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Abstract

This study investigates the generalization abil-001
ities of discriminative transformers in Natural002
Language Inference (NLI) tasks, focusing on003
their tendency to rely on superficial features004
and dataset biases rather than genuine linguis-005
tic understanding. We argue that performance006
gaps between training and analysis datasets do007
not necessarily indicate a lack of knowledge008
but rather a misalignment between the decision009
boundaries of the classifier head and the repre-010
sentations learned by the encoder. By analyz-011
ing the representation space of NLI models on012
these datasets, we show that, despite poor accu-013
racy based on final predictions, samples from014
opposing classes often remain linearly separa-015
ble in the encoder’s representation space. This016
suggests that the encoders possess sufficient017
knowledge to perform the NLI task effectively,018
despite the classifier head’s challenges.019

1 Introduction020

With the rise of pre-trained language models021

(PLMs), NLI models have surpassed human perfor-022

mance on several benchmarks. However, this raises023

questions about whether these models truly under-024

stand the NLI task or merely exploit shortcuts and025

superficial patterns to achieve high accuracy with-026

out genuine linguistic comprehension. To address027

these concerns, researchers have developed analy-028

sis and controlled datasets to expose the limitations029

of NLI models, revealing their reliance on spurious030

correlations rather than deep linguistic understand-031

ing (McCoy et al., 2019; Ravichander et al., 2019;032

Naik et al., 2018a). For example, models often033

struggle with numerical reasoning or generalize034

poorly to adversarial datasets like HANS (McCoy035

et al., 2019). However, does evaluating a model036

solely based on its predicted labels provide a com-037

plete picture of what it has learned? If a model038

performs poorly on an out-of-distribution (OOD)039

dataset, can we conclusively argue that it lacks the040

essential knowledge for the task? Prior work chal- 041

lenges these assumptions. 042

Studies show that classifier accuracy can 043

be highly sensitive to decision thresholds 044

(Yaghoobzadeh et al., 2021; Zhao et al., 2021a), 045

and representation-space analyses reveal rich 046

task-relevant structures even when classifier 047

predictions fail (Marks and Tegmark, 2024; Amini 048

and Ciaramita, 2023). This highlights that the 049

representation space contains meaningful structure 050

beyond what accuracy captures. Similar findings 051

exist in computer vision, where models trained 052

on digit recognition datasets—even with some 053

labels withheld—still cluster unseen categories 054

meaningfully (Dyballa et al., 2024). 055

This paper revisits the generalization of NLI 056

models on OOD datasets1: Does poor performance 057

on OOD datasets truly indicate a lack of knowledge, 058

or is it a symptom of misalignment between the en- 059

coder’s representations and the classifier’s decision 060

boundaries? Our findings reveal that the latter is 061

true. We analyze the representation space of NLI 062

models (Section 3), focusing on linear separability 063

(LS) across OOD datasets. The encoder representa- 064

tions exhibit strong LS for all datasets—even those 065

where classifier accuracy is poor. For instance, on 066

the Stress Test Numerical subset, the encoder rep- 067

resentations show near-perfect LS (>96%), despite 068

the classifier head achieving only 42% accuracy. 069

This stark contrast suggests that the encoder cap- 070

tures task-relevant knowledge that the classifier 071

fails to exploit. In Section 4, we further examine 072

whether LS can serve as a reliable indicator of a 073

model’s knowledge in NLI, exploring its behavior 074

across different scenarios. 075

1In this paper, we use OOD and analysis datasets inter-
changeably.
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2 NLI Task and Analysis Datasets076

