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Abstract— Large Language Models (LLMs) have 

revolutionized many areas of artificial intelligence (AI), but their 

substantial resource requirements limit their deployment on 

mobile and edge devices. This survey paper provides a 

comprehensive overview of techniques for compressing LLMs to 

enable efficient inference in resource-constrained environments. 

We examine three primary approaches: Knowledge Distillation, 

Model Quantization, and Model Pruning. For each technique, we 

discuss the underlying principles, present different variants, and 

provide examples of successful applications. We also briefly 

discuss complementary techniques such as mixture-of-experts and 

early-exit strategies. Finally, we highlight promising future 

directions, aiming to provide a valuable resource for both 

researchers and practitioners seeking to optimize LLMs for edge 

deployment. 

Keywords—Model Compression, Large Language Models, Deep 

Learning, Knowledge Distillation, Quantization, Pruning, Early-

Exit 

I. INTRODUCTION 

LLMs have emerged as groundbreaking technologies, 
significantly advancing the field of AI in recent years. These 
models display remarkable generalization capabilities beyond 
their initial training objectives and tackle a wide variety of tasks 
[1], [2]. Beyond natural language processing and understanding, 
LLMs display reasoning capabilities, multimodal 
understanding, and generative abilities. They have been widely 
used in various domains like information retrieval [53], content 
generation [5], [6], scientific discovery [8], healthcare [7] and 
education [6]. 

 While LLMs have the potential for transforming several 
domains, they are typically very resource-intensive to train and 
serve. LLMs have millions or billions of parameters which 
means that they require dedicated resources (machines, GPUs, 
TPUs, RAM) for training and inference. For example, LLaMa 3 
405B does not fit in a single machine with 8 Nvidia H100 GPUs 
(800 GB of combined memory) and needs to be split across two 
machines for inference [4]. DeepSeek-V3 [62] in 16-bit 
precision requires 1.34 TB of GPU memory. Even the LLaMa 
7B model, in 16-bit precision, requires 14 GB of GPU memory 
for the parameters and an additional 2 GB of memory for the 

Key-Value cache depending on the configuration [3]. The 
inference cost of these models makes them prohibitively 
expensive to run on mobile and edge devices. 

 To bridge the gap of using powerful models on resource 
constrained environments and edge devices, researchers have 
developed model compression techniques that reduce model 
size and inference cost while preserving accuracy. This paper 
examines three major techniques for efficient LLM 
compression: Knowledge Distillation (KD), Model 
Quantization, and Pruning, along with their variants and 
practical applications. We also briefly discuss other techniques 
to improve model efficiency such as mixture-of-experts and 
early exit strategies. While existing work often focuses on one 
or two compression techniques in great detail [9], [10], [13], 
[32], [55], this paper provides a holistic view of model 
compression, highlighting effective implementations and 
outlining promising future directions. To the best of our 
knowledge, this is the first paper that provides a focused survey 
of LLM compression techniques from the lens of resource-
constrained environments. 

 The paper is organized as follows: Section II outlines the 
challenges that necessitate LLM compression; Section III 
provides an in-depth examination of compression techniques, 
going through the underlying principles, variants, and effective 
examples. Section IV discusses promising areas of research 
within model compression and Section V provides a conclusion. 

II. CHALLENGES IN USING LARGE LANGUAGE MODELS 

To realize the potential of LLMs in mobile, edge, and 

IoT sensors, several key challenges must be overcome. Key 

challenges currently being addressed include: 

• Computational Cost: LLMs require significant 

computational cost for inference. According to [2] the 

inference cost of GPT-3 2.7B model is 2 FLOPS 

(Floating point operations per second) per active 

parameter per token, bringing up the cost per token to 

5.4 GigaFLOPs. This computational cost is often 

prohibitive to run the models directly on mobile and 

edge devices.   
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• Memory: LLMs, with millions or billions of 

parameters, often require gigabytes of GPU memory 

for serving. The memory requirements are a factor of 

the number of parameters, the number of bytes 

required per parameter and additional memory 

required (overhead factor). Even a 7B parameter 

model at 16-bit precision requires over 16 GB of 

memory [3]. This is usually well-beyond what is 

available in most mobile and edge devices.   

