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(a) Input Points (b) Ground Truth (c) SegFit (Ours) (d) ArtEq (e) PTF

Figure 1: Our proposed method SegFit reconstructs human poses from point clouds using body part
segmentation and the SMPL-X model (Pavlakos et al., 2019). We showcase SMPL-X fitting results
on the EgoBody dataset (Zhang et al., 2022), comparing them to state-of-the-art methods, ArtEq
(Feng et al., 2023b) and PTF (Wang et al., 2021b).

ABSTRACT

Fitting parametric human body models to 3D point cloud is crucial for applica-
tions such as virtual reality and human-robot interaction but remains challenging
due to the lack of contextual guidance, often leading to imprecise results. To ad-
dress this, we propose a hybrid approach that incorporates body part segmentation
into the fitting process, enhancing pose estimation and segmentation accuracy.
Our method starts with an initial segmentation, assigning each point to a specific
body part. This segmentation guides a two-step optimization in fitting an SMPL-X
model: first, approximating the initial pose and orientation using body part cen-
troids, and second, refining the model by considering the entire point cloud. After
fitting, we reassign body parts to the point cloud through nearest-neighbor match-
ing, resulting in more accurate segmentation. This enhanced segmentation serves
as pseudo ground truth to fine-tune the segmentation network in a self-supervised
manner, creating a feedback loop where improvements in pose fitting lead to bet-
ter segmentation and vice versa. We evaluate our approach on four challenging
datasets – PosePrior, EgoBody, BEHAVE, and Hi4D – demonstrating significant
improvements over leading methods, including a tenfold increase in pose model-
ing accuracy and a 15% enhancement in segmentation accuracy after fine-tuning.
Our contributions are twofold: (1) introducing a novel hybrid method that unifies
pose fitting and body part segmentation on point clouds, enabling mutual enhance-
ment through iterative refinement; and (2) developing a self-supervised technique
for fine-tuning segmentation networks using pseudo ground truths derived from
fitted models. This work advances the state of the art in human body fitting to
point clouds, facilitating more accurate human representations in complex envi-
ronments and benefiting applications that require precise human modeling. We
will make the source code publicly available.
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1 INTRODUCTION

Capturing the intricate details of human movement and shape is fundamental to a wide range of
applications, from creating realistic avatars in virtual reality (Thalmann & Musse, 2012; Slater &
Sanchez-Vives, 2016) to enhancing human-robot interactions (Argall et al., 2009; Billard & Kragic,
2019). Fitting a parametric human body model to 3D point cloud data (measured by, e.g., Lidar or
Kinect) without contextual guidance can be challenging and often yields imprecise results (Bogo
et al., 2016; Kolotouros et al., 2019). However, having prior information about body parts can
significantly improve this process (Varol et al., 2017; Zanfir et al., 2018; Xu et al., 2020). Thus, this
paper focuses on incorporating body part segmentation into the body fitting process.

In recent years, parametric models like SMPL-X (Loper et al., 2015) have become instrumental
in representing 3D human poses and shapes. These models are typically fitted to point cloud data
obtained from depth sensors or multi-view stereo systems using optimization techniques such as
gradient descent (Bogo et al., 2016; Pavlakos et al., 2019) or neural networks (Kolotouros et al.,
2019; Kocabas et al., 2020). Simultaneously, advancements in body part segmentation —- assigning
each point in a cloud to a specific body part —- have provided valuable context for understanding
human poses and interactions in applications like computer graphics, personalized healthcare, and
autonomous systems (Li et al., 2018; Xu et al., 2020; Takmaz et al., 2023).

Despite these advancements, current methods often struggle when applied to real-world data featur-
ing complex poses, occlusions, multiple interacting individuals, or human-object interactions (Trum-
ble et al., 2018; Moon et al., 2019; Hassan et al., 2019a). This is largely due to existing approaches
being trained on simplified datasets with isolated bodies in controlled environments (Mahmood
et al., 2019; Andriluka et al., 2014). Consequently, their performance diminishes when confronted
with the diversity and unpredictability of real-world scenarios (Mehta et al., 2017; Dabral et al.,
2018).

