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Abstract

The long-run behavior of multi-agent learning – and, in particular, no-regret learn-
ing – is relatively well-understood in potential games, where players have common
interests. By contrast, in harmonic games – the strategic counterpart of potential
games, where players have conflicting interests – very little is known outside the
narrow subclass of 2-player zero-sum games with a fully-mixed equilibrium. Our
paper seeks to partially fill this gap by focusing on the full class of (generalized) har-
monic games and examining the convergence properties of follow-the-regularized-
leader (FTRL), the most widely studied class of no-regret learning schemes. As
a first result, we show that the continuous-time dynamics of FTRL are Poincaré
recurrent, that is, they return arbitrarily close to their starting point infinitely often,
and hence fail to converge. In discrete time, the standard, “vanilla” implementation
of FTRL may lead to even worse outcomes, eventually trapping the players in a
perpetual cycle of best-responses. However, if FTRL is augmented with a suitable
extrapolation step – which includes as special cases the optimistic and mirror-prox
variants of FTRL – we show that learning converges to a Nash equilibrium from
any initial condition, and all players are guaranteed at most O(1) regret. These
results provide an in-depth understanding of no-regret learning in harmonic games,
nesting prior work on 2-player zero-sum games, and showing at a high level that
harmonic games are the canonical complement of potential games, not only from a
strategic, but also from a dynamic viewpoint.

1 Introduction

The question of “as if” rationality – that is, whether selfishly-minded, myopic agents may learn to
behave “as if ” they were fully rational – has been one of the cornerstones of non-cooperative game
theory, and for good reason. Especially in modern applications of game theory to machine learning
and data science – from online ad auctions to recommender systems and multi-agent reinforcement
∗Corresponding author.
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learning – the standard postulates of rationality (knowledge of the game, capacity to compute an
equilibrium, flawless execution of equilibrium strategies, common knowledge of rationality, etc.) are
almost never met in practice; as a result, game-theoretic predictions that rely on these assumptions
are likewise put into question. By contrast, given the ease of implementing and deploying cheap,
computationally efficient learning algorithms and policies at a large scale, it is often more logical to
turn to the policy being deployed as the object of interest. The aim is then to understand its long-run
behavior – and, in particular, whether it ultimately leads to equilibrium.

A major obstacle in this approach is the complexity of computing a Nash equilibrium, a problem
which is known to be complete for PPAD – and hence intractable – by the seminal work of Daskalakis
et al. [12]. This result implies that it is not plausible to expect any algorithm to converge to Nash
equilibrium in all games (at least, not in a reasonable amount of time), so it dovetails naturally with
the impossibility results of Hart & Mas-Colell [23, 24] who showed that there are no uncoupled
learning dynamics that converge to Nash equilibrium in all games. On that account, it is natural to
aim to understand in which classes of games we can expect a learning algorithm to converge, in
which classes we cannot, and under what conditions.

Perhaps the most well-behaved class of games in terms of learning is the class of potential games
[44, 54], where players have common interests – not necessarily driving them to play the same strategy,
but in the sense that externalities are symmetric and aligned towards a common objective (the potential
of the game). In this class of games, the behavior of learning dynamics – and, in particular, no-regret
learning [8, 10, 13, 19, 20, 28, 29, 37, 40, 43, 58] – are relatively well understood, and there is a wide
range of equilibrium convergence results, from continuous to discrete time, and even with bandit,
payoff-based feedback [25, 26, 54].

By contrast, in the presence of conflicting interests, the situation can be quite different. In two-player
zero-sum games with a fully-mixed equilibrium – such as Matching Pennies – the continuous-time
dynamics of no-regret, regularized learning are recurrent in the sense of Poincaré – that is, the
induced trajectory of play returns arbitrarily close to where it started infinitely many times [41, 48]. In
discrete time, the situation becomes more complicated: the vanilla version of follow-the-regularized-
leader (FTRL) – the most widely studied family of no-regret algorithms – is no longer recurrent, but
it diverges away from equilibrium in the same class of games [18, 42]. On the other hand, if players
employ an optimistic / extra-gradient variant of FTRL, the induced trajectory of play converges to
equilibrium [15, 42] and, under certain conditions, it is even possible to show that it converges at a
geometric rate [61].

At the same time, zero-sum games may also admit a potential function, so it is not possible to
predict the outcome of a learning process based on where it stands along the potential / zero-sum
axis. The non-trivial intersection of these classes means that potential and zero-sum games are not
complementary, and this, not only from a strategic, but also from a dynamic viewpoint. Instead, the
true strategic complement of potential games is the class of harmonic games. This class was first
formalized by Candogan et al. [6], who established a remarkable decomposition result: Every game
in normal form can be decomposed as the sum of a potential game and a harmonic game, and this
decomposition is unique up to affine transformations that do not alter the equilibrium outcomes of
the game. In particular, the class of potential and harmonic games intersect trivially (up to strategic
equivalence), and all two-player zero-sum games with an interior equilibrium are harmonic, thus
lending credence to the fact that it is harmonic games, not zero-sum games, that correctly capture the
notion of conflicting interests in this context.

This raises the question:

What is the behavior of no-regret algorithms and dynamics in harmonic games?

Except for a very recent paper by Legacci et al. [36] (which we discuss below), almost nothing is
known on this question. With this backdrop, our contributions can be summarized as follows:

1. Starting with a continuous-time model of learning, we show that all FTRL dynamics are
Poincaré recurrent in all harmonic games. This generalizes and extends the recent result
of Legacci et al. [36] which proves the same result for the replicator dynamics in uniform
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harmonic games (a subclass of harmonic games in which the uniform distribution is always a
Nash equilibrium). Other than that, our work has no overlap with that of [36].2

2. In discrete-time models of learning, the standard implementation of FTRL cannot be expected
to converge (since it fails to do so in Matching Pennies, which is a uniform harmonic game).
To correct this behavior, we consider a flexible algorithmic template, dubbed extrapolated
FTRL (FTRL+), which augments FTRL with a forward-looking, extrapolation step (including
as special cases the optimistic and extra-step variants of FTRL, cf. Section 4). We then establish
the following results:
(a) Under extrapolated FTRL, players are guaranteed constant individual regret (so, as a

consequence, the players’ empirical frequency of play converges to coarse correlated
equilibrium at a rate of O(1/𝑇)).3 This should be contrasted with the results of [13, 14]
who showed that players can achieve polylogarithmic regret in any game (finite or convex).

