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ABSTRACT

State space models (SSMs) have high performance on long sequence modeling but
require sophisticated initialization techniques and specialized implementations for
high quality and runtime performance. We study whether a simple alternative can
match SSMs in performance and efficiency: directly learning long convolutions over
the sequence. We find that simply squashing the long convolutional kernel weights is
enough to match SSMs in performance on a range of tasks including the long range
arena (LRA) and language modeling. To also improve runtime performance, we next
develop FLASHBUTTERFLY, an IO-aware algorithm to compute long convolutions
efficiently. FLASHBUTTERFLY appeals to classic Butterfly decompositions
of the convolution to reduce GPU memory IO and increase FLOP utilization.
FLASHBUTTERFLY speeds up the LRA benchmark by 7.0× over Transformers, and
allows us to train on Path256, a challenging task with sequence length 64K, where
we set state-of-the-art by 29.1 points while training 7.2× faster than prior work.

1 INTRODUCTION

A fundamental question in understanding foundation models is whether their success depends on
specific architectures like attention, or whether simpler alternatives can also suffice. Recently, a
new class of sequence models based on state space models (SSMs) (Gu et al., 2022a; Li et al.,
2022; Hasani et al., 2022; Gupta et al., 2022) has emerged as a powerful general-purpose sequence
modeling framework. SSMs scale nearly linearly in sequence length and have shown state-of-the-art
performance on a range of sequence modeling tasks, from long range sequence modeling (Smith et al.,
2022) to language modeling (Dao et al., 2022c; Ma et al., 2022).

However, SSMs rely on sophisticated mathematical structures to train effectively in deep networks (Gu
et al., 2022a). These structures generate a convolution kernel as long as the input sequence by
repeatedly multiplying a hidden state matrix. This process may be unstable (Goel et al., 2022) and
requires careful hand-crafted initializations (Gu et al., 2022b), leaving practitioners with a dizzying
array of choices and hyperparameters. In this paper, we study whether we can replace the SSMs with
an even simpler approach – parameterizing the long convolution kernel directly.

There are two challenges that long convolutions face for sequence modeling. The first is quality: pre-
vious attempts at directly parameterizing the convolution kernel have underperformed SSMs (Romero
et al., 2021; Li et al., 2022). The second is runtime efficiency: long convolutions can be computed in
O(N logN) FLOPS in sequence lengthN using the Fast Fourier transform (FFT), but systems con-
straints often make them slower than quadratic algorithms, such as attention. In this paper, we show that
a simple regularization technique and an IO-aware convolution algorithm can address these challenges.

Closing the Quality Gap. First, to understand the quality gap, we study the performance of long
convolutions compared to SSMs on Long Range Arena (LRA) (Tay et al., 2020), a key benchmark
designed to test long sequence models. Long convolutions underperform SSMs by up to 16.6 points
on average (Table 1). We find a simple regularization technique using a SQUASH operator to reduce
the magnitude of the kernel weights. Using this regularization, long convolutions also appear more
robust to initialization than SSMs, matching S4 on LRA even with completely random initialization.

We further evaluate the performance of long convolutions on text modeling, where they are competitive
with the recent H3 model (Dao et al., 2022c)—coming within 0.3 PPL on OpenWebText—and
outperform Transformers by 0.7 PPL on OpenWebText.
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Figure 1: Left: A Simple regularization technique allow long convolutions to match state space
models in sequence modeling. Right: We develop FLASHBUTTERFLY, an IO-aware algorithm for
long convolutions.

Closing the Runtime Performance Gap. However, long convolutions are inefficient on modern
hardware, since the FFT convolution incurs expensive GPU memory IO and cannot utilize matrix
multiply units—even using optimized implementations like cuFFT (NVIDIA, 2022). SSM convolution
formulations rely on specialized GPU Cauchy kernels and log Vandermonde, as well as special
recurrent message passing structure, to overcome these challenges.

In response, we develop FLASHBUTTERFLY, a simple IO-aware algorithm for long convolutions,
which does not require ad hoc hand engineering. FLASHBUTTERFLY appeals to classic Butterfly
decompositions of the FFT to rewrite the FFT convolution as a series of block-sparse Butterfly matrices.
This decomposition reduces the number of passes over the input sequence—reducing the GPU memory
requirements—and utilizes matrix multiply units on the GPU, which increases FLOP utilization.

To demonstrate FLASHBUTTERFLY’s scaling ability, we train a long convolution model on Path256,
a task with sequence length 64K. We set state-of-the-art by 29.1 points and train 7.2× faster than the
previous best model.

Summary. In summary, we show that long convolutions are an effective model for long sequence
modeling. They match or exceed SSMs across an array of diverse sequence domains while requiring
less hand-crafted initializations and showing improved stability. Additionally, by leveraging
connections to Butterfly matrices, long convolutions can be trained up to 2.2× faster than SSMs.

2 BACKGROUND

Deep State Space Models A discrete-time state space model (SSM) linearly maps an input u∈RN ,
over time t∈ {1,...,N}, to an output signal y ∈RN as xt =Axt−1 +But, yt =Cxt+Dut, by the
use of hidden state xt∈Rd and some set of matrices A∈Rd×d, D∈R1×1, B∈Rd×1, C∈R1×d. By
unrolling the recursion, y can be written as a convolution between u and a kernel K that depends on
A, B, C: y=K∗u+Du. Deep SSM models often contain several stacked SSM blocks, each of which
is comprised ofH heads of parallel SSMs with independent learnable parameters.