To address these limitations, we propose a hybrid approach that unifies human pose fitting and body
part segmentation on point clouds, enabling each process to iteratively inform and enhance the other.
Our method begins with an initial segmentation of the point cloud using a state-of-the-art network,
Human3D (Takmaz et al., 2023), which provides a preliminary assignment of 3D points to specific
body parts. This segmentation acts as a guide for the fitting of the SMPL-X model through a two-step
optimization process (Feng et al., 2023b).

The first optimization step uses the centroids of the body parts to approximate the initial pose and
orientation of the model (Bogo et al., 2016; Xiang et al., 2019). This step is crucial since it provides
a strong starting point for the model parameters, similar to assembling the edge pieces of a puzzle
first. The second step refines the model by considering the entire point cloud, adjusting the pose and
shape parameters to achieve a more precise fit (Pavlakos et al., 2019; Kolotouros et al., 2019). This
refinement fills in the puzzle’s interior. After fitting the model, we leverage the SMPL-X mesh to
reassign body parts to the point cloud through nearest-neighbor matching (Ge et al., 2019; Remelli
et al., 2020). This results in a more accurate segmentation than the initial prediction, effectively up-
dating our ”puzzle sketch” based on the assembled pieces. We then use this enhanced segmentation
as a pseudo ground truth to fine-tune the segmentation network. This self-supervised learning ap-
proach allows the network to improve its performance on new, unlabeled data, such as point clouds
derived from in-the-wild captures (Varol et al., 2017; Zhang et al., 2021).

This reciprocal process creates a feedback loop where improvements in pose fitting lead to better
segmentation, which in turn facilitates more accurate fitting in subsequent iterations (Zanfir et al.,
2018; Kocabas et al., 2020). By integrating these two tasks, we address the challenges of generaliz-
ing to diverse datasets and enhance the robustness of both processes in real-world conditions.

We evaluate our approach on four challenging datasets: PosePrior (Zhang et al., 2021), EgoB-
ody (Zhang et al., 2022), BEHAVE (Bhatnagar et al., 2022), and Hi4D (Yin et al., 2023). These
datasets encompass a wide range of complex scenarios, including intricate poses, partial occlu-
sions, close human interactions, and human-object interactions (Hassan et al., 2019a; Xiang et al.,
2019; Pumarola et al., 2021). Our experiments demonstrate significant improvements in both pose
modeling accuracy and body part segmentation performance compared to leading methods (Kolo-
touros et al., 2019; Kocabas et al., 2020; Zanfir et al., 2018), especially in the complicated scenes.
Specifically, we observe a tenfold average improvement in pose modeling accuracy and a 15% en-
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hancement in segmentation accuracy after fine-tuning with our pseudo ground truths, as evaluated
on EgoBody (Zhang et al., 2022) and BEHAVE (Bhatnagar et al., 2022).

In summary, our contributions are twofold:

1. A Hybrid Approach Integrating Pose Fitting and Segmentation: We present a novel
method that combines human pose fitting with body part segmentation on point clouds,
enabling mutual enhancement through iterative refinement.

2. Self-Supervised Fine-Tuning of Part Segmentation: By using the fitted SMPL-X meshes
to generate pseudo ground truth (Zanfir et al., 2018; Kocabas et al., 2020; Zhang et al.,
2021), we enable the fine-tuning of segmentation networks on unlabeled data, enhancing
their performance on diverse real-world datasets.

Our work advances the state of the art in human body fitting to point clouds and has significant impli-
cations for applications requiring accurate human representations in complex environments (Thal-
mann & Musse, 2012; Slater & Sanchez-Vives, 2016; Billard & Kragic, 2019).

2 RELATED WORK

Estimating human body pose and shape from 3D point clouds is vital in computer vision, with
applications in virtual reality, animation, and human-computer interaction. While extensive research
has been conducted on fitting parametric human models to 2D images (Bogo et al., 2016; Kanazawa
et al., 2018; Kolotouros et al., 2019), we focus on methods that directly operate on 3D point cloud
data. Point clouds capture detailed geometric information and avoid the ambiguities inherent in 2D
projections, making them valuable for precise human modeling.

