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Abstract

This study investigates the generalization abil-
ities of discriminative transformers in Natural
Language Inference (NLI) tasks, focusing on
their tendency to rely on superficial features
and dataset biases rather than genuine linguis-
tic understanding. We argue that performance
gaps between training and analysis datasets do
not necessarily indicate a lack of knowledge
but rather a misalignment between the decision
boundaries of the classifier head and the repre-
sentations learned by the encoder. By analyz-
ing the representation space of NLI models on
these datasets, we show that, despite poor accu-
racy based on final predictions, samples from
opposing classes often remain linearly separa-
ble in the encoder’s representation space. This
suggests that the encoders possess sufficient
knowledge to perform the NLI task effectively,
despite the classifier head’s challenges.

1 Introduction

With the rise of pre-trained language models
(PLMs), NLI models have surpassed human perfor-
mance on several benchmarks. However, this raises
questions about whether these models truly under-
stand the NLI task or merely exploit shortcuts and
superficial patterns to achieve high accuracy with-
out genuine linguistic comprehension. To address
these concerns, researchers have developed analy-
sis and controlled datasets to expose the limitations
of NLI models, revealing their reliance on spurious
correlations rather than deep linguistic understand-
ing (McCoy et al., 2019; Ravichander et al., 2019;
Naik et al., 2018a). For example, models often
struggle with numerical reasoning or generalize
poorly to adversarial datasets like HANS (McCoy
et al., 2019). However, does evaluating a model
solely based on its predicted labels provide a com-
plete picture of what it has learned? If a model
performs poorly on an out-of-distribution (OOD)
dataset, can we conclusively argue that it lacks the

essential knowledge for the task? Prior work chal-
lenges these assumptions.

Studies show that classifier accuracy can
be highly sensitive to decision thresholds
(Yaghoobzadeh et al., 2021; Zhao et al., 2021a),
and representation-space analyses reveal rich
task-relevant structures even when classifier
predictions fail (Marks and Tegmark, 2024; Amini
and Ciaramita, 2023). This highlights that the
representation space contains meaningful structure
beyond what accuracy captures. Similar findings
exist in computer vision, where models trained
on digit recognition datasets—even with some
labels withheld—still cluster unseen categories
meaningfully (Dyballa et al., 2024).

This paper revisits the generalization of NLI
models on OOD datasets': Does poor performance
on OOD datasets truly indicate a lack of knowledge,
or is it a symptom of misalignment between the en-
coder’s representations and the classifier’s decision
boundaries? Our findings reveal that the latter is
true. We analyze the representation space of NLI
models (Section 3), focusing on linear separability
(LS) across OOD datasets. The encoder representa-
tions exhibit strong LS for all datasets—even those
where classifier accuracy is poor. For instance, on
the Stress Test Numerical subset, the encoder rep-
resentations show near-perfect LS (>96%), despite
the classifier head achieving only 42% accuracy.
This stark contrast suggests that the encoder cap-
tures task-relevant knowledge that the classifier
fails to exploit. In Section 4, we further examine
whether LS can serve as a reliable indicator of a
model’s knowledge in NLI, exploring its behavior
across different scenarios.

'In this paper, we use OOD and analysis datasets inter-
changeably.



2 NLI Task and Analysis Datasets

NLI task requires determining the logical relation-
ship between two input sentences: the premise and
the hypothesis. The goal is to classify whether
the hypothesis entails the premise, contradicts it,
or is neutral (neither entailing nor contradicting).
The Stanford Natural Language Inference (SNLI)
(Bowman et al., 2015) and Multi-Genre Natural
Language Inference (MNLI) (Williams et al., 2018)
dataset are among the most widely used bench-
marks for this task. Although fine-tuned PLMs
achieve high performance on these benchmarks,
their performance on analysis datasets suggests
that these high results do not necessarily indicate a
deep understanding of the task.

In this section, we introduce the analysis datasets
we selected for this study. These datasets are
among the most popular and relatively large evalu-
ation benchmarks for NLI, each designed to target
different aspects of linguistic knowledge.

