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Abstract

In-context learning (ICL) is a powerful paradigm where large language models
(LLMs) benefit from task demonstrations added to the prompt. Yet, selecting
optimal demonstrations is not trivial, especially for complex or multi-modal tasks
where input and output distributions differ. We hypothesize that forming task-
specific representations of the input is key. In this paper, we propose a method to
align representations of natural language questions and those of SQL queries in a
shared embedding space. Our technique, dubbed MARLO—Metadata-Agnostic
Representation Learning for Text-tO-SQL— uses query structure to model query-
ing intent without over-indexing on underlying database metadata (i.e. tables,
columns, or domain-specific entities of a database referenced in the question or
query). This allows MARLO to select examples that are structurally and seman-
tically relevant for the task rather than examples that are spuriously related to a
certain domain or question phrasing. When used to retrieve examples based on
question similarity, MARLO shows superior performance compared to generic
embedding models (on average +2.9%pt. in execution accuracy) on the Spider
benchmark. It also outperforms the next best method that masks metadata informa-
tion by +0.8%pt. in execution accuracy on average, while imposing a significantly
lower inference latency.

SELECT T1.customer_id,
T2.customer_first_name,  

T2.customer_last_name, count(*) FROM 
Accounts AS T1 JOIN Customers AS T2 ON 
T1.customer_id =  T2.customer_id GROUP BY  
T1.customer_id

What is the customer id of the   
customer with the most accounts, and 

how many accounts does this person have?

SELECT customer_id, count(*) 
FROM Accounts GROUP BY customer_id
ORDER BY count(*) DESC LIMIT 1 

For each grant id, how many
documents does it have, and which 

one has the most?

SELECT grant_id ,  count(*) 
FROM Documents GROUP BY grant_id
ORDER BY count(*) DESC LIMIT 1

What are the the full names and ids
for all customers, and how many

accounts does each have?

🔍MARLO retrieval🔍 generic retrieval

Figure 1: Motivation of this work. From the perspective of generic sentence embeddings, the left
question is similar to the middle one but dissimilar from the one on the right. MARLO focuses
on query structure (rather than metadata specifics) to represent the intent of each question more
accurately. This allows it to retrieve the more instructive demonstration (rightmost). For emphasis,
noun chunks, parts-of-speech, and domain information specific to the database metadata are
annotated accordingly.

*These authors contributed equally to this work
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1 Introduction

Large Language Models (LLMs) have demonstrated significant few-shot performance gains on
a variety of NLP tasks simply by conditioning on example demonstrations during inference—an
approach commonly referred to as in-context learning (ICL) (Brown et al., 2020; Dong et al., 2023).
Not only is this little-understood emergent ability (Wei et al., 2022) an active area of research
(Akyürek et al., 2023; Garg et al., 2022; Shin et al., 2022; Min et al., 2022; Xie et al., 2022), further
effort has been made to understand why LLM performance remains sensitive to demonstration
selection (Liu et al., 2022; Gao et al., 2023a; An et al., 2023; Wang et al., 2023b), ordering (Lu
et al., 2022), and formatting (Chen et al., 2023a; Gao et al., 2023a). Inspired by the success of
retrieval-augmented generation on knowledge intensive tasks (Hashimoto et al., 2018; Lewis et al.,
2020; Karpukhin et al., 2020; Gao et al., 2023b), recent works demonstrate the effectiveness of
selecting in-context examples that are semantically similar to the test exemplar (Rubin et al., 2022;
Liu et al., 2022; Duan et al., 2023). However, semantic textual similarity has its challenges in the
context of demonstration retrieval, particularity when the task is multi-modal (e.g. text 7→ image) or
its input and output distributions differ (e.g. English 7→ French or SQL).

In this paper, we specifically focus on demonstration retrieval for Text-to-SQL as it is common
practice in SOTA systems, and because the semantic and syntactic representations of natural language
questions and structured queries are inherently difficult to compare. Generic retrievers tend to select
examples by matching the domain or nouns in questions that relate to tables, columns, or entities of a
database (e.g. ‘accounts’ or ‘customers’ in Figure 1), which we refer to broadly as database metadata.
As a result, selected demonstrations describe semantically similar entities but have unrelated intent
or query structure. To overcome this limitation, we fine-tune a pre-trained language model to align
representations of natural language questions and those of SQL queries in a shared embedding space
based on the question intent and corresponding query structure. Using a novel metadata-agnostic
metric we propose (Equation 1), we learn representations that pay closer attention to structural
information and retrieve lexically varied yet semantically meaningful demonstrations.

Our work, dubbed Metadata Agnostic Representation Learning for Text-tO-SQL (MARLO), differs
from prior works that i) compare embeddings derived from heuristic feature extraction (Makiyama
et al., 2015; Aligon et al., 2014; Kul et al., 2018), ii) use general-purpose retrievers to select from
suitably formatted prompts (Sun et al., 2023), iii) use custom retrievers that add special code tokens
to their vocabulary (Tipirneni et al., 2022) or are fine-tuned on masked task-specific data (Gao et al.,
2023a), or iv) annotate demonstrations by hand, which is prohibitively expensive and inflexible
(Pourreza and Rafiei, 2023).

From our ablation analysis and experiments, we observe example selection with MARLO outperforms
alternative methods discussed in literature, including the state-of-the-art for the Text-to-SQL task on
benchmark dataset. Compared to multi-stage masking approaches that require multiple LLMs calls,
MARLO performs better or on par with lower inference latency. In summary our major contributions
are:

1. A novel method to jointly learn aligned embeddings for natural language questions and SQL
queries using a query edit distance heuristic. The customized embedding model is able to better
comprehend the anticipated SQL structure associated with natural language questions.

2. An in-depth analysis of ICL example selection methods for Text-to-SQL, highlighting how the
choice of selected examples is particularly useful for question understanding in this task and why
MARLO works.

3. First comprehensive showcase of competitive instruction-tuned foundation models on this task.
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2 Related Work

2.1 ICL Demonstrations for Text-to-SQL

Several lines of work have explored what aspects of a demonstration contribute to ICL performance
gains – the input distribution (e.g. formatting, overall perplexity) (Min et al., 2022; Gonen et al.,
2023); the semantic similarity between demonstrations and the inference exemplar (Liu et al., 2022;
Duan et al., 2023; Qin et al., 2023); and diversity (Qin et al., 2023). For a skill-intensive task like Text-
to-SQL, similarity is a more important dimension than diversity. Demonstrations that possess similar
questions (Liu et al., 2022) or SQL queries (Nan et al., 2023) to those of the inference exemplar are
more helpful than random selections. However, solely relying on embeddings of raw input questions
or queries for similarity retrieval often suffers from the bias of surface language features (e.g. nouns
that contain domain information). Guo et al. 2023 and DAIL-SQL (Gao et al., 2023a) address this by
masking noun chunks in the question or query referenced in the metadata before encoding. Skill-KNN
(An et al., 2023) take an alternative approach by rewriting the questions as skill descriptions which,
rather than the questions, are encoded and retrieved using generic embedding models. To the best of
our knowledge, we are the first to tackle this problem by learning embeddings for natural language
questions and SQL queries that are aligned in a shared space and represent the user’s intent agnostic
to the domain or any referenced database metadata.