Long Convolutions as Sequence Models Rather than parameterizing K with carefully initialized
SSM matrices, we seek to directly parameterize the convolution kernel K. Our goal is to replace the
SSM layer with a learned convolution kernel as a drop-in replacement, while keeping the stacking
and multi-head structure of SSM models (which can be thought of as multiple convolutional filters).

FFT Convolution A standard approach to compute convolutions inO(N logN) in sequence length
N is to use the FFT convolution theorem. Let FN denote the DFT matrix of size N . Then, the
convolution can be computed as: y=u∗K=F−1N DKFNu, where DK =diag(FNK).
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3 METHOD

In Section 3.1, we conduct an initial investigation into long convolutions for sequence modeling,
and develop a simple regularization strategy based on our findings. Then, in Section 3.2, we present
FLASHBUTTERFLY, an IO-aware algorithm for speeding up convolutions using a connection to
block-sparse matrix multiplication.

3.1 LONG CONVOLUTIONS FOR SEQUENCE MODELING

First, we conduct a brief investigation into the performance of long convolutions on sequence modeling,
and we find a gap in quality. We then propose a simple regularization technique for closing this gap.

Regularizing the Kernel. We begin by directly replacing the SSM layers in an S4 model with long
convolutions, with random initialization. Table 1 shows that long convolutions underperform SSMs
by 16.6 points on average across LRA. We propose a simple technique for regularizing the convolution
kernel using the SQUASH operator. The SQUASH operator is applied element-wise to the convolution
kernel, and reduces the magnitude of all weights: K=sign(K)�max(|K|−λ,0).

Initialization. To understand the impact of initialization on long convs, we evaluate long convs
on two simple intialization techniques: random initialization, and a geometric decay. The random
initialization initializes the weights to be randomly distributed from a Normal distribution: Ki∼N .
The geometric decay initialization additionally scales kernel weights to decay across the sequence,
as well as across the heads. For the kernel K(h), 1 ≤ h ≤ H , we initialize the weights as:
K

(h)
k =xexp(−kN−1(H/2)

hH−1

), for 1≤k≤N , where x∼N is drawn from a Normal distribution.

3.2 FLASHBUTTERFLY

We present FLASHBUTTERFLY, an IO-aware algorithm for speeding up general convolutions on
modern hardware. Following H3 (Dao et al., 2022c), we use kernel fusion to reduce GPU memory IO
requirements, and use a Butterfly decomposition to rewrite the FFT as a series of block-sparse matrix
multiplications, allowing better utilization of modern matrix multiply units. The details are shown
in Appendix C. To scale to sequences that does not fit into SRAM (length 8K or longer on A100),
the method presented in H3 (Dao et al., 2022c) does not work anymore, as it depended in a critial
way on the recurrent nature of convolutions induced by SSMs. Instead, we use an alternate Butterfly
decomposition to construct a three-pass FFT convolution algorithm to further reduce IO requirements.

Three-Pass Algorithm. We exploit two alternative formulations of the Butterfly decomposition
of the FFT. A DFT matrix FN of size N can be written as NP−1(Im ⊗ (lFl))B

−1
, and its

inverse matrix F−1N can be written as N−1B(Im ⊗ Fl)P, where B is an N × N block matrix
with m2 blocks of size l× l, each of which is diagonal (see Appendix C for the exact derivation).
Critically, matrix-vector multiply Bu can be computed in a single pass over the input vector u.
Substituting these into the FFT convolution decomposition and simplifying yields the following:
y=u∗K=B(Im⊗Fl)D′K(Im⊗Fl)B

−1
, where D′K = lPDKP−1 is another diagonal matrix. The

middle terms can now be computed as m independent FFT convolutions of size l, with a different
convolution kernel. These parallel convolutions collectively require one pass overN input elements,
so the entire convolution can be computed with three passes over the input.

4 EVALUATION

We evaluate how well long convolutions perform in the challenging LRA benchmark as well as on
the OpenWebText language task. Next, we evaluate the runtime efficiency of long convolutions under
FLASHBUTTERFLY and evaluate how well it scales to very long sequences (Section 4.2).

4.1 QUALITY ON SEQUENCE MODELING

We begin by evaluating various regularization and initialization techniques on the long range arena
benchmark, a suite of six general-purpose sequence modeling tasks with sequence length between 1K
and 16K tokens, covering modalities including text, natural and synthetic images, and mathematical
expressions (Tay et al., 2020). We then evaluate long convolutions on language modeling. Experimental
details for the tasks are given in Appendix E, and additional experiments are provided in Appendix B.