NLI task requires determining the logical relation-077

ship between two input sentences: the premise and078

the hypothesis. The goal is to classify whether079

the hypothesis entails the premise, contradicts it,080

or is neutral (neither entailing nor contradicting).081

The Stanford Natural Language Inference (SNLI)082

(Bowman et al., 2015) and Multi-Genre Natural083

Language Inference (MNLI) (Williams et al., 2018)084

dataset are among the most widely used bench-085

marks for this task. Although fine-tuned PLMs086

achieve high performance on these benchmarks,087

their performance on analysis datasets suggests088

that these high results do not necessarily indicate a089

deep understanding of the task.090

In this section, we introduce the analysis datasets091

we selected for this study. These datasets are092

among the most popular and relatively large evalu-093

ation benchmarks for NLI, each designed to target094

different aspects of linguistic knowledge.095

2.1 SICK096

Sentences Involving Compositional Knowledge097

(SICK) (Marelli et al., 2014) is a benchmark098

dataset designed for evaluating compositional dis-099

tributional semantics models. Comprising over100

10,000 pairs of sentences labeled as entailment,101

contradiction, or neutral, SICK serves as a bench-102

mark for evaluating models’ ability to handle com-103

positional meaning and inference (see examples in104

Appendix Table 6).105

2.2 HANS106

The Heuristic Analysis for NLI Systems (HANS)107

(McCoy et al., 2019) is a synthetic dataset created108

to expose the reliance of NLI models on the over-109

lap heuristic. It features premise-hypothesis pairs110

where all words in the hypothesis appear within the111

premise. The dataset is divided into three heuristic112

categories based on word overlap patterns: lex-113

ical overlap, subsequence, and constituent. For114

each category, half of the examples align with the115

heuristic and are labeled as “Entailment,” while the116

other half contradict the heuristic and are labeled117

as “Non-Entailment.” Some examples from this118

dataset are provided in the appendix Table 5. NLI119

models often incorrectly classify samples that con-120

tradict the heuristic as “Entailment,” demonstrating121

their reliance on superficial cues rather than true122

sentence understanding (Table 1).123

2.3 Stress Test 124

The Stress Test (ST) (Naik et al., 2018b) was de- 125

signed to uncover weaknesses in models fine-tuned 126

on the MNLI dataset by analyzing their perfor- 127

mance on challenging validation samples. It identi- 128

fies key linguistic phenomena—such as word over- 129

lap, negation, length mismatch, antonyms, spelling 130

errors, and numerical reasoning—that frequently 131

caused models to make errors. 132

To create subsets targeting these phenomena, 133

specific strategies were applied: for word over- 134

lap (ST-WO) and negation (ST-N), phrases like 135

“and true is true” and “and false is not true” were 136

appended to the hypotheses. For length mismatch 137

(ST-LM), the phrase “and true is true” was repeated 138

five times at the end of the premises . numerical 139

reasoning (ST-NU) was crafted using premises ex- 140

tracted from the AQuA-RAT dataset, paired with 141

generated hypotheses (see examples Appendix Ta- 142

ble 7).2 Except for ST-LM, model performance 143

was significantly lower on these subsets compared 144

to the standard validation set, with particularly poor 145

accuracy on ST-N, where results approached ran- 146

dom chance (Table 1). 147

3 Representation Space and Linear 148

Separability 149

Discriminative transformers are composed of two 150

key components: the encoder, which typically uses 151

a pre-trained language model, and the classifier 152

head, which is usually a shallow multi-layer per- 153

ceptron (MLP). In classification tasks, the [CLS] 154

token, representing the entire input sequence, is 155

passed to the classifier head to generate the final 156

prediction. Since the [CLS] token encodes all the 157

input information and serves as the primary fea- 158

ture for classification, our investigation centers on 159

understanding its representation within the model. 160

3.1 Experimental Setup 161

Baseline models. We explore the representation 162

space produced by the [CLS] token across three 163

models: RoBERTa (Liu et al., 2019b), BERT (De- 164

vlin et al., 2019), and DistilBERT (Sanh et al., 165

2020). For consistency, we employ the base ver- 166

sions of all models. While BERT has been the focal 167

point in most analytical works, our study extends 168

this analysis to RoBERTa, known for its robust- 169

2We dismiss anatomy subset because it contains samples
of only one class.
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ness, and DistilBERT, a more lightweight alterna-170

