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Abstract

Model merging has emerged as a promising technique for enhancing large language
models, though its application in large-scale pre-training remains relatively unex-
plored. In this paper, we present a comprehensive investigation of model merging
techniques during the pre-training process. Through extensive experiments with
both dense and Mixture-of-Experts (MoE) architectures ranging from millions to
over 100 billion parameters, we demonstrate that merging checkpoints trained with
constant learning rates not only achieves significant performance improvements
but also enables accurate prediction of annealing behavior. These improvements
lead to both more efficient model development and significantly lower training
costs. Our detailed ablation studies on merging strategies and hyperparameters
provide new insights into the underlying mechanisms while uncovering novel appli-
cations. Through comprehensive experimental analysis, we offer the open-source
community practical pre-training guidelines for effective model merging.

1 Introduction

Modern large language models (LLMs) [Seed et al., 2025} |Achiam et al., 2023} |Guo et al., 2025
Team et al., [2024] [Yang et al., [2024a]] have demonstrated remarkable capabilities with widespread
applications across diverse tasks. Despite their exceptional performance in fundamental tasks,
LLMs still face several critical challenges, including the extensive pre-training costs, discounted
effectiveness of domain-specific post-training, imprecisely-predictable performance scaling, as well
as the instability of large-scale training. Model merging [Yang et al.| 2024b], as a relatively young
topic, presents a promising approach to alleviate these practical challenges.

Recently, the benefits of model merging have been primarily studied in the post-training stage,
where several models fine-tuned on different downstream tasks are combined into a single but more
versatile model [Ilharco et al.l 2023} |[Zhou et al., 2024, |Yu et al.| [2024]]. For example, using the
DARE [Yu et al., 2024]] method to merge WizardLM [Xu et al.l [2024] with WizardMath [Luo
et al.| 2025] shows a significant performance enhancement on GSM8K [Cobbe et al.,[2021]], raising
its score from 2.2 to 66.3. In contrast, research on model merging during the pre-training phase
remains scarce. Such pre-training merging typically involves combining checkpoints from a single
training trajectory, as explored in LAWA [Kaddour, 2022[] which utilizes model merging to accelerate
the LLM training. However, as the model and data scales dramatically, independent researchers
struggle to evaluate model merging’s impact on large-scale models, mainly due to limited access
to intermediate checkpoints from extensive pre-training. Although DeepSeek [Liu et al.| [2024a]
and LLaMA-3 [Grattafiori et al., 2024] have both indicated their employment of model merging
techniques for model development, detailed information regarding these techniques has not been
publicly disclosed.
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In this work, we mainly focus on model merging during the pre-training stage, introducing Pre-
trained Model Average (PMA), a novel strategy for model-level weight merging during pre-training.
To comprehensively evaluate PMA, we trained a diverse set of LLMs of varying sizes and architectures
from scratch, including Dense models |Grattafiori et al.|[2024]] with parameters spanning from 411M
to 70B, as well as Mixture-of-Experts (MoE) architectures [Shazeer et al.|[2017] with activated/total
parameters ranging from 0.7B/7B to 20B/200B. We first investigate the performance impact of PMA
and establish systematic evaluations across different phases of the warmup-stable-decay (WSD)
learning schedule, which lately becomes a popular choice of [r scheduler for LLM pre-training
since |Hu et al.|[2024]. Experimental results demonstrate that model merging during the stable
training phase yields consistent performance gains at different training steps. More remarkably,
applying PMA at early-stage of the cosine-decay phase usually achieve comparable or even superior
performance to their final-stage annealing counterparts. These findings suggest that during the
extensively lengthy pre-training stage with constant [r, PMA can serve as a fast, reliable yet low-
cost simulator for the annealed performance, enabling both faster validation cycles and significant
computational savings.

Building upon our PMA framework, we first evaluate its performance with various prevalent merging
strategies, including Simple Moving Average (SMA) [Johnston et al.| [1999], Weighted Moving
Average (WMA) Perry|[2010] and Exponential Moving Average (EMA) |Hunter, [|1986]. Notably, our
experiments demonstrate that the performance differences among these methods gradually become
negligible. We further investigate how these important factors of PMA, namely, the interval between
each merging checkpoint, the number of models involved in merging, and the size of the model,
would affect merging performance. Our analysis reveals two important findings: First, the optimal
merging interval exhibits a clear scaling relationship with model size. Second, incorporating more
checkpoints in the merging process consistently improves performance once training is completed.