• Energy Consumption and Latency Requirements: 

The high computation cost for serving LLMs also 

leads to significant energy usage and high-latency. 

Mobile devices have limited battery capacity and strict 

latency-requirements for applications. Thus, using 

LLMs on-device without any compression is 

impractical.   

• Deployment Complexity: Deployment is 

complicated by the heterogeneity of edge and mobile 

hardware. While LLMs are optimized for special and 

general-purpose GPUs, they may need additional 

tuning for specific hardware targets.  

In this paper, we will address ways to make LLMs and deep 

learning models smaller, thereby reducing their computation 

requirements and memory footprint, while making inference 

faster. 

III. WAY TO ADAPT LARGE LANGUAGE MODELS FOR EDGE 

DEVICES - KEY METHODS AND TECHNIQUES 

A. Knowledge Distillation 

Knowledge Distillation (KD) is a model compression 
technique where, generally, a smaller student model is trained to 
mimic a larger teacher model. The idea was first introduced by 
[12] for reducing the size of an ensemble of models, and then 
generalized by [11] and [38]. The key idea here is that the 
knowledge learned by a large complex model (teacher model) 
can be effectively learned by a smaller, simpler model (student 
model) through the process of distillation. The student model is 
optimized to match the teacher’s outputs in addition to the 
ground truth labels. Therefore, the student learns to reproduce 
the teacher’s function with high accuracy, with much fewer 
parameters. This enables student models to be deployed on 
resource constrained environments like mobile phones and edge 
devices. 

1) The Basics of Knowledge Distillation 

In Knowledge Distillation, the student model is trained to 

learn the feature predictions from the teacher. In order to do 

that, a fully-trained teacher model is used to run inference on a 

dataset (sometimes referred to as a transfer dataset) and the 

predictions are called soft targets. The teacher model uses a 

high value of the temperature parameter T resulting in a 

smoother probability distribution over classes, which is more 

informative than binary true labels [13] or only the most-likely 

next token in case of LLMs. The student model predictions also 

use the same value of temperature during training. The cross-

entropy loss (or Kullback-Leibler divergence loss) between the 

student model predictions and the soft targets, called the 

distillation loss, is minimized. 

The loss function also consists of a second component 

which minimizes the loss between student model predictions 

and the ground truth labels (hard targets), called the student 

loss. For this component, the student model temperature T is set 

to 1. Hinton et al. [11] uses a weighted sum of the two losses to 

train the student model. The loss function becomes: 

 
Where, 𝐿𝐶𝐸  = Crossentropy loss; y = True labels; 𝑧𝑇 = Teacher 

model logits; 𝑧𝑆 = Student model logits; 𝜎 = Softmax function; 

𝛼 = Weighting coefficient; T = Temperature. 

The distillation loss is multiplied by 𝑇2  to appropriately 

scale its gradients. 

2) Different Forms of Knowledge Distillation 

a) Soft-Target Distillation (Logit-based Distillation) 

Soft target, or soft label, distillation is the most popular form 

of KD [11] and the one described in the previous section. Soft 

targets are predictions from the teacher model and act as both 

labels to train the student model on and regularizers, as the 

higher temperature leads to label smoothening. Logit-based 

distillation is similar to soft target distribution, with the logits 

from the teacher and student models used directly, without 

applying the softmax function on them. The blue box in Fig.1 

shows soft-target distillation and its two loss components. 