(b) The induced trajectory of play converges to Nash equilibrium from any initial condition.

Our results aim to provide an in-depth understanding of no-regret learning in harmonic games, nesting
prior work on 2-player zero-sum games – from Poincaré recurrence [41, 48] to constant regret [28]
and convergence under optimistic / extra-gradient schemes [11, 15, 18, 42, 61] – and showing at a
high level that harmonic games are the canonical complement of potential games, not only from a
strategic, but also from a dynamic, learning viewpoint.

2 Preliminaries

2.1. Preliminaries on finite games. Throughout our article, we will work with finite games in
normal form. Formally, such games consist of (i) a finite set of players 𝑖 ∈ N ≡ {1, . . . , 𝑁}; (ii) a
finite set of actions – or pure strategies – A𝑖 per player 𝑖 ∈ N ; and (iii) an ensemble of payoff
functions 𝑢𝑖 : ∏

𝑗 A 𝑗 → ℝ, each determining the reward 𝑢𝑖 (𝛼) of player 𝑖 ∈ N in a given action
profile 𝛼 = (𝛼1, . . . , 𝛼𝑁 ). Putting everything together, we will write A := ∏

𝑖 A𝑖 for the game’s
action space and Γ ≡ Γ(N ,A, 𝑢) for the game with primitives as above.

During play, each player selects an action according to some mixed strategy, that is, a probability
distribution 𝑥𝑖 over A𝑖 which assigns probability 𝑥𝑖𝛼𝑖

to 𝛼𝑖 ∈ A𝑖 . We will write X𝑖 := Δ(A𝑖) ⊆ ℝA𝑖

for the mixed strategy space of player 𝑖, 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) for the associated strategy profile collecting
the strategies of all players, and X := ∏

𝑖 X𝑖 for the game’s strategy space. The mixed payoff of
player 𝑖 under 𝑥 may then be written as

𝑢𝑖 (𝑥) = 𝔼𝛼∼𝑥 [𝑢𝑖 (𝛼)] =
∑︁
𝛼∈A

𝑢𝑖 (𝛼) 𝑥𝛼 =
∑︁

𝛼𝑖∈A𝑖

𝑢𝑖 (𝛼𝑖; 𝑥−𝑖) 𝑥𝑖𝛼𝑖
(1)

where 𝑥𝛼 := ∏
𝑖 𝑥𝑖𝛼𝑖

denotes the joint probability of 𝛼 = (𝛼1, . . . , 𝛼𝑁 ) ∈ A under 𝑥 ∈ X , and, in
standard game-theoretic notation, we write (𝑥𝑖; 𝑥−𝑖) = (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 ) for the profile where
player 𝑖 plays 𝑥𝑖 ∈ X𝑖 against the strategy 𝑥−𝑖 ∈ X−𝑖 := ∏

𝑗≠𝑖 X 𝑗 of all other players. We also
respectively define the individual payoff field of player 𝑖 and the game’s payoff field as

𝑣𝑖 (𝑥) = (𝑢𝑖 (𝛼𝑖; 𝑥−𝑖))𝛼𝑖∈A𝑖
and 𝑣(𝑥) = (𝑣1 (𝑥), . . . , 𝑣𝑁 (𝑥)) (2)

so 𝑢𝑖 (𝑥) =
∑

𝛼𝑖∈A𝑖
𝑣𝑖𝛼𝑖
(𝑥)𝑥𝑖𝛼𝑖

≡ ⟨𝑣𝑖 (𝑥), 𝑥𝑖⟩, where ⟨·, ·⟩ is the standard duality pairing on ℝA𝑖 . By
multilinearity, each player’s individual payoff field is Lipschitz continuous on X , and we will write
𝐺𝑖 for its Lipschitz modulus, that is

∥𝑣𝑖 (𝑥′) − 𝑣𝑖 (𝑥)∥∗ ≤ 𝐺𝑖 ∥𝑥′ − 𝑥∥ for all 𝑥, 𝑥′ ∈ X . (3)

Remark. In the above, ∥·∥ denotes an ambient norm on ℝA𝑖 (usually the 𝐿1 norm), and ∥·∥∗ is the
corresponding dual norm (usually the 𝐿∞ norm). We discuss the relevant details in Appendix B.

2In more detail, the way that Legacci et al. [36] obtained their result hinges on the so-called Shahshahani
metric whose key property is that incompressibility of the replicator field is equivalent to the underlying game
being uniformly harmonic; however, finding a variant of the Shahshahani metric attuned to FTRL seems to
be a formidable task, and likewise for non-uniform harmonic games. Because of this, the “incompressibility”
approach of [36] does not seem applicable to our setting – at least, not in a straightforward way.

3We clarify here that “constant” refers to the horizon 𝑇 of play; the dependence on the number of actions
may be logarithmic or worse (depending on the specific regularized learning scheme employed by the players).
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We will focus almost exclusively on the solution concept of the Nash equilibrium (NE), i.e., a strategy
profile 𝑥∗ ∈ X that is unilaterally stable in the sense that

𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑥𝑖; 𝑥∗−𝑖) for all 𝑥𝑖 ∈ X𝑖 , 𝑖 ∈ N . (NE)

Equivalently, (NE) can be expressed in terms of the game’s payoff field as a variational inequality of
the form

⟨𝑣(𝑥∗), 𝑥 − 𝑥∗⟩ ≤ 0 for all 𝑥 ∈ X . (VI)
Thus, writing supp(𝑥∗

𝑖
) = {𝛼𝑖 ∈ A𝑖 : 𝑥𝑖𝛼𝑖

> 0} for the support of 𝑥∗
𝑖
, it follows that 𝑥∗ is a Nash

equilibrium if and only if 𝑢𝑖 (𝛼𝑖; 𝑥∗−𝑖) ≥ 𝑢𝑖 (𝛽𝑖; 𝑥∗−𝑖) for all 𝛼𝑖 ∈ supp(𝑥∗
𝑖
) and all 𝛽𝑖 ∈ A𝑖 , 𝑖 ∈ N . We

will use all this freely in the rest of our paper.