Furthermore, we also investigated whether PMA could produce more effective initialization weights
for the consecutive continued training (CT) or supervised fine-tuning (SFT) [Wei et al.| [2022] stages
to enhance the downstream model performance. We practically observed that entering CT and SFT
stages with PMA applied could yield smoother GradNorm curves, which thus helps stabilize the
training dynamics yet without harming the performance, compared to initializing these stages with
the latest available checkpoint as usual. This finding inspire a novel application of model merging
for training stabilization, which we dubbed as PMA-init. We demonstrate that in scenarios when the
LLM training experiences severe irrecoverable loss spikes with broken training dynamics, applying
PMA-init over N preceding checkpoints to resume training, enables reliable recovery from unstable
training trajectories.

In summary, our paper makes the following key contributions:

* We present the Pre-trained Model Averaging (PMA) strategy, a novel framework for model
merging during LLM pre-training. Through extensive experiments across model scales
(from millions to over 100B parameters), we demonstrate that merging checkpoints from
the stable training phase produces consistent and significant performance improvements.

* We delved into novel applications of model merging for weight initialization (PMA-init), to
help stabilize training process without harming the downstream performance, especially
when it suffers from irrecoverable loss spikes with broken training dynamics. Through
extensive experiments, we demonstrate the effectiveness of PMA-init on both CT and SFT
stages.

* We also comprehensively ablated various model merging techniques with their associated
hyper-parameters. Our findings offer the research community practical pre-training guide-
lines with effective model merging. Nevertheless, the low cost and rapid deployment of
PMA also make it a reliable and economic monitor for the pre-training process, to flexibly
simulate the ultimate model performance after annealing.

2 Related Work

Model merging is an emerging field undergoing rapid development, with diverse applications across
various domains. Typically, model merging is implemented during the post-training phase [Ilharco
et al.;, 2023, |Zhou et al., 2024} 'Yu et al.| 2024} |Yadav et al., 2024, where multiple models fine-tuned
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Figure 1: Comparison of downstream task performance for MoE models of varying sizes under stable
training, before and after model merging.

on different downstream tasks are combined by merging their weights. This process effectively
integrates the distinct capabilities of each individual model, resulting in a unified model that exhibits
robust and comprehensive performance.

Recently, several methods have advanced this field significantly. For instance, Task Arithmetic
2023]], Ties-Merging [Yadav et al.,[2023]], and AdaMerging [Yang et al., [2024c]| integrate
Vision Transformer (ViT) models [Dosovitskiy et al.,[2021] trained on distinct visual classification
tasks, producing a single model capable of multi-task object classification. PAPA [Jolicoeur-Martineau|
integrates the broad applicability of ensembling with the computational efficiency of
weight averaging. MetaGPT [Zhou et al), 2024] frames model merging as a multi-task learning
problem, aiming to minimize the average loss between the merged model and individual task-specific
models. Fisher Merging [Matena and Raffel, 2022] employs a weighted fusion of model parameters,
with weights determined by the Fisher information matrix. RegMean 2023]] elegantly
addresses the merging process by formulating it as a linear regression problem solvable through
closed-form solutions. Evolutionary-model-merge [[Akiba et al.| [2025] efficiently optimizes merging
coefficients using evolutionary algorithms. Additionally, DARE merges multiple
task-specific language models into a versatile unified model by randomly dropping and subsequently
rescaling the delta parameters.

However, research on model merging during the pre-training phase remains relatively limited. Such
studies typically refer to incorporating checkpoints within a single training trajectory during large
language model (LLM) pre-training. For example, LAWA [Kaddour, 2022 [Hagele et al,[2024]
2022]] demonstrated that merging checkpoints at intermediate stages can significantly accelerate
training. Sanyal et al. [Sanyal et al [2024]] further indicated that checkpoint averaging combined
with a high learning rate in pre-training trajectories contributes to faster convergence. Additionally,
Checkpoint Merging provided a comprehensive evaluation of the effectiveness
of merging checkpoints at different stages during the pre-training of the Baichuan2 [Yang et al|
2023|] LLM. Furthermore, technical reports of large-scale models such as Deepseek V3 [Liu et al.
20244] and LLaMA3.1 [Grattafiori et al.,[2024] also mention the use of model merging techniques
during pre-training, although detailed methodologies have not been publicly disclosed. This paper
primarily explores techniques for model merging within the pre-training paradigm. To the best of our
knowledge, this is the first study to provide detailed technical insights into scaling model merging
methods to significantly larger model sizes. We also discuss practical approaches for effective model
merging and analyze its potential capabilities as well as its limitations.