tive with less capacity to gain knowledge.3171

Datasets. We fine-tune the baseline models on172

the MNLI and SNLI datasets. Then, we exam-173

ine the [CLS] token generated by these models for174

analysis datasets mentioned in Section 2. Since175

the training datasets have three labels (entailment,176

contradiction, and neutral), while HANS only177

has two (entailment and non-entailment), we map178

both contradiction and neutral predictions to non-179

entailment and leave entailment unchanged.180

Fine-tuning. Each fine-tuning run consists of181

training the models for 5 epochs with a learning182

rate of 2 × 10−5, a batch size of 32, the AdamW183

optimizer, and a learning rate decay of 0.02.184

Dimension reduction. To gain a deeper under-185

standing of the representation space in classifica-186

tion, we visualized it by plotting the representations.187

Since the embedding space is high-dimensional188

(768 for base models), we applied Principal Com-189

ponent Analysis (PCA) to reduce the dimension-190

ality to three, allowing for a clearer visualization.191

The reduced space captures approximately 77% of192

the total variance, with each remaining component193

contributing less than 2%, as shown in Figure 6194

in the appendix. Therefore, this three-dimensional195

representation provides a reasonable approxima-196

tion of the original high-dimensional space.197

3.2 Representation Space Visualization198

The average performance of all baselines models199

are reported in Table 1 for MNLI and in Table 8 (in200

the appendix) for SNLI. Consistent with the pur-201

pose of the HANS dataset, the table confirms that202

all models tend to classify HANS samples as en-203

tailment, achieving near-perfect results on HANS+204

but very poor performance on HANS−, which indi-205

cates a strong reliance on overlap heuristics. For the206

Stress Test dataset, the results for the ST-NU sub-207

set are particularly poor, with performance close208

to random chance for DistilBERT, suggesting that209

these models struggle to infer anything meaningful210

from mathematical or equation-based samples.211

Figure 1 illustrates the representation space of212

one trial from each model. Given that HANS has213

the largest sample size (30000) compared to the214

other datasets, we find it clearer to visualize its rep-215

resentation in relation to the other analysis datasets.216

3We also checked BERT-large, and the linear separability
remains strong despite poor accuracy.

(a) Distilbert

(b) BERT

(c) RoBERTa

Figure 1: 3D visualization of the [CLS] token rep-
resentation space for the MNLI and HANS datasets,
generated by the three baseline models. Colors indicate
the gold labels. In all baseline models, the orange and
yellow points (representing the two classes of HANS)
are clearly distinguishable. The 3D spaces are visual-
ized from three different perspectives, from left to right:
bottom-up, side, and top-down views.

As a result, all visualizations are for HANS un- 217

less otherwise specified. To match the number of 218

HANS samples, we selected 30K MNLI (train) 219

samples and plotted the 3D space for all 60K data 220

points.4 221

All the models show distinct regions within 222

the representational space, with each region cor- 223

responding to one class of MNLI. This structure 224

enables the classifier head to achieve linear separa- 225

tion. The representational space can be visualized 226

as a three-petaled flower, with each petal represent- 227

ing one of the three classes. 228

For the HANS dataset, however, the data is po- 229

sitioned beneath these petals. If the model’s ac- 230

curacy (trained on MNLI) on HANS matched its 231

performance on MNLI, we would expect the data 232

points to be similarly organized into distinct petals. 233

Instead, the majority of the HANS data is con- 234

4Given the challenges of displaying 3D images, we pro-
vide 2D views from three different angles to offer a clearer
understanding of the 3D representation space.

3



Dataset DistilBERT BERT RoBERTa

MNLI-m 82.1±0.2 84.3±0.4 87.5±0.1

MNLI-mm 82.2±0.2 84.4±0.5 87.4±0.2

SICK 54.4±0.6 56.4±0.8 57.5±0.5

HANS+ 97.3±0.8 97.7±1.2 98.7±0.1

HANS− 9.6±2.7 32.4±5.5 50.1±2.0

ST-NU 35.1±1.5 42.6±1.7 59.5±2.9

ST-LM 80.1±0.2 82.3±0.3 85.2±0.2

ST-N 54.6±1.0 56.0±0.3 57.1±0.7

ST-WO 60.1±1.3 59.0±1.3 63.0±2.7

Table 1: Accuracy of the three baseline models on NLI
analysis datasets SICK, HANS, and Stress Test (ST-X),
as well as the standard validation sets MNLI matched
(-m) and MNLI mismatched (-mm), reported for five
runs.

(a) Gold Labels

(b) Predicted Labels

Figure 2: A comparison of (a) the scatter of [CLS]
tokens for two HANS classes in space and (b) how a fine-
tuned BERT model classifies them into three classes,
with MNLI data included for reference.

centrated in the (blue) petal corresponding to the235

entailment label, which cause the poor accuracy236

presented in Table 1.237

But the interesting point is that despite the clus-238

tering of HANS data in the entailment region, the239

orange and yellow points—representing entailment240

and non-entailment labels, respectively—are still241

clearly separated. This suggests that although the242

HANS data is incorrectly categorized according to243

the standard regions determined by the classifier244

head, the opposite labels remain well-separated in245

the representational space. For additional clarity,246

see Figure 2, which compares the classifier head247

predicted labels (2b) with the gold labels (2a) of248

HANS.249

3.3 Linear Separability 250

To evaluate whether the encoder’s [CLS] embed- 251

dings admit linear separability between classes, 252

we formalize the problem as follows. Let hi ∈ Rd 253

denote the last layer hidden state of the [CLS] to- 254

ken for the i-th input sample, and yi ∈ {1, . . . ,K} 255

its corresponding class label. We assess whether 256

there exists a linear decision boundary that sepa- 257

rates classes in the embedding space. This reduces 258

to solving for parameters W ∈ RK×d and b ∈ RK 259

such that: 260

ŷi = argmax
k

(Whi + b) . 261

achieves minimal cross-entropy loss over N sam- 262

ples: 263

L(W,b) = − 1

N

N∑
i=1

K∑
k=1

I[yi = k] 264

log

(
exp(Wkhi + bk)∑K
j=1 exp(Wjhi + bj)