2.2. Harmonic games. Our main focus in what follows will be the class of harmonic games, first
introduced by Candogan et al. [6] as a game-theoretic framework for modeling strategic situations
with conflicting, anti-aligned interests. Specifically, as was shown by Candogan et al. [6] – and, in
a more general setting, by Abdou et al. [1] – every game in normal form can be decomposed as
the sum of a potential game and a harmonic game, and this decomposition is unique up to affine
transformations that do not alter the equilibrium outcomes of the game.4 In this decomposition, the
potential component of a game captures multi-agent strategic interactions with common interests,
whereas the harmonic component covers interactions with conflicting interests.5

Formally, adapting the more general setup by Abdou et al. [1], we have the following definition:
Definition 1. A finite game Γ ≡ Γ(N ,A, 𝑢) is said to be harmonic when it admits a harmonic
measure, i.e., a collection of weights 𝜇𝑖𝛼𝑖

∈ (0,∞), 𝛼𝑖 ∈ A𝑖 , 𝑖 ∈ N , such that∑︁
𝑖∈N

∑︁
𝛽𝑖∈A𝑖

𝜇𝑖𝛽𝑖 [𝑢𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛽𝑖;𝛼−𝑖)] = 0 for all 𝛼 ∈ A . (HG)

In particular, if Γ is harmonic relative to the uniform measure 𝜇𝑖𝛼𝑖
= 1, 𝛼𝑖 ∈ A𝑖 , 𝑖 ∈ N , we will say

that Γ is a uniform harmonic game (UHG).
Remark. With regard to terminology, Candogan et al. [6] actually call “harmonic games” what we call
“uniform harmonic games”, and Abdou et al. [1] call “𝜇-harmonic games” what we call “harmonic
games”.6 We use this convention because it simultaneously simplifies notation and terminology while
capturing all relevant strategic features of the game; for a detailed discussion, see Appendix A. To
avoid needless repetition in the sequel, and unless there is danger in confusion, when we say that Γ is
harmonic, we will write 𝜇𝑖 for the corresponding measure, and we will write 𝑚𝑖 = |𝜇𝑖 | =

∑
𝛽𝑖∈A𝑖

𝜇𝑖𝛽𝑖
for the total mass of 𝜇𝑖 . ⋄
Broadly speaking, in harmonic games, for any player considering a deviation toward a specific pure
strategy profile, there exist other players with an incentive to deviate away from said profile. In this
regard, harmonic games can be seen as the strategic complement of potential games, where player
interests are aligned and sequences of unilateral best responses generate a finite improvement path
that terminates at a pure Nash equilibrium [44]. By contrast, except for trivial cases (like the zero
game) harmonic games do not admit pure equilibria, and they possess non-terminating best-response
paths. For all these reasons, harmonic games can be considered as “orthogonal” to potential games,
in a sense made precise by the decomposition results of Candogan et al. [6] and Abdou et al. [1].

It is of course natural to ask what is the relation between harmonic games and zero-sum games.
Games belonging to the latter class – such as Matching Pennies and Rock-Paper-Scissors – have long
been used as prototypical examples of strategic conflict; at the same time, there are zero-sum games
that are also potential (and even possess strict equilibria), so the potential / zero-sum distinction does
not capture the whole picture. As a matter of fact, it is not a coincidence that the textbook examples
of zero-sum games admit fully-mixed Nash equilibria: as we discuss in Appendix A, two-player
zero-sum games with an interior Nash equilibrium are harmonic, so the existing results for such
games are, in a sense, more closely attuned to their harmonic character.

4We briefly recall here that Γ ≡ Γ(N ,A, 𝑢) is a potential game if it admits a potential function 𝜙 : X → ℝ

such that 𝑢𝑖 (𝛽𝑖 ;𝛼−𝑖) − 𝑢𝑖 (𝛼𝑖 ;𝛼−𝑖) = 𝜙(𝛽𝑖 ;𝛼−𝑖) − 𝜙(𝛼𝑖 ;𝛼−𝑖) for all 𝛼, 𝛽 ∈ A and all 𝑖 ∈ N [44].
5The terminology “harmonic” is due to Candogan et al. [6] and alludes to the harmonic component of the

graphical Hodge decomposition [31].
6To be even more precise, the definition of Abdou et al. [1] involves an additional set of weights, called a

comeasure; however, as we explain in Appendix A, these weights do not change the preference structure of the
game, so we disregard this extra degree of generality.
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3 Continuous-time analysis: Poincaré recurrence

The most basic rationality postulate in the context of online learning is the minimization of a player’s
regret, i.e., the difference between a player’s cumulative payoff and that of the player’s best possible
strategy in hindsight. In more detail, assuming for the moment that play evolves in continuous time,
the regret of player 𝑖 ∈ N relative to a sequence of play 𝑥(𝑡) ∈ X is defined as

Reg𝑖 (𝑇) = max
𝑝𝑖∈X𝑖

∫ 𝑇

0
[𝑢𝑖 (𝑝𝑖; 𝑥−𝑖 (𝑡)) − 𝑢𝑖 (𝑥(𝑡))] 𝑑𝑡 (4)

and we say that the player has no regret under 𝑥(𝑡) if Reg𝑖 (𝑇) = 𝑜(𝑇) as 𝑇 →∞.

The most widely used scheme for attaining no regret is the family of policies known as follow-the-
regularized-leader (FTRL) [56, 57]. At a high level, the idea behind FTRL is that, at all times 𝑡 ≥ 0,
each player 𝑖 ∈ N plays a mixed strategy 𝑥𝑖 (𝑡) ∈ X𝑖 that maximizes the player’s cumulative payoff
up to time 𝑡 minus a certain regularization penalty. In our continuous-time setting, this gives rise to
the FTRL dynamics

𝑥𝑖 (𝑡) = arg max
𝑝𝑖∈X𝑖

{∫ 𝑡

0
𝑢𝑖 (𝑝𝑖; 𝑥−𝑖 (𝜏)) 𝑑𝜏 − ℎ𝑖 (𝑝𝑖)

}
= arg max

𝑝𝑖∈X𝑖

{∫ 𝑡

0
⟨𝑣𝑖 (𝑥(𝜏)), 𝑝𝑖⟩ 𝑑𝜏 − ℎ𝑖 (𝑝𝑖)