3 Preliminaries

In this section, we describe the fundamental experimental framework, introduce the notations and
concepts used in model merging, and present multiple variants of model merging techniques.

Experimental setup. In terms of model architecture, we independently trained a series of MoE
and dense models. We employ a Warmup-Stable-Decay (WSD) learning rate scheduler [Hu et al/|
[2024], which begins with a short warmup period, followed by an extended period of stable training
at a constant learning rate, and concludes with annealing to a relatively small learning rate. The
learning rates are determined according to scaling law guidelines Bi et al.|[2024]], Kaplan et al.| [2020]],




employing optimal values for training on an internal pretraining corpus comprising trillions of tokens.
Although specific model architectures and datasets have not yet been publicly released, we posit that
our findings are not strongly tied to these particular choices, as subsequent experiments primarily
focus on MoE structures. Related conclusions for dense models are provided in the Appendix [A] For
evaluation, we primarily report results on open-source benchmarks in both few-shot and zero-shot
settings, including: ARC-Challenge [Clark et al.|[2018]], BBH |Suzgun et al.|[2023]], DROP |Dua et al.
[2019], WinoGrande Sakaguchi et al.|[2021]], HellaSwag [Zellers et al.|[2019]], MMLU Hendrycks
et al.|[2021]], C-Eval |Huang et al.|[2023|], TriviaQA [Joshi et al.|[2017], Ape210K Zhao et al.| [2020],
GSMS8K |Cobbe et al.|[2021]], MATH [Zhao et al.|[2020], MBPP |Austin et al. [2021]], HumanEval (Chen
et al.| [2021]], AGIEval |[Zhong et al.[[2024], GPQA [Rein et al.|[2024], and MMLU-Pro Wang et al.
[2024]). The weighted average score across these benchmarks serves as the model’s comprehensive
performance metric. Unless otherwise specified, we report this score as the model’s performance
metric to ensure evaluation reliability.

Notions and concepts. Our main focus is on model merging during pre-training, where the merged
entities are sequential checkpoints along the training trajectory. Suppose we aim to merge N models,
with each model’s parameters denoted as M; (where ¢ ranges from 1 to N). Each model has an
associated weighting coefficient w;, and the merged model M4 is computed as:

N
Mavg = Zwle (1)
i=1

We assume that the data consumption of these models form an arithmetic sequence with a common
difference V, formulated as:

V=T -1, (2)
where T} represents the cumulative number of tokens consumed by the i-th model.

Model merging variants. Model merging techniques vary primarily in how they assign weights (w;)
to individual models. This paper examines three popular approaches for weight assignment, namely
the Simple Moving Average (SMA), Exponential Moving Average (EMA), and Weighted Moving
Average (WMA).

The first approach, Simple Moving Average (SMA), treats all models equally. For instance, when
combining 10 models, each model is assigned a weight of w; = 0.1. The SMA is formulated as:

1 N
My, = > M. 3)
i=1

The second approach, Exponential Moving Average (EMA ), emphasizes later models by assigning
weights that decay exponentially, making EMA more sensitive to recent changes. The EMA is
expressed recursively as:

M{) = o M+ (1—a)- M{gY, i€ [2,N], @

Here, a, the smoothing factor (typically between O and 1), controls the balance between the current
model M; and the previous EMA result Ma(vlg 1).

The third approach, Weighted Moving Average (WMA), also prioritizes recent models but uses a
distinct weighting scheme. In WMA, each model is assigned a specific weight, often increasing
linearly for later models (e.g., w; = 7). The weighted sum is then normalized to compute the average,

formulated as follows: N

N
Mg =Y My, wam =Y wi. 5)
=1

w
j—1 - sum

These methods offer flexible ways to combine models based on their recency and relevance. Choosing
the right approach depends on the specific application and desired emphasis on newer data.

4 Experiments

In this section, we delve into the experimental core of our study, systematically addressing six critical
questions surrounding model merging in the context of pre-training: 1) How does model merging



affect performance? 2) How do different merging methods affect final performance? 3) How to
determine the optimal interval and number of weights to merge for various model sizes? 4) Do merged
pre-trained models contribute to better downstream training? 5) Does model merging improve the
stability of training? 6) What processes unfold during model merging? Through these experiments,
we aim to provide comprehensive insights into model merging, offering practical guidance for its
application and shedding light on its theoretical underpinnings.

4.1 How does model merging affect model performance?

Current learning rate schedule methods mainly involve constant learning rates or cosine annealing. In
our model pre-training, we employed the Warmup-Stable-Decay (WSD) strategy [Hu et al.| [2024],
which combines a constant learning rate phase with a subsequent cosine decay phase Loshchilov and
Hutter| [2017]]. To explore the effects of model merging under different learning rate schedules, we
conducted experiments during both constant learning rate phase and cosine dacay phase.

