G. M. Snoek,
Mohammad Sabokrou, and Mohammad Hossein Rohban. Fake it until you make it: Towards
accurate near-distribution novelty detection. In International Conference on Learning Represen-
tations, 2023.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6038–6047, 2023.

Thanh Trung Nguyen, Uy Quang Nguyen, et al. An evaluation method for unsupervised anomaly
detection algorithms. Journal of Computer Science and Cybernetics, 32(3):259–272, 2016.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, 2008.

Emanuele Principi, Fabio Vesperini, Stefano Squartini, and Francesco Piazza. Acoustic novelty
detection with adversarial autoencoders. In 2017 International Joint Conference on Neural Net-
works (IJCNN), pp. 3324–3330. IEEE, 2017.

Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph. Neural transformation
learning for deep anomaly detection beyond images. In International Conference on Machine
Learning, pp. 8703–8714. PMLR, 2021.

Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the bar in graph-level anomaly
detection. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence, IJCAI-22, pp. 2196–2203, 2022a.

Chen Qiu, Aodong Li, Marius Kloft, Maja Rudolph, and Stephan Mandt. Latent outlier exposure for
anomaly detection with contaminated data. In International Conference on Machine Learning,
pp. 18153–18167. PMLR, 2022b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763, 2021.

Tal Reiss, Niv Cohen, Liron Bergman, and Yedid Hoshen. Panda: Adapting pretrained features for
anomaly detection and segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2806–2814, 2021.

12



Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pp. 4393–4402. PMLR, 2018.

Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-
Robert Müller, and Marius Kloft. Deep semi-supervised anomaly detection. In International
Conference on Learning Representations, 2019.

Tim Schneider, Chen Qiu, Marius Kloft, Decky Aspandi Latif, Steffen Staab, Stephan Mandt, and
Maja Rudolph. Detecting anomalies within time series using local neural transformations. arXiv
preprint arXiv:2202.03944, 2022.

David Schubert, Pritha Gupta, and Marcel Wever. Meta-learning for automated selection of anomaly
detectors for semi-supervised datasets. In International Symposium on Intelligent Data Analysis,
pp. 392–405. Springer, 2023.

Hossein Siadati and Nasir Memon. Detecting structurally anomalous logins within enterprise net-
works. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1273–1284, 2017.

Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. Learning and evalu-
ating representations for deep one-class classification. In International Conference on Learning
Representations, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Holger Trittenbach, Adrian Englhardt, and Klemens Böhm. An overview and a benchmark of active
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(a) CUB: One-vs-one Closest (b) Flowers: One-vs-one Closest

(c) CUB: One-vs-one Average (d) Flowers: One-vs-one Average

(e) CUB: One-vs-rest (f) Flowers: One-vs-rest

Figure 4: We compare the real validation AUROC against the AUROC when Tiny-Imagenet is used
as synthetic anomalies, for the CUB (left) and Flowers (right) datasets and for all three benchmarks.
We find that the performance is poor: model selection cannot be reliably performed when Tiny-
ImageNet examples as used as synthetic anomalies.

A APPENDIX

A.1 ADDITIONAL RESULTS

Model selection with Tiny-ImageNet. Our initial experiments investigated if Tiny-ImageNet
could be used effectively as synthetic anomalies when constructing the synthetic validation set. For
these experiments, the same support set for each anomaly detection task is the same as the support
for the corresponding experiment with our generated anomalies. When sampling anomalies from
Tiny-Imagenet, we sample uniformly at random to generate a dataset X̃out of the same size: 100
images for tasks with the CUB and MVTec-AD datasets, and 25 images for tasks with the Flowers
dataset. Ultimately, we found that using Tiny-ImageNet examples were not effective for our chosen
tasks; in addition to the results for CLIP prompt selection in Table 1, the results for model selection
are shown in Figure 4.

Additional MVTec-AD results. Figure 5 shows the results of the model selection experiment
with the MVTec-AD dataset on the one-vs-one average and the one-vs-rest benchmarks (which
were shown to be easier benchmarks to estimate in Figure 3). Unlike the CUB and Flowers datasets,
in which synthetic anomalies could successfully approximate real validation performance, our syn-
thetic anomalies are less effective for MVTec-AD.
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(a) One-vs-One Average (b) One-vs-Rest

Figure 5: Comparing the real validation AUROC against the synthetic validation AUROC for the
MVTec-AD dataset. For all the one-vs-one average and the one-vs-rest benchmark, using our syn-
thetic validation dataset is ineffective for selecting the true, best anomaly detection models.