Long Sequence Modeling: Long Range Arena. Table 1 shows the results for long convolutions
on the LRA benchmark. An 7 in the Path-X column indicates that the model never achieved better
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Table 1: Validation accuracy of different models on the LRA benchmark. Best in bold, second best
underlined.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Transformer 36.4 64.3 57.5 42.4 71.4 7 53.7

S4-LegS 59.6 86.8 90.9 88.7 94.2 96.4 86.1
S4-FouT 57.9 86.2 89.7 89.1 94.5 7 77.9

S4 (Original) 58.4 76.0 87.1 87.3 86.1 88.1 80.5

Long Convs 53.4 64.4 83.0 81.4 85.0 7 69.5
Long Convs, Random Init + SQUASH 61.4 88.0 90.2 88.7 94.6 97.1 86.7

Long Convs, Exp Init + SQUASH 62.2 89.6 91.3 87.0 93.2 96.0 86.6

Table 2: Test PPL of models trained on OpenWeb-
Text.

Model Test PPL

Transformer 20.6
GSS 24.0

H3 19.6

H3 + Long-Conv, Rand Init 20.1
H3 + Long-Conv, Exp Init 19.9

Table 3: LRA Speed Benchmark.
Model Speedup

Transformer 1×
FlashAttention 2.4×

Block-Sparse FlashAttention 2.8×

S4 2.9×

FLASHBUTTERFLY 7.0×

Table 4: Runtime and accuracy on Path256 (sequence length 64K).
Model Accuracy Training Time

Transformer 7 7

FLASHATTENTION 7 7
Block-Sparse FLASHATTENTION 63.1 3 days

FLASHBUTTERFLY 92.2 10 hours

classification accuracy than random guessing. Long convolutions are more robust to different
initializations than variants of S4. However, regularization is critical for achieving strong performance;
without it, long convolutions lose 17.2 points on average across the six LRA tasks.

Text Modeling: OpenWebText. We evaluate long convolutions as a drop-in replacement for SSMs
in the H3 layer (Dao et al., 2022c), which stacks two SSMs and multiplies their outputs together as a
gating mechanism. Following the H3 paper, we keep two attention layers in the overall language model
and evaluate on OpenWebText. Table 2 shows the results. Long convolutions with random initialization
come within 0.5 PPL points of H3, and the geometric decay initialization comes within 0.3 PPL. Both
models outperform the Transformer. This initial result suggests that convolutions—with some multi-
plicative gating mechanism—may be a promising candidate to replace attention in language modeling.

4.2 EFFICIENCY: FLASHBUTTERFLY

Runtime on Long Range Arena. The Long Range Arena benchmark evaluates the efficiency of se-
quence models using runtime on a byte-level text classification benchmark. Table 3 compares a long con-
volution with FLASHBUTTERFLY against Transformers, and S4 with FLASHCONV. FLASHBUTTER-
FLY outperforms S4, since it does not require kernel generation, and outperforms Transformers by 7.0×.

Very Long Sequence Lengths. We demonstrate the utility of FLASHBUTTERFLY by training models
on a task with extremely long sequences: Path256, which has sequence length 64K. Table 4 shows
that long convolutions achieve state-of-the-art performance on Path256, outperforming block-sparse
FLASHATTENTION from (Dao et al., 2022b), the only prior work to report non-trivial performance
(>50% accuracy) on Path256. Long convolutions with FLASHBUTTERFLY exceed state-of-the-art
performance by 29.1 points, and train 7.2× faster.

5 CONCLUSION

We show that long convolutions are a simple, yet effective approach to long sequence modeling.
We find that regularizing the kernel weights with a squash operator allows long convolutions to
achieve strong performance on a variety of long sequence modeling tasks. Finally, we develop
FLASHBUTTERFLY to improve the runtime efficiency of long convolutions.
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A RELATED WORK

State space models Following S4 (Gu et al., 2022a), several SSM-based deep learning models have
been proposed to model long sequences in different domains. In computer vision, S4ND (Nguyen et al.,
2022) modifies the S4 architecture to work on 2D data. Goel et al. observe that S4 is unstable during
autoregressive generation and propose a new architecture called SaShiMi to resolve this issue. SaShiMi
draws a connection to Hurwitz matrices, allowing it to set state-of-the-art on unconditional waveform
generation in the autoregressive setting. S5 was introduced as a multi-input, multi-output extension
of S4 (Smith et al., 2022). Mehta et al. introduce a layer named Gated State Space (GSS) to effectively
do autoregressive sequence modeling by using a gated state space architecture. Finally, there have
been developments of gated attention-based mechanisms for long sequence modeling (Ma et al., 2022).

Convolutions In computer vision, convolutional models have set state-of-the-art on many tasks (He
et al., 2016; Krizhevsky et al., 2017). However, these models are typically based on short, localized
convolutions. Recently, there has been growing interest in developing models that use long, global
convolutions. For example, models using long convolutions over the time dimension have been used to
learn video representations (Varol et al., 2017). SGConv proposes a long convolution kernel to model
long sequences. This model is based on two guiding principles: decay in the sequence dimension
and a sublinear parameter count (Li et al., 2022). There has also been work formulating the convolution
as a continuous function (Romero et al., 2021).

Transformer based architectures There has been recent progress using transformers to model
long sequences, despite quadratic scaling in sequence length for attention-based models. In computer
vision, several models have been proposed that build on the vision transformer (ViT) architecture
(Dosovitskiy et al., 2020). For example, Trockman & Kolter introduce ConvMixer, which operates
directly on patches of an image arranged in a sequence and uses a convolutional model to separately
mix the channel and sequence dimensions. Liang et al. improve inference speed compared to ViT
by reorganizing image tokens during the forward pass, fusing inattentive tokens. Other methods to
use transformers for long sequence modeling include Rae et al., which presents the Compressive
Transformer to enable long-range sequence modeling by compressing past memories.