In the constant learning rate phase, we merged fully trained models of various sizes. As shown
in Figure [T} the merged models exhibited significant performance improvements across multiple
downstream tasks. For example, on the Humaneval benchmark, Seed-MoE-1.3B/13B improved
from 31.1 to 36.6 points, and Seed-MoE-10B/100B increased from 54.3 to 61.6 points. While larger
models showed less pronounced gains on certain benchmarks, such as BBH, this was likely due to
the near-saturation of these metrics. Overall, the improvements were robust and consistent across
model sizes.

Next, we performed model merging in the cosine annealing phase by collecting weights from the
annealing stages of Seed-MoE-1.3B/13B, Seed-MoE-10B/100B, and Seed-MoE-15B/150B. As
depicted in Figure[2] as the learning rate gradually decreased, the models converged steadily, with
performance continuing to improve. Interestingly, at the early annealing stage, the results of PMA
were comparable to those at the end of the annealing process. In some cases, particularly for larger
models, the merged models even surpassed those naturally annealed.
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Figure 2: Comparison of overall performance for MoE models of varying sizes under annealing
training, before and after model merging. The learning rate follows a cosine schedule during the
annealing process. The x-axis shows the count of training tokens.

These findings raised a question: could we simplify the training process by using only the Warmup-
Stable phases alongside PMA, skipping the decay phase, and avoiding learning rate adjustments? To
investigate, we forked two training runs from the stable phase of Seed-MoE-1.3B/13B at 1.4T tokens.
One continued with a constant learning rate, while another underwent annealing, each training for
an additional 250B tokens. We then merged the models trained with the constant learning rate. As
shown in Figure 3] early in training, the merged models significantly outperformed both the constant
learning rate and annealed models. Even later, their performance was comparable to the annealed
models.

This suggests that pre-training with a constant learning rate, combined with model merging, can
effectively match the performance of an annealed model at any point in the training process
without the need for learning rate annealing. This approach accelerates model validation and
significantly reduces computational resource demands.



@ Constant+PMA [l Annealing V¥ Constant

0 0 m

5625 6875 7125
— o

525 75 75

" / .

2 a5 6 0
14T 1.45T 15T 1.55T 16T 14T 1.45T 15T 1.55T 16T 14T 145T 15T 1.55T 16T 14T 145T 15T 1.55T 1.6T

Performance

Humaneval BBH MMLU GSMSK

Figure 3: Comparison of downstream task performance between model merging results under stable
training and the real annealed model. The x-axis shows the count of training tokens.
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Figure 4: Impact of different model merging methods on final model performance.

4.2 How do different merging methods affect final performance?

In this section, we systematically evaluate how different merging strategies affect the performance of
merged models. Specifically, we focus on three distinct approaches: EMA, WMA, and SMA. The
EMA method employs exponentially decaying weights w; = a(1 — )V ~%, giving higher importance
to more recent checkpoints. WMA assigns linearly increasing weights w; = ¢, also prioritizing more
recent checkpoints. In contrast, SMA applies uniform weighting, treating all checkpoints equally
regardless of their position in the training sequence.

We conducted experiments on Seed-MoE-1.3/13B and showed the results in Figure [d At 204B
training tokens, all merging methods enhanced model performance compared to the pre-merged
model, but WMA delivered the best results. This suggests that in the early phases of training, when
model weights undergo significant changes, assigning higher weights to checkpoints with more
training tokens produces superior models. This is further supported by the fact that EMA,—¢ 2
outperforms EMA—¢.1. However, as training advances to later stages and model weights stabilize,
the performance differences between merging methods diminish. For its simplicity and stability,
we primarily use SMA for model merging in subsequent experiments.

4.3 How to determine the optimal interval and number of weights to merge for various model
sizes?

Beyond the merging technique itself, two other factors may also affect the effectiveness of model
merging: the interval V' between selected models and the number of models N. We performed
ablation studies on the Seed-MoE-1.3/13B model to investigate these effects, starting with the impact
of the interval. As illustrated in the upper part of Figure[5] we fixed NV = 10 and tested intervals of
V = 4B, 8B, 16B, and 32B. Notably, at 204B with V' = 32B, we reduced NN to 6 due to insufficient
models. In the early stage of training, at 204B tokens, merged results with V' = 16B and V = 32B
underperformed the baseline. This is likely because large intervals incorporated unstable weights
from the initial training phase, leading to significant weight disparities and suboptimal outcomes. As
training progressed and weights stabilized, the performance gap across different V' settings gradually
narrowed. In practice, the optimal interval scales with model size, following these observed
patterns: an interval of around 8B tokens for 1.3B/13B models, 4B tokens for 0.7B/7B models,



and approximately 80B tokens for 10B/100B models. This aligns with the tendency of larger
models to use larger batch sizes McCandlish et al.| [2018].