2.1 SICK

Sentences Involving Compositional Knowledge
(SICK) (Marelli et al., 2014) is a benchmark
dataset designed for evaluating compositional dis-
tributional semantics models. Comprising over
10,000 pairs of sentences labeled as entailment,
contradiction, or neutral, SICK serves as a bench-
mark for evaluating models’ ability to handle com-
positional meaning and inference (see examples in
Appendix Table 6).

2.2 HANS

The Heuristic Analysis for NLI Systems (HANS)
(McCoy et al., 2019) is a synthetic dataset created
to expose the reliance of NLI models on the over-
lap heuristic. It features premise-hypothesis pairs
where all words in the hypothesis appear within the
premise. The dataset is divided into three heuristic
categories based on word overlap patterns: lex-
ical overlap, subsequence, and constituent. For
each category, half of the examples align with the
heuristic and are labeled as “Entailment,” while the
other half contradict the heuristic and are labeled
as “Non-Entailment.” Some examples from this
dataset are provided in the appendix Table 5. NLI
models often incorrectly classify samples that con-
tradict the heuristic as “Entailment,” demonstrating
their reliance on superficial cues rather than true
sentence understanding (Table 1).

2.3 Stress Test

The Stress Test (ST) (Naik et al., 2018b) was de-
signed to uncover weaknesses in models fine-tuned
on the MNLI dataset by analyzing their perfor-
mance on challenging validation samples. It identi-
fies key linguistic phenomena—such as word over-
lap, negation, length mismatch, antonyms, spelling
errors, and numerical reasoning—that frequently
caused models to make errors.

To create subsets targeting these phenomena,
specific strategies were applied: for word over-
lap (ST-WO) and negation (ST-N), phrases like
“and true is true” and “and false is not true” were
appended to the hypotheses. For length mismatch
(ST-LM), the phrase “and true is true” was repeated
five times at the end of the premises . numerical
reasoning (ST-NU) was crafted using premises ex-
tracted from the AQuA-RAT dataset, paired with
generated hypotheses (see examples Appendix Ta-
ble 7).> Except for ST-LM, model performance
was significantly lower on these subsets compared
to the standard validation set, with particularly poor
accuracy on ST-N, where results approached ran-
dom chance (Table 1).

3 Representation Space and Linear
Separability

Discriminative transformers are composed of two
key components: the encoder, which typically uses
a pre-trained language model, and the classifier
head, which is usually a shallow multi-layer per-
ceptron (MLP). In classification tasks, the [CLS]
token, representing the entire input sequence, is
passed to the classifier head to generate the final
prediction. Since the [CLS] token encodes all the
input information and serves as the primary fea-
ture for classification, our investigation centers on
understanding its representation within the model.

3.1 Experimental Setup

Baseline models. We explore the representation
space produced by the [CLS] token across three
models: RoBERTa (Liu et al., 2019b), BERT (De-
vlin et al., 2019), and DistilBERT (Sanh et al.,
2020). For consistency, we employ the base ver-
sions of all models. While BERT has been the focal
point in most analytical works, our study extends
this analysis to RoOBERTa, known for its robust-

2We dismiss anatomy subset because it contains samples
of only one class.



ness, and DistilBERT, a more lightweight alterna-
tive with less capacity to gain knowledge.>

Datasets. We fine-tune the baseline models on
the MNLI and SNLI datasets. Then, we exam-
ine the [CLS] token generated by these models for
analysis datasets mentioned in Section 2. Since
the training datasets have three labels (entailment,
contradiction, and neutral), while HANS only
has two (entailment and non-entailment), we map
both contradiction and neutral predictions to non-
entailment and leave entailment unchanged.

Fine-tuning. Each fine-tuning run consists of
training the models for 5 epochs with a learning
rate of 2 x 107°, a batch size of 32, the AdamW
optimizer, and a learning rate decay of 0.02.

Dimension reduction. To gain a deeper under-
standing of the representation space in classifica-
tion, we visualized it by plotting the representations.
Since the embedding space is high-dimensional
(768 for base models), we applied Principal Com-
ponent Analysis (PCA) to reduce the dimension-
ality to three, allowing for a clearer visualization.
The reduced space captures approximately 77% of
the total variance, with each remaining component
contributing less than 2%, as shown in Figure 6
in the appendix. Therefore, this three-dimensional
representation provides a reasonable approxima-
tion of the original high-dimensional space.