2.2 Similarity-Based Retrieval

Similarity-based retrieval is typically framed as a metric learning problem that uses dot-product or
cosine similarity as a ranking function (Kulis, 2012). In cases where input and output distributions
are distinct, it is a common practice to fine-tune or align pre-trained transformers using language
modeling or constrastive objectives, often in a Siamese configuration (Cer et al., 2018; Reimers and
Gurevych, 2019; Yang et al., 2020; Gao et al., 2021; Ni et al., 2022a; Neelakantan et al., 2022).
For example, CLIP (Radford et al., 2021) uses internet-scale language supervision to learn broader
semantic concepts in the vision domain via contrastive pre-training over image-caption pairs. In
the Text-to-SQL task, where we perform similarity-based retrieval for ICL demonstrations, we
face the same problem of representing asymmetric entities, namely the natural language question
and the SQL query. Some previous works (Ni et al., 2022b) look to supervised fine-tuning where
sufficient in-domain data is available, and others propose new objective functions that are optimized
for the task or domain (Li and Li, 2023). In this work, we devise a task-specific metric and perform
weak supervised learning to align natural language with SQL using standard objective functions.
Our method effectively learns metadata-agnostic embeddings without masking in-domain data,
customizing the base model vocabulary, rewriting questions, or using custom objective functions.

3 Learning Metadata-Agnostic Text-to-SQL Embeddings

We seek to learn aligned embeddings of natural language questions and SQL queries that are
semantically meaningful for retrieving ICL demonstrations in the Text-to-SQL task. We define a
novel similarity metric in § 3.1 based on a query edit distance heuristic.

3.1 Query Edit Distance (QED)

Consider a dataset D comprised of n (database d, question q, query s) triplets {(qi 7→ si|di)}n. To
measure the alignment between two exemplar pairs (i.e. (qi, si) ↔ (qj , sj)), we take a query editing
perspective and use a keyword matching heuristic that matches the structural similarity between the
queries si and sj as a proxy. Since the same expression can be expressed in many different ways
using different SQL keywords, we group keywords based on their semantic nature and assign weights
to them according to their impact on query structure (see Table 5). For each group k, we obtain SQL
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keywords of the minimal insertions (Ik) and removals (Rk) to change si to sj .

QED =
∑
k

(
wk · |Ik −Rk|+ wr ·min(Ik, Rk)

)
(1)

Intuitively, any keyword in group k that can be replaced with another keyword from the same group
to make si closer to sj comprises a small difference between the queries. For example, replacing
MIN with MAX. Each replacement operation contributes a low score of wr = 0.2 to QED. Additional
keywords that need to be added, for example if an ORDER BY clause is missing, contribute a score
of wk based on the significance of the group to the structure of the query. Operations pertaining to
table and column names are ignored (e.g. aliases) and will result in the same score. This ensures the
representations are agnostic to the underlying metadata of di and focus more on the query structure.

3.2 Dataset

We construct an augmented training dataset for our encoder using the training set of Spider1 (a
large-scale cross-domain Text-to-SQL benchmark that covers over 200 databases) comprised of 7000
examples (Yu et al., 2018). Following § 3.1 each question is paired with all queries in the dataset
to generate a training dataset D̄ = {(qi, sj , lij)}49M , where lij represents a measure of alignment
between qi and sj based on QED(si, sj). However, we find D̄ is unbalanced, with only ∼1% of
the queries considered similar (i.e. QED score lower than 1). We undersample D̄ by comparing
the euclidean distance (τ ) of generic embeddings7 of qi and qj and lij . To enhance the learning
process, we sample more from the discordant group of exemplars, which we define as those with a
large τ = ∥qi − qj∥2 and low lij , or vice versa. The total size of the filtered training set is brought
down ∼2.4M with majority of the exemplars representing some degree of discordance, see Table 4
for a complete breakdown. Since we are interested in learning fine-grained representations, we cap
QED ≤ 5, and min-max normalize the scores lij ∈ [0, 1] such that a score of 0 represents the most
distant exemplars and is compatible with the chosen loss function. See Table 6 for a list of labeled
examples. For a complete set of hyperparameters used to train the encoder, refer to Table 3.

3.3 Loss Function

Figure 2: Semi-asymmetric bi-
encoder architecture.. Parame-
ters in the base transformer and the
pooling layer are shared while two
separate dense layers are trained to
align question and SQL query em-
beddings, respectively.

The objective function used to train embedding models is usu-
ally selected based on the scale and nature of available train-
ing data. For instance a contrastive loss (Ni et al., 2022a;
Neelakantan et al., 2022) such as Multiple Negatives Rank-
ing Loss (MNRL) is used when pairwise data (e.g. images
and text captions) is available, while a Triplet Loss is used
when a neutral anchor can be compared to both positive and
negative examples explicitly. Normally Text-to-SQL datasets
are comprised of (question, query) pairs, however a con-
trastive loss will likely not work well here as different ques-
tions might correspond to structurally similar queries in the
same batch. Hence, we create an augmented dataset with
pseudo-labels based on § 3.1 and train our encoder by min-
imizing the Cosine Similarity Loss (L), where q⃗t and s⃗t are
the question and query embeddings of the tth training exam-
ple, respectively, lt is the alignment score derived using Equa-
tion 1, and sim(q⃗t, s⃗t) is the cosine similarity of the embed-
dings, defined in Equation 3. We choose the Cosine Similar-
ity Loss rather than a Triple Loss as the latter does not dis-
tinguish distances between similar and dissimilar exemplars whereas the derived label lt does.