Next, we set V' = 8B and explored how the number of merged models N affects performance, testing
N = 3,6, 10, and 15. As shown in the lower part of Figure 5] early in training, incorporating more
models introduced unstable weights, which reduced the performance of merged models. However,
once training was complete, merging a larger number of models led to significant performance
improvements. Notably, the overall performance for N = 3 was nearly 1 point lower than for
N = 15. To strike a balance between computational cost and performance gains, we opted for
N = 10 in further experiments.
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Figure 5: Impact of different model merging hyper-parameters on final model performance of the
Seed-MoE-1.3/13B Model.

4.4 Do merged pre-trained models contribute to better downstream training?

A complete LLM training process typically involves multiple stages, which are pretraining, continual
training (CT), supervised fine-tuning (SFT) and reinforcement learning (RL) in sequence. In light
of the capacity of PMA to improve pretraining performance, we conjecture that merged pretrained
models may similarly prove beneficial for downstream stages. To verify this hypothesis, we initialized
downstream training with PMA, which we dubbed as PMA-init, and investigated its impacts over the
baselines (which are initialized from their original checkpoints) for both CT and SFT stages.
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CT stage. We first conducted an ablation study to assess the sensitivity of the PMA-init of the CT
stage with varying learning rate schedules. Specifically, we experimented with Seed-MoE-0.7B/7B
models merged after stable training on approximately 1 trillion tokens. As illustrated in Figure 6] (left),
the initialization weights obtained via PMA consistently achieved marginally lower loss at the initial
training phase, against the baseline with the same training configuration. As training progresses,
the loss values for models with different initialization weights converge to comparable levels. It’s
worth noting that in the loss curve, the purple line significantly overlaps with the blue line, and the
brown line significantly overlaps with the pink line. Another observation is made in the Figure [6]
(right), where evaluation on the MMLU benchmark reveals that the PMA-init models outperform the
baseline early in training. While these models tend to retain a slight performance edge in later stages,
their results on other tasks may be slightly suboptimal, leading to overall performance parity with the
baseline. Experiments across varied learning rate schedules corroborate these findings, indicating that
models converge to similar performance levels by the end of training, and no extensive learning
rate tuning is required for PMA-init.

SFT stage. We next analyzed the impact of PMA-init on the SFT stage, where the detailed results
can be found in the Appendix [B] Although initialization with merged weights occasionally yields
performance improvements, such gains are not consistently observed. Nonetheless, this approach
does not adversely affect downstream training outcomes and may be a viable strategy for researchers
seeking to enhance model performance.

4.5 Does model merging improve the training stability?

In large-scale LLM training, infrastructure issues are almost inevitable and often lead to training
instability phenomena such as loss spikes or diverging. Specifically, a loss spike occurs when, at
a specific point during the multi-stage training, the model’s predictions deteriorate significantly
compared to previous iterations. This phenomenon is often observed alongside gradient norm
(GradNorm) explosion during backpropagation, which causes large weight updates and eventually
lead to a irrecoverable spike in its loss function|Cohen et al.|[2021]. In the experiments detailed in
Section as illustrated in Figure[/| (left), we observed that a model initialized with PMA-init for
SFT stage demonstrated a notably more stable GradNorm metric compared to the baseline. This
stability is also evident in the reduced frequency of loss spikes relative to the baseline. Since applying
PMA-init for downstream training does not impact the model’s final performance and remains robust
across different learning rates, we established a series of experiments to explore whether model
merging could enhance training stability.

Given the extremely high expenses associated, it is unfeasible to conduct a direct analysis of training
instability in LLM pre-training. Experiments |Wortsman et al.| [2024]] show that small models using a
relatively large learning rate will exhibit unstable training characteristics similar to those of large
models. We thus reproduce the instability phenomena on small models to study the influence of
our PMA-init on training stability. In one such experiment, we trained a 330M/3.3B MoE model
from scratch using an exceptionally high learning rate of 6e-3. As shown in Figure [/| (right), the
model overshot the optimal weights, resulting in unstable training and abrupt loss spikes as expected,
and was irreversible to its original trajectory. To address this, we adopted PMA-init with three
checkpoints saved before the training collapse happened, to resume the pre-training process. As
depicted by the red line in Figure [/| (right), the resumed training process stabilized, successfully
navigating past the point of the loss spike and continuing along its original training trajectory.