3.2 Representation Space Visualization

The average performance of all baselines models
are reported in Table 1 for MNLI and in Table 8 (in
the appendix) for SNLI. Consistent with the pur-
pose of the HANS dataset, the table confirms that
all models tend to classify HANS samples as en-
tailment, achieving near-perfect results on HANS+
but very poor performance on HANS —, which indi-
cates a strong reliance on overlap heuristics. For the
Stress Test dataset, the results for the ST-NU sub-
set are particularly poor, with performance close
to random chance for DistilBERT, suggesting that
these models struggle to infer anything meaningful
from mathematical or equation-based samples.
Figure 1 illustrates the representation space of
one trial from each model. Given that HANS has
the largest sample size (30000) compared to the
other datasets, we find it clearer to visualize its rep-
resentation in relation to the other analysis datasets.

3We also checked BERT-large, and the linear separability
remains strong despite poor accuracy.
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Figure 1: 3D visualization of the [CLS] token rep-
resentation space for the MNLI and HANS datasets,
generated by the three baseline models. Colors indicate
the gold labels. In all baseline models, the orange and
yellow points (representing the two classes of HANS)
are clearly distinguishable. The 3D spaces are visual-
ized from three different perspectives, from left to right:
bottom-up, side, and top-down views.

As a result, all visualizations are for HANS un-
less otherwise specified. To match the number of
HANS samples, we selected 30K MNLI (train)
samples and plotted the 3D space for all 60K data
points.*

All the models show distinct regions within
the representational space, with each region cor-
responding to one class of MNLI. This structure
enables the classifier head to achieve linear separa-
tion. The representational space can be visualized
as a three-petaled flower, with each petal represent-
ing one of the three classes.

For the HANS dataset, however, the data is po-
sitioned beneath these petals. If the model’s ac-
curacy (trained on MNLI) on HANS matched its
performance on MNLI, we would expect the data
points to be similarly organized into distinct petals.
Instead, the majority of the HANS data is con-

4Given the challenges of displaying 3D images, we pro-
vide 2D views from three different angles to offer a clearer
understanding of the 3D representation space.



Dataset DistilBERT BERT RoBERTa
MNLI-m 82.14+0.2 84.3+04  87.5+0.1
MNLI-mm 82.240.2 844405  87.440.2
SICK 54.440.6 56.44+0.8 57.54+0.5
HANS-+ 97.340.8 97.7+1.2  98.7+0.1
HANS— 9.6+2.7 32.4+55  50.1+2.0
ST-NU 35.1+1.5 42.6+1.7  59.5+29
ST-LM 80.14+0.2 82.3+0.3  85.24+0.2
ST-N 54.6+1.0 56.0+0.3 57.1+0.7
ST-WO 60.1+1.3 59.0+1.3  63.0+2.7

Table 1: Accuracy of the three baseline models on NLI
analysis datasets SICK, HANS, and Stress Test (ST-X),
as well as the standard validation sets MNLI matched
(-m) and MNLI mismatched (-mm), reported for five
runs.
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Figure 2: A comparison of (a) the scatter of [CLS]
tokens for two HANS classes in space and (b) how a fine-
tuned BERT model classifies them into three classes,
with MNLI data included for reference.

centrated in the (blue) petal corresponding to the
entailment label, which cause the poor accuracy
presented in Table 1.

But the interesting point is that despite the clus-
tering of HANS data in the entailment region, the
orange and yellow points—representing entailment
and non-entailment labels, respectively—are still
clearly separated. This suggests that although the
HANS data is incorrectly categorized according to
the standard regions determined by the classifier
head, the opposite labels remain well-separated in
the representational space. For additional clarity,
see Figure 2, which compares the classifier head
predicted labels (2b) with the gold labels (2a) of
HANS.

3.3 Linear Separability

To evaluate whether the encoder’s [CLS] embed-
dings admit linear separability between classes,
we formalize the problem as follows. Let h; € R¢
denote the last layer hidden state of the [CLS] to-
ken for the i-th input sample, and y; € {1,..., K}
its corresponding class label. We assess whether
there exists a linear decision boundary that sepa-
rates classes in the embedding space. This reduces
to solving for parameters W € RX*? and b € RE
such that:

U; = arg max (Wh; + b).

achieves minimal cross-entropy loss over [V sam-
ples:

K
1
LW.b)=—5> > Ty =kl
i=1 k=1

Wih; +b
log< oxp(Wihi + bi) ) ()
Zj:l exp(thZ- + bj)

where I[-] is the indicator function. High accu-
racy on held-out data implies the existence of a
hyperplane Wih + b, = Wy h + by separating
classes k and k.