}
(5)

or, more compactly,
¤𝑦𝑖 (𝑡) = 𝑣𝑖 (𝑥(𝑡)) 𝑥𝑖 (𝑡) = 𝑄𝑖 (𝑦𝑖 (𝑡)) (FTRL-D)

where ℎ𝑖 : X𝑖 → ℝ is a convex penalty function known as the regularizer of the method, 𝑄𝑖 denotes
the regularized choice map of player 𝑖, and 𝑄 = (𝑄1, . . . , 𝑄𝑁 ) denotes the profile thereof. Formally,
writing Y𝑖 ≡ ℝ𝐴𝑖 for the payoff space of player 𝑖 ∈ N – that is, the space of all possible payoff
vectors 𝑣𝑖 of player 𝑖 – the regularized choice map 𝑄𝑖 : Y𝑖 → X𝑖 is defined as

𝑄𝑖 (𝑦𝑖) = arg max𝑥𝑖∈X𝑖
{⟨𝑦𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} for all 𝑦𝑖 ∈ Y𝑖 . (6)

In essence, 𝑄𝑖 is a “soft” version of the arg max correspondence 𝑦𝑖 ↦→ arg max𝑥𝑖∈X𝑖
⟨𝑦𝑖 , 𝑥𝑖⟩, suitably

regularized by a penalty term intended to incentivize exploration. For technical reasons, we will also
assume that the regularizers ℎ𝑖 are strongly convex, i.e.,

ℎ𝑖 (𝑥𝑖) ≥ ℎ𝑖 (𝑝𝑖) + 𝜕ℎ𝑖 (𝑝𝑖; 𝑥𝑖 − 𝑝𝑖) + 1
2𝐾𝑖 ∥𝑥𝑖 − 𝑝𝑖 ∥2 for all 𝑝𝑖 , 𝑥𝑖 ∈ X𝑖 , (7)

where (a) we write 𝜕ℎ𝑖 (𝑝𝑖; 𝑥𝑖 − 𝑝𝑖) = lim𝜃→0+ [ℎ𝑖 (𝑝𝑖 + 𝜃 (𝑥𝑖 − 𝑝𝑖)) − ℎ𝑖 (𝑝𝑖)]/𝜃 for the one-sided
directional derivative of ℎ𝑖 at 𝑝𝑖 along 𝑥𝑖 − 𝑝𝑖; (b) ∥·∥ is an ambient norm on ℝA𝑖 ; and (c) 𝐾𝑖 > 0 is
a positive constant (commonly referred to as the strong convexity modulus of ℎ𝑖).

The go-to example of this setup is the entropic regularizer

ℎ𝑖 (𝑥𝑖) =
∑︁

𝛼𝑖∈A𝑖

𝑥𝑖𝛼𝑖
log 𝑥𝑖𝛼𝑖

(8)

which yields the so-called logit choice map

𝑄𝑖 (𝑦𝑖) ≡ Λ𝑖 (𝑦𝑖) :=
(exp(𝑦𝑖𝛼𝑖

))𝛼𝑖∈A𝑖∑
𝛼𝑖∈A𝑖

exp(𝑦𝑖𝛼𝑖
) for all 𝑦𝑖 ∈ Y𝑖 . (9)

By Pinsker’s inequality, the entropic regularizer is 1-strongly convex relative to the 𝐿1-norm on
X𝑖 [56], and by a standard calculation, the induced sytem (FTRL-D) boils down to the replicator
dynamics of Taylor & Jonker [59]. Some other standard examples of (FTRL-D) include the Euclidean
projection dynamics of Friedman [17] when ℎ𝑖 (𝑥𝑖) = (1/2)∥𝑥𝑖 ∥22, the 𝑞-replicator dynamics [22, 38],
etc. To streamline our presentation, we defer a detailed discussion of these examples to Appendix C,
and we proceed below to state the main regret guarantee of (FTRL-D), originally due to [34]:
Theorem 1. Under (FTRL-D), each player’s regret is bounded as Reg𝑖 (𝑇) ≤ 𝐻𝑖 := max ℎ𝑖 −min ℎ𝑖 .

Theorem 1 showcases the excellent no-regret properties of (FTRL-D): it is not possible to guarantee
less than constant, O(1) regret, so (FTRL-D) is optimal in this regard. In turn, by standard results
[47], Theorem 1 implies further that the players’ (correlated) empirical frequencies 𝑧𝛼1 ,...,𝛼𝑁

(𝑡) :=
(1/𝑡)

∫ 𝑡

0
∏

𝑖 𝑥𝑖𝛼𝑖
(𝜏) 𝑑𝜏 converge to the game’s set of coarse correlated equilibria (CCE) at a likewise

optimal rate of O(1/𝑡). Importantly, this result makes no assumptions about the underlying game,
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but it does not carry the same predictive power in all games: for one thing, a game’s set of CCE
may include highly non-rationalizble outcomes (such as dominated strategies and the like) [60]; for
another, the time-averaging that is inherent in the definition of empirical distributions may conceal a
wide range of non-convergence phenomena, from limit cycles to chaos [41, 48, 55]. On that account,
the day-to-day behavior of (FTRL-D) in harmonic games cannot be understood from Theorem 1
alone, and requires a closer, more specialized look.

Our first result below provides such a lense and shows that (FTRL-D) is almost-periodic in harmonic
games, a property known as Poincaré recurrence.

Theorem 2. Suppose Γ is harmonic. Then almost every orbit 𝑥(𝑡) of (FTRL-D) returns arbitrarily
close to its starting point infinitely often: specifically, for (Lebesgue) almost every initial condition
𝑥(0) = 𝑄(𝑦(0)) ∈ X , there exists an increasing sequence of times 𝑡𝑛 ↑ ∞ such that 𝑥(𝑡𝑛) → 𝑥(0).

An immediate consequence of Theorem 2 is that no-regret learning under (FTRL-D) fails to converge
in any harmonic game; in particular, since the orbits of (FTRL-D) eventually return to (almost) where
they started, it is debatable if the players have learned anything at all, despite the fact that they incur
at most constant regret. This cyclic, non-convergent landscape is the polar opposite of the long-run
behavior of (FTRL-D) in potential games, where the dynamics are known to converge globally [25].
Thus, in addition to the strategic viewpoint of the previous section, Theorem 2 shows that harmonic
games are complementary to potential games also from a dynamic viewpoint.