These results highlight that PMA-init can reliably enhance the multi-stage training stability.
When a loss spike occurs, one can merge the model checkpoints from before the spike and resume
training from that point. This approach provides an alternative solution to avoid retraining the model
from scratch, thereby substantially reducing the waste of computational resources.

4.6 Investigating the Mechanisms of Model Merging

To gain deeper insight into the underlying mechanisms that enable model merging to be effective,
we provide both qualitative and quantitative analyses, employing mathematical derivations and
visualizations of weight distributions. Due to space limitations, this section focuses solely on the
qualitative analysis. For the quantitative analysis, please refer to Appendix [C]for more details.
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Figure 8: Visualization of MMLU score contour lines, comparing the weights of an original model
with those of a merged model. Black dots represent the parameter locations of various individual
model checkpoints.

We selected several checkpoints from the pre-training of Seed-MoE-1.3B/13B and visualized the
average distribution of two selected parameters from a specific layer. Using these points, we generated
contour lines for MMLU scores, as illustrated in Figure[§] The weight positions of various individual
models are marked as black dots. These dots are distributed along the MMLU score contours,
revealing a discernible "complementary" pattern. The averaged weight position (representative of
the merged model) is often situated closer to a region of higher MMLU scores (a better optimum)
than many individual model checkpoints. This visualization also provides an intuitive explanation
for why model merging yields diminished improvements when models are annealed to a very low
learning rate: at such a stage, the models to be merged are already tightly converged within a specific
local optimum. Merging them essentially averages points within this already narrow basin, making it
unlikely to escape to a significantly better or different optimal region.

5 Conclusion

This research pioneers a deeper exploration of model merging within the challenging pre-training
stage of large-scale models. By training a spectrum of MoE and Dense models and performing
rigorous ablations, we established that merging checkpoints from stable training phases not only
yields significant performance gains and predicts annealing but also streamlines development and
reduces costs. Our work provides concrete guidance on merging strategies, optimal parameters, and
downstream applications, alongside insights into the underlying mechanisms. These contributions
equip the open-source community with the knowledge and tools for more efficient model development
through pre-training merging.
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A The Effect of Model Merging in Dense Models

We also conducted model merging experiments on Dense architecture models, which mirror the exact
architecture of LLaMA 3.1 [Grattafiori et al., 2024]], ranging from small Dense-411M models to
large Dense-70B models. Since the 411M and 2B models were not sufficiently trained, we used
a configuration of N=6 for merging, with weight intervals (V) of 2B and 5B tokens, respectively.
For the 8B and 70B models, which were trained more thoroughly, we used N=10, with V values
of 15B and 40B for merging. As shown in Figure 0] models of different sizes achieved significant
improvements on downstream tasks after model merging. Notably, the performance gains of larger
models were not smaller than those of smaller models. Specifically, Dense-70B improved from 50.6
to 57.9 on Humaneval and from 85.9 to 91.3 on GSMS8K. This further validates the robustness and
generalization ability of PMA, demonstrating that it can work across different model architectures and
sizes.

9
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Dense-411M Dense-2B Dense-8B Dense-70B

Figure 9: Comparison of downstream task performance for dense models of varying sizes under
stable training, before and after model merging.

B Model Merging at the CT Stage for Supervised Fine-Tuning

PMA-init can be integrated during the CPT annealing phase, where PMA weights are merged to provide
a strong starting point for fine-tuning. We conducted an ablation study to assess the sensitivity of the
PMA-init during the SFT stage to varying learning rate schedules. This study included experiments on
merged MoE-15B/150B models following stable training on approximately 16T tokens, as well as
after further training on 1T tokens with cosine annealing. We conducted SFT training for 220M tokens
using both the original weights and PMA-init weights. For the original weights, we used a cosine
learning rate schedule with an initial learning rate of 2e-5 and an end learning rate of 2e-6. For the
PMA-init weights, we used cosine schedules with initial learning rates of le-5, 2e-5, and 4e-5, all with
an end learning rate of 2e-6. We evaluated the trained models using Open-Benchmark, which includes
MMLU Hendrycks et al.|[2021]], LiveBench White et al.|[2025], AMC-2023, GPQA [Rein et al.|[2024]
and LiveCodeBench |White et al.|[2025], as well as our in-house evaluation set comprising OOD,
Reasoning, and Instruction Following assessments. As shown in Table [T} with the same learning

Table 1: Comparisons of performance metrics during SFT stage with varying Ir schedules, where a
cosine scheduler is adopted to decay learning rate from [7peqk t0 I7¢nq (denoted as I7pear — I7enq).
PMA and baseline, stand for whether our PMA-init technique is employed or not, respectively. IF
refers to Instruction Following.