Structured Matrices Several works have proposed to replace dense parameter matrices in neural
networks with structured matrices (e.g., low-rank matrices, sparse matrices) in order to reduce
network memory and compute requirements. One important line of work in structured matrices
is based on butterfly matrices (Parker, 1995; Dao et al., 2019). Chen et al. aimed to improve the
hardware-efficiency of butterfly matrices by using simple variants of butterfly. Dao et al. introduce
Monarch matrices as a class of hardware efficient and expressive matrices. Further, the authors show
that approximating a dense matrix with a Monarch matrix can be done analytically.

FFT Algorithms The computational feasibility of long convolutional models depends on the Fast
Fourier Transform (FFT). The Cooley-Tukey FFT algorithm, published in 1965 (Cooley & Tukey,
1965), enabled convolution and Fourier transforms to scale in the length dimension fromO(N logN)
instead ofO(N2). Subsequently, many alternative algorithms for efficiently computing the Fourier
transform have emerged, including algorithms for computing the FFT in parallel (Ayinala et al., 2011).
These algorithms have enabled fundamental progress in a range of disciplines, including control
theory (Brigham, 1988; Bekele, 2016) and signal processing (Oppenheim, 1978; Oppenheim et al.,
2001). A survey of methods is included in Chu & George; Bahn et al..

Finally, there has been work that trains neural networks in the Fourier domain, for example using
token mixing (Guibas et al., 2021). FNet (Lee-Thorp et al., 2021) speeds up the transformer encoder
architecture by using a Fourier transform to mix input tokens.

B ADDITIONAL EXPERIMENTS

B.1 IMAGE CLASSIFICATION

We evaluate long convolutions on image classification. We evaluate two settings which have been
used to evaluate SSMs and sequence models: 1D pixel-by-pixel image classification, and 2D image
classification. These settings are challenging for sequence modeling, as they require modeling complex
spatial relationships between image pixels in a continuous space. For the 1D case, we use long
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Table 5: Image classification on flattened images.
Model sCIFAR

Transformer 62.2

LSTM 63.0
r-LSTM 72.2

UR-LSTM 71.0
UR-GRU 74.4

HIPPO-RNN 61.1
LipschitzRNN 64.2

CKConv 64.2

S4-LegS 91.8
S4-FouT 91.2

S4D-LegS 89.9
S4D-Inv 90.7
S4D-Lin 90.4

Long Conv, Random 91.4
Long Conv, Exp Init 92.1

Table 6: Image classification on 2D images.
Model CIFAR

S4ND-ISO 89.9

Long Conv 2D-ISO, Rand init 88.1
Long Conv 2D-ISO, Exp init 89.1

Table 7: Evaluation on brain fMRI data.
Model MAE

Transformer 0.68
H3 0.70

H3 + Long Convs, Rand Init .58
H3 + Long Convs, Exp Init 0.54

Table 8: Univariate long sequence time-series forecasting results on ETTh1 Informer benchmark.
Comparisons across five horizon prediction settings. Best mean squared error (MSE) and mean
absolute error (MAE) in bold. Numbers reported from Gu et al. (2022a). Long Convs outperforms
S4 and obtains best MSE and MAE in four out of five evaluation settings.
Methods Long Convs S4 Informer LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.060 0.202 0.061 0.191 0.098 0.247 0.103 0.259 0.222 0.389 0.114 0.272 0.107 0.28 0.108 0.284 0.115 0.275
48 0.074 0.205 0.079 0.22 0.158 0.319 0.167 0.328 0.284 0.445 0.193 0.358 0.162 0.327 0.175 0.424 0.168 0.33
168 0.070 0.210 0.104 0.258 0.183 0.346 0.207 0.375 1.522 1.191 0.236 0.392 0.239 0.422 0.396 0.504 1.224 0.763
336 0.082 0.228 0.080 0.229 0.222 0.387 0.23 0.398 1.86 1.124 0.59 0.698 0.445 0.552 0.468 0.593 1.549 1.82
720 0.085 0.241 0.116 0.271 0.269 0.435 0.273 0.463 2.112 1.436 0.683 0.768 0.658 0.707 0.659 0.766 2.735 3.253

convolutions as a drop-in replacement for the SSM layer in the state-of-the-art S4 architecture. For
the 2D case, we replace the S4 layers in S4ND (Nguyen et al., 2022) with 2D long convolution filters.

Tables 5 and 6 show the results. On 1D image classification, long convolutions again match the
performance of S4, even with random initializations, while their performance improves further by 1.3
points when using the exponential decay initialization. On 2D image classification, long convolutions
come within 0.8 points of the state-of-the-art S4ND model—which suggests that higher dimensions
may require different techniques or inductive bias to recover the same performance.