b) Feature-Based Distillation 

Feature-based KD uses information from the 

intermediate layers in the network to distill knowledge between 

the teacher model and the student model. This idea was 

introduced by [15] in the FitNets paper, where activations from 

specific hidden layers in the teacher model, termed as hints, 

were used to train corresponding layers in a thinner student 

model. The model used an intermediate regressor to convert 

from the student model hidden representation space to the 

teacher model hidden representation space, and used a two-

stage training process. Several subsequent works have 

expanded upon feature-based distillation, but open problems 

like choosing the right layers in the teacher and student models 

to distill and the difference in feature representations in the 

models still remain. The yellow box in Fig.1 depicts where 

feature-based distillation takes place. 

c) Relation-Based Distillation 

Unlike the previous methods which match the outputs or 

activations from intermediate layers between the teacher and 

student models, relation-based distillation tries to preserve the 

relationship between data points or between intermediate 

representations. In the Relational Knowledge Distillation paper 

[16] the student model learns to align pairwise distances 

between data points in the latent space (called distance-wise 

loss) with the teacher’s pairwise distances. Additionally, angles 

formed by triplets of points (called angle-wise loss) are also 

aligned. The red box in Fig 1. shows relation-based distillation 

based on [16].



  
Fig 1. Different forms of Knowledge Distillation. The student model is represented by the green box and the teacher model is represented by the purple box. 

The outputs of the two models are used for soft-target distillation; pairs/triplets of outputs are used for relation-based distillation; the latent/feature-space 
representations are used for feature-based distillation; multiple teacher models are used for multi-teacher distillation; the student model itself is used for self-

distillation. 

d) Self-Distillation 

In self-distillation, a model learns from itself or from 

models with the same architecture. This can be done in a few 

ways: i) the later layers of a model can be used to teach the 

earlier layers [17] ii) knowledge from earlier versions of the 

model can be used to train a later version [18]. In this method, 

a large teacher model is not required to train the student model. 

Self-distillation also effectively regularizes the model by 

smoothing its own predictions, which can lead to higher 

accuracy. This permits smaller model architectures to perform 

better, without the need for larger teacher models, making it a 

particularly useful technique for smaller models that can be 

used in resource constrained settings. 

e) Multi-Teacher Distillation 

In multi-teacher distillation, the student model learns from 

multiple teacher models simultaneously. The different teacher 

models may have been trained on heterogeneous datasets, and 

therefore may excel in different tasks. Furthermore, the 

distillation can happen through a combination of output (soft 

target) distillation and relational distillation with multiple 

teachers [19]. 

3) Examples of Knowledge Distillation 

Notable examples of KD are summarized in TABLE I. 

B. Model Quantization 

Model Quantization reduces the numerical precision, i.e., 

number of bits required, for the model’s parameters. A trained 

model consists of its graph structure and parameters (weights 

and activations). For a non-quantized model, the parameters are 

usually in the form of 32-bit (FP32) or 16-bit floats (FP16, 

BF16). Quantization reduces the numerical precision of these 

weights and, often, the activations, by storing them as 8-bit 

integers, 4-bit integers, or even single bits [36]. The lower bit-

precision leads to a reduced memory footprint for the model (by 

4x, 8x or even 32x compared to the FP32 representation) and 

speeds up inference as integer arithmetic can be more efficient 

than floating-point operations. This has the added benefit of 

reducing the energy required to serve the models. Quantization 

to INT8 or lower precision also enables deployment on 

hardware optimized for or restricted to integer operations. The 

primary trade-off of quantization is a potential drop in accuracy 

due to the reduced precision, but various techniques can 

minimize this loss. In the following section we discuss different 

quantization strategies and a few applications of quantization. 

1) Post-Training Quantization 

Post-training Quantization (PTQ) converts a pre-trained 

full-precision model to a low-precision model after the training 

process is complete. PTQ is fast and doesn’t require retraining 

the model. The simplest form of PTQ directly quantizes the 

weights after training by mapping FP32 to lower precision, but 

this can result in accuracy loss. More sophisticated PTQ 

methods have been developed that use a calibration dataset to 

determine the scale and zero-point for mapping floating-point 

values to lower precision. The uniform affine quantizer and 

uniform symmetric quantizer [25] are examples of calibration-

based PTQ. Such techniques have been effective in reducing 

the precision to INT8 with minimal reductions in accuracy. 