)
. (1) 265

where I[·] is the indicator function. High accu- 266

racy on held-out data implies the existence of a 267

hyperplane Wkh+ bk = Wk′h+ bk′ separating 268

classes k and k′. 269

3.4 LS Results 270

Table 2 quantifies the degree of LS for all analysis 271

datasets across the baseline models fine-tuned on 272

MNLI and SNLI. For comparison, we also present 273

the results of a random experiment, where the la- 274

bels of the [CLS] token are shuffled randomly, and 275

decision boundaries are then computed. It is im- 276

portant to note that, in higher-dimensional spaces 277

and when the dataset size is small, the accuracy 278

of purely random data can exceed the expected 279

accuracy (50% for two classes and 33% for three 280

classes). 281

Universal Linear Separability All models 282

achieve high LS scores (77–98% for models FT 283

on MNLI), confirming that learned representations 284

inherently encode task-relevant features rather than 285

relying on superficial patterns. This is particularly 286

evident in HANS, where LS exceeds 90% (e.g., 287

BERT: 95.6%). Despite the high degree of overlap 288

between entailment and non-entailment data points 289

in HANS, the models do not treat them as iden- 290

tical—contrary to what accuracy in Table 1 sug- 291

gests. For ST-LM, ST-N, ST-WO, and SICK, LS is 292
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MNLI SNLI

Dataset DistilBERT BERT RoBERTa DistilBERT BERT RoBERTa

MNLI 80.1±0.2 (48.2) 82.4±0.1 (48.0) 86.4±0.3 (47.7) 70.3±0.2 (48.5) 74.6±0.3 (48.4) 79.4±0.3 (48.5)

SNLI 77.8±1.2 (49.0) 82.0±1.2 (48.8) 85.6±0.2 (48.1) 85.6±0.5 (48.7) 88.2±0.6 (48.9) 89.3±0.8 (49.0)

SICK 84.4±0.8 (59.7) 87.4±0.8 (60.0) 89.4±0.6 (59.5) 86.6±1.5 (59.9) 87.8±0.8 (59.9) 89.7±0.5 (59.8)

HANS 91.1±0.5 (56.1) 95.6±0.7 (56.2) 95.4±0.7 (55.9) 88.4±0.8 (56.0) 93.9±0.6 (56.3) 95.6±0.4 (56.1)

ST-LM 77.7±0.2 (48.0) 80.3±0.2 (47.7) 84.3±0.3 (47.5) 69.0±0.3 (48.6) 72.7±0.2 (48.6) 77.2±0.3 (48.1)

ST-N 77.6±0.5 (48.3) 80.1±0.3 (47.9) 84.0±0.3 (47.3) 67.5±0.3 (48.0) 71.6±0.7 (48.3) 76.1±0.5 (47.7)

ST-WO 78.4±0.1 (48.0) 80.9±0.3 (48.0) 84.8±0.3 (47.5) 69.0±0.3 (48.3) 72.8±0.5 (48.6) 77.5±0.5 (48.5)

ST-NU 96.3±0.4 (51.5) 97.4±0.6 (51.5) 98.4±0.9 (50.3) 94.2±1.3 (51.5) 96.3±0.6 (51.6) 98.4±0.2 (51.7)

Table 2: Results of linear separability for analysis datasets, based on models fine-tuned on MNLI and SNLI. The
linear separability is the accuracy of linear boundaries reported for the evaluation set of HANS, the mismatched
subsets of the ST datasets (ST-X), and MNLI, as well as the validation sets of SICK and SNLI. The numbers in
parentheses represent results from random experiments.