B.2 TIME SERIES FORECASTING

Time series forecasting is another challenging modality for sequence modeling, which requires
reasoning over multiple time contexts. We evaluate the performance of long convolutions on different
future horizon prediction windows in ETTh1, a real-world long sequence time series forecasting task

9
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Table 9: Downstream performance on brain fMRI data.
Dataset Model F1

MDTB Transformer 91.8
H3 92.0

H3 + Long Convs, Rand Init 92.1
H3 + Long Convs, Exp Init 91.6

HCP Transformer 83.4
H3 82.6

H3 + Long Convs, Rand Init 82.3
H3 + Long Convs, Exp Init 83.6

from the Informer benchmark Zhou et al. (2021). Following the original S4 paper, we evaluate on
the univariate ETTh1 task, which involves predicting electricity transformer temperature at hour-long
granularities (i.e., 24, 48, 168, 336, and 720 hours in the future). For each prediction task, we use the
same number of hours before as a look-back window to input to the model. As LongConvs can be a drop-
in replacement for the S4 kernel, we also follow the approach taken in S4 that simply masks out the future
time steps in the input sequence and treat the task as a masked sequence-to-sequence transformation.
Table 8 shows the results. Long convolutions match or outperform S4 on all context windows, and
outperforms custom hand-crafted architectures designed specifically for time series forecasting.

B.3 BRAIN FMRI DOWNSTREAM ADAPTATION

We further evaluate the performance of the pre-trained models in two benchmark mental state decoding
datasets from the Human Connectome Project (HCP; Barch et al., 2013) and multi-domain task
battery (MDTB; King et al., 2019), spanning 20 and 26 distinct mental states respectively. To adapt
the pre-trained models to the mental state decoding (i.e., classification) task, we add a learnable
classification embedding Ecls ∈ Rn to the end of input sequences X and forward the model’s
corresponding prediction to a decoding head p(·), composed of a dense hidden layer with emodel units
(one for each embedding dimension, with tanh activation) as well as a softmax output layer (with one
model unit i for each considered mental state in the data). Accordingly, we adapt models by optimizing
a standard cross entropy loss objective: −

∑
iyilog p(f(EX))i, where yi indicates a binary variable

that is 1 if i is the correct mental state and 0 otherwise. We always begin downstream adaptation with the
pre-trained model parameters and allow all parameters to change freely during training. We randomly
split each of the two downstream datasets into distinct training (90% of fMRI runs) and test (10% of
fMRI runs) datasets and adapt models for 1,000 training steps at a mini-batch size of 256 and a learning
rate of 5e−5 (otherwise using the same learning parameters as for upstream training). During training,
we sample sequences from the fMRI datasets according to the accompanying event files, which specify
the beginning and end of each experimental trial underlying a mental state (when accounting for the
temporal delay of the haemodynamic response function; for details, see Thomas et al., 2022).

The adapted H3 variants with long convolutions perform on par with the other models in accurately
identifying the mental states of the downstream evaluation datasets (see Table 9: F1-scores are
macro-averaged).

C METHODS DETAILS

We discuss details of our methods.

C.1 KERNEL FUSION

Naive implementations of the FFT convolution incur expensive GPU memory IO. Each FFT and
inverse FFT operation requires at least one read and write of the input sequence from GPU memory,
and so does the pointwise multiplication operation. For long sequences, the IO costs may be even
worse: the entire input sequence cannot fit into SRAM, so optimized implementations such as
cuFFT (NVIDIA, 2022) must take multiple passes over the input sequence using the Cooley-Tukey
decomposition of the FFT (Cooley & Tukey, 1965). Following FLASHATTENTION (Dao et al., 2022b),
FLASHBUTTERFLY’s first contribution is to fuse the entire FFT convolution into a single kernel and
compute the result directly in GPU SRAM to avoid this overhead.

10
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Table 10: Runtime, GLOPs, and FLOP util for the Butterfly decomposition with different block sizes
r for sequence length 4096, on A100 with batch size 128, head dimension 32.

Block Size Runtime (ms) GLOPs FLOP Util

2 0.52 2.0 1.3%
16 0.43 8.1 6.0%
64 0.53 21.5 13.0%

256 0.68 64.5 30.4%

C.2 BUTTERFLY DECOMPOSITION

Kernel fusion reduces the IO requirements, but the fused FFT operations still cannot take full advantage
of specialized matrix multiply units on modern GPUs, such as Tensor Cores on Nvidia GPUs, which
perform fast 16× 16 matrix multiplication. We appeal to a classical result, also known as the four-step
or six-step FFT algorithm (Bailey, 1990), that rewrites the FFT as a series of block-diagonal Butterfly
matrices (Parker, 1995) interleaved with permutation.

The Butterfly decomposition states that we can decompose anN -point FFT into a series of FFTs of
sizes N1 and N2, where N =N1N2. Conceptually, the algorithm reshapes the input as an N1×N2

matrix, appliesN1 FFTs of sizeN2 to the columns, multiplies each element by a twiddle factor, and
then appliesN2 FFTs of sizeN1 to the rows.

More precisely, let FN denote the DFT matrix corresponding to taking the N -point
FFT. Then, there exist permutation matrices P, and a diagonal matrix D, such that
FN = P(IN2 ⊗ FN1)PTD(IN1 ⊗ FN2)P. P denotes a permutation matrix that reshapes the
input toN1×N2 and takes the transpose, D denotes a diagonal matrix with the twiddle factors along
the diagonal,⊗ denotes the Kronecker product, and vINi and FNi are the identity and DFT matrices
of sizeNi×Ni. Precise values for FNi

, D, and P are given in Appendix C.