3.4 LS Results

Table 2 quantifies the degree of LS for all analysis
datasets across the baseline models fine-tuned on
MNLI and SNLI. For comparison, we also present
the results of a random experiment, where the la-
bels of the [CLS] token are shuffled randomly, and
decision boundaries are then computed. It is im-
portant to note that, in higher-dimensional spaces
and when the dataset size is small, the accuracy
of purely random data can exceed the expected
accuracy (50% for two classes and 33% for three
classes).

Universal Linear Separability All models
achieve high LS scores (77-98% for models FT
on MNLI), confirming that learned representations
inherently encode task-relevant features rather than
relying on superficial patterns. This is particularly
evident in HANS, where LS exceeds 90% (e.g.,
BERT: 95.6%). Despite the high degree of overlap
between entailment and non-entailment data points
in HANS, the models do not treat them as iden-
tical—contrary to what accuracy in Table 1 sug-
gests. For ST-LM, ST-N, ST-WO, and SICK, LS is



MNLI SNLI

Dataset  DistilBERT BERT RoBERTa DistilBERT BERT RoBERTa

MNLI  80.1+0.2(48.2) 82.440.1(48.0) 86.4+0.3(47.7) 70.3+0.248.5) 74.6+0.3(48.4) 79.440.3 (48.5)
SNLI T7.841.2(49.0) 82.0+1.2(48.8) 85.6+0.2(48.1) 85.64+0.548.7) 88.2+0.6(48.9) 89.340.8 (49.0)
SICK 84.4+0.8(59.7) 87.440.8(60.0) 89.440.6(59.5) 86.6+1.5(59.9) 87.84+0.8(59.9) 89.7+0.5(59.8)
HANS  91.1+0.5(6.1) 95.6+0.7(56.2) 95.440.7(55.9) 88.44+0.8(56.0) 93.9+0.6 (56.3) 95.640.4 (56.1)
ST-LM  77.7+0.2 48.0) 80.3+0.2(47.7) 84.340.3(47.5) 69.04+0.3 (48.6) 72.7+0.2(48.6) 77.2+0.3 (48.1)
ST-N 77.6+0.5 (48.3) 80.14+0.3(47.9) 84.0+0.3 (47.3) 67.540.3(48.0) 71.6+0.7(48.3) 76.1+0.5(47.7)
ST-WO 78.440.1 48.0) 80.9+0.3(48.0) 84.840.3(47.5) 69.04+0.3(48.3) 72.840.5(48.6) 77.540.5(48.5)
ST-NU  96.3+0.4 (51.5) 97.440.6 (51.5) 98.440.9(50.3) 94.241.3(51.5) 96.34+0.6 (51.6) 98.4+0.2(51.7)

Table 2: Results of linear separability for analysis datasets, based on models fine-tuned on MNLI and SNLI. The
linear separability is the accuracy of linear boundaries reported for the evaluation set of HANS, the mismatched
subsets of the ST datasets (ST-X), and MNLI, as well as the validation sets of SICK and SNLI. The numbers in

parentheses represent results from random experiments.

slightly less pronounced compared to HANS. The
most striking result comes from ST-NU (numerical
reasoning), where all baseline models achieve over
95% LS. Although the classifier head’s poor accu-
racy suggests that models struggle with numerical
reasoning, the high LS indicates that they effec-
tively capture the necessary information for this
task.

Accuracy Paradox While classifier head accu-
racy suggests that ST-NU and HANS are difficult,
and ST-WO and ST-N are easier, the representation
space reveals the opposite. ST-WO and ST-N are
as challenging as the MNLI validation set, while
ST-NU and HANS are much easier. Notebly, ST-
WO, ST-LN, and ST-LM, which are derived from
the MNLI validation set with some modifications,
exhibit LS values similar to MNLI itself. This is an
interesting finding, as it suggests that these subsets,
being structurally similar to MNLI, pose compa-
rable challenges for the model. Since they are as
difficult as MNLLI, their LS does not exceed MNLI
accuracy or reach the high LS values observed in
easier datasets like HANS, SICK, and ST-NU.