However, reducing the precision even further requires more  



TABLE I. EXAMPLES OF KD ON LLMS 

Paper High-level 

Approach 

Teacher 

Model(s) 

Student 

Models 

Notable Results 

GKD 

[20] 

On-policy 

learning: 

student 

model 

generates its 
own output 

sequences 

used for KD 

T5-XL 

(3B 

params) 

T5-Small 

(77M 

params), T5-

Base (250M 

params), T5-
Large (800M 

params) 

Smallest student 

model surpasses 

few-shot 

performance 

larger PaLM 
(540B) for 

machine 

translation. 

Mini

LLM 

[21] 

Reverse 

KLD Loss, 

policy 
gradient 

optimization 

GPT-2 

XL 

(1.5B); 
OPT 

(13B) 

[14]; 

LLaMA 

(13B) 

GPT-2 

(120M, 

340M, 
760M); 

OPT (1.3B, 

2.7B, 6.7B);  

LLaMa (7B) 

Outperforms 

standard KD 

using forward 
KLD loss across 

various tasks. 

DISTI

LLM 

[22]  

Skewed 

KLD loss, 

adaptive off-

policy 

learning 

T5-XL 

(3B); 

GPT-2 

1.5B; 

OPT-13B; 
LLaMA-

13B. 

T5 (Small, 

Base, Large); 

GPT-2 

(120M, 

340M, 
760M); OPT 

(1.3B, 2.7B, 

6.7B); 

LLaMA 7B,  

Outperforms 

standard KD 

across 

summarization, 

translation, 
reasoning. 

Shows 2.5x-4.3x 

training speedup 

compared to on-

policy KD. 

 

framework to decompose the quantization of weights into 

ternary optimization problems which can then be recombined 

to form INT3 values. Nagel et al [27] proposed an adaptive 

rounding strategy in PTQ to round weights based on their 

impact on the overall model accuracy and was able to quantize 

several CNN models to INT4 precision within minimal 

reduction in accuracy. This was also achieved in BrecQ [28] 
where a layer-wise block reconstruction strategy was used to 

quantize the layers of models. 

2) Quantization-Aware Training 

Quantization-aware training (QAT) [29] simulates 

quantization during training time and allows the model to learn 

parameters that are more robust to the effects of quantization. 

This results in higher accuracy than PTQ. In QAT, the forward 

pass has simulated quantization operations added to the 

standard operations. In addition to the full-precision 

calculations, weights and activations are quantized and used to 

compute the output of each layer. Since quantization operations 

are non-differentiable, a straight-through estimator (STE) [31] 

is used to compute the gradients for the quantized parameters. 

The STE passes through the gradient i.e., it acts as an identity 

function. The full-precision gradient calculation happens 

normally, through the chain-rule and is used to update the 

weights. 

QAT generally achieves much higher accuracy than PTQ, 

particularly for lower numerical precision levels like INT8 and 

INT4. It is also more stable to the errors introduced in the 

quantization process. But this comes at the cost of increased 

training time compared to PTQ, which doesn’t need retraining. 

QAT usually requires lower learning rates and adds extra 

computation to the forward pass of training. QAT is also more 

complex to implement and has more hyperparameters to tune. 

3) A Few Special Cases of Quantization 

a) Mixed Precision Quantization 

Mixed precision allows for different parts of a model to 

be quantized with different bit-precision [32]. This provides 

more fine-grained control over the efficiency vs accuracy 

tradeoff. Different layers of a transformer model may have 

different sensitivities to quantization. While the final output and 

bottleneck layers require higher bit-precision (FLOAT-16 or 

higher) after quantization, other layers like layer normalization 

or intermediate attention output layers could be quantized to 

INT8 or even INT4 precision. ZeroQuant [34] provides an 

example of mixed precision quantization where the fully-

connected modules were quantized to INT4, while the attention 

weights and activations were quantized to INT8 on BERT and 

GPT-style models, resulting in a 3x reduction in memory 

footprint compared to an FP16 model.   