Model \ Open-Benchmark In-house Evaluation

| MMLU LiveBench AMC-2023 GPQA LiveCodeBench | OOD Reasoning IF
Baseliney,—5_,5,-6 86.8 50.5 61.0 55.2 39.7 32.6 32.1 36.3
PMA,.5_ 9.5 87.1 52.0 64.0 54.0 394 34.7 34.0 38.8
PMA,.-5_,9.-6 87.2 53.2 65.5 54.4 39.7 33.8 33.2 37.3
PMA,.—5_,9.-6 87.0 51.3 61.4 54.0 39.2 31.8 32.6 37.2

rate, PMA-init significantly outperformed the baseline on both Open-Benchmark and our in-house
evaluations. Notably, on the in-house evaluation set, we observed improvements of over two points in
OOD and Instruction Following, and a 1.9-point increase in Reasoning. In the other two experiments
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with different learning rates, we also saw some degree of improvement compared to the baseline,
especially with PMA,.-s_,5.-6, which showed gains of 2.7 points on Livebench and 4.5 points on
AMC-2023.

However, we were unable to replicate such significant gains in subsequent experiments with other
model sizes, although it did not negatively impact the final downstream model performance. Therefore,
as a low-cost approach, PMA-init is worth trying to obtain a more powerful downstream model.

C Quantitative Analysis on Model Merging

We begin with a second-order Taylor expansion of the loss function L(#) around an optimal parameter
set 6*:

1
L(0) ~ L(0*) + (0 — ") VL(*) + 50— 0*)" H(0 —6%), (6)
where H is the Hessian matrix of the loss function evaluated at #* (the matrix of second partial

derivatives), which captures curvature information. Since 6* is an optimal point, the gradient V L(6*)
is zero. Thus, the expansion simplifies to:

1
L(0) ~ L(67) + 5(0 - 0 )TH(6 — 67). (7
Consider k sets of model parameters 61,605, ..., 0. Let the deviation vector of each model ¢ from
the optimal parameters be §; = 6; — 6*. The loss for each model ¢ can then be approximated as:
1
L(0) ~ L(07) + 56; Ho:. (®)
The average loss of these k individual models is:
i 1 @
=Y L(6;) ~ L(0*) + — Y 6 Hb;. 9
k;() ()+2k;Z ©)

The parameters of the merged model are 0,y = % Zle ;. The deviation of this merged model from
the optimal parameters is 0,y — 0" = % Zle d;. The loss for the merged model is approximated by:

w5 (i)

=1

??‘\»—t

Expanding the quadratic term:

;(;ﬁ;(s)TH( Zé) k2225TH5 (1

=1 j=1

This can be rewritten by separating diagonal and off-diagonal terms:

% ZaTH(s +ZZ(STH6 . (12)

i=1 j#i

For the merged model to have a lower loss than the average loss of the individual models, i.e.,
L(Owg) < % ZZ 1 L(6;), the following condition must hold:

k
1 1
oTe ZaTHa +ZZ6TH6 < o5 D00 Ho (13)
i=1 j#i i=1

Multiplying by 2k? and rearranging terms, we get:

ZéTH(S +ZZ§TH5 < kZ&THé (14)

i=1 i=1 j#i
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Which simplifies to:
k

k
SN 6THS < (k—1)) 6T Hs:. (15)
i=1 j#i i=1

Assuming H is a positive definite matrix (which is generally true around a local minimum), then each
term 87 H§; > 0. The inequality is more easily satisfied if the off-diagonal terms §7 Hd; (for i # j)
are predominantly negative. This "negative correlation” in the context of the Hessian means that the
deviation vectors point in somewhat opposing directions relative to the curvature of the loss landscape.
This mathematical analysis can be intuitively interpreted as follows: 1. The effectiveness of model
weight merging stems from the fact that different model checkpoints, representing different points
in the training trajectory, have explored different local regions or directions within the parameter
space. 2. When these explorations exhibit a degree of "complementarity” concerning the geometric
structure of the loss function (captured by the Hessian and the cross-terms §7 H§ ;), their average
can position the merged model closer to an optimal point than the individual models might be on
average. 3. This helps explain why merging models, particularly those from a stable yet ongoing
training phase, often improves performance. The averaging process can smooth out idiosyncrasies of
individual checkpoints. This analysis suggests that weight merging is not merely a simple averaging
of parameters but rather a process that can leverage the geometric structure of the loss landscape and
the diversity among the models being merged.