4 LS as Evidence of Encoder Knowledge

In the previous section, we observed that despite
the NLI model’s poor accuracy on the analytical
dataset, their encoder’s outputs remain nearly lin-
early separable. In this section we argue that low
accuracy does not necessarily indicate a lack of
NLI or linguistic knowledge. Instead, our results
highlight a misalignment between the encoder’s
learned representations and the classifier head’s
decision boundaries.

4.1 LS and Training Dynamics

In traditional machine learning, feature engineer-
ing was guided by domain experts who carefully
crafted features based on their deep understanding
of the task. These features were designed to effec-
tively differentiate between classes, making them
easy to separate with a simple MLP. In contrast,
transformer models delegate this responsibility to
the encoder, which is tasked with generating mean-
ingful representations from raw input data. The
classifier head, on the other hand, merely maps
these representations to labels without any inher-
ent understanding of the task itself. If a model
truly grasps the underlying task, this understanding
should be reflected in the features produced by the
encoder. The fact that the encoder can generate
linearly separable features, even for datasets that
differ significantly from the training data, suggests
that it has captured genuine, task-relevant knowl-
edge. Moreover, we demonstrate that this LS is
not just an artifact of the model’s representation
but also correlates with its process of acquiring
knowledge during training. By varying the amount
of training data and limiting the number of update
steps, we explored the relationship between task
understanding (as reflected by standard validation
set accuracy) and LS of analysis dataset, with the
following findings:

* Effect of Training Data Size: Fine-tuning
BERT on varying proportions of the MNLI
dataset (from 5% to 100%) revealed a clear
trend, as the amount of training data increased,
LS improved for both the MNLI validation set
and the HANS dataset (Figure 3).



Model MNLI H+ H- HANS
BERT i1 847402 97.7+1.2 324455 65.042.6
BERT gaignced 81.6£0.4 79.143.5 488434 63.9+1.2

Table 3: Comparison of BERT model accuracy when
fine-tuned on the full MNLI dataset (with 392K sam-
ples) and the balanced dataset (with 235K samples).
The mean accuracy is reported over 5 different seeds.

* Effect of Training Iterations: Similarly,
tracking the model’s performance on the full
dataset at 500-step intervals (Figure 7 in the
Appendix) showed that as validation accuracy
increased, the LS of analysis datasets also im-
proved.

These findings suggest that as the model refines its
understanding of the NLI task, it simultaneously
enhances its ability to produce clearer and more dis-
tinguishable representations, reinforcing the con-
nection between knowledge acquisition and LS.
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Figure 3: Linear separability (LS) of the HANS and
MNLI (matched) datasets for BERT fine-tuned on dif-
ferent percentages of the MNLI dataset, alongside the
accuracy of the model.

4.2 Reevaluating the Lexical Overlap Bias in
NLI Models

One common argument against NLI models achiev-
ing true linguistic mastery is their poor perfor-
mance on heuristic-based datasets. This is often
cited as evidence that these models rely on short-
cuts in the training data rather than acquiring gen-
uine linguistic knowledge. HANS, as a prominent
example of such datasets, is frequently used to
support this claim due to its design, which specif-
ically targets lexical overlap heuristics. Since we
argue that the model does acquire sufficient lin-
guistic knowledge, we challenge this assumption
by conducting an experiment to remove the poten-
tial influence of lexical overlap bias and examine
whether the model’s performance improves.

To explore this, we calculated the overlap per-
centage for all training examples and grouped them
into 100 bins, each representing a 1% range (e.g.,
[88, 89) overlap). Within each bin, we ensured
an equal distribution of examples across all three
labels by selecting a balanced number of samples
from the least frequent label. This process elim-
inated label imbalance across different levels of
lexical overlap, as shown in Figure 4. Using this
balanced dataset, we fine-tuned a BERT model for
five epochs, with results reported in Table 3. While
accuracy on HANS— improved, this came at the
cost of decreased accuracy on HANS+, leading to
an overall drop in HANS performance compared
to the model trained on the full MNLI dataset. Fig-
ure 5 visualizes the representation space of the
[CLS] tokens from the model trained on the bal-
anced dataset. The HANS representations remain
largely clustered together within the entailment re-
gion, rather than forming distinct groups. If the
overlap heuristic was the primary cause of the bias,
balancing the dataset should have improved the
results.