We also comment on the performance of our method when selecting CLIP prompts for MVTec-AD.
We noticed a disparity in performance between objects in MVTec-AD (e.g., capsules, cables, or
screws) and textures in MVTec-AD (e.g., carpets, wood, or tiles). Our method is unable to select
the best CLIP prompt in any of the six textures for MVTec-AD, instead only performing well on the
nine MVTec-AD objects. We therefore identify yet another challenge when using our approach for
MVTec-AD— DiffStyle relies on assumptions of “style” and “content” in their source images, and
these elements are not present in MVTec-AD textures like carpets or tiles.

A.2 VISUALIZING DIFFERENCES BETWEEN ANOMALY DETECTION TASKS

In this section, we visualize the differences in anomaly detection tasks between the Flowers, CUB,
and MVTec-AD datasets. In doing so, we provide insight into situations when our method may or
may not perform well. Figure 6 shows the t-SNE visualizations for four tasks classes from each
dataset, using the embedding space of the ViT-B-16 vision transformer. For the Flowers and CUB
datasets, we select the “abnormal” class as the one that produces the lowest AUROC in a one-vs-one
setting (i.e., one-vs-one closest3). We visualize the (i) normal class (in orange), (ii) abnormal class
(in blue), and (iii) synthetic validation (in black) for each task.

For the Flowers dataset (top row of Figure 6), real abnormal data and synthetic abnormal data are
approximately similar in distribution, but are easy to distinguish from real normal data. For the
CUB dataset (middle row of Figure 6), real abnormal data and synthetic abnormal data are both
approximately equal in distance from the real normal class; classes in the CUB dataset are more
difficult to distinguish between each other, and our synthetic validation dataset is approximately as
difficult to distinguish. Finally, for the MVTec-AD dataset (bottom row of Figure 6), for which
benchmarks were the hardest to estimate with synthetic validation data, the real normal data and real
abnormal data are much closer in distance. Our synthetic validation data is unable to approximate
the areas that lie between real and abnormal data in the MVTec-AD dataset.

A.3 GENERATING SYNTHETIC OUTLIERS WITH TEXT-GUIDANCE

A directional CLIP loss is defined using CLIP’s image encoder EI , CLIP’s text encoder ET , and
source-target image and text pairs (xsource, xtarget) and (ysource, ytarget) respectively, StyleGAN-
NADA enables text-guided generation of images:

∆T = ET (ytarget)− ET (ysource)

∆I = EI(xtarget)− EI(xsource)

Ldir = 1− ∆I ·∆T

||∆I||||∆T ||

3We do not visualize cases where the lowest AUROC was 1, indicating perfect detection across all classes.
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Figure 6: For each anomaly detection task, we present the t-SNE visualizations of the embedding
space of the ViT-B-16 vision transformer. We visualize four tasks from the Flowers dataset (top row),
CUB dataset (middle row) and the MVTec-AD dataset (bottom row), comparing the real normal
data, real abnormal data, and synthetic abnormal data for each task. We find that our synthetic
abnormal data is able to approximate the distances and distributions observed in real abnormal data
for the Flowers and CUB datasets. However, for the MVTec-AD dataset, the differences between
real normal data and real abnormal data are much smaller, and our synthetic abnormal data is unable
to approximate it.

We use the Asyrp process (Kwon et al., 2023) for text-guided anomaly generation, but modify Asyrp
in two ways: (i) using non-domain-specific text-guidance and (ii) defining the edit-strength of each
anomaly. The original Asyrp process is evaluated on well-defined domains, and assumes that the
source and target text are known (e.g, modifying “face” to “smiling face”). We instead propose a
methox that does not assume a specific domain and does not require domain-specific texts as input.

First, we find that using a source text is unneeded, and a meaningful direction for ∆T can be ex-
tracted by using the image encoder EI and the source image xsource. Second, we find that target
texts can be replaced with auxiliary, out-of-domain texts, which we call yaux. We make these two
changes to redefine our directional loss L′

dir.