Bondarenko et al. [33] extends mixed-precision 

quantization further by introducing per-embedding-group 

quantization where bit-precision can vary based on embedding 

groups. Different embedding groups within a transformer may 

use different levels of quantization, based on their relative 

importance to the model. Mixed precision quantization reduces 

accuracy degradation significantly compared to uniform 

precision quantization while also making it easier to tailor the 

model to compute-limited surfaces that it may be served on. 

While identifying the ideal quantization level for each layer is 

an open area of research, reinforcement learning and neural 

architecture search-based approaches have had some success 

[35]. 

b) Binary and Ternary Quantization 

While typical quantization strategies reduce model 

parameters to FP16, INT8 or INT4, binary and ternary 

quantization take it even further. Binary quantization [24] uses 

1-bit per parameter, so the possible values are +1 and -1. This 

approach was pioneered by BinaryConnect [36]. Ternary 

quantization uses 2-bits per parameter, but only three distinct 

values of +1, 0 and -1 [37]. The inclusion of the zero allows the 

network to completely mask out weights that are not important 

and can lead to better accuracy than binary quantization. These 

approaches can result in a 32x to 16x reduction in model size 

compared to a standard FP32 parameter model.  

4) Distillation and Quantization 

While KD and quantization have been discussed separately, 

they are often used together to achieve compounding gains 

when reducing model size. KD helps smaller models learn more 

efficiently from larger models which helps maintain accuracy 

of quantized models, while quantization reduces the student 

model’s bit-precision to make the model even smaller. Polino 

et al. [39] had proposed quantized distillation which introduced 

distillation loss into the training of a reduced precision student 

model, which helps it learn from a larger full-precision teacher. 

They also introduced differentiable quantization which helps 

converge to the optimal location of quantization points through 



stochastic gradient descent. ZeroQuant [34], discussed earlier, 

also had a version of the model where quantization was used 

along with a novel version of distillation called Layer-by-layer 

Knowledge Distillation (LKD) to reduce the model to INT4 and 

INT8 mixed precision. 

5) Examples of Model Quantization 

Notable examples of Model Quantization are summarized 

in TABLE II. 

C. Model Pruning 

Model or network pruning is a technique of removing 

redundant or low-importance components of a model to reduce 

its overall size. The components that are removed could be 

neurons, weights, attention heads, filters (in CNNs) or even 

entire layers. The objective of Model Pruning is to remove 

nodes and connections that contribute very little to the model’s 

output. The pruned model can be significantly smaller than the 

full model, making it faster and much cheaper for inference, 

while using less energy. This makes the model more suitable 

for mobile devices and low power settings. Pruning may also 

result in better generalization and makes further fine-tuning 

faster.   

The idea of Model Pruning is not new. The Optimal Brain 

Damage paper [44] in 1989 used second derivative information 

to decide which weights in a model can be pruned. The Optimal 

Brain Surgeon [45] improved upon this idea in 1993 with a 

more accurate estimate of the effect of removing weights. More 

recently, Han et al. [46] introduced a three-step process: i) 

training networks to learn which connections are important ii) 

pruning the unimportant connections iii) retrain network to fine 

tune the weights of the remaining connections. This work 

focuses on learning which connections are important in a 

network and removing the low-weight connections, followed 

by pruning neurons that have zero input or output connections. 

This led to much sparser models, with a 9x and 13x reduction 

in model parameters for the AlexNet and VGG-16 models, 

respectively, without any loss in accuracy.  