4.3 Effect of Random Seed on Performance

Prior works (McCoy et al., 2020; Zhou et al., 2020)
have reported that models trained on standard NLI
datasets exhibit consistent in-domain validation
performance across different random seeds, yet
their performance on challenge datasets (out-of-
distribution cases) such as HANS fluctuates signifi-
cantly. In some subsets of HANS, accuracy varies
between 0% and 66% depending on the seed. As
shown in Table 1, accuracy variance is large for
HANS and ST-NU, whereas the MNLI validation
set shows almost no variance. Notably, these re-
sults are based on only five random seeds, if the
number of trials were increased, the variance would
likely be even higher.

Based on these results, prior work suggests that
while the model consistently learns patterns that
perform well on the validation set, its generaliza-
tion to out-of-domain or adversarial cases is unsta-
ble. However, a closer examination suggests an
alternative explanation.

The encoder, which captures linguistic knowl-
edge, remains highly consistent across random
seeds. Its representations retain linear separability
for adversarial samples, regardless of initialization.
In Table 4 we compare the accuracy and LS of two
models, one with very poor HANS performance
and one with very strong performance, yet their en-
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Figure 4: Histograms of label frequency across different overlap percentages, before and after balancing the dataset.
The original experiment used 100 bins, but for the sake of space, we present both histograms with 10 bins.
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Figure 5: Visualization of the [CLS] representation
space for BERT fine-tuned on the blended MNLI dataset.
Colors indicate the gold labels.

Trial HANS Accuracy Linear Separability
High-performing 67.6 95.5
Low-performing 52.8 95.0

Table 4: Comparison of HANS accuracy and LS for a
high-performing and a low-performing trials.

coder representations remain distinguishable in the
same way. This suggests that the encoder reliably
captures task-relevant linguistic features which are
preserved across seeds.

Instead, the classifier head—a shallow, randomly
initialized MLP—is highly sensitive to weight ini-
tialization. Different random seeds result in di-
vergent decision boundaries within the encoder’s
representation space. While these boundaries work
well for in-domain validation data (MNLI), they
fail to generalize to OOD datasets like HANS. This
is because the classifier is primarily optimized for
MNLI’s feature distribution, which does not nec-
essarily align with the structure of adversarial or
OQOD samples.

Thus, rather than instability arising from dif-
ferences in learned knowledge, it stems from the
classifier’s inconsistent mapping of the encoder’s
representations, leading to poor generalization be-
yond the training domain.

5 Discussion

So far, we have shown that despite the poor and
unstable performance of NLI models on challeng-
ing datasets, the encoder representations of these
datasets remain consistently and highly linearly
separable. This suggests that the model acquires
the necessary linguistic knowledge for the NLI task.
If this were not the case, why would the encoder
organize the data in such a way that allows for lin-
ear separation? This stands in contrast to tasks like
paraphrase detection, where the encoder does not
exhibit such behavior.

For instance, QQP is a standard benchmark for
paraphrase detection, while PAWS (Zhang et al.,
2019) was introduced as an analysis dataset to
expose reliance on word overlap heuristics. A
BERT model fine-tuned on QQP performs poorly
on PAWS, misclassifying most PAWS examples as
duplicates, even though nearly half of them are not.
However, in this case, LS is near random (61.4%
vs. 57.2%), and the encoder’s representations of
PAWS samples appear scattered randomly within
the QQP duplicate region (see Appendi Figure 9).

As discussed in Section 4.3, a potential reason
for this misalignment is that, from the perspec-
tive of the PLM, the MNLI dataset occupies a dis-
tinct representational space compared to analytical
datasets (Figure 8). During fine-tuning, the classi-
fier head and encoder update their weights interac-
tively to establish decision boundaries. However,
this process primarily aligns the [CLS] representa-
tions of the MNLI training set, as this is the only
data directly optimized in the loss function. Con-
sequently, the classifier and encoder adjust their
weights to favor MNLI while disregarding how
these updates affect other regions of the represen-
tation space. Since out-of-domain data are not ex-
plicitly included in training, misalignments in these
regions do not incur penalties, leading to poor gen-



eralization.