The Butterfly decomposition incurs O(NrlogN/logr) FLOPS for a sequence length N = rp, with
block size r. In general FFT implementations,N is typically padded to a power of two, so that the block
size can be set to 2 to minimize the total number of FLOPS. However, on GPUs with a specialized
b×bmatrix multiply unit, the FLOP cost of computing an r×r matrix multiply with r<b is equivalent
to performing a single b×bmatrix multiply. Thus the actual FLOP count scales asO(NblogN/logr)
for r<b. Increasing the block size up to b actually reduces the FLOP cost.

Table 10 demonstrates this tradeoff on an A100 GPU, which has specialized matrix multiply units
up to 16 × 32. Runtime decreases as r increases from 2, even though theoretical FLOPS increase.
Once r>b, runtime begins increasing as actual FLOPS increase as well. We describe how to construct
D in the Butterfly decomposition, and B in the three pass algorithm.

Twiddle Matrices We describe how to constructN1×N2 Twiddle matrices.

Let M ∈ CN1×N2 . Then Mj,k = exp(−2πijk/N). The twiddle factors D can be constructed by
flatteningM and using them along the diagonal of D.

Butterfly Matrix We construct B in the three pass algorithm.

Let B(m) denote the Butterfly matrix that needs to be constructed for a three pass algorithm with
N = lm, and assume thatm is a power of 2. B(m) is a block matrix, where each block is a diagonal
matrix. In particular, we have:

B=

D1,1 ... D1,m

...
. . .

...
Dm,1 ... Dm,m,

.
We show how to construct Dj,k. Dj,k is a diagonal matrix of size l×l. The entries of Dj,k are given
by the following:

Dj,k[τ ]=exp(−2iπk(jl+τ)/N).

11
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Algorithm 1 FLASHBUTTERFLY

Require: Input u ∈ RB×H×N , K ∈ RH×N , D ∈ RH , where N = lm is the sequence length, H is the head
dimension, and B is the batch size.

1: K̂←FFT (K)

2: D′K←P(K̂)P−1

3: u←B
−1

u
4: Compute u←(Im⊗Fl)D

′
K(Im⊗Fl)u in parallel across m streaming multiprocessors

5: Return Bu∈RB×H×N

C.3 ADDITIONAL DETAILS ABOUT THE THREE PASS ALGORITHM

We share a few additional details about the three pass algorithm that allow for efficient training.

The butterfly matrices B have complex coefficients. Typically, we train models over real time series.
This mismatch has the potential to increase the amount of GPU memory IO: it is necessary to read
N real numbers, but writeN complex numbers.

We can alleviate this problem by using a well-known transformation between a real FFT of length 2L
and a complex FFT of lengthL (Brigham, 1988). In essense, a real FFT of length 2L can be converted
into a complex FFT of lengthL. In our algorithm, we exploit this as follows:

• Given an input of real pointsN , reshape the input to be a complex input of lengthN/2.

• Compute the complex FFT convolution over the input of length N/2 using the three pass
algorithm.

• Convert the output to be a real output of lengthN .

The first and last steps can be fused with a Butterfly matrix multiplication kernel, thereby keeping
the total IO cost the same as the original algorithm.

D THEORY

D.1 THREE-PASS ALGORITHM

The full algorithm for FLASHBUTTERFLY forN>l is shown in Algorithm 1.

We show that Algorithm 1 is correct, and that it can be computed in three passes over the input sequence.

Proposition 1. Algorithm 1 computes the convolution u∗K with at most three passes over the input
sequence u.

We prove Proposition 1.

Convolution Recall that a convolution between two vectors u and k of length N is given by the
following:

u∗k= F̄LDiag(FLk)FLu.

We can precompute F̄Lk, since it is shared across all inputs in a batch. Let D= F̄Lk. Then, the above
is given by:

u∗k= F̄LDFLu.

Decomposition One property of FL is that it can be decomposed. For example, ifL=2l, then we
can write the following:

F2l=B

[
Fl 0
0 Fl

]
P,

where P is a permutation matrix (in this case, an even-odd permutation), and B is a Butterfly matrix.

12
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We can leverage this to re-write a convolution of length 2l. Let u and k be vectors of length 2l. Then,
we can write the following:

u∗k= F̄2lDF2lu

= F̄2lDF̄−12l u

=B̄

[
F̄l 0
0 F̄l

]
PDP−1

[
F̄−1l 0

0 F̄−1l

]
B̄−1u

=B̄

[
F̄l 0
0 F̄l

]
D′
[
F̄−1l 0

0 F̄−1l

]
B̄−1u,

for some diagonal matrix D′. Note that the three terms in the middle can be computed in parallel.

This pattern extends toL=2ml, and yields 2m parallelism in the product.

It remains to show that each of the Butterfly matrices can be computed with a single read/write over
the input sequence.

Recall that the Butterfly matrices have the following form:

B=

D1,1 ... D1,m

...
. . .

...
Dm,1 ... Dm,m,


where the Di,j are diagonal matrices of size l×l.
A matrix-vector multiply y=Bu can be partitioned on a GPU as follows. Suppose that each SM has
enough shared memory to store l elements of the input. Let there be m SMs processing this input.
Each SM will read l input and write l output, forml=N total reads and writes.