slightly less pronounced compared to HANS. The293

most striking result comes from ST-NU (numerical294

reasoning), where all baseline models achieve over295

95% LS. Although the classifier head’s poor accu-296

racy suggests that models struggle with numerical297

reasoning, the high LS indicates that they effec-298

tively capture the necessary information for this299

task.300

Accuracy Paradox While classifier head accu-301

racy suggests that ST-NU and HANS are difficult,302

and ST-WO and ST-N are easier, the representation303

space reveals the opposite. ST-WO and ST-N are304

as challenging as the MNLI validation set, while305

ST-NU and HANS are much easier. Notebly, ST-306

WO, ST-LN, and ST-LM, which are derived from307

the MNLI validation set with some modifications,308

exhibit LS values similar to MNLI itself. This is an309

interesting finding, as it suggests that these subsets,310

being structurally similar to MNLI, pose compa-311

rable challenges for the model. Since they are as312

difficult as MNLI, their LS does not exceed MNLI313

accuracy or reach the high LS values observed in314

easier datasets like HANS, SICK, and ST-NU.315

4 LS as Evidence of Encoder Knowledge316

In the previous section, we observed that despite317

the NLI model’s poor accuracy on the analytical318

dataset, their encoder’s outputs remain nearly lin-319

early separable. In this section we argue that low320

accuracy does not necessarily indicate a lack of321

NLI or linguistic knowledge. Instead, our results322

highlight a misalignment between the encoder’s323

learned representations and the classifier head’s324

decision boundaries.325

4.1 LS and Training Dynamics 326

In traditional machine learning, feature engineer- 327

ing was guided by domain experts who carefully 328

crafted features based on their deep understanding 329

of the task. These features were designed to effec- 330

tively differentiate between classes, making them 331

easy to separate with a simple MLP. In contrast, 332

transformer models delegate this responsibility to 333

the encoder, which is tasked with generating mean- 334

ingful representations from raw input data. The 335

classifier head, on the other hand, merely maps 336

these representations to labels without any inher- 337

ent understanding of the task itself. If a model 338

truly grasps the underlying task, this understanding 339

should be reflected in the features produced by the 340

encoder. The fact that the encoder can generate 341

linearly separable features, even for datasets that 342

differ significantly from the training data, suggests 343

that it has captured genuine, task-relevant knowl- 344

edge. Moreover, we demonstrate that this LS is 345

not just an artifact of the model’s representation 346

but also correlates with its process of acquiring 347

knowledge during training. By varying the amount 348

of training data and limiting the number of update 349

steps, we explored the relationship between task 350

understanding (as reflected by standard validation 351

set accuracy) and LS of analysis dataset, with the 352

following findings: 353

• Effect of Training Data Size: Fine-tuning 354

BERT on varying proportions of the MNLI 355

dataset (from 5% to 100%) revealed a clear 356

trend, as the amount of training data increased, 357

LS improved for both the MNLI validation set 358

and the HANS dataset (Figure 3). 359
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Model MNLI H+ H- HANS

BERTFull 84.7±0.2 97.7±1.2 32.4±5.5 65.0±2.6

BERTBalanced 81.6±0.4 79.1±3.5 48.8±3.4 63.9±1.2

Table 3: Comparison of BERT model accuracy when
fine-tuned on the full MNLI dataset (with 392K sam-
ples) and the balanced dataset (with 235K samples).
The mean accuracy is reported over 5 different seeds.

• Effect of Training Iterations: Similarly,360

tracking the model’s performance on the full361

dataset at 500-step intervals (Figure 7 in the362

Appendix) showed that as validation accuracy363

increased, the LS of analysis datasets also im-364

proved.365

These findings suggest that as the model refines its366

understanding of the NLI task, it simultaneously367

enhances its ability to produce clearer and more dis-368

tinguishable representations, reinforcing the con-369

nection between knowledge acquisition and LS.370

Figure 3: Linear separability (LS) of the HANS and
MNLI (matched) datasets for BERT fine-tuned on dif-
ferent percentages of the MNLI dataset, alongside the
accuracy of the model.