L(q⃗t, s⃗t, lt) =∥ lt − sim(q⃗t, s⃗t) ∥2 (2) sim(q⃗t, s⃗t) =
q⃗t · s⃗t

∥ q⃗t ∥∥ s⃗t ∥
(3)

1We exclude the Yelp and additional training sets
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3.4 Architecture

Our embedding model is based on a semi-asymmetric bi-encoder architecture2 (Figure 2). A pre-
trained transformer3 serves as a common backbone to produce intermediate representations of either a
question or a query using the same vocabulary. A pooling layer connects the backbone to two separate
dense layer heads, one for each embedding type. Following common practice, we use mean pooling
and tanh activation in the dense layers. This architecture diverges from symmetric (Reimers and
Gurevych, 2019) or asymmetric (Gillick et al., 2018; Lee et al., 2020) sentence embedding models,
where either all or no parameters are shared in the Siamese configuration, respectively (Figure 4).
Given the declarative nature of SQL queries, we hypothesize that parameter sharing in the backbone
benefits from the transfer learning abilities of pre-trained transformers and the separate embedding
heads acts as a form of regularization during alignment. In § 5.3, we validate this hypothesis.

4 Experimental Setup

Given an input question q′, an LLM with frozen parameters θ and sampling parameters ϕ and a pool
of n demonstrations D = {(qi 7→ si|di)}n, the LLM will generate a SQL query s′ by sampling from
the distribution: s′ ∼ LLMθ,ϕ (S (q′, D)⊕ q′) where S selects k demonstrations from the pool D
based on q′, and ⊕ formats the prompt with the inference exemplar alongside the demonstrations.
We provide sampling hyperparameters in Table 7.

4.1 Evaluation Dataset and LLM

Given the complexity of this task, we use both open and closed large, instruction-tuned models
that exhibit competitive natural language understanding, reasoning, and coding abilities (Claude4,
Mistral5, and Llama 36) to assess the generalizability of our approach, and evaluate their Text-to-SQL
ICL capabilities on the Spider development (1034 instances) and test (2147 instances) sets. Note,
these two datasets and the training split used to train the embedding model do not have any database
in common, which allows us to validate the generalizability and domain-agnostic property of our
learned representations. Using prompts like Listing 1 formatted suitably for each model, we insert
the question and table metadata from each instance at inference time.

4.2 Demonstration Selection Methods

We run a comprehensive list of experiments inspired by related work (many of which we are unable
to reproduce exactly). We include a zero-shot setting (no in-context demonstrations) as a baseline. In
total, we implement 5 different example selection methods to pick k = 8 demonstrations (the number
of examples is chosen based on an ablation, see Figure 3), namely:

• Random Sampling Another common baseline which uniformly samples examples.

• Question Similarity (QS) The top-k examples are selected based on the euclidean distance between
embeddings7 of the test question and those of questions from the example pool. Liu et al. 2022
adopted this approach using SBERT.

• Masked Question Similarity (MQS) Same as QS, except information from the database metadata
is masked in each question using a [MASK] token. Compared to our implementation, Guo et al.
2023 use GPT-3.5 (text-davinci-003).

• Skills Similarity (SS) An LLM first produces a summary description of the skills required to solve
any given exemplar, and then examples are retrieved based on the similarity of encoded7 skill
descriptions. We use the same prompt and 16 hand-crafted examples as An et al. 2023.

2Implemented using https://www.sbert.net/
3We use bert-based-uncased
4Created by Anthropic

5Created by Mistral AI
6Created by Meta
7 We use amazon.titan-embed-g1-text-02
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• MARLO (this work) Same as QS, except we use embeddings from our encoder described in § 3.4.
In § 5.3 we also conduct an ablation using demonstrations retrieved with query embeddings instead
of question embeddings.

4.3 Metrics

We evaluate all experiments using execution accuracy (EX), which measures the match between
the execution outputs of the predicted and ground-truth SQL queries. While the official Spider test
suite (Seq-Eval) is used ubiquitously, it does not allow for the presence of redundant columns in
the predicted query, which may be included depending on the LLMs query writing style. To relax
this requirement, we propose a modified execution accuracy (EX†) which is based on Seq-Eval
but considers all columnar permutations of the predicted query execution with the same number of
columns as the ground-truth execution (Algorithm 1).

5 Results & Discussions

We present the main results from our experiments in Table 1. Overall, example selection with
MARLO outperforms generic methods by +2.9 percentage points on average. It also outperforms the
next best method (SS) with significantly less inference latency as no additional LLM call is needed.

5.1 Example Selection with MARLO Table 1: Execution accuracy (%) of example selection
methods. All experiments select k = 8 examples. Re-
sults of the top performing method are in bold. MARLO
mostly outperforms other methods, and is competitive
otherwise.

LLM Selection Spider-dev Spider-test
Method EX EX† EX EX†

Claude
2.1

0-shot 67.5 78.5 69.0 80.0
Random 72.2 79.4 75.1 82.2
QS 73.5 80.5 75.1 80.5
MQS 75.3 80.3 78.0 82.8
SS 77.9 81.2 80.7 83.1
MARLO 80.8 83.6 81.2 84.0

Mistral
Large

0-shot 74.4 79.5 76.8 81.8
Random 76.3 79.9 78.2 82.3
QS 77.7 79.8 79.4 82.9
MQS 77.3 79.4 80.2 83.1
SS 78.3 79.7 81.6 83.4
MARLO 80.0 81.7 81.7 83.2

Llama 3
70B

Instruct

0-shot 77.0 81.5 75.6 81.3
Random 79.0 81.8 78.6 81.8
QS 81.5 83.1 78.6 80.7
MQS 81.8 82.9 80.5 82.3
SS 82.1 82.9 83.4 84.4
MARLO 82.2 83.0 83.2 83.8

It is not surprising that MQS and SS out-
perform QS, as the former methods also
exclude domain-specific information con-
tained in the database metadata using ei-
ther question masking or rephrasing, re-
spectively. MARLO, on the other hand,
achieves the same objective without risk-
ing information loss or increasing inference
latency and complexity (discussed further
in § A.6). It does so by leveraging fine-
grained embeddings of natural language
questions that are aligned to their corre-
sponding SQL structure but still retain all
relevant linguistic information.

Table 9 further shows examples of different
demonstrations retrieved using MARLO
versus the other methods. MARLO
stands out by selecting demonstrations with
structurally-alike queries and question in-
tents across domains and a variety of ques-
tion phrasings. Its success in this task re-
veals that fine-grained task-specific embed-
dings can be used to select relevant but
linguistically diverse demonstrations and, therefore, have the potential to help LLMs better com-
prehend natural language inputs of complex or multi-modal tasks during inference via ICL. This
ability is exemplified on difficult exemplars, where MARLO with both Claude 2.1 and Mistral Large
significantly outperform other methods by +4-7%pt. (see Figure 5).

5.2 LLM Text-to-SQL Capability

EX vs EX† As shown in Table 1, the accuracy scores are systematically higher yet more stable
when measured with EX† regardless the LLM chosen. This effect is more pronounced in Claude

6



2.1 than other LLMs. Upon investigation, we find that SQL queries produced by Claude 2.1 tend to
order numerical columns before categorical columns and include additional redundant columns. This
explains why its EX is significantly lower, while EX† is on par with other LLMs. We hypothesize an
LLM’s query writing style, and therefore sensitivity under EX, is attributed to differences in training
data and instruction tuning.