D Limitations

In our study, we thoroughly investigated the potential of model merging in the pre-training phase,
offering significant advantages for teams working on large-scale model pre-training to pursue more
daring explorations. This is due to the fact that model merging can replicate the benefits of simulated
annealing, greatly shortening the exploration period during pre-training. While our experiments were
extensive, certain aspects still remain open for deeper research.

In our experiments, we defaulted to using the optimal learning rate derived from the scaling law for
model training, without extensively exploring the impact of learning rate on model merging. In our
practice, we believe that training with a higher learning rate could lead to a better model through
model merging, which aligns with the findings in Sanyal et al.| [2024]]. However, due to the high
computational cost, we did not further quantify the impact of learning rate on model merging in a
more detailed manner.

Additionally, this paper primarily focuses on the application of model merging in pre-training. In
reality, due to innovations in RL algorithms [Yu et al.,|2025| [Yuan et al.| 2025| [Shao et al.| [2024], RL
training has become more stable and often involves longer training cycles, during which a series of
adjacent weights can be obtained. This paper does not investigate model merging in the context of
post-training scenarios, and we leave this aspect for future research.

E Societal Impact

The development of large-scale language models, while technologically promising, carries significant
societal implications that necessitate careful consideration. Our research on model merging during
pre-training offers advancements that not only push the technical frontier but also contribute positively
to the responsible development of artificial intelligence.

E.1 Potential Benefits

The primary contribution of our work is a substantial increase in the efficiency of the LLM pre-
training process. The Pre-trained Model Averaging (PMA) technique significantly reduces the
computational resources and time required to develop high-performance models. This efficiency has
several downstream societal benefits:

Accelerating Innovation and Accessibility: By lowering the immense costs traditionally associated
with training state-of-the-art models, our methods can help democratize access to large-scale Al
development. This allows smaller research labs, academic institutions, and companies to contribute
to the field, fostering broader innovation.
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Enhancing Applications: The accelerated development cycles enabled by our work can lead to faster
improvements in critical NLP applications. This includes creating more effective and accessible
educational tools, developing more nuanced and accurate communication technologies (such as real-
time translation), and building more capable assistive technologies for individuals with disabilities.

E.2 Risks and Mitigation Strategies

We also recognize the potential risks associated with large-scale models and believe our work provides
avenues for their mitigation.

Computational Energy Costs and Environmental Impact: The training of LLMs is an energy-
intensive process with a considerable environmental footprint. Our findings directly address this
concern. By demonstrating that merged checkpoints can match or exceed the performance of models
that have undergone a full, lengthy annealing phase, our technique provides a method to curtail total
training time. Furthermore, the ability of PMA-init to recover from training instabilities prevents the
wasteful process of restarting training from scratch. These efficiencies translate directly into reduced
energy consumption and a smaller carbon footprint for model development.

Algorithmic Bias: Large language models can perpetuate and amplify existing societal biases present
in their training data. While our research does not introduce a new method for bias detection, the
efficiency it creates is a critical enabler for more rigorous and responsible Al development. By
reducing the cost of each training and evaluation cycle, our methods allow development teams to:

Iterate More Frequently: Conduct more frequent and thorough testing for biases within the model.

Reallocate Resources: Dedicate computational and financial resources saved from training towards
crucial mitigation tasks, such as curating higher-quality, more diverse datasets and implementing
sophisticated fairness-aware fine-tuning techniques.

In summary, the model merging techniques presented in this paper offer a practical path toward
a more efficient, sustainable, and responsible ecosystem for Al development. By addressing the
core challenge of computational cost, we empower the research community to not only build more
powerful models but also to invest more deeply in making them safe and beneficial for society.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction of our paper accurately
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work, see Appendix D}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provide the full set of assumptions and a complete proof.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results, and although the code and data are not provided, it does not affect the
main conclusions of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Although the code and data are not provided, it does not affect the main
conclusions of the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specify all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not report error bars, but experiments were conducted across
multiple model architectures and sizes to validate the robustness of the method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: We primarily used NVIDIA H-series GPUs for training and evaluation.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect to the NeurIPS
Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper does not address societal impact, but it significantly reduces training
costs, facilitating the development of better models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The methods primarily discussed in our paper do not involve data or models
with a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have appropriately cited the papers relevant to our work.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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