Methods for Fitting Human Poses onto Point Clouds. Several approaches have been developed
to fit human poses to point clouds. Bhatnagar et al. (2020) introduced IP-Net, which combines
implicit representations with parametric models to reconstruct clothed human bodies from partial
scans. IP-Net learns a continuous occupancy field representing the human body, allowing for de-
tailed reconstructions even with incomplete data. Wang et al. (2021b) proposed PTF, a method that
fits SMPL models to point clouds by considering local geometric features. By leveraging local point
distributions, PTF improves fitting accuracy in areas with high curvature or fine-grained details. Zuo
et al. (2021) presented a self-supervised approach for 3D human motion reconstruction from depth
sequences. Their method leverages temporal coherence without requiring ground truth annotations,
effectively reconstructing dynamic human motions. Cai et al. (2023) developed PointHPS, a hierar-
chical point-based network that directly regresses SMPL parameters from point clouds. PointHPS
achieves state-of-the-art results by utilizing a point-based encoder-decoder architecture.

The common challenges among these methods include sensitivity to initialization, reliance on
large annotated datasets, and difficulties in handling complex poses, occlusions, and interactions.
Regression-based methods often require extensive training data to cover the variability in human
shapes and poses, which may not be feasible for all applications. Additionally, they may not ef-
fectively capture subtle variations in body shape or handle occlusions caused by interactions with
objects or other people.

Our approach differs by integrating body part segmentation into the fitting process, leveraging initial
segmentation to improve model initialization and fitting accuracy. By using body part information,
we can distinguish between symmetric limbs and reduce ambiguities in global orientation, which
is a common issue in optimization-based methods. This integration allows us to achieve robust
initialization without the need for multiple optimization runs from different starting points, as done
in methods like SMPLify-X (Pavlakos et al., 2019). Furthermore, our method improves the fitting
accuracy by focusing on both global and local alignment between the model and the point cloud.
The initial segmentation guides the fitting process, making it more resilient to noise and outliers. By
considering the centroids of body parts during initialization and refining the fit using the entire point
cloud, we enhance the ability of the model to capture complex poses and interactions.

Datasets and the Challenge of Annotations. High-quality datasets with accurate annotations are
crucial for training and evaluating human body modeling methods. However, obtaining datasets
with detailed body part segmentation on point clouds is particularly challenging. Existing datasets
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like Hi4D (Yin et al., 2023), BEHAVE (Bhatnagar et al., 2022), and EgoBody (Zhang et al., 2022)
provide valuable data capturing complex human poses, interactions, and motions. Hi4D offers high-
fidelity 4D data for human reconstruction in motion, BEHAVE focuses on human-object interac-
tions, and EgoBody captures human activities from an egocentric perspective. Despite their richness,
these datasets often lack detailed body part segmentation annotations necessary for training segmen-
tation networks. Annotating body parts in 3D point clouds is labor-intensive and time-consuming,
making it impractical for large datasets. This scarcity of annotated data limits the effectiveness of
supervised learning methods for body part segmentation on point clouds.

Our method addresses this challenge by generating improved body part segmentations through the
fitted SMPL-X models. After fitting the model to the point cloud, we use the correspondences
between the model vertices and the point cloud to assign body part labels, effectively creating pseudo
ground truth annotations. This process enhances the initial segmentation obtained from networks
like Human3D (Takmaz et al., 2023). By utilizing these improved segmentations, we can fine-
tune segmentation networks in a self-supervised manner. This approach does not require additional
manual annotations and enables the network to generalize better to diverse and complex datasets.
Our method contributes to the enrichment of existing datasets with high-quality segmentation labels,
facilitating better training data for future research and applications.

3 METHOD

This section presents our method for fitting the SMPL-X parametric human body model to 3D point
clouds by leveraging initial body part segmentation. Our approach consists of a two-step process:
an initialization phase that provides a reliable starting point for optimization and a fitting phase
that refines the model parameters to represent the human subjects in the point cloud accurately.
We further utilize the fitted models to enhance body part segmentation through a self-supervised
fine-tuning process.