ICL & Llama 3 Instruct We observe that Llama 3 Instruct behaves differently to the other LLMs.
It exhibits competitive zero-shot performance but does not benefit as much from ICL, regardless of
the selection method used. It is possible that its instruction-tuning procedure trades off Text-to-SQL
ICL ability as an “alignment-tax” (Ouyang et al., 2022), or is unable to benefit from proprietary data.

Comparison with GPT 4 Despite the inconsistent use of sampling hyperparameters, prompts, and
number of examples reported in literature, we list the execution accuracy reported by other studies
using GPT 4 for comparison in Table 10. EX† is computed for comparison when possible (i.e. works
are reproducible or their predictions are shared publicly). We observe a similar trend of performance
improvement across the selection methods with GPT 4 as with Claude 2.1 and Mistral Large. Notably,
MARLO using Claude 2.1 is competitive with DAIL-SQL8 using GPT 4 on Spider-dev (EX†: 83.6
vs. 83.3, respectively).

5.3 Ablation Study

We perform four ablations to study our proposed retrieval process, illustrated in Table 2 and Figure 3.

Table 2: Execution accuracy (%) of MARLO abla-
tions. Ablation (a) explores the effect of parameter shar-
ing in the encoder architecture, (b) compares the chosen
objective function to Multiple Negatives Ranking Loss
(MNRL), and (c) compares end-task performance for
various retrieval recipes. In (c) a relative number of
unique demonstration selected during each evaluation
(R) is also reported. All studies use Claude 2.1.

(a) retriever dual-encoder architectures

Architecture Spider-dev Spider-test
EX EX† EX EX†

Symmetric 78.6 81.4 80.9 83.6
Semi-asymmetric 80.8 83.6 81.2 84.0

Asymmetric 77.6 81.6 81.7 84.0
(b) retriever training objective functions

Loss function Spider-dev Spider-test
EX EX† EX EX†

MNRL 75.8 81.6 79.1 82.9
Cosine Similarity 80.8 83.6 81.2 84.0

(c) linearly combined question/query embeddings

Embed. Spider-dev Spider-test
Weight EX EX† R EX EX† R

Query 76.3 82.3 .28 79.2 84.3 .38
50 / 50 79.0 82.2 .45 81.3 84.1 .62
70 / 30 79.0 82.9 .55 81.0 83.4 .77

Question 80.8 83.6 .71 81.2 84.0 1

Encoder Architecture As discussed in
§ 3.4, the architecture of our encoder devi-
ates from that of common symmetric (e.g.
SBERT) and asymmetric (e.g. CLIP) bi-
encoders. In Table 2b we explore the effect
of parameter sharing by training either a
single encoder to embed both questions and
queries, a separate encoder for each, or sep-
arate output layers that process represen-
tations from a shared backbone. See Fig-
ure 4 for the three different architectures ex-
plored. We find the semi-asymmetric archi-
tecture is more capable of learning expres-
sive and aligned representations than the
symmetric or asymmetric alternatives. We
expect parameter sharing in the backbone
benefits from the transfer learning abilities
of large pre-trained language models and
helps build alignment between latent rep-
resentations of question and queries from
the same parameter space. This idea has
been explored and validated by Dong et al.
2022 in the context of question-answer re-
trieval. Moreover, separation of parameters
in the later layers helps enforce alignment
in the backbone independent of the way the
questions or queries are encoded, which
explains why the asymmetric architecture
performs slightly better than a symmetric one.

8We consider DAIL-SQL state-of-the-art (SOTA)
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Encoder Loss Function Retrievers are often trained with contrastive loss functions when pairwise
data (such as questions and queries) is available. Here, we compare the effectiveness of using more
fine-grained pseudo-labels derived from the metric we propose in § 3.1 with the Multiple Negatives
Ranking Loss (MNRL, Henderson et al. 2017). MNRL computes the cross entropy of all possible
question-query combinations in a batch, where pairs of questions and their ground-truth queries are
assigned a positive label and all other pairs a negative label. Due to the impact of the batch size on the
loss functions, we adjust the training hyperparameters for MNRL to ensure sufficient coverage of both
positive and negative pairs (see Table 3). As Table 2b shows, cosine similarity using pseudo-labels
derived using QED leads to better end-task performance than MNRL. This is because QED scores
provide better signal for supervision than the binary scores used in MNRL and are less noisy than
the latter. It is probable that false negatives exist in batch for questions that are dissimilar but have
similar corresponding queries, and vice versa. Nevertheless, the results using MNRL are either on
par or better than those achieved with other example selection methods, highlighting the utility of
aligned embeddings.

Embedding Alignment & Retrieval Recipe Unlike previous work (e.g. Gao et al., 2023a), our
question and query embeddings can be used interchangeably without the additional overhead of
predicting a preliminary query because they are closely aligned. Table 2c shows that selecting
demonstrations for a given test question based on its semantic similarity to candidate questions
or queries results in comparable performance on EX†. Nevertheless, question embeddings are
more expressive than their query counterparts as the former leads to a greater number of unique
demonstrations selected during the evaluation (R). Therefore, it appears to be more beneficial when
including the exact number of output fields in the predicted query is required (i.e. EX). Intuitively,
a natural language question can be written in many more ways than its corresponding SQL query,
which explains why their respective embeddings are aligned but not equally expressive. Although
linear combinations of question and query embeddings does not result in obvious gains, we believe
further exploration of the compositionality and factorizaiton of these embeddings (Trager et al., 2024)
can help boost performance and support their broader application.
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Figure 3: Execution accuracy (%) of MARLO
for various numbers of selected demonstrations.
Performance initially increases and then plateaus
as more demonstrations are included in the context,
implying in-context learning scaling limitations for
this task.

Number of Selected Demonstrations Over-
all, we observe Text-to-SQL performance ini-
tially increases then plateaus as we increase the
number of in-context demonstrations (Figure 3).
It is likely the case that selecting demonstrations
based solely on semantic similarity has its limits,
as the information gain of each new demonstra-
tion added to the context saturates. Perhaps an
ensemble of example selection methods that op-
timize for other aspects might be beneficial in
large-context settings. In addition, EX is sys-
tematically lower than EX†, and this effect is
more pronounced when fewer demonstrations
are used in context. Based on the asymptotic
difference between evaluation algorithms in Fig-
ure 3, one of the first patterns LLMs learn from
the in-context demonstrations is an understand-
ing of what (and the exact number of) fields to
include in the predicted query. Since this pattern solely relies on question understanding as apposed to
query writing abilities, our interpretation is that the LLM uses its inherent (zero-shot) SQL understand-
ing to inform question understanding. This corroborates recent work by Wang et al., 2023a who argue
demonstration outputs serve as anchors through which information flows from the demonstration
inputs in the shallow layers of the model (Min et al., 2022; Dziri et al., 2023). We expect these
anchors represent latent interpretations of the questions in the context of their corresponding queries,
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and in the deeper layers of the model, the relevant representations inform the query generation process
for the test exemplar.