4.2 Reevaluating the Lexical Overlap Bias in371

NLI Models372

One common argument against NLI models achiev-373

ing true linguistic mastery is their poor perfor-374

mance on heuristic-based datasets. This is often375

cited as evidence that these models rely on short-376

cuts in the training data rather than acquiring gen-377

uine linguistic knowledge. HANS, as a prominent378

example of such datasets, is frequently used to379

support this claim due to its design, which specif-380

ically targets lexical overlap heuristics. Since we381

argue that the model does acquire sufficient lin-382

guistic knowledge, we challenge this assumption383

by conducting an experiment to remove the poten-384

tial influence of lexical overlap bias and examine385

whether the model’s performance improves.386

To explore this, we calculated the overlap per- 387

centage for all training examples and grouped them 388

into 100 bins, each representing a 1% range (e.g., 389

[88, 89) overlap). Within each bin, we ensured 390

an equal distribution of examples across all three 391

labels by selecting a balanced number of samples 392

from the least frequent label. This process elim- 393

inated label imbalance across different levels of 394

lexical overlap, as shown in Figure 4. Using this 395

balanced dataset, we fine-tuned a BERT model for 396

five epochs, with results reported in Table 3. While 397

accuracy on HANS− improved, this came at the 398

cost of decreased accuracy on HANS+, leading to 399

an overall drop in HANS performance compared 400

to the model trained on the full MNLI dataset. Fig- 401

ure 5 visualizes the representation space of the 402

[CLS] tokens from the model trained on the bal- 403

anced dataset. The HANS representations remain 404

largely clustered together within the entailment re- 405

gion, rather than forming distinct groups. If the 406

overlap heuristic was the primary cause of the bias, 407

balancing the dataset should have improved the 408

results. 409

4.3 Effect of Random Seed on Performance 410

Prior works (McCoy et al., 2020; Zhou et al., 2020) 411

have reported that models trained on standard NLI 412

datasets exhibit consistent in-domain validation 413

performance across different random seeds, yet 414

their performance on challenge datasets (out-of- 415

distribution cases) such as HANS fluctuates signifi- 416

cantly. In some subsets of HANS, accuracy varies 417

between 0% and 66% depending on the seed. As 418

shown in Table 1, accuracy variance is large for 419

HANS and ST-NU, whereas the MNLI validation 420

set shows almost no variance. Notably, these re- 421

sults are based on only five random seeds, if the 422

number of trials were increased, the variance would 423

likely be even higher. 424

Based on these results, prior work suggests that 425

while the model consistently learns patterns that 426

perform well on the validation set, its generaliza- 427

tion to out-of-domain or adversarial cases is unsta- 428

ble. However, a closer examination suggests an 429

alternative explanation. 430

The encoder, which captures linguistic knowl- 431

edge, remains highly consistent across random 432

seeds. Its representations retain linear separability 433

for adversarial samples, regardless of initialization. 434

In Table 4 we compare the accuracy and LS of two 435

models, one with very poor HANS performance 436

and one with very strong performance, yet their en- 437
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Figure 4: Histograms of label frequency across different overlap percentages, before and after balancing the dataset.
The original experiment used 100 bins, but for the sake of space, we present both histograms with 10 bins.

Figure 5: Visualization of the [CLS] representation
space for BERT fine-tuned on the blended MNLI dataset.
Colors indicate the gold labels.

Trial HANS Accuracy Linear Separability

High-performing 67.6 95.5
Low-performing 52.8 95.0

Table 4: Comparison of HANS accuracy and LS for a
high-performing and a low-performing trials.

coder representations remain distinguishable in the438

same way. This suggests that the encoder reliably439

captures task-relevant linguistic features which are440

preserved across seeds.441

Instead, the classifier head—a shallow, randomly442

initialized MLP—is highly sensitive to weight ini-443

tialization. Different random seeds result in di-444

vergent decision boundaries within the encoder’s445

representation space. While these boundaries work446

well for in-domain validation data (MNLI), they447

fail to generalize to OOD datasets like HANS. This448

is because the classifier is primarily optimized for449

MNLI’s feature distribution, which does not nec-450

essarily align with the structure of adversarial or451

OOD samples.452

Thus, rather than instability arising from dif-453

ferences in learned knowledge, it stems from the454

classifier’s inconsistent mapping of the encoder’s455

representations, leading to poor generalization be-456

yond the training domain.457

5 Discussion 458

So far, we have shown that despite the poor and 459

unstable performance of NLI models on challeng- 460

ing datasets, the encoder representations of these 461

datasets remain consistently and highly linearly 462

separable. This suggests that the model acquires 463

the necessary linguistic knowledge for the NLI task. 464

If this were not the case, why would the encoder 465

organize the data in such a way that allows for lin- 466

ear separation? This stands in contrast to tasks like 467

paraphrase detection, where the encoder does not 468

exhibit such behavior. 469

For instance, QQP is a standard benchmark for 470

paraphrase detection, while PAWS (Zhang et al., 471

2019) was introduced as an analysis dataset to 472

expose reliance on word overlap heuristics. A 473

BERT model fine-tuned on QQP performs poorly 474

on PAWS, misclassifying most PAWS examples as 475

duplicates, even though nearly half of them are not. 476

However, in this case, LS is near random (61.4% 477

vs. 57.2%), and the encoder’s representations of 478

PAWS samples appear scattered randomly within 479

the QQP duplicate region (see Appendi Figure 9). 480

As discussed in Section 4.3, a potential reason 481

for this misalignment is that, from the perspec- 482

tive of the PLM, the MNLI dataset occupies a dis- 483

tinct representational space compared to analytical 484

datasets (Figure 8). During fine-tuning, the classi- 485

fier head and encoder update their weights interac- 486

tively to establish decision boundaries. However, 487

this process primarily aligns the [CLS] representa- 488

tions of the MNLI training set, as this is the only 489

data directly optimized in the loss function. Con- 490

sequently, the classifier and encoder adjust their 491

weights to favor MNLI while disregarding how 492

these updates affect other regions of the represen- 493

tation space. Since out-of-domain data are not ex- 494

plicitly included in training, misalignments in these 495

regions do not incur penalties, leading to poor gen- 496
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eralization.497