3.1 PROBLEM DEFINITION

Given a 3D point cloud P = {pi}Ni=1 capturing one or more human subjects, our goal is to estimate
the pose and shape parameters of the SMPL-X model (Pavlakos et al., 2019), resulting in accurate
3D meshes that align with the point cloud. The challenge lies in initializing the model parameters to
avoid local minima during optimization and handling ambiguities due to the symmetry of the human
body. To address this, we propose a method that leverages initial body part segmentation obtained
from Human3D (Takmaz et al., 2023). This segmentation provides valuable information that aids in
distinguishing between symmetric body parts and improves the initialization of the SMPL-X model.

3.2 OVERVIEW OF THE APPROACH

Our method comprises the following main components:

1. Initial Body Part Segmentation: Segment the input point cloud into body parts using
Human3D (Takmaz et al., 2023), assigning each point a body part label.

2. Model Initialization: Compute centroids of the segmented body parts and use them to
initialize the SMPL-X model parameters, including pose, shape, and global orientation.

3. Model Fitting: Refine the SMPL-X model by optimizing an objective function that bal-
ances data fidelity and regularization terms, fitting the model to the entire point cloud.

4. Improved Body Part Segmentation: Use the fitted SMPL-X meshes to reassign part la-
bels to the point cloud via nearest-neighbor matching, resulting in enhanced segmentation.

5. Self-Supervised Fine-Tuning: Fine-tune the Human3D segmentation network using the
improved segmentation as pseudo ground truth, enhancing its performance on new data.

We provide detailed descriptions of each component in the following subsections.
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3.3 INITIAL BODY PART SEGMENTATION

We begin by applying Human3D (Takmaz et al., 2023), a state-of-the-art body part segmentation
network, to the input point cloud P . This network assigns a body part label si ∈ {1, . . . ,K} to
each point pi, where K is the total number of body parts defined by the SMPL-X model. The
segmentation provides an initial understanding of the spatial arrangement of different body parts
within the measured 3D point cloud.

3.4 MODEL INITIALIZATION

Accurate initialization is crucial for effective model fitting, as poor initialization can lead to subop-
timal solutions or cause the optimizer to become trapped in local minima. Traditional methods like
SMPLify-X (Pavlakos et al., 2019) and PROX (Hassan et al., 2019b) handle orientation ambiguities
by fitting the model multiple times with different initial rotations. In contrast, we leverage body part
segmentation to obtain a reliable initialization in a single attempt.

For each body part k ∈ {1, . . . ,K}, we compute the centroid of the corresponding points in the
point cloud as follows:

cscan
k =

1

Nk

Nk∑
i=1

pi, (1)

where Nk is the number of points assigned to body part k. The same is done for the body parts in
the SMPL-X template model M0.

We estimate an initial global rotation R0 and translation t0 and create a rough approximation of the
pose by running the same fitting process as described in Section 3.5, however, considering only the
described centroids and neglecting the remainder of the point cloud. This alignment provides a fast
and reliable initialization for the global pose and reduces ambiguities in orientation by utilizing the
spatial distribution of body parts.

3.5 MODEL FITTING

With the initialized model parameters, we refine the SMPL-X model by fitting it to the entire point
cloud. The SMPL-X model (Pavlakos et al., 2019) is parameterized by pose θ ∈ RJ×3, shape
β ∈ RB , and global translation t ∈ R3, where J is the number of joints and B is the number of
shape coefficients. Our optimization aims to find the model parameters that minimize the following
objective function:

L = λdataLdata + λposeLpose + λshapeLshape, (2)

where λdata, λpose and λshape, are weighting factors balancing the contributions of each term.