6 Conclusions

In this work we explore the problem of selecting demonstration examples to improve ICL capabilities
of LLMs on the Text-to-SQL task. Given the disjointed distributions of natural language questions
and SQL queries, general-purpose internet-scale encoders are generally not well-suited to retrieve
semantically similar demonstrations. Therefore, we propose a novel approach, MARLO, that trains a
bi-encoder to align the representations of natural language questions and SQL queries according to
their underlying intent. Via weak supervision from a metadata-agnostic similarity label, MARLO
selects ICL demonstrations that enables LLMs to excel in generating queries. Not only are our results
competitive with the state-of-the-art, MARLO is also more efficient and effective than previous
domain masking techniques. Our ablations reveal that the selections it provides are semantically
relevant for the task yet linguistically unconstrained. MARLO’s success suggests that fine-grained
task-specific embeddings have the potential to enhance LLMs in complex or multi-modal ICL settings.
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A Appendix

A.1 Limitations

A.1.1 Open vs. Closed Models

Closed foundation models significantly outperform open models across a broad range of complex
reasoning tasks and offer certain capabilities to which open models have not caught up. However, two
major limitations stand out when using closed models for research. First, the cost and throughput can
be prohibitively expensive and slow, respectively. Second, the lack of interoperability of these models
and transparency concerning their training data and methods creates a restrictive research environment
in which reproducing and benchmarking against prior works becomes challenging. Hence, we are not
able to perform a direct and thorough comparison of Text-to-SQL capabilities between additional
LLMs (e.g. GPT 4) by keeping hyperparameters, prompting technique and example selection method
in a controlled manner. Moreover, it is difficult to reason about performance differences between
open and closed models as we are unable to compare parameter counts, training data, or fine-tuning
and alignment methods.

A.1.2 Automatic Query Generation

While SQL generation solutions built using probabilistic models might appeal to database man-
agement and information extraction business use cases, the risk of hallucination and catastrophic
customer impact remains to be explored. By observing the upper-bound performance in Table 1, we
see there is still ample room for improvement on the robustness of LLMs across benchmarks and
domains.

A.2 MARLO Encoder Training

A.2.1 Hyperparamters

In Table 3 we provide the hyperparamters used for all MARLO encoder experiments. All experiments
use a NVIDIA A10G Tensor Core GPU.

Table 3: Hyperparameters of training our customized embedding model.

Hyperparameter Cosine Similarity MNRL
maximum input sequence length 256 256
fixed output size 128 128
batch size 32 32
Optimizer AdamW AdamW
learning rate schedule linear warm-up linear warm-up
maximum learning rate 2× 10−5 2× 10−5

# of learning rate warm up steps 10000 100
weight decay for model parameters 0.01 0.01
maximum gradient normalization 1 1
# of epochs 2 15

A.2.2 Sampling Discordant Questions & Queries

Table 4 displays details about how we undersample our original 49M pairs of questions and queries
to the final training set used in MARLO. We sample the given number of exemplars (from the total
per category) according to QED score and euclidean distance between embedded questions qi and qj
criteria outlined in the table. To facilitate better learning of the encoder, we intentially select more
examples from discordant categories.
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Table 4: Under-sampling of augmented spider training set. We reduce the training dataset from
49M to ∼2.4M.

τ = ∥qi − qj∥2 1 < lij 1 ≤ lij < 3 3 ≤ lij

τ ≥ 300 600K (∼5.4M) 600K (∼10M) 100K (∼32.7M)
τ < 300 170K (170K) 150K (150K) 800K (800K)

A.2.3 Similarity via Query Edit Distance

This section provides the details about how we compute Query Edit Distance (QED) score based on
the differences in SQL keywords that appear in insert and remove operations when two queries are
compared. Since SQL keywords are grouped based on their influence on the overall query structure

Table 5: SQL keyword group weights. For groups with multiple keywords, a universal weight
0.3 is used. Since these groups can have non-zero counts of both insertions and removals, they are
considered to lead smaller within-group distances and are assigned a weight of 0.2. See Equation 1
for details. While this list is complete for our given dataset, it might not be complete for all possible
queries and dialects. Additional keywords would have to be included appropriately.

Group (k) SQL Keywords wk

Aggregation COUNT, AVG, SUM, MIN, MAX

0.3Comparison EQ, NEQ, LIKE, GT, GTE, LT, LTE, BETWEEN, IN
Composition AND, OR
Arithmetic ADD, SUB

–

LIMIT 0.1
DISTINCT 0.2
WHERE 0.5
HAVING 0.7
GROUP 0.6
ORDER 0.6
JOIN 3.0
SELECT 3.0
SUBQUERY 4.0
EXCEPT 4.0
UNION 3.0
INTERSECT 3.5

(Table 5), we consider two different queries closer in edit distance when their differences are within
the same compared. See Equation 1 for the formula of QED computation.

A.2.4 QED Example

Table 6 shows an example of how QED scores and corresponding similarity labels look like for a
single question paired with four different possible queries. The top row is the ground truth query of
the question so the QED score is 0 and similarity score is 1. From top to bottom, we see an increase
in QED, representing the queries become more and more irrelevant to the question asked.

A.2.5 Bi-encoder Architectures

Figure 4 shows three different architecture choices for bi-encoders. Symmetric architectures are
commonly used in literature (e.g. SBERT) while asymmetric architectures are also found effective in
use cases where the input and output have different lengths or distributions (e.g. document retrieval
based on questions). Our encoder is trained from a semi-asymmetric architecture (Figure 4b) where
the backbone transformer and pooling layers are shared but dense layers are independent.
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Table 6: Examples of QED score and similarity score labeling. The scores are impacted by the
dissimilar SQL structure but not by the domain information.

Question Ground-Truth
Query Possible Query QED

Score lij

How many heads
of the
departments are
older than 56?

SELECT
count(*) FROM
head WHERE age
> 56

SELECT count(*) FROM head WHERE age
> 56

0 1

SELECT count(*) FROM professor WHERE
prof_high_degree = ’Ph.D.’