It is important to emphasize that the LS values498

we report are not the result of any learning process;499

rather, they reveal the existing decision boundaries500

within the representation space. This distinction is501

crucial, as it rules out interpretations involving mul-502

titask learning. While multitask learning involves503

fine-tuning the encoder on multiple tasks to enable504

knowledge transfer between them, in our case, the505

encoder is never exposed to the analysis datasets506

during fine-tuning. Instead, we simply identify a507

linear boundary using cross-entropy, without modi-508

fying the model’s learned representations.509

6 Related Work510

6.1 Probing Knowledge511

Prior research has analyzed PLM layers to identify512

where linguistic properties are captured (Liu et al.,513

2019a; Jawahar et al., 2019; Tenney et al., 2019)514

and how attention heads specialize in linguistic515

tasks (Clark et al., 2019; Voita et al., 2019). Other516

studies have explored PLM representation spaces517

from a geometric perspective (Ethayarajh, 2019).518

While early work focused on linguistic knowledge519

in PLMs, later studies examined how fine-tuning af-520

fects these representations, showing that structural521

properties are largely preserved (Merchant et al.,522

2020; Zhou and Srikumar, 2022).523

6.2 Discrepancies Between Final Predictions524

and Model Representations525

Yaghoobzadeh et al. (2021) showed that adjust-526

ing the classification threshold for HANS data can527

significantly impact BERT’s accuracy. This phe-528

nomenon is not exclusive to encoder models, gen-529

erative models also exhibit discrepancies between530

what they learn and what their final outputs imply.531

Zhao et al. (2021b) highlighted a similar issue in532

generative models, showing that the structure of533

a prompt can influence the threshold required for534

classification tasks such as sentiment analysis. By535

calibrating models with a null input, they achieved536

more reliable results.Amini and Ciaramita (2023)537

argue that the sensitivity of encoder-decoder model538

to instruction phrasing stems from the constraint539

that models must verbalize their predictions. By540

bypassing the decoding step and directly probing541

the encoder representations, they achieved more542

stable and improved results. Marks and Tegmark543

(2024) .Furthermore, Marks and Tegmark (2024)544

found that LLMs encode the truth or falsehood of545

factual statements in a linear manner, despite their 546

tendency to generate incorrect information. 547

6.3 Instability in OOD Generalization 548

Models that appear stable on standard test sets often 549

exhibit significant variability on OOD datasets (Mc- 550

Coy et al., 2020; Zhou et al., 2020). Similarly, Zhao 551

et al. (2021b) found that generative models like 552

GPT-3 suffer from instability in few-shot learning. 553

Proposed explanations for this instability include 554

catastrophic forgetting (Lee et al., 2020), small 555

dataset size (Dodge et al., 2020), and vanishing gra- 556

dients (Mosbach et al., 2021). In few-shot settings, 557

prompt structure and training example order further 558

contribute to variability (Zhao et al., 2021b). 559

7 Conclusion 560

In this paper, we revisited the performance of fine- 561

tuned PLMs on challenging NLI datasets. Our 562

experiments revealed that, despite poor classifier 563

accuracy, the encoder’s representation space of- 564

ten demonstrates clear linear separability between 565

classes. This suggests that the models possess rel- 566

evant task-specific knowledge, but there is a mis- 567

alignment between the classifier’s decision bound- 568

aries and the knowledge embedded in the encoder’s 569

representations. While we proposed some hypothe- 570

ses for this misalignment, further in-depth investi- 571

gation is required, which we leave for future work. 572

8 Limitations 573

One limitation of this study is that the analysis 574

was limited to three pretrained language mod- 575

els—DistilBERT, BERT, and RoBERTa. While 576

these models are widely used, they do not repre- 577

sent the full spectrum of transformer-based mod- 578

els, and therefore, the findings may not be fully 579

generalizable to newer or more specialized mod- 580

els. Additionally, this study does not provide a 581

direct solution for improving classification accu- 582

racy. Although we demonstrate the existence of lin- 583

ear boundaries, determining the optimal decision 584

boundaries for each dataset still requires access to 585

the full dataset, which may not be efficient or fea- 586

sible for OOD datasets. Furthermore, relying on 587

linear separability as a proxy for model knowledge 588

may oversimplify the complexity of how models 589

truly understand the nuances of inference. There 590

is room for further exploration using alternative 591

probing techniques to assess and deepen our under- 592

standing of model comprehension. 593
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Figure 7: Linear separability (LS) of the analysis datasets along with the accuracy of BERT reported at every 500
optimization steps.