Theorem 2 also provides a far-reaching generalization of existing results on Poincaré recurrence in
(possibly networked) two-player zero-sum games with an interior equilibrium [41] to general-sum,
𝑁-player games. Combined with our previous remark, and given that the zero-sum property is not
as meaningful for 𝑁 players as it is for two,7 the class of harmonic games can be seen as the more
natural 𝑁-player generalization of two-player zero-sum games from a learning viewpoint.

To the best of our knowledge, the only comparable result to Theorem 2 in the literature is the very
recent paper of Legacci et al. [36] who showed that the replicator dynamics – a special case of
(FTRL-D) – are Poincaré recurrent in uniform harmonic games, that is, in harmonic games where the
uniform distribution is a Nash equilibrium, cf. Eq. (A.1) and the discussion surrounding Definition 1.
In this regard, Theorem 2 extends [36] along two axes: (i) it applies to the entire class of FTRL
dynamics (not only the replicator dynamics); and (ii) it applies to the entire class of harmonic games
(not only uniformly harmonic games).

In terms of techniques, Legacci et al. [36] obtained their result through a surprising connection
between a certain Riemannian metric underlying the replicator dynamics and the defining relation
of uniformly harmonic games. This relation no longer holds for different instances of (FTRL-D)
or for non-uniform harmonic games, so the techniques of [36] cannot be extended – and, in fact,
Legacci et al. [36] stated this generalization as an open problem. Our techniques instead rely on the
fact that the orbits 𝑦(𝑡) of (FTRL-D) comprise a volume-preserving flow in the game’s payoff space
Y ≡ ∏

𝑖 Y𝑖 (though not necessarily on X ), and then deriving a suitable constant of motion. In the
case of the logit map (9), this constant of motion can be written as

𝐺 (𝑥) =
∏
𝑖∈N

∏
𝛼𝑖∈A𝑖

𝑥
𝜇𝑖𝛼𝑖
𝑖𝛼𝑖

for all 𝑥 ∈ X , (10)

where 𝜇 = (𝜇𝑖𝛼𝑖
)𝛼𝑖∈A𝑖 ,𝑖∈N is the harmonic measure on X defining Γ. In the more general case, the

construction of a constant of motion for (FTRL-D) involves a characterization of harmonic games in
terms of a “strategic center”, which we carry out in detail in Appendix C.

4 Discrete-time analysis: Convergence and constant regret via extrapolation

We proceed to examine the long-run convergence properties of regularized learning algorithms
in harmonic games. Starting with the standard, vanilla implementation of FTRL, we reproduce
a well-known observation that FTRL spirals out to a non-terminating cycle of best-responses in
Matching Pennies (which is a harmonic game). Subsequently, to correct this non-convergent behavior,
we examine a flexible, extrapolation-based algorithmic template, which we call extrapolated FTRL
(FTRL+), and which includes as special cases the optimistic and extra-gradient versions of FTRL.

7Recall that any 𝑁-player game can be turned into an equivalent zero-sum game by adding a fictitious player.
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4.1. Vanilla implementation of FTRL. Building on the discussion of the previous section, the
standard implementation of FTRL in discrete time for 𝑛 = 1, 2, . . . is

𝑥𝑖,𝑛+1 = arg max
𝑝𝑖∈X𝑖

{∑︁𝑛

𝑠=1 𝑢𝑖 (𝑝𝑖; 𝑥−𝑖,𝑛) − 𝜚𝑖ℎ𝑖 (𝑝𝑖)
}
= arg max

𝑝𝑖∈X𝑖

{∑︁𝑛

𝑠=1⟨𝑣𝑖 (𝑥𝑠), 𝑝𝑖⟩ − 𝜚𝑖ℎ𝑖 (𝑝𝑖)
}

(11)

or, in more compact, iterative notation

𝑦𝑖,𝑛+1 = 𝑦𝑖,𝑛 + 𝜂𝑖𝑣𝑖 (𝑥𝑛) 𝑥𝑖,𝑛 = 𝑄𝑖 (𝑦𝑖,𝑛) (FTRL)

where, as per (6), the map 𝑄𝑖 : Y𝑖 → X𝑖 denotes the regularized choice map of player 𝑖 ∈ N , 𝜚𝑖
is a player-specific regularization weight parameter, and 𝜂𝑖 = 1/𝜚𝑖 represents the learning rate of
player 𝑖. Apart from their obvious differences – discrete vs. continuous time – a salient point that
sets (FTRL) apart from (FTRL-D) is the inclusion of the parameter 𝜂𝑖; this parameter is necessary to
control the algorithm’s behavior, and we will discuss it in detail in the sequel.

As mentioned in the introduction, a major shortfall of (FTRL) – and one of the main reasons for
the increased popularity of optimistic / extra-gradient methods – is that it may spiral away from
Nash equilibrium, even in simple 2 × 2 games with a unique equilibrium. The standard example
of this behavior is Matching Pennies, a two-player zero-sum game with a fully-mixed equilibrium
which is also uniformly harmonic, so the trajectories of (FTRL-D) are Poincaré recurrent (and,
in fact, periodic). In more detail, this game can be compactly represented by the payoff field
𝑣(𝑥1, 𝑥2) = (4𝑥2 − 2, 2 − 4𝑥1) for 𝑥1, 𝑥2 ∈ [0, 1], and its unique Nash equilibrium is 𝑥∗ = (1/2, 1/2).
Thus, if we run (FTRL) with a Euclidean reqularizer – that is, ℎ𝑖 (𝑥𝑖) = 𝑥2

𝑖
/2 for 𝑖 = 1, 2 – and

the same learning rate 𝜂 per player, a straightforward calculation shows that the distance 𝐷𝑛 =

(𝑥1,𝑛 − 𝑥∗1)2/2 + (𝑥2,𝑛 − 𝑥∗2)2/2 between 𝑥𝑛 and 𝑥∗ evolves as

𝐷𝑛+1 = 1
2 (𝑥1,𝑛 + 𝜂𝑣1 (𝑥𝑛) − 𝑥∗1)

2 + 1
2 (𝑥2,𝑛 + 𝜂𝑣2 (𝑥𝑛) − 𝑥∗2)

2 = (1 + 16𝜂2)𝐷𝑛 (12)

as long as 𝑥𝑛 + 𝜂𝑣(𝑥𝑛) ∈ X . In other words, the distance of the iterates of (FTRL) from the game’s
equilibrium grows at a geometric rate until 𝑥𝑛 reaches the boundary of X and is ultimately trapped
in a non-terminating cycle of best responses, cf. Fig. 1. In this regard, the rationality properties of
(FTRL) are even worse than those of (FTRL-D) because the game’s equilibrium is now repelling.