0.2 0.96

SELECT major, count(*) FROM Student
GROUP BY major

1.4 0.72

SELECT DISTINCT T1.age FROM
management AS T2 JOIN head AS
T1 ON T1.head_id = T2.head_id WHERE
T2.temporary_acting = ’Yes’

5 0

(a) Symmetric (b) Semi-asymmetric (this work) (c) Asymmetric

Figure 4: Architectures choices for bi-encoders. A symmetric architecture (a) have parameters
shared in all three modules while an asymmetric architectures (c) does not share any layer between the
two towers. Our work adopted a semi-asymmetric structure where a common backbone transformer
and pooling layer are shared, but dense layers are separated.

A.3 Query Generation & Evaluation

A.3.1 Decoding Hyperparamters

Table 7 provides the configuration used to predict SQL queries. For experiments that require multiple
predicted queries (i.e. self-consistency and upper bound) we use a non-zero temperature of 0.7.

Table 7: Hyperparameters for SQL query generation.

Hyperparameter Value

temperature 0.7 (when sampling multiple queries)
0 (otherwise)

top k 400
top p 1
maximum # of sampling tokens 1000
stop sequence “</sql>”
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A.3.2 Prompts for Claude in SQL Query Generation

Claude is trained to generate text as an AI assistant in a dialogue with a human user, so the prompt
includes Human: and Assistant: prefixes to indicate the context. Claude also prefers to work with
XML tags which segment different parts of the prompt and help us parse the outputs reliably. Listing 1
is the prompt format we use for Claude to perform the Text-to-SQL task throughout all experiments.
In Listing 2 we provide a complete, formatted prompt with a single in-context demonstration and real

Listing 1: Prompt for Claude. For zero-shot experiments, the example block is removed. Entities
enclosed in {} are input elements inserted at inference time. {demonstration} are constructed
with the corresponding metadata, question, and query of the selected examples following the same
formatting below. {table_schemas} are the CREATE statements for each table in the database and
{row_inspections} provide a single sample row for each table in YAML format.

Human: Paying careful attention to the table and column names in the given metadata,
provide a correct {dialect} query to answer the given question. Enclose your query
in '<sql></sql>' XML tags.

↪→
↪→
# example block
Here are some examples:
<example>{demonstration}</example>
.
.
.
# metadata block
Metadata:
<metadata>
{table_schemas}
{row_inspections}
</metadata>
# input question
Question: {question}
Assistant: SQL Query: <sql>

sample data.

A.3.3 Modified Execution Accuracy Algorithm

In Algorithm 1, we presents our modified execution accuracy evaluation method which allows for
redundant columns to be included in predicted queries.

Algorithm 1 Modified Execution Accuracy (EX†) compares ground-truth query results to columnar
permutations (of the same length) of the predicted query results. P (a, b) denotes all permutations of
list a with length b, and [·] columnar indexing.

Input: execution engine E, database D, gold query g, predicted query p
Compute gold exec. results rg := E(D, g)
Compute pred. exec. results rp := E(D, p)
accurate = False
for cpi

in P (cols (rp) , |cols (rg)|) do
if rg equals rp [cpi

] then
accurate = True
break

end if
end for
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Table 8: Median Query Edit Distance (M(QED)) between selected and ground truth exam-
ples for selection methods on Spider. M(QED) generalizes to new domains as it is minimized
considerably using MARLO compared to other domain masking methods.

Selection Method M(QED)
Spider-dev Spider-test

Zero-shot Baseline – –
Random 53.4 62.8
Question Similarity (QS) 50.7 51.0
Masked Question Similarity (MQS) 46.0 50.3
Skills Similarity (SS) 38.2 38.1
MARLO (ours) 0.2 0.2

A.4 Additional Data for Result Analysis

A.4.1 Median QED Achieved by Different Selection Methods

Table 8 shows the median QED scores between gold queries and those of the selected demonstrations
from different selection methods we experiment. Our encoder minimizes QED and helps MARLO
select examples that leads to better end task performance.

From the median QED scores between gold queries and those of the selected demonstrations (Table 8),
we observe how QS, MQS and SS are able to retrieve examples that have lower QED scores
than random selection, which is correlated with their better end task performance. And that our
encoder indeed minimizes QED while selecting examples for MARLO which further enhances the
performance.

A.4.2 Comparison of Retrieved Examples

In Table 9 we compare retrieved natural language question and SQL query pairs for a single in-
ference exemplar across selection methods. The metadata-agnostic property of MARLO is clearly
demonstrated: structurally similar SQL queries and semantically similar questions are selected, under
question phrasing and domains shifts. We expect this helps the LLM understand the given question
conditioned on the anticipated query structure. In contrast across the other methods, the question
phrasing may be diverse but the query structural less similar than the target, or the question and
queries are too diverse but perhaps semantically “close” to the word “conference”.

Selection
Method

Retrieved Question Retrieved Query QED

MARLO

Return the different countries for artists. SELECT DISTINCT country FROM artist 0.0
Show all distinct building descriptions. SELECT DISTINCT building_description FROM

Apartment_Buildings
0.0

What are the different film Directors? SELECT DISTINCT Director FROM film 0.0
Show all distinct lot details. SELECT DISTINCT lot_details FROM LOTS 0.0
Give the distinct headquarters of manufacturers. SELECT DISTINCT headquarter FROM manufacturers 0.0
What are all the different book publishers? SELECT DISTINCT publisher FROM book_club 0.0
List all different genre types. SELECT DISTINCT name FROM genres; 0.0
List the distinct director of all films. SELECT DISTINCT Director FROM film 0.0

Skill
Similarity

Show all transaction types. SELECT DISTINCT transaction_type FROM
Financial_Transactions

0.0

Show all video game types. SELECT DISTINCT gtype FROM Video_games 0.0
What are the different card type codes? SELECT DISTINCT card_type_code FROM

Customers_Cards
0.0

What are the different types of player positions? SELECT count(DISTINCT pPos) FROM tryout 0.3
What are the different cities where people live? SELECT DISTINCT T1.city FROM addresses AS T1

JOIN people_addresses AS T2 ON T1.address_id =
T2.address_id

100.0

Show all product sizes. SELECT DISTINCT product_size FROM Products 0.0
What document status codes do we have? SELECT document_status_code FROM

Ref_Document_Status;
0.2

Find all the vocal types. SELECT DISTINCT TYPE FROM vocals 0.0

Masked
Question
Similarity

What are the different allergy types? SELECT DISTINCT allergytype FROM Allergy_type 0.0
What are the different card type codes? SELECT DISTINCT card_type_code FROM

Customers_Cards
0.0
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What are the different product sizes? SELECT DISTINCT product_size FROM Products 0.0
What are the different product colors? SELECT DISTINCT product_color FROM Products 0.0
What are the numbers of constructors for differ-
ent nationalities?