Specifically, SM i will read

u[(l/m)i : (l/m)(i+1)],

u[l+(l/m)i : l+(l/m)(i+1)],...,

u[(m−1)l+(l/m)i : (m−1)l+(l/m)(i+1)].

These inputs are exactly the inputs needed to compute:

y[(l/m)i : (l/m)(i+1)],

y[l+(l/m)i : l+(l/m)(i+1)],...,

y[(m−1)l+(l/m)i : (m−1)l+(l/m)(i+1)].

The SM can then distribute these portions of the matrix-vector multiply to the independent threads
of the SM.

This completes the proof.

D.2 EXPRESSIVITY OF LONG CONVOLUTIONS

We show that long convolutions and SSMs are equivalent in expressivity (the subset relation in Figure 1
right is actually set equality).

Proposition 2. LetM be a positive integer that evenly dividesN . Any convolution kernel of length
N can be written as the sum ofN/M diagonal SSMs with hidden stateM .

Proof. For the caseM=1, consider a diagonal SSM with A∈RN×N diagonal with entries a1,...,aN ,
and B∈RN×1. For simplicity, we will roll C into B and set D=0.

This SSM gives rise to the following kernel K with entries:

Ki=AiB=

N∑
j=1

aijbj .

This is equivalent to

K=VB,

13
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where V is the transpose of a Vandermonde matrix

V=


1 a1 a21 ... aN−11

1 a2 a22 ... aN−12
. . . . . . . . . . . . . . . . . . . . . . .
1 aN a2N ... aN−1N


T

.

Vandermonde matrices have a determinant that is nonzero if and only if a1,...,aN are all distinct. Thus
VT is invertible if a1,...,aN are distinct and hence V is also invertible if a1,...,aN are distinct. Given
a kernel K̂, we can thus express that kernel by picking any a1,...,aN that are distinct and then picking
B=V−1K̂, then VB=VV−1K̂=K̂, finishing the proof.

In the case where M > 1 we have consider a diagonal SSM with A∈RN×N diagonal with entries
a1,...,aN , and B∈RN×1. Partition, the state N into N/M partitions of size M . Let σ(i,j) denote
the partition function that bijectively maps (i,j) pairs to [1,...,N ] for 1≤ i≤N/M,1≤j≤M .

Then the convolution kernel has the following entries Ki:

Kl=

N∑
i=1

alibi=

N/M∑
i=1

M∑
j=1

alσ(i,j)bσ(i,j).

Consider the inner sum
∑M
j=1a

l
σ(i,j)bσ(i,j). This defines a convolution kernel given by a diagonal

SSM with hidden stateM , A with diagonal entries [aσ(i,1),...,aσ(i,M)], and B=[bσ(i,1),...,bσ(i,M)]
T .

Thus, this diagonal SSM with hidden stateN is the sum ofN/M diagonal SSMs with hidden state
M .

Proposition 2 suggests that long convolutions and SSMs have fundamentally the same expressive
power, especially when SSMs are used in a deep architecture that stacks multiple independent SSMs in
layers. The significance of this result is that this allows us to view SSMs and general long convolutions
as the same construct.

E EXPERIMENT DETAILS

We discuss all the details of our experiments.

Table 11: The values of the best hyperparameters found; LRA, images, language, and time series,
and brain fMRI. LR is learning rate and WD is weight decay. BN and LN refer to Batch Normalization
and Layer Normalization. We use random weight initialization in all runs.

Depth FeaturesH Norm kernel LR Dropout λ Batch Size WD Epochs LR

ListOps 8 128 BN 0.0005 0.2 0.002 50 0.05 40 0.01
Text (IMDB) 6 256 BN 0.001 0.2 0.003 16 0.05 32 0.01
Retrieval (AAN) 6 256 BN 0.0001 0.1 0.004 32 0.05 20 0.01
Image 6 512 LN 0.001 0.2 0.003 25 0.05 200 0.01
Pathfinder 6 256 BN 0.001 0.3 0.001 64 0.03 200 0.004
Path-X 6 256 BN 0.0005 0.3 0.001 4 0.05 50 0.0005

sCIFAR 6 512 LN 0.001 0.2 0.001 50 0.05 300 0.01
2D CIFAR 4 128 LN 0.001 0 0.001 50 0.01 100 0.01

OpenWebText 12 768 LN 0.001 0 0.001 32 0.1 100B tokens 0.0003

Time Series 3 128 BN 0.001 0.2 0.003 50 0.01 50 1e-5

Brain Upstream 4 768 LN 0.001 0.2 0.0005 512 0.1 5000 steps 0.01
Brain Downstream 4 768 LN 0.001 0.2 0.00005 256 0.1 1000 steps 0.01

Hyperparameter Sweeps For all methods, we swept the following parameters:

• Kernel Dropout: [0.1, 0.2, 0.3, 0.4, 0.5]

• Kernel LR: [0.0001, 0.0005, 0.001]

• λ: [0.001, 0.002, 0.003, 0.004, 0.005]
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Table 12: Convolution- and SSM-specific hyperparameters.
Model Hyperparameters Initializations

SSM d, lrA, lrB , lrC LegS, FouT, LegS/FouT
dropout, discretization Inv, Lin

Long Convs λ, kernel LR, Random, Geometric
k, dropout

Figure 2: Mean absolute error of pre-trained models in upstream evaluation data for each location of
the brain. Brain maps are projected onto the inflated cortical surface of the FsAverage template (Fischl,
2012).