4.2. Extrapolated FTRL. To mitigate this undesirable, divergent behavior of (FTRL), a standard
approach in the literature is the inclusion of a forward-looking, “extrapolation step”. Instead of
updating the algorithm’s “base state” 𝑥𝑛 directly, players first move to an interim “leading state”
𝑥𝑛+1/2 using payoff information from 𝑥𝑛 (this is the extrapolation step); subsequently, players update
𝑥𝑛 using payoff information from the leading state 𝑥𝑛+1/2, and the process repeats. In this way, players
attempt to anticipate their payoff landscape and, in so doing, to take a more informed update step at
each iteration.

The seed of this idea goes back to Korpelevich [33] and Popov [49] in the context of solving monotone
variational inequality problems, and it has since percolated to a wide array of “extra-gradient” or
“optimistic” methods, such as the mirror-prox algorithm of Nemirovski [45], the dual extrapolation
variant of Nesterov [46], the optimistic mirror descent algorithm of Chiang et al. [9] and Rakhlin &
Sridharan [50], and many others. Given the different operational envelope of each of these methods,
we consider below an integrated algorithmic template which is sufficiently flexible to account for a
broad range of these schemes, which we call extrapolated FTRL (FTRL+).

Formally, the proposed algorithmic blueprint unfolds in two phases as follows:

𝑎) Extrapolation phase: 𝑦𝑖,𝑛+1/2 = 𝑦𝑖,𝑛 + 𝜂𝑖 �̂�𝑖,𝑛 𝑥𝑖,𝑛+1/2 = 𝑄𝑖 (𝑦𝑖,𝑛+1/2)
𝑏) Update phase: 𝑦𝑖,𝑛+1 = 𝑦𝑖,𝑛 + 𝜂𝑖 �̂�𝑖,𝑛+1/2 𝑥𝑖,𝑛+1 = 𝑄𝑖 (𝑦𝑖,𝑛+1)

(FTRL+)

In the above, 𝜂𝑖 > 0 is the learning rate of player 𝑖, 𝑥𝑛 and 𝑥𝑛+1/2 respectively denote the method’s
base and leading states at stage 𝑛 = 1, 2, . . . , and �̂�𝑖,𝑛 and �̂�𝑖,𝑛+1/2 are sequences of black-box “payoff
signals” that model different update structures. Specifically, we will assume throughout that

�̂�𝑖,𝑛+1/2 = 𝑣𝑖 (𝑥𝑛+1/2) for all 𝑖 ∈ N and all 𝑛 = 1, 2, . . . (13)

i.e., players always update their base state 𝑥𝑛 using payoff information from the leading state 𝑥𝑛+1/2.
By contrast, the leading state 𝑥𝑛+1/2 can be generated in many different ways, depending on the
targeted update structure; for concreteness, building on an idea of Azizian et al. [3], we will employ a
linear model of the form

�̂�𝑖,𝑛 = 𝑝𝑖 𝑣𝑖 (𝑥𝑛) + 𝑞𝑖 𝑣𝑖 (𝑥𝑛−1/2) (14)
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where the player-specific coefficients 𝑝𝑖 , 𝑞𝑖 ≥ 0 satisfy 𝑝𝑖 + 𝑞𝑖 ≤ 1 and represent a mix of past and
present payoff information. In this way, depending on the values of 𝑝𝑖 and 𝑞𝑖 , we obtain the following
prototypical regularized learning methods as special cases of (FTRL+):

a) FTRL: if 𝑞𝑖 = 𝑝𝑖 = 0 for all 𝑖 ∈ N , players essentially forego any look-ahead efforts, so we get

�̂�𝑛 = 0 for all 𝑛 = 1, 2, . . . (15a)

In turn, this gives 𝑥𝑛+1/2 = 𝑥𝑛, i.e., (FTRL+) regresses to (FTRL).

b) Extra-step FTRL: if 𝑝𝑖 = 1 and 𝑞𝑖 = 0 for all 𝑖 ∈ N , we have

�̂�𝑛 = 𝑣(𝑥𝑛) for all 𝑛 = 1, 2, . . . (15b)

i.e., players use payoff information from their current state to generate the leading state 𝑥𝑛+1/2.
This update structure requires two payoff queries per iteration and, depending on the choice of
ℎ𝑖 , it is essentially equivalent to the mirror-prox [45] and dual extrapolation [46] algorithms, it
contains as a special case the forward-looking algorithm of [15, 42], etc.

c) Optimistic FTRL: if 𝑝𝑖 = 0 and 𝑞𝑖 = 1 for all 𝑖 ∈ N , we have

�̂�𝑛 = 𝑣(𝑥𝑛−1/2) for all 𝑛 = 1, 2, . . . (15c)

i.e., players reuse the latest available payoff information instead of making a fresh query at 𝑥𝑛 (so
the algorithm only requires one payoff query per iteration). In this way, (FTRL+) recovers the
optimistic algorithms of [9, 27, 50, 58], the OMW update scheme of [11, 58] when 𝑄 = Λ, etc.