Pruning techniques can be divided into two broad categories 

based on what gets pruned: 

• Unstructured: The general case of non-important 

weights and neurons being removed is a form of  

unstructured pruning [44], [45], [46]. This yields 

sparse weight matrices and can usually be done at a 

more granular level. The disadvantage of unstructured 

pruning is that the hardware may not be able to take 

full advantage of the sparsity, as GPUs are optimized 

for dense matrix operations.   

• Structured: In structured pruning, whole components 

like layers, filters or channels are removed [54]; or 

constraints like N:M sparsity [60], block sparsity or 

vector sparsity are enforced on the weights. This 

approach is more hardware friendly, but the degree of 

pruning may be lesser if accuracy needs to be 

preserved.  

The rationale behind pruning was strengthened by the 

Lottery Ticket Hypothesis [43] paper where the authors were  

TABLE II. EXAMPLES OF MODEL QUANTIZATION 

Paper Quantiza

tion 

Approac

h 

Target 

Model 

Bit-width 

Post-

Quantiza

tion 

Notable Results 

Zero 

Quant 

[34] 

PTQ; 

Mixed 

Precision 

BERT, GPT-

J (6B), GPT-

NeoX (20B) 

All INT8 

(W8A8); 

Mixed 

W4/W8 

A8 

2x to 3x memory 

reduction; 

Minimal drop in 

accuracy; ~5.2x 

faster inference 

GPTQ 

[30] 

PTQ OPT-175B 

[14], 

BLOOM-
176B 

Weights 

INT3-4 

(W3-4), 
Activation 

FP16 

(A16) 

4x to 5x memory 

reduction; 3.25x 

to 4.5x faster 
inference; 

negligible 

accuracy drop 

Smooth 

Quant 

[40] 

PTQ + 

Activation 

smoothing 

OPT-175B, 

BLOOM-

176B, GLM-

130B, MT-
NLG 530B, 

Llama-2 

(70B), 

Falcon, 

Mistral, 
Mixtral 

All INT8 

(W8A8) 

2x memory 

reduction 

compared; 1.51x 

to 1.56x faster 
inference; Works 

on 530B param 

model; Accuracy 

close to FP16 

model. 

Zero 

Quant 

V2 [43] 

PTQ OPT Family 
(125M to 

175B) [14];  

BLOOM 

Family 

(560M to 
176B) [60] 

W8A16; 
W4A16; 

W4A8 

~2x to ~4x 
memory 

reduction; Low-

Rank 

Compression for 

accuracy recovery 

performance to the original networks through iterative pruning. 

In this work, the pruning led to “winning tickets” which are 

smaller networks that learn faster than the original network 

while reaching equal or higher test accuracy and generalizing 

better. In their experiments, the authors were able to reduce 

model parameters up to even 90% with very little effect on 

accuracy. Other interesting advances in pruning come from the 

use of reinforcement learning for pruning and movement-based 

pruning, geared towards transfer learning and fine-tuning. He 

et al. proposed AutoML [48] for Model Compression (AMC) 

which uses reinforcement learning to automatically determine 

the sparsity for each layer and then perform pruning based on 

the sparsity. The paper also provides the option of using 

different reward schemes which can determine whether the 

compression is optimizing for resource-constrained 

environments or accuracy-guarantees. In Movement Pruning 

[47], the change of weights during fine-tuning, i.e. first-order 

information, is taken into consideration to determine the 

weights to prune. In their experiments, movement-based 

pruning outperforms more common approaches like 

magnitude-based and regularization-based pruning. 

While pruning is an effective technique to reduce model 

size, it has a few limitations when it comes to real-world 

deployment. Weight pruning produces sparse weight matrices, 

but most GPUs are optimized for dense matrix operations, so 

the increase in sparsity may not translate to improvements in 

inference speed if the hardware cannot take advantage of it. 

Specialized libraries are available to take advantage of this 

sparsity like Nvidia’s cuSparse, TensorRT, but they are not



TABLE III. COMPARISON OF COMPRESSION TECHNIQUES. 