Data Term. The data term measures the discrepancy between the point cloud and the model surface.
We use a robust one-sided Chamfer distance based on the Huber loss to reduce sensitivity to outliers
as follows:

Ldata =

K∑
k=1

Nk∑
i=1

min
v∈Vk

LHuber(pi − v), (3)

where Vk is the set of vertices corresponding to body part k, and LHuber is defined as:

LHuber(r) =

{
1
2 |r|

2
2 if |r|2 ≤ δ,

δ(|r|2 − 1
2δ) otherwise,

(4)

with δ being the Huber loss parameter. This formulation ensures that large residuals are penalized
linearly, reducing the influence of outliers.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To handle high-resolution scans and manage computational complexity, we limit the number of
points considered in the data term by randomly subsampling n points from each body part.

Pose and Shape Regularization. We include regularization terms on the pose and shape parameters
to encourage plausible human poses and shapes as follows:

Lpose = |θ − θ0|22, Lshape = |β|22, (5)

where θ0 is the initial pose from the model initialization.

To further enforce realistic poses and avoid unnatural articulations, we utilize VPoser, a variational
human pose prior trained on a large dataset of human poses. VPoser encodes the pose parameters
into a low-dimensional latent space, modeling the distribution of natural human poses.

Optimization. We optimize the objective function L with respect to the model parameters θ, β, R,
and t using the Adam optimizer, which adapts the learning rates for each parameter and is suitable
for large-scale optimization.

3.6 IMPROVING BODY PART SEGMENTATION

After obtaining the fitted SMPL-X model, we enhance the body part segmentation of the point cloud
by reassigning labels based on the fitted model. For each point pi, we find its nearest vertex v∗

i on
the SMPL-X mesh:

vi∗ = argmin
v∈V

|pi − v|2. (6)

We then assign the body part label of v∗
i to pi:

si = s(vi), (7)

where s(vi) denotes the body part label of vertex vi in the SMPL-X model.

This process results in a refined segmentation S∗ = {si}Ni=1 that is more accurate than the initial
segmentation from Human3D. The improved segmentation benefits from the fitted model adherence
to the point cloud and the SMPL-X model.

3.7 SELF-SUPERVISED FINE-TUNING

The refined segmentation S∗ serves as pseudo ground truth for self-supervised fine-tuning of the
Human3D segmentation network. By training the network on these improved labels, we enable it to
generalize better to new, unlabeled data and enhance its segmentation accuracy in diverse scenarios.

The fine-tuning process involves minimizing the cross-entropy loss between the network predictions
and the pseudo ground truth labels:

Lseg = −
N∑
i=1

K∑
k=1

yi,k log pi,k, (8)

where yi,k = 1 if s∗i = k and 0 otherwise, and pi,k is the predicted probability that point pi belongs
to body part k. This self-supervised learning approach creates a feedback loop where improved
model fitting leads to better segmentation, which in turn facilitates more accurate model fitting in
subsequent iterations.

3.8 SUMMARY

Our method effectively combines body part segmentation and model fitting to enhance the accuracy
of both processes. By initializing the SMPL-X model using body part centroids and refining it
through optimization, we achieve accurate alignment with the input point cloud. The fitted models
then improve segmentation, which can be used to fine-tune the segmentation network in a self-
supervised manner. This iterative process addresses challenges in pose estimation and segmentation,
particularly in complex real-world scenarios.
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4 EXPERIMENTS

We evaluate our proposed method on several challenging datasets to demonstrate its effectiveness
in modeling human poses and improving body part segmentation from point clouds. Our experi-
ments are designed to assess the accuracy and efficiency of our method compared to baseline ap-
proaches, as well as to highlight the improvements in segmentation accuracy achieved through our
self-supervised fine-tuning process.

We evaluate our method through a series of steps and compare the results with the baseline models,
ArtEq (Feng et al., 2023b) and Human3D (Takmaz et al., 2023). First, we analyze the perfor-
mance of our pose modeling approach across various conditions and configurations, benchmarking
it against ArtEq. Next, we examine the improvements in body part segmentation facilitated by the
pose modeling, comparing these to the initial segmentation accuracy of Human3D. Finally, we as-
sess the impact of fine-tuning Human3D using the enhanced part segmentations as pseudo-ground
truths. Our evaluations are conducted on four distinct datasets, detailed below.