Clearly, the list above is not exhaustive: many other configurations are possible, and different players
can use different parameter settings for 𝑝𝑖 and 𝑞𝑖 , depending on the information they have at hand and
any other individual considerations. To avoid needlessly complicating the analysis, our only standing
assumption will be that 𝑝𝑖 + 𝑞𝑖 > 0 for all 𝑖 ∈ N (since, otherwise, the benefits of the extrapolation
step would vanish). In particular, by rescaling the players’ learning rates if needed, we will normalize
𝑝𝑖 and 𝑞𝑖 to 𝑝𝑖 + 𝑞𝑖 = 1, leading to the convex signal model

�̂�𝑖,𝑛 = 𝜆𝑖 𝑣𝑖 (𝑥𝑛) + (1 − 𝜆𝑖) 𝑣𝑖 (𝑥𝑛−1/2) (16)

for some arbitrarily chosen ensemble of player-specific extrapolation coefficients 𝜆𝑖 ∈ [0, 1], 𝑖 ∈ N .
Remark. To simplify the presentation of our results, we will assume throughout the rest of our paper
that (FTRL+) is initialized with 𝑦1 = 𝑦1/2 = 0.

4.3. Analysis & results. With all this in hand, we are finally in a position to state our main results
for (FTRL+) in harmonic games. We begin by showing that (FTRL+) achieves order-optimal regret:
Theorem 3. Suppose that each player in a harmonic game Γ is following (FTRL+) with learning
rate 𝜂𝑖 ≤ 𝑚𝑖𝐾𝑖 [2(𝑁 +2)max 𝑗 𝑚 𝑗𝐺 𝑗 ]−1 and payoff signals as per (13) and (16). Then the individual
regret of each player 𝑖 ∈ N is bounded as

Reg𝑖 (𝑇) := max
𝑝𝑖∈X𝑖

𝑇∑︁
𝑛=1
[𝑢𝑖 (𝑝𝑖; 𝑥−𝑖,𝑛) − 𝑢𝑖 (𝑥𝑛)] ≤

𝐻𝑖

𝜂𝑖
+ 2𝐺𝑖

𝑁 + 2
∑︁
𝑗∈N

𝐻 𝑗

𝜂 𝑗𝐺 𝑗

(17)

where 𝐻𝑖 = max ℎ𝑖 −min ℎ𝑖 , and 𝐺𝑖 is the Lipschitz modulus of 𝑣𝑖 .

Even though Theorem 3 invites a natural comparison with the constant regret bound of Theorem 1,
the continuous- and discrete-time settings are fundamentally different, so any conclusions drawn
from such a comparison would be specious. Indeed, constant regret guarantees in the spirit of (17) are
particularly rare in the context of discrete-time algorithms, and as far as we are aware, similar bounds
have only been established for optimistic methods in variationally stable and two-player zero-sum
games [28]; other than that, and to the best of our knowledge, the tightest regret bounds available
for general games (finite or convex) seem to be (poly)logarithmic [13, 14]. In this regard, just like
the recurrence result of Theorem 2, the O(1) regret bound of Theorem 3 represents a significant
extension of existing results on zero-sum games (and polylogarithmic regret in general games), and
suggests that, from a learning viewpoint, harmonic games are the most natural generalization of
two-player zero-sum games to a general 𝑁-player context. We defer the proof of Theorem 3 to
Appendix D.
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Figure 1: The evolution of vanilla vs. extrapolated FTRL schemes in harmonic games. In the left figure, we
consider the game of Matching Pennies (blue: FTRL+; green: FTRL; red: continuous time FTRL); in the center
and to the right, two different orbits in a 2 × 2 × 2 harmonic game from two different viewpoints (blue: FTRL+;
green/orange:FTRL; payoff profiles on vertices). In all cases, we ran the optimistic variant of FTRL+ (𝜆𝑖 = 0
for all players), and we see that the trajectories of (FTRL) diverge away from equilibrium and the trajectories of
(FTRL-D) are recurrent (actually, periodic), whereas (FTRL+) converges. We also see the highly non-convex
structure of harmonic games as evidence by their equilibrium set (thick red line in center and right subfigures).

As an immediate corollary of the above, we conclude that, under (FTRL+), the empirical frequencies
of play 𝑧𝛼,𝑛 := (1/𝑛)∑𝑛

𝑠=1 𝑥𝛼,𝑠, 𝛼 ∈ A, converge to the game’s set of CCE at a rate of O(1/𝑛).
This rate is, again, optimal, but as we discussed in Section 3, it offers little information in games
where the marginalization of CCE does not lead to Nash equilibrium – and, in general 𝑁-player
harmonic games, there is little hope that it would. In addition, even when the marginalization of CCE
is Nash, the actual trajectory of play may – and, in fact, often does – behave very differently from the
time-averaged frequency of play.

Our last result below shows that, despite these hurdles, (FTRL+) does converge to Nash equilibrium.
To state it, we will focus on the case where each player’s regularizer ℎ𝑖 satisfies the following
technical requirements:

1. Smoothness: For all 𝑥𝑖 ∈ riX𝑖 and all 𝑥′
𝑖
∈ X𝑖 , 𝑖 ∈ N , the function ℎ𝑖 (𝑥𝑖 + 𝑡 (𝑥′𝑖 − 𝑥𝑖)) is

continuously differentiable in a neighborhood of 𝑡 = 0.

2. Steepness: For all 𝑥𝑖 ∈ bdX𝑖 and all 𝑥′
𝑖
∈ riX𝑖 , 𝑖 ∈ N , we have 𝑑

𝑑𝑡

��
𝑡=0 ℎ𝑖 (𝑥𝑖 + 𝑡 (𝑥

′
𝑖
−𝑥𝑖)) = −∞.

In the above, riX𝑖 = {𝑥𝑖 ∈ X𝑖 : supp(𝑥𝑖) = A𝑖} and bdX𝑖 = {𝑥𝑖 ∈ X𝑖 : supp(𝑥𝑖) ≠ A𝑖} respectively
denote the relative interior and boundary of X𝑖 , that is, the set of fully- and partially-mixed strategies
of player 𝑖 ∈ N . With this in mind, the smoothness requirement simply posits that ℎ𝑖 is smooth along
any line segment in the interior of X𝑖 , while steepness means that ℎ𝑖 becomes “infinitely steep” near
the boundary bdX𝑖 of X𝑖 (hence the name). Our prototypical example – the entropic regularizer of
Eq. (8) – satisfies both requirements, as do all regularizers of the form ℎ𝑖 (𝑥𝑖) =

∑
𝛼𝑖∈A𝑖

𝜃𝑖 (𝑥𝑖𝛼𝑖
) for

some continuous convex function 𝜃𝑖 : [0, 1] → ℝ with lim𝑡→0+ 𝜃
′ (𝑡) = −∞.