∆T ′ = ET (yaux)− EI(xsource)

∆I = EI(xtarget)− EI(xsource)

L′
dir = 1− ∆I ·∆T ′

||∆I||||∆T ′||

We follow the training procedure for h-space extractor defined in Kwon et al. (2023) to extract
∆h, the direction in h-space that creates the desired change. We then apply Asyrp during the reverse
diffusion process, but use the linear property of h-space and define an edit strength α, which indicates
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how strongly we modify the image. Referring to the formulation defined in Sec. 3.2, we modify the
reverse DDIM process on the latent vector x(1)

T by adding our h-space term:

xt−1 =
√
αt−1Pt(ϵ

θ
t (x

(1)
T |h(1) + α∆h)) +Dt(ϵ

θ
t (x

(1)
T )). (3)

A.4 USING SYNTHETIC OUTLIERS FOR OUTLIER EXPOSURE

In addition to using synthetic outliers for validation, synthetic outliers can also be used for improving
the performance of anomaly detection models through outlier exposure. Our methodology closely
follows that of Fort et al. (2021); Mirzaei et al. (2023): we use a pre-trained vision transformer
model, fine-tune the vision transformer on a surrogate classification task, and use distances in the
trained embedding space as an anomaly detection.

Mirzaei et al. (2023) use a surrogate classification task for fine-tuning—a binary classification layer
is added to the vision transformer, and the model is trained on benign in-class examples and synthetic
outlier examples. In addition to the surrogate classification task, we also propose a regression-based
task. We generate a variety of synthetic outliers with text-guidance, using varying edit strength α.
When fine-tuning anomaly-detection models, the surrogate task is a regression that predicts α.

After fine-tuning, we remove the prediction head of the vision transformer. The support set is then
converted into the transformer’s embedding space (i.e., the last layer before the prediction layer) and
used as a feature bank for anomaly detection. At test time, the total Euclidean distance to the closest
three examples in the feature bank is used as the anomaly score.

A.5 CLIP PROMPT TEMPLATES

For our experiments in Sec. 4.3, we evaluated across set of ten candidate prompt templates. Our
evaluated prompts are general-purpose, and only the term “bird” or “flower” is added to the template
for the CUB and Flowers dataset respectively. For each dataset, the candidate prompt templates are
provided below:

% CLIP Templates for Flowers
[’a photo of a {} flower’, ’a photo of some flower’],
[’a cropped photo of a {} flower’, ’a cropped photo of some flower’],
[’a dark photo of a {} flower’, ’a dark photo of some flower’],
[’a photo of a {} flower for inspection’, ’a photo of some flower for inspection’],
[’a photo of a {} flower for viewing’, ’a photo of some flower for viewing’],
[’a bright photo of a {} flower’, ’a bright photo of some flower’],
[’a close-up photo of a {} flower’, ’a close-up photo of some flower’],
[’a blurry photo of a {} flower’, ’a blurry photo of some flower’],
[’a photo of a small {} flower’, ’a photo of a small some flower’],
[’a photo of a large {} flower’, ’a photo of a large some flower’],

% CLIP Templates for CUB
[’a photo of a {} bird’, ’a photo of some bird’],
[’a cropped photo of a {} bird’, ’a cropped photo of some bird’],
[’a dark photo of a {} bird’, ’a dark photo of some bird’],
[’a photo of a {} bird for inspection’, ’a photo of some bird for inspection’],
[’a photo of a {} bird for viewing’, ’a photo of some bird for viewing’],
[’a bright photo of a {} bird’, ’a bright photo of some bird’],
[’a close-up photo of a {} bird’, ’a close-up photo of some bird’],
[’a blurry photo of a {} bird’, ’a blurry photo of some bird’],
[’a photo of a small {} bird’, ’a photo of a small some bird’],
[’a photo of a large {} bird’, ’a photo of a large some bird’],
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% CLIP Templates for MVTec
[’a photo of a {}’, ’a photo of something’],
[’a cropped photo of a {}’, ’a cropped photo of something’],
[’a dark photo of a {}’, ’a dark photo of something’],
[’a photo of a {} for inspection’, ’a photo of something for inspection’],
[’a photo of a {} for viewing’, ’a photo of something for viewing’],
[’a bright photo of a {}’, ’a bright photo of something’],
[’a close-up photo of a {}’, ’a close-up photo of something’],
[’a blurry photo of a {}’, ’a blurry photo of something’],
[’a photo of a small {}’, ’a photo of a small something’],
[’a photo of a large {}’, ’a photo of a large something’],
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