It is important to emphasize that the LS values
we report are not the result of any learning process;
rather, they reveal the existing decision boundaries
within the representation space. This distinction is
crucial, as it rules out interpretations involving mul-
titask learning. While multitask learning involves
fine-tuning the encoder on multiple tasks to enable
knowledge transfer between them, in our case, the
encoder is never exposed to the analysis datasets
during fine-tuning. Instead, we simply identify a
linear boundary using cross-entropy, without modi-
fying the model’s learned representations.

6 Related Work

6.1 Probing Knowledge

Prior research has analyzed PLM layers to identify
where linguistic properties are captured (Liu et al.,
2019a; Jawahar et al., 2019; Tenney et al., 2019)
and how attention heads specialize in linguistic
tasks (Clark et al., 2019; Voita et al., 2019). Other
studies have explored PLM representation spaces
from a geometric perspective (Ethayarajh, 2019).
While early work focused on linguistic knowledge
in PLMs, later studies examined how fine-tuning af-
fects these representations, showing that structural
properties are largely preserved (Merchant et al.,
2020; Zhou and Srikumar, 2022).

6.2 Discrepancies Between Final Predictions
and Model Representations

Yaghoobzadeh et al. (2021) showed that adjust-
ing the classification threshold for HANS data can
significantly impact BERT’s accuracy. This phe-
nomenon is not exclusive to encoder models, gen-
erative models also exhibit discrepancies between
what they learn and what their final outputs imply.
Zhao et al. (2021b) highlighted a similar issue in
generative models, showing that the structure of
a prompt can influence the threshold required for
classification tasks such as sentiment analysis. By
calibrating models with a null input, they achieved
more reliable results.Amini and Ciaramita (2023)
argue that the sensitivity of encoder-decoder model
to instruction phrasing stems from the constraint
that models must verbalize their predictions. By
bypassing the decoding step and directly probing
the encoder representations, they achieved more
stable and improved results. Marks and Tegmark
(2024) .Furthermore, Marks and Tegmark (2024)
found that LLMs encode the truth or falsehood of

factual statements in a linear manner, despite their
tendency to generate incorrect information.

6.3 Instability in OOD Generalization

Models that appear stable on standard test sets often
exhibit significant variability on OOD datasets (Mc-
Coy et al., 2020; Zhou et al., 2020). Similarly, Zhao
et al. (2021b) found that generative models like
GPT-3 suffer from instability in few-shot learning.
Proposed explanations for this instability include
catastrophic forgetting (Lee et al., 2020), small
dataset size (Dodge et al., 2020), and vanishing gra-
dients (Mosbach et al., 2021). In few-shot settings,
prompt structure and training example order further
contribute to variability (Zhao et al., 2021b).

7 Conclusion

In this paper, we revisited the performance of fine-
tuned PLMs on challenging NLI datasets. Our
experiments revealed that, despite poor classifier
accuracy, the encoder’s representation space of-
ten demonstrates clear linear separability between
classes. This suggests that the models possess rel-
evant task-specific knowledge, but there is a mis-
alignment between the classifier’s decision bound-
aries and the knowledge embedded in the encoder’s
representations. While we proposed some hypothe-
ses for this misalignment, further in-depth investi-
gation is required, which we leave for future work.