Technique Primary Goal Advantages Disadvantages Memory 

Reduction 

Computation 

Cost 

Reduction 

Accuracy 

Degrada-

tion 

Hardware 

Adaptability 

(of the final 

model) 

Edge 

Suitability 

 

Knowledge 

Distillation 
Transfer knowledge 
from larger, complex 

teacher model to a 

smaller, more 

efficient student 

model 

Improved 
accuracy, faster 

inference, better 

generalization for 

smaller student 

model 

Requires larger 
teacher model, 

needs to be 

trained and 

higher training 

cost 

Moderate 
to High 

Moderate to 
High 

Often 
improves 

accuracy 

High High 

Quantization Reduce numerical 
precision by mapping 

FP32 parameters to 

lower bit-widths 

(e.g.: FP16, INT8, 

INT4) 

Reduced model 
size, faster 

inference, lower 

power, hardware 

compatibility 

Potential 
accuracy loss, 

calibration for 

PTQ, additional 

training 

complexity for 
QAT 

High to 
Very High 

Moderate to 
Very High 

Very Low 
(QAT) to 

High 

(PTQ) 

Very high Very High 

Pruning Reduce parameter 

count by removing 

weights, connections, 

neurons, filters, etc. 

Reduced model 

size, potentially 

faster inference, 

improved 
generalization 

Unstructured 

pruning is hard 

to accelerate; 

complexity in 
choosing what 

to prune 

Moderate 

(structured) 

to Very 

High 
(unstructure

d) 

Low to Very 

High 

Very Low 

to 

Medium 

Low 

(unstructured

) to High 

(structured) 

Moderate 

(unstructure

d) to High 

(structured) 

optimized for or widely used for deep learning inference. 

Pruning, especially iterative pruning, also adds to the compute 

required post-training. Determining what to prune is non-

trivial, and while there are promising areas of research looking 

into this, it remains an open problem. 

D. Other Strategies to Improve Computational Efficiency 

While not considered as model compression techniques, 

there are a few techniques which help improve computational 

efficiency. We briefly discuss some of these techniques here: 

1) Mixture of Experts 

Mixture of Experts (MoEs) divides the model into multiple 

sub-models called experts and uses a gating mechanism (router) 

to route each request to only a small number of experts [49]. 

MoEs replace the dense feed-forward networks with multiple 

parallel expert networks, only a few of which are activated at a 

time during training and inference, which brings down the 

computation cost. The gating mechanism, called the router, is 

also a network that learns which experts to route a request to, 

based on the input features. Rather than allow for smaller 

models, MoEs permit models to be larger for the same amount 

of compute per request so its primary goal differs from 

traditional compression techniques focused solely on parameter 

reduction. MoEs have been used to scale up model capacity by 

1000x without an increase in computational cost in [50]. In 

GLaM [51], sparsely activated MoE architecture was used to 

scale LLMs to 1.2 trillion parameters or 7x the number of 

parameters as GPT-3, with 51.4% of the computational cost and 

only 35.4% of the energy cost. 

2) Early-Exit Strategies 

A big contributor to the computational cost of transformer- 

based and deep learning models are the number of layers in the 

forward pass. Models progressively learn better feature 

representations with more layers, with earlier layers learning 

simpler feature representations and later layers learning more 

complex features. However, the inputs to the model vary in 

terms of difficulty to predict, and some inputs can be predicted 

accurately with the features learnt in the earlier layers of the 

model. Early-exit strategies take advantage of this fact by 

providing a way to make predictions without going through all 

the layers in the model. These strategies augment models with 

side branch classifiers/outputs at earlier layers in the network, 

which can be used selectively. When outputs are made from 

these early-exit branches, a large part of the computation can be 

skipped, making the inference faster and more efficient. This 

idea was introduced in the BranchyNet paper [52] where early 

exit branches were added to popular architectures in the 

literature (LeNet, AlexNet, ResNet) to exit early when an 

entropy threshold was met. This resulted in a 2x-6x speed up on 

CPU and GPU.    