To thoroughly evaluate the generalization capabilities of our method, we conduct experiments on
four diverse datasets, each presenting unique challenges:

1. PosePrior (Zhang et al., 2021): A subset of the AMASS dataset containing complex hu-
man poses with limbs extended at extreme angles, posing difficulties for accurate pose
estimation.

2. BEHAVE (Bhatnagar et al., 2022): Consists of dense scans of humans interacting closely
with objects. Each point cloud includes a single human and one object, challenging the
method to distinguish between human and object and to handle occlusions.

3. EgoBody (Zhang et al., 2022): Captures human activities from an egocentric perspective,
featuring scenes with two interacting humans and background elements that need to be
separated during segmentation.

4. Hi4D (Yin et al., 2023): Features high-resolution scans of humans engaged in close inter-
actions, such as fighting or dancing, requiring the method to identify boundaries between
individuals accurately.

(a) PosePrior (b) BEHAVE (c) EgoBody (d) Hi4D

Figure 2: Examples of point clouds from the datasets used in this study, illustrating variations in
pose, occlusions, and interactions present in the PosePrior (AMASS), BEHAVE, EgoBody, and
Hi4D datasets.

Evaluation Metrics: Following prior work, we evaluate the accuracy of the fitted models by mea-
suring the Euclidean distance in millimeters between corresponding vertices (V2V error) and joints
(J2J error) of the fitted and ground-truth SMPL-X models. We also record the average processing
time taken to fit a single human instance.

4.1 POSE ESTIMATION RESULTS

We compare our method, referred to as SegFit, with the state-of-the-art PTF (Wang et al., 2021b)
and ArtEq (Zhang et al., 2021). We do not consider other baselines, such as IP-Net (Bhatnagar et al.,
2020) and LoopReg (Kolotouros et al., 2019), since they lead to less accurate results than PTF and
ArtEq.
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To enable the comparison, it is necessary to adjust the inputs to PTF and ArtEq as these methods
are not designed to handle multi-human scenes. Hence, before evaluating them on EgoBody and
Hi4D, we first separate the human instances based on ground truths and pass the corresponding
point clouds into PTF and ArtEq individually. This also includes removing the background in Ego-
Body. Furthermore, as Human3D struggles to differentiate between touching instances in Hi4D, we
finetune on this dataset before evaluating SegFit. The resulting instance segmentation is then used
as a basis for SegFit and is at most as precise as the ground truth separation we perform for PTF and
ArtEq.

From Table 1, we observe that the proposed SegFit significantly outperforms ArtEq and PTF on
BEHAVE, EgoBody, and Hi4D datasets, demonstrating better generalization to diverse and com-
plex real-world scenarios. On the BEHAVE dataset, SegFit achieves a V2V error six times lower
than ArtEq, indicating superior performance in handling human-object interactions. On the EgoB-
ody dataset, SegFit reduces the V2V error by an order of magnitude compared to ArtEq and PTF,
showcasing robustness in scenes with multiple humans and background clutter.

Although ArtEq slightly outperforms SegFit on the PosePrior dataset, SegFit still achieves com-
petitive results. Additionally, SegFit provides a good balance between accuracy and computational
efficiency, with fitting times significantly lower than PTF and only slightly higher than ArtEq.

Dataset Metric PTF (Wang et al., 2021a) ArtEq (Feng et al., 2023a) SegFit (Ours)

V2V [mm] 209.3 246.0 37.0
BEHAVE J2J [mm] 245.9 279.4 30.7

Time [s] 30.771 0.102 1.860

V2V [mm] 538.6 516.8 47.9
EgoBody J2J [mm] 630.1 583.5 42.2

Time [s] 30.920 0.094 1.785

V2V [mm] 57.1 107.6 24.5
Hi4D J2J [mm] 66.6 123.7 20.6

Time [s] 29.478 0.099 1.832

V2V [mm] 64.2 36.2 67.1
PosePrior J2J [mm] 75.9 42.3 75.7

Time [s] 28.759 5.053 2.671

Table 1: Accuracy and runtime of SegFit on various datasets in comparison to state-of-the-art meth-
ods PTF and ArtEq.