8 Limitations

One limitation of this study is that the analysis
was limited to three pretrained language mod-
els—DistilBERT, BERT, and RoBERTa. While
these models are widely used, they do not repre-
sent the full spectrum of transformer-based mod-
els, and therefore, the findings may not be fully
generalizable to newer or more specialized mod-
els. Additionally, this study does not provide a
direct solution for improving classification accu-
racy. Although we demonstrate the existence of lin-
ear boundaries, determining the optimal decision
boundaries for each dataset still requires access to
the full dataset, which may not be efficient or fea-
sible for OOD datasets. Furthermore, relying on
linear separability as a proxy for model knowledge
may oversimplify the complexity of how models
truly understand the nuances of inference. There
is room for further exploration using alternative
probing techniques to assess and deepen our under-
standing of model comprehension.
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Figure 6: The percentage of variance explained by each
of the 10 greatest principal components of PCA applied
to the [CLS] tokens from the HANS and MNLI training
sets.
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Heuristic Hypothesis Premise Label
Lexical Overlap The banker near the judge saw the actor. The banker saw the actor. E
The lawyer was advised by the actor. The actor advised the lawyer. E
The doctors visited the lawyer. The lawyer visited the doctors. N
The judge by the actor stopped the banker. The banker stopped the actor. N
Subsequence The artist and the student called the judge. The student called the judge. E
Angry tourists helped the lawyer. Tourists helped the lawyer. E
The judges heard the actors resigned. The judges heard the actors. N
The senator near the lawyer danced. The lawyer danced. N
Before the actor slept, the senator ran. The actor slept. E
. The lawyer knew that the judges shouted. ~ The judges shouted. E
Constituent . .
If the actor slept, the judge saw the artist. ~ The actor slept. N
The lawyers resigned, or the artist slept. The artist slept. N

Table 5: Examples from the HANS dataset, where E represents the entailment label and N represents the non-

entailment label.

Premise Hypothesis Label
A woman is painting a man’s face Makeup is being put on the man by the  Entailment
woman
The women are singing and dancing The persons are singing and dancing Entailment
A group of kids is playing in a yard A group of boys in a yard is playing and Neutral
and an old man is standing in the back- a man is standing in the background
ground
A black, red, white and pink dress is A woman is taking off a cloak, which Neutral
being worn by a woman is very large, and revealing extravagant
apparel
Two large persons are sitting on a park Two large persons are standing near a  Contradiction
bench and they have a bottle of soda park bench and they have nothing be-
between them tween them
A man is playing a violin There is no man playing a violin Contradiction

Table 6: Examples from the SICK dataset.
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Subset  Premise Hypothesis Label
The chain wielder smiled at her and true is true  The chain wielder was friends with the woman.  Neutral
LM and true is true and true is true and true is true
and true is true.
The two programs are currently housed in build- The two buildings are on opposite sides of the  Contradiction
ings about a block apart and true is true and true  city.
is true and true is true and true is true and true is
true
oh i did and i laughed real hard when i took itin I had a good laugh when I took it for the two  Entailment
for the two thousand mile checkup and uh and  thousand mile checkup.
true is true and true is true and true is true and
true is true and true is true
I can’t do any jumping up and down because it ~ The pain is too much after jumping, it needs  Neutral
WO makes it hurt. surgery and true is true.
Both professors soon realized that creating anew  Professors realized it was easy to make a new  Contradiction
language was not an easy task. language and true is true.
Well that’s good that’s great. That is not bad, it is actually pretty good and Entailment
true is true.
They did this to us. The practical joke was played on them and false =~ Neutral
N is not true.
No, Dave Hanson, you were too important tous  Yes, Dave Man, you are not important to us and ~ Contradiction
for that. false is not true.
Then he sobered. He had sobered up and false is not true. Entailment
Jose joined him less than 6 months later, invest-  Jose joined him 2 months later, investing Rs. Neutral
NU ing Rs.
On every Adidas shoe the restaurant makes a  On every Adidas shoe the restaurant makes a  Contradiction
profit of $ 10 while on every Puma shoe it makes  profit of $ more than 10 while on every Puma
a profit of $ 8 shoe it makes a profit of $ 8
A train leaves Delhi at 9 a.m. A train leaves Delhi at more than 3 a.m. Entailment

Table 7: Examples from different subsets of the stress test dataset.
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Dataset DistiiBERT BERT RoBERTa

SNLI 89.3+0.1 90.9+0.3  91.8+0.1
SICK 53.541.0 56.6+0.3 57.1+0.4
HAN 52.9+0.6 58.9+1.1 66.6+1.0

ST-NU 35.34+0.7 37.8+4.6  38.1+2.1
ST-LM 65.1+0.7 70.6+0.6  76.64+0.2
ST-N 45.8+2.3 51.4+25 63.4+1.6
ST-WO 56.7+3.6 59.242.6  69.8+1.8

Table 8: Accuracy of SNLI fine-tuned models on NLI
analysis datasets, SICK, HANS, and Stress Test (ST)
alongside the standard validation sets of SNLI.
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