SELECT count(*) , nationality FROM constructors
GROUP BY nationality

1.1

What are the number of different course codes? SELECT count(DISTINCT crs_code) FROM CLASS 0.3
What are the different film Directors? SELECT DISTINCT Director FROM film 0.0
What are the different membership levels? SELECT count(DISTINCT LEVEL) FROM member 0.3
What are the numbers of wines for different
grapes?

SELECT count(*) , Grape FROM WINE GROUP BY Grape 1.1

Question
Similarity

What is the primary conference of the school that
has the lowest acc percent score in the competi-
tion?

SELECT t1.Primary_conference FROM university AS
t1 JOIN basketball_match AS t2 ON t1.school_id =
t2.school_id ORDER BY t2.acc_percent LIMIT 1

100.0

What are the enrollment and primary conference
for the university which was founded the earliest?

SELECT enrollment , primary_conference FROM
university ORDER BY founded LIMIT 1

0.9

What are the names of all teams? SELECT Name FROM Team 0.2
What are the names of colleges that have two or
more players, listed in descending alphabetical
order?

SELECT College FROM match_season GROUP BY College
HAVING count(*) >= 2 ORDER BY College DESC

100.0

What are the details of all organizations that are
described as Sponsors and sort the results in as-
cending order?

SELECT organisation_details FROM Organisations
AS T1 JOIN organisation_Types AS T2 ON
T1.organisation_type = T2.organisation_type
WHERE T2.organisation_type_description =
’Sponsor’ ORDER BY organisation_details

100.0

What are the nicknames of schools whose divi-
sion is not 1?

SELECT Nickname FROM school_details WHERE
Division != "Division 1"

1.0

What are the different names of the colleges in-
volved in the tryout in alphabetical order?

SELECT DISTINCT cName FROM tryout ORDER BY cName 0.6

What are the names of the members and branches
at which they are registered sorted by year of
registration?

SELECT T3.name , T2.name FROM
membership_register_branch AS T1 JOIN branch AS
T2 ON T1.branch_id = T2.branch_id JOIN member
AS T3 ON T1.member_id = T3.member_id ORDER BY
T1.register_year

100.0

Random Count the number of students who have advisors. SELECT count(DISTINCT s_id) FROM advisor 0.3
What is the number of aircraft? SELECT count(*) FROM aircraft 0.5
What is all the information about employees with
D or S in their first name, ordered by salary de-
scending?

SELECT * FROM employees WHERE first_name LIKE
’%D%’ OR first_name LIKE ’%S%’ ORDER BY salary
DESC

100.0

What is the id of the reviewer whose name in-
cludes the word "Mike"?

SELECT rID FROM Reviewer WHERE name LIKE "%Mike%" 1.0

What is the average price for wines not produced
in Sonoma county?

SELECT avg(price) FROM wine WHERE Appelation NOT
IN (SELECT T1.Appelation FROM APPELLATIONS AS T1
JOIN WINE AS T2 ON T1.Appelation = T2.Appelation
WHERE T1.County = ’Sonoma’)

100.0

Find the average price of wines that are not pro-
duced from Sonoma county.

SELECT avg(price) FROM wine WHERE Appelation NOT
IN (SELECT T1.Appelation FROM APPELLATIONS AS T1
JOIN WINE AS T2 ON T1.Appelation = T2.Appelation
WHERE T1.County = ’Sonoma’)

100.0

What are the names of all stations that have more
than 10 bikes available and are not located in San
Jose?

SELECT T1.name FROM station AS T1 JOIN status AS
T2 ON T1.id = T2.station_id GROUP BY T2.station_id
HAVING avg(bikes_available) > 10 EXCEPT SELECT
name FROM station WHERE city = "San Jose"

100.0

List the names of the customers who have once
bought product "food".

SELECT T1.customer_name FROM customers AS T1
JOIN orders AS T2 JOIN order_items AS T3 JOIN
products AS T4 ON T1.customer_id = T2.customer_id
AND T2.order_id = T3.order_id AND T3.product_id
= T4.product_id WHERE T4.product_name = "food"
GROUP BY T1.customer_id HAVING count(*) >= 1

100.0

Table 9: Examples of 8 retrieved demonstrations for different selection methods. The in-
ference exemplar is the mapping What are the different conference names? 7→ SELECT DISTINCT
conference_name FROM conference. The QED score between the gold query and each retrieved
query is shown as reference. Demonstrations retrieved with MARLO are metadata-agnostic. Al-
though the question phrasing differs slightly and the domains are different, the SQL queries are
structurally similar.
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Table 10: Reference GPT 4 execution accuracy (%) with ICL demonstration selection methods
from literature. Results that are unavailable or impossible to reproduce are omitted using ∅. 1In
cases where our evaluation conflicts with reported results, we reports ours instead.

LLM Selection Method № demos. Spider-dev
EX EX†

GPT 4

Baseline (Pourreza and Rafiei, 2023) 0 72.91 77.8
Baseline (Gao et al., 2023a) 0 72.3 ∅
Random (Chen et al., 2023b) 32 73.2 ∅
Random (An et al., 2023) 4 76.1 ∅
Random (Gao et al., 2023a) 5 79.5 ∅
Random (Pourreza and Rafiei, 2023) 6 76.81 77.8
Question Similarity (An et al., 2023) 4 76.7 ∅
Question Similarity (Gao et al., 2023a) 5 79.9 ∅
Masked Question Similarity (Gao et al., 2023a) 5 82.0 ∅
Skills Similarity (An et al., 2023) 4 82.7 ∅
DAIL-SQL (Gao et al., 2023a) 9 83.11 83.31

A.4.3 Reported Results for GPT 4 in Text-to-SQL

Table 10 lists execution accuracy of GPT 4 in Text-to-SQL reported by previous studies that im-
plemented similarity-based demonstration selection methods. Note that only results on Spider
development set are included in the table since most studies do not report results on the test set. The
DAIL-SQL results are shown as the SOTA benchmark.

A.4.4 Breakdown of Results by Query Difficulty

In Figure 5 we compare execution accuracy (EX†) across difficult levels on Spider-dev. For both
Claude 2.1 and Mistral Large we see question understanding enabled by MARLO plays a pivotal role
when generating the more difficult questions.