IV. FUTURE DIRECTIONS AND AREAS OF RESEARCH IN MODEL 

COMPRESSION 

The field of model compression is still evolving with more 

sophisticated techniques and hybrid approaches being 

developed to get the best out of LLMs. Some of the 

advancements are:  

A. Newer forms of Knowledge Distillation 

New forms of KD have emerged like i) Fine-tune-CoT 

(Chain of thought) [56] to transfer reasoning capabilities from 

>100B parameter LLMs to much smaller student models ii) 

Distilling Step-by-Step [57] which extracts LLM rationales for 

additional supervision during fine-tuning or distillation. In 

these methods, the student model is trained not just on the 

final outputs, but also on the intermediate steps. There is also 

ongoing research to reduce the distribution skew between the 

training and inference distributions by using techniques like 

on-policy distillation [20] where the student model is trained 

using its own generated outputs.   



B. Smaller Float Representations 

Newer forms of floats like FP8 [61] and NF4 (NormalFloat 

4-bit) [58] have been introduced in the last few years which 

enable models to use lower bit-widths while maintaining 

acceptable accuracy and accelerating both training and 

inference. Reference [61] introduced FP8 with two formats 

(E4M3 and E5M2) and discussed the tradeoff between the two 

formats. The paper demonstrated experiments where the 

weights, activations and gradients of FP16 models were clipped 

to FP8 and the model accuracy remained comparable to the 

FP16 baselines. NF4 was designed to be optimal for quantizing 

data that follows a normal distribution. There is also growing 

hardware support for FP8 with Nvidia’s Hopper Architecture 

(H100/H200) and AMD Instinct GPUs supporting it natively. 

C. Neural Architecture Search (NAS) 

Neural architecture search automates the process of 

designing the neural architecture, with a customizable search 

objective that is capable of incorporating efficiency metrics. 

This is being extended to LLMs in works such as [59] where 

NAS is used to find less computationally complex architectures 

on LLMs with over a Billion parameters. NAS, particularly 

hardware-aware NAS, can lead to models that are smaller, 

faster and more efficient while achieving compression by 

design. 

D. Outlier-based Quantization and Low Bit-Precision Matrix 

Multiplications 

Quantization and matrix multiplication schemes that work 

on INT8 and INT4 precision for most of the calculations, but 

treat only the outliers or salient weight with higher precision 

have been introduced in [23] and [42]. These schemes have no 

performance degradation compared to the full-precision 

equivalents. LLM.int8() [23] enabled OPT-175B/BLOOM to 

be used on a single GPU server, while AWQ [42] enabled the 

deployment of the 70B Llama-2 model on mobile GPUs.  

E. Quantized Finetuning 

Quantization can also be applied to LLM finetuning, in 

addition to training. This was demonstrated by QLoRA [58], 

where LLMs were finetuned with significantly lower memory 

requirements by using the NF4 float representation, permitting 

the finetuning of a 65 billion parameter model on a single 48GB 

GPU, while maintaining full 16-bit finetuning performance. 

V. CONCLUSION 

       In this paper we have discussed three important techniques 

for model compression: KD, Quantization and Pruning, and its 

different forms in detail. These techniques were compared 

based on their memory and computational cost reduction, 

accuracy degradation, hardware and edge suitability. We have 

listed out examples from literature where these techniques were 

effectively applied on LLMs to reduce model size and 

computational cost, accelerate inference and improve energy 

efficiency. We also discussed a few additional techniques 

which can improve computational efficiency and the promising 

areas of ongoing research and future directions in the field. We 

hope this work proves to be a useful reference for researchers 

and practitioners in the field to apply model compression to 

their own work, and further the research in this exciting domain.  
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