Figure 8: Visualization of the [CLS] representation of
the MNLI training set and HANS generated by BERT.

Figure 9: Representational space of the [CLS] token
generated by the BERT model fine-tuned on the QQP
dataset.
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Heuristic Hypothesis Premise Label

Lexical Overlap
The banker near the judge saw the actor. The banker saw the actor. E
The lawyer was advised by the actor. The actor advised the lawyer. E

Subsequence

The doctors visited the lawyer. The lawyer visited the doctors. N
The judge by the actor stopped the banker. The banker stopped the actor. N
The artist and the student called the judge. The student called the judge. E
Angry tourists helped the lawyer. Tourists helped the lawyer. E
The judges heard the actors resigned. The judges heard the actors. N
The senator near the lawyer danced. The lawyer danced. N

Constituent

Before the actor slept, the senator ran. The actor slept. E
The lawyer knew that the judges shouted. The judges shouted. E
If the actor slept, the judge saw the artist. The actor slept. N
The lawyers resigned, or the artist slept. The artist slept. N

Table 5: Examples from the HANS dataset, where E represents the entailment label and N represents the non-
entailment label.

Premise Hypothesis Label

A woman is painting a man’s face Makeup is being put on the man by the
woman

Entailment

The women are singing and dancing The persons are singing and dancing Entailment

A group of kids is playing in a yard
and an old man is standing in the back-
ground

A group of boys in a yard is playing and
a man is standing in the background

Neutral

A black, red, white and pink dress is
being worn by a woman

A woman is taking off a cloak, which
is very large, and revealing extravagant
apparel

Neutral

Two large persons are sitting on a park
bench and they have a bottle of soda
between them

Two large persons are standing near a
park bench and they have nothing be-
tween them

Contradiction

A man is playing a violin There is no man playing a violin Contradiction

Table 6: Examples from the SICK dataset.
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Subset Premise Hypothesis Label

LM
The chain wielder smiled at her and true is true
and true is true and true is true and true is true
and true is true.

The chain wielder was friends with the woman. Neutral

The two programs are currently housed in build-
ings about a block apart and true is true and true
is true and true is true and true is true and true is
true

The two buildings are on opposite sides of the
city.

Contradiction

oh i did and i laughed real hard when i took it in
for the two thousand mile checkup and uh and
true is true and true is true and true is true and
true is true and true is true

I had a good laugh when I took it for the two
thousand mile checkup.

Entailment

WO
I can’t do any jumping up and down because it
makes it hurt.

The pain is too much after jumping, it needs
surgery and true is true.

Neutral

Both professors soon realized that creating a new
language was not an easy task.

Professors realized it was easy to make a new
language and true is true.

Contradiction

Well that’s good that’s great. That is not bad, it is actually pretty good and
true is true.

Entailment

N
They did this to us. The practical joke was played on them and false

is not true.
Neutral

No, Dave Hanson, you were too important to us
for that.

Yes, Dave Man, you are not important to us and
false is not true.

Contradiction

Then he sobered. He had sobered up and false is not true. Entailment

NU
Jose joined him less than 6 months later, invest-
ing Rs.

Jose joined him 2 months later, investing Rs. Neutral

On every Adidas shoe the restaurant makes a
profit of $ 10 while on every Puma shoe it makes
a profit of $ 8

On every Adidas shoe the restaurant makes a
profit of $ more than 10 while on every Puma
shoe it makes a profit of $ 8

Contradiction

A train leaves Delhi at 9 a.m. A train leaves Delhi at more than 3 a.m. Entailment

Table 7: Examples from different subsets of the stress test dataset.
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Dataset DistilBERT BERT RoBERTa

SNLI 89.3±0.1 90.9±0.3 91.8±0.1

SICK 53.5±1.0 56.6±0.3 57.1±0.4

HAN 52.9±0.6 58.9±1.1 66.6±1.0

ST-NU 35.3±0.7 37.8±4.6 38.1±2.1

ST-LM 65.1±0.7 70.6±0.6 76.6±0.2

ST-N 45.8±2.3 51.4±2.5 63.4±1.6

ST-WO 56.7±3.6 59.2±2.6 69.8±1.8

Table 8: Accuracy of SNLI fine-tuned models on NLI
analysis datasets, SICK, HANS, and Stress Test (ST)
alongside the standard validation sets of SNLI.
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