A.5 Beyond Example Selection

Current state-of-the-art Text-to-SQL systems8 comprise multiple stages such as schema linking
and specialized decoding strategies (Wang et al., 2023c) in addition to ICL with example selection.
Hence, we include two additional experiments to assess the effectiveness of MARLO with the most
commonly used decoding strategy — self-consistency (SC) — as well as an upper-bound (UB)
estimate of the gains we can expect using an optimal strategy. We sample 10 queries using MARLO
with a temperature of 0.7 and report results in Figure 6. SC leads to minor performance gains—
in-line with results reported in literature. However, we observe a significant unrealized potential
(+3-4%pt.) comparing UB and SC across all models. As it is not within the scope of this work,
we encourage future work to explore preference optimization or voting strategies to boost LLM
performance on this task.

A.6 Additional Training Cost & Inference Latency

It is important to recognize that improved performance on the Text-to-SQL task using general-purpose
LLMs often comes at the expense of additional training cost and inference latency. The requirement to
learn aligned embeddings by means of an additional fine-tuning process sets this approach apart from
most other example selection baselines. However, compared to the approaches that rely on generic
embeddings, MARLO is able to achieve considerable performance gains at the expense of minimal
training cost overhead by fine-tuning a relatively small encoder. Since the embedding dimension
remains the same across all selection methods, MARLO does not incur additional inference latency
compared to other example selection methods that rely on vector search. However, compared to
other approaches, such as Skill-KNN or DAIL-SQL8 that require preliminary or additional LLM
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Figure 5: Execution accuracy (%) on Spider-dev by difficulty level. With Claude 2.1 and Mistral
Large, MARLO outperforms all other demonstration selection methods across all difficulty levels,
particularly on more difficult questions, implying the examples to selects contributes to better question
understanding in more complex settings.

calls during inference, MARLO is able to achieve comparable performance with considerably lower
inference latency.
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Figure 6: Execution accuracy (%) of MARLO sampling 10 predictions. Self-consistency (SC)
uses majority-voted predictions. Upper-bound (UB) uses the best predictions post-hoc. While SC
leads to negligible gains, UB implies LLMs possess unrealized potential.

LLM Voting Spider-dev Spider-test
Method EX EX† EX EX†

Claude
2.1

- 80.8 83.6 81.2 84.0
SC 80.7 84.1 81.9 84.5
UB 86.4 88.3 87.4 88.6

Mistral
Large

- 80.0 81.7 81.7 83.2
SC 81.1 82.8 82.3 83.7
UB 85.8 87.6 86.1 87.8

Llama 3
70B

Instruct

- 82.2 83.0 83.2 83.8
SC 83.3 84.0 83.7 84.5
UB 88.0 88.7 87.1 87.9

Listing 2: Example SQL generation prompt with a single in-context example. The language
model generates the predicted query by autoregressively completing the prompt until the close SQL
XML tag (</sql>) is generated. For zero-shot inference, the example blocks and introductory
heading are simply omitted.

Human: Paying careful attention to the table and column names in the given metadata,
provide a correct SQLite query to answer the given question. Enclose your query in
'<sql></sql>' XML tags.

↪→
↪→

Here are some examples:

<example>
Metadata:
<metadata>
CREATE TABLE bank (
branch_ID int PRIMARY KEY,
bname varchar(20),
no_of_customers int,
city varchar(10),
state varchar(20))
CREATE TABLE customer (
cust_ID varchar(3) PRIMARY KEY,
cust_name varchar(20),
acc_type char(1),
acc_bal int,
no_of_loans int,
credit_score int,
branch_ID int,
state varchar(20),
FOREIGN KEY(branch_ID) REFERENCES bank(branch_ID))
CREATE TABLE loan (
loan_ID varchar(3) PRIMARY KEY,
loan_type varchar(15),
cust_ID varchar(3),
branch_ID varchar(3),
amount int,
FOREIGN KEY(branch_ID) REFERENCES bank(branch_ID),
FOREIGN KEY(Cust_ID) REFERENCES customer(Cust_ID))

1 sample row from "bank" table:
"""
bname: downtown
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branch_ID: 2
city: Salt Lake City
no_of_customers: 123
state: Utah
"""
1 sample row from "customer" table:
"""
acc_bal: 2000
acc_type: saving
branch_ID: 2
credit_score: 30
cust_ID: '1'
cust_name: Mary
no_of_loans: 2
state: Utah
"""
1 sample row from "loan" table:
"""
amount: 2050
branch_ID: '1'
cust_ID: '1'
loan_ID: '1'
loan_type: Mortgages
"""
</metadata>
Question: Count the number of bank branches.
SQL Query: <sql>SELECT count(*) FROM bank</sql>
</example>

Metadata:
<metadata>
CREATE TABLE Ref_Template_Types (
Template_Type_Code CHAR(15) NOT NULL,
Template_Type_Description VARCHAR(255) NOT NULL,
PRIMARY KEY (Template_Type_Code)
)
CREATE TABLE Templates (
Template_ID INTEGER NOT NULL,
Version_Number INTEGER NOT NULL,
Template_Type_Code CHAR(15) NOT NULL,
Date_Effective_From DATETIME,
Date_Effective_To DATETIME,
Template_Details VARCHAR(255) NOT NULL,
PRIMARY KEY (Template_ID),
FOREIGN KEY (Template_Type_Code) REFERENCES Ref_Template_Types (Template_Type_Code)
)
CREATE TABLE Documents (
Document_ID INTEGER NOT NULL,
Template_ID INTEGER,
Document_Name VARCHAR(255),
Document_Description VARCHAR(255),
Other_Details VARCHAR(255),
PRIMARY KEY (Document_ID),
FOREIGN KEY (Template_ID) REFERENCES Templates (Template_ID)
)
CREATE TABLE Paragraphs (
Paragraph_ID INTEGER NOT NULL,
Document_ID INTEGER NOT NULL,
Paragraph_Text VARCHAR(255),
Other_Details VARCHAR(255),
PRIMARY KEY (Paragraph_ID),
FOREIGN KEY (Document_ID) REFERENCES Documents (Document_ID)
)
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1 sample row from "Ref_Template_Types" table:
"""
Template_Type_Code: CV
Template_Type_Description: CV
"""
1 sample row from "Templates" table:
"""
Date_Effective_From: '1996-02-04 11:27:24'
Date_Effective_To: '1995-09-19 22:27:48'
Template_Details: ''
Template_ID: 11
Template_Type_Code: BK
Version_Number: 6
"""
1 sample row from "Documents" table:
"""
Document_Description: z
Document_ID: 33930
Document_Name: How Google people work
Other_Details: null
Template_ID: 1
"""
1 sample row from "Paragraphs" table:
"""
Document_ID: 651512
Other_Details: null
Paragraph_ID: 243399026
Paragraph_Text: Indonesia
"""
</metadata>
Question: How many paragraphs in total?

Assistant: SQL Query: <sql>
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