Compute Infrastructure The experiments in this paper were run on a mixture of different compute
platforms. The LRA experiments, except for Path-X, were swept on a heterogeneous cluster of 1xV100
and 2xV100 nodes. Path-X and sequential CIFAR were run on single 8xA100 nodes. The language
modeling experiments were run on a single 8xA100 node. The time series experiments were run on
a cluster with 1xP100 nodes. The brain fMRI experiments were run on a cluster of 2xV100 nodes.

Final Hyperparameters Final hyperparameters for reported results are given in Table 11.

Hyperparameter comparision to S4 Compared to the hyperparameters necessary to train
S4, our regularization approaches have significantly fewer hyperparameters and choices than S4.
Convolution-specific hyperparameters for S4 and long convolutions are shown in Table 12.

E.1 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA

Neuroimaging research can be considered as recently entering a big data era, as individual researchers
publicly share their collected datasets more frequently. This development opens up new opportunities
for pre-training at scale in neuroimaging research, as recently demonstrated by Thomas et al. (2022).
In their work, the authors show that Transformers, pre-trained to predict brain activity for the next
time point of input fMRI sequences, outperform other models in learning to identify the mental states
(e.g., happiness or fear) underlying new fMRI data. Recently, Dao et al. (2022c) have shown that H3
performs on par with Transformers in this transfer learning paradigm.

To test whether long convolutions also perform on par with SSMs, as implemented in H3, and Trans-
formers in this paradigm, we replicate the analyses of Thomas et al. (2022), using their published fMRI
datasets. Conventionally, functional Magnetic Resonance Imaging (fMRI) data are represented in four
dimensions, describing the measured blood-oxygen-level-dependent (BOLD) signal as a sequence
S={V1,...,Vt} of 3-dimensional volumes V ∈Rx×y×z , which show the BOLD signal for each spatial
location of the brain (as indicated by the three spatial dimensions x, y, and z). Yet, due to the strong spa-
tial spatial correlation of brain activity, fMRI data can also be represented differently, by representing
individual sequences as a set Θ∈θ1,...,θn of n functionally-independent brain networks θ, where each
network describes the BOLD signal for some subset of voxels vx,y,z∈V (e.g., Dadi et al., 2020). The re-
sulting sequencesX∈Rt×n indicate whole-brain activity as a set ofn brain networks for t time points 1.

1Thomas et al. (2022) use n=1,024 networks defined by the Dictionaries of Functional Modes (DiFuMo;
Dadi et al., 2020) Atlas.
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Upstream learning: In line with Thomas et al. (2022), we pre-train models f(·) to predict
whole-brain activity for the next time point j of an fMRI sequence X , using a mean absolute error
(MAE) training objective, given the model’s prediction X̂ ∈ Rt×n: MAE = 1

n

∑n
i=1 |Xj,i− X̂j,i|;

X̂t,n = bn +
∑
n f(EX)t,ewe,n; EXt,e = ETR + Epos + be +

∑
nXt,nwn,e. Here, ETR ∈ Re

and Epos ∈ Re represent learnable embeddings for each possible time point and position of an
input sequence (for details, see Thomas et al., 2022)2. Note that f(·) processes the input in a
lower-dimensional representationEX ∈Rt×e, where e=768, obtained through linear projection.

In line with Thomas et al. (2022) and Dao et al. (2022b), we pre-train a Transformer decoder (based on
GPT) with 4 hidden layers and 12 attention heads and a H3 model with 4 hidden layers (withH=64
andm=1; see Dao et al., 2022c) in this task. For both models, the sequence of hidden-states outputs
of the last model layer are used to determine X̂ (scaled to the original input dimension with linear
projection). We also pre-train variants of H3 that replace its SSM kernel with long convolutions.

We randomly divide the upstream data, which spans fMRI data from 11,980 experimental runs of
1,726 individuals, into distinct training and validation datasets by randomly designating 5% of the
fMRI runs as validation data and using the rest of the runs for training. During training, we randomly
sample sequences of 100 time points from the fMRI runs and train models with the ADAM optimizer
(with β1 = 0.9, β2 = 0.999, and ε= 1e−8 ) for 5,000 steps at a mini-batch size of 512 and a learning
rate of 5e−4. We also apply a linear learning rate decay schedule (with a warm-up phase of 10% of the
total number of training steps), gradient norm clipping at 1.0,L2-regularisation (weighted by 0.1), and
dropout at a rate of 0.2 (throughout all models). The adapted H3 variants clearly outperform the other
models in accurately predicting brain activity for the next time point of input sequences (Table 7). We
also find that the pre-trained models exhibit similar evaluationMAE error distributions throughout
the brain, with relatively higher errors in the posterior parietal, occipital, and cingulate cortices as
well parts of the limbic system (Fig. 2).

2As the sampling frequency of fMRI is variable between datasets, the same position of an input sequence
can correspond to different time points.
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