4.2 ABLATION STUDY

To assess the contributions of individual components of our method, we conduct an ablation study
and show the results in Table 2. We consider with the following variants:

Without Body Parts: We perform fitting without using body part segmentation, initializing the
model with four different orientations to handle symmetry ambiguities.

With Body Parts (No Centroid Initialization): We use body part segmentation but skip the
centroid-based initialization step.

Only Body Part Centroids: We perform only the initialization step using body part centroids with-
out further refinement.

As these results show, body part segmentation is crucial to the accuracy of SegFit, leading to a
reduction in V2V error of 50% on BEHAVE and 966% on PosePrior, with a similar effect observed
in the J2J error. Qualitative analysis indicates that this improvement is largely due to errors in the
initialization of the pose. Furthermore, the complex poses in PosePrior are particularly challenging
to model without part segmentation.

When evaluating SegFit with part segmentation but without the initialization step, the errors decrease
significantly compared to those without segmentation, and are similar to those of the full method
on BEHAVE, EgoBody, and Hi4D. However, the error remains higher across all datasets, with the
V2V error increasing by 37% specifically on the PosePrior dataset, underscoring the importance of
accurate initialization for complex poses.
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Metric PosePrior BEHAVE EgoBody Hi4D

w/o Body Parts

V2V [mm]

383.9 55.6 109.7 83.6
w/ Body Parts, w/o Centroid Init. 91.9 39.9 48.5 27.5
w/ Body Parts, only Centroid Init. 135.8 97.3 105.2 93.0
Full 67.1 37.0 47.9 24.5

w/o Body Parts

J2J [mm]

362.8 43.6 100.3 71.0
w/ Body Parts, w/o Centroid Init. 98.3 32.6 42.7 22.8
w/ Body Parts, only Centroid Init. 122.5 80.8 87.9 75.9
Full 75.7 30.7 42.2 20.6

w/o Body Parts

Time [s]

12.699 6.051 4.281 5.842
w/ Body Parts, w/o Centroid Init. 4.226 2.978 3.704 8.590
w/ Body Parts, only Centroid Init. 0.408 0.404 0.400 0.403
Full 2.671 1.860 1.785 1.832

Table 2: Ablation study of SegFit variants on the PosePrior, BEHAVE, EgoBody, and Hi4D datasets.

Finally, we assess the accuracy of the initialization step on its own, which is approximately three
times lower than that of the full method, demonstrating the impact of the refinement step. Despite the
lower accuracy of this variant, it is worth noting that the accuracy remains fairly consistent across all
four datasets, and the fitting time is between four and seven times lower than that of the full method,
averaging below half a second. This presents an opportunity for a trade-off between accuracy and
time efficiency, making it a suitable alternative in online environments.

4.3 IMPROVEMENTS TO BODY PART SEGMENTATION

After fitting the SMPL-X models, we reassign body part labels to the point clouds based on nearest-
neighbor correspondences with the model vertices, resulting in improved segmentations. We com-
pare the segmentation performance of Human3D before and after applying our method. Table 3
presents the accuracy, Intersection over Union (IoU), and Average Precision (AP) for each dataset.

Method Metric PosePrior Hi4D BEHAVE EgoBody

Human3D Accuracy 93.78% 96.50% 74.61% 77.06%
+ SegFit 92.81% 92.54% 91.22% 84.71%

Human3D IoU 75.26% 84.04% 57.38% 62.89%
+ SegFit 75.31% 75.67% 77.26% 69.48%

Human3D AP 82.34% 91.89% 73.42% 73.98%
+ SegFit 83.58% 85.88% 85.74% 77.20%

Table 3: Comparison of body part segmentation performance before and after applying SegFit. We
report the segmentation accuracy, Intersection over Union (IoU), and Average Precision (AP) for
each dataset.

The results show significant improvements in segmentation accuracy on the BEHAVE and EgoBody
datasets after applying SegFit, with accuracy increases of approximately 17% and 8%, respectively.
This demonstrates that our method effectively refines the segmentation by leveraging the fitted mod-
els. Both Hi4D and PosePrior are very clean datasets with high-quality point clouds and barely any
occlusions. Thus, Human3D has already achieved high accuracy, which we cannot improve. This
suggests that our method may not provide further improvements when the initial segmentation is
already highly accurate. However, this is not the case for unseen real-world datasets like BEHAVE
and EgoBody.

4.3.1 FINE-TUNING OF HUMAN3D

To evaluate the potential of our method to enhance segmentation, we fine-tune Human3D using
the improved segmentations from SegFit as pseudo-ground truths. We focus on the BEHAVE and
EgoBody datasets, where the initial segmentation accuracy of Human3D is lower. Table 4 presents
the performance of Human3D before and after fine-tuning on BEHAVE and EgoBody.

9
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Human3D Model Metric BEHAVE EgoBody

w/o Fine-Tuning Accuracy 74.61% 77.06%
w/ Fine-Tuning 89.96% 88.80%

w/o Fine-Tuning IoU 57.38% 62.89%
w/ Fine-Tuning 75.36% 78.88%

w/o Fine-Tuning AP 73.42% 73.98%
w/ Fine-Tuning 84.56% 84.61%

Table 4: Segmentation performance of Human3D (Takmaz et al., 2023) before and after fine-tuning
in a self-supervised manner on the outputs of the proposed SegFit.

Fine-tuning Human3D on BEHAVE leads to a substantial increase in accuracy, from 74.61% to
89.96%, and similar improvements in IoU and AP metrics. This indicates that our method effectively
generates high-quality pseudo-ground truths that can be used to enhance segmentation networks on
new datasets without manual annotations. On EgoBody, which was part of Human3D’s original
training data, we still observe improvements after fine-tuning, suggesting that our method can further
enhance performance.

(a) Ground Truth (b) Human3D (c) SegFit (d) Finetuned

Figure 3: Body part segmentation of a scan from the EgoBody dataset, as predicted by Human3D
(Takmaz et al., 2023) before finetuning (3b), our proposed method SegFit (3c), and Human3D after
finetuning on the pseudo ground truths provided by SegFit (3d). The arrows in (3b) highlight how
Human3D’s separation of body parts was originally imprecise and was corrected by SegFit.

5 CONCLUSION

In this paper, we introduce SegFit, a novel hybrid approach for fitting parametric human body models
to diverse 3D point clouds. SegFit combines body part segmentation, based on Human3D (Takmaz
et al., 2023), with SMPL-X modeling (Pavlakos et al., 2019) to iteratively enhance both segmen-
tation and pose fitting accuracy. Our method demonstrates significant improvements over state-of-
the-art techniques such as PTF (Wang et al., 2021b) and ArtEq (Feng et al., 2023b), especially in
complex, real-world scenarios where occlusions, human-object interactions, and multiple human
instances are prevalent.

By incorporating an initial body part segmentation and refining it through SMPL-X model fit-
ting, SegFit creates a feedback loop where better pose fitting leads to improved segmentation and
vice versa. This self-supervised cycle enhances the robustness and generalization capabilities of
the method across diverse datasets, as shown by our experiments on the PosePrior (Zhang et al.,
2021), BEHAVE (Bhatnagar et al., 2022), EgoBody (Zhang et al., 2022), and Hi4D (Yin et al.,
2023) datasets. Our results indicate up to a tenfold improvement in pose estimation and a 15%
increase in segmentation accuracy. Furthermore, the segmentation fine-tuning process with pseudo
ground truths provides a versatile solution for unlabeled data, paving the way for more accurate
self-supervised human modeling.

Our work sets a new benchmark for body fitting on point clouds, with the potential to significantly
advance human representation in complex environments. Future work will explore potential im-
provements to the pose fitting accuracy, such as by introducing a penetration loss term for scenes
where humans interact with each other or with objects in their environment.
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5.1 REPRODUCIBILITY STATEMENT

We make the source code of our method available in a public repository. For finetuning Human3D
using the outputs of our method, we refer the reader to Human3D’s repository. All datasets used in
this study have been used without alterations. The only exception to this is the separation of human
instances in EgoBody and Hi4D before evaluating ArtEq and PTF as described in Section 4.1.
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