Under these mild requirements, we obtain the following equilibrium convergence result:8

Theorem 4. Suppose that each player in a harmonic game Γ follows (FTRL+) with learning rate
𝜂𝑖 ≤ 𝑚𝑖𝐾𝑖 [2(𝑁 + 2)max 𝑗 𝑚 𝑗𝐺 𝑗 ]−1 and payoff signals as per (13) and (16). Then 𝑥𝑛 converges to a
Nash equilibrium of Γ.

To the best of our knowledge, Theorem 4 is the first result of its kind for harmonic games – and, in
that regard, it is somewhat unexpected. To be sure, two-player zero-sum games with a fully-mixed
equilibrium exhibit a comparable pattern: FTRL is Poincaré recurrent in continuous time, its vanilla
discretization is unstable, and its optimistic / forward-looking implementation is convergent. However,
the convex-concave structure of min-max games which enables this analysis is completely absent in
harmonic games, so it is less clear what to expect in this case (where even the set of Nash equilibria is
non-convex, cf. Fig. 1). By this token, the convergence of (FTRL+) in harmonic games is a property
that one could optimistically hope for, but not one that can be taken for granted.

8We note here in passing that the steepness requirement can be dropped by introducing a slight modification
to the update phase of (FTRL+); we omit this part of the analysis to keep our presentation as simple as possible.
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From a technical standpoint, the proof of Theorems 3 and 4 involves tackling two concurrent
challenges: (i) to derive a Lyapunov function with a “sufficient descent” property for all harmonic
games and all regularizers; and (ii) to provide an integrated analysis for the entire gamut of possible
update structures in (FTRL+). The precise construction and calculations are too cumbersome to
record here, but one of the key steps in the analysis is to derive a “template inequality” of the form

𝐸𝑛+1 ≤ 𝐸𝑛 +
∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑥𝑖,𝑛+1/2 − 𝑝𝑖⟩

+
∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩

+
∑︁
𝑖∈N

𝑚𝑖 (1 − 𝜆𝑖)⟨𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩

−
∑︁
𝑖∈N

𝑚𝑖𝐾𝑖

𝜂𝑖

[
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2 + ∥𝑥𝑖,𝑛+1/2 − 𝑥𝑖,𝑛∥2

]
(18)

where 𝐸𝑛 ≡ 𝐸 (𝑦𝑛) is the Lyapunov function in question (presented in detail in Appendix D).

A first important consequence of the template inequality (18) is that the sequences 𝑎𝑛 = ∥𝑥𝑛+1 −
𝑥𝑛+1/2∥2 and 𝑏𝑛 = ∥𝑥𝑛+1/2 − 𝑥𝑛∥2 are both summable: this requires a repeated use of the Fenchel-
Young inequality, and an instantiation of 𝑝 to the strategic center of Γ, which we detail in Appen-
dices A and D. Then, by establishing a similar template inequality for each player 𝑖 ∈ N , we are able
to bound the regret by the same upper bound that we derived for

∑
𝑛 𝑎𝑛 and

∑
𝑛 𝑏𝑛, and which is (up

to certain secondary factors) the bound (17).

For the convergence to Nash equilibrium, the summability argument above also plays a crucial role.
As we show in Appendix D, this summability coupled with the template inequality (18) allow us to
conclude that any limit point of (FTRL+) is a Nash equilibrium; subsequently, by a second application
of the template inequality (18) to any of these limit points, we are able to extract the algorithm’s
pointwise convergence.

5 Concluding remarks

Our results suggest that the long-run behavior of online learning – and, in particular, no-regret
learning – algorithms and dynamics in harmonic games is a very rich topic, and one which opens the
door to an entirely new class of games where positive convergence results can be obtained. We find
this particularly appealing, not only because harmonic games comprise the strategic complement of
potential games, but also because they represent highly non-convex problems – in fact, even their
equilibrium set is non-convex. As such, the fact that it is possible to obtain optimal regret guarantees
and positive equilibrium convergence results in this setting is very promising for future work.

Future directions in this topic abound: First and foremost, an open question is the rate of convergence
of (FTRL+) to equilibrium. Even though (FTRL+) has order-optimal regret bounds, this only helps in
establishing a convergence rate to the game’s set of coarse correlated equilibria; for Nash equilibria,
building on earlier work by Golowich et al. [19], some recent results by Cai et al. [5], Gorbunov et al.
[21] have shed some light on the convergence of constrained Euclidean optimistic methods, but the
technology therein does not extend to non-monotone, non-Euclidean problems. Inspired by Wei et al.
[61], we conjecture that the convergence rate of (FTRL+) in harmonic games is linear: we conjecture
this because any harmonic game admits a fully-mixed Nash equilibrium, and the weighted sum in
the definition of a harmonic game formally looks similar to the condition needed to establish metric
subregularity in [61]; however, a proof would likely require different techniques.

Another important research direction has to do with the information available to the players. A first
open question here concerns the case where players do not have access to full information on their
mixed payoff vectors, but can only observe their pure payoffs – either in a “what if”, counterfactual
manner, or in the form of bandit, payoff-based feedback. In a similar manner, the algorithms presented
here are not adaptive, in the sense that the players’ step-size policy has to satisfy a certain bound
that depends on correctly estimating some of the game’s parameters. Obtaining an adaptive version
of (FTRL+) which, in the spirit of Rakhlin & Sridharan [50] and Hsieh et al. [28, 29, 30], remains
convergent and attains order-optimal regret in both adversarial and game-theoretic settings without
any need for hyperparameter tuning is also an ambitious question for future research.
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A Harmonic Games

The class of uniform harmonic games (UHGs) introduced by Candogan et al. [6] provides a game-
theoretic framework for modeling strategic situations with conflicting, anti-aligned interests.9 Broadly
speaking, the characterizing property of uniform harmonic games is the following: for any player
considering a deviation towards a specific pure strategy profile, there exist other players who are
motivated to deviate away from that profile.

Given a finite game Γ = Γ(N ,A, 𝑢), this is formalized by the condition that, for all 𝛼 ∈ A,∑︁
𝑖∈N

∑︁
𝛽𝑖∈A𝑖

[
𝑢𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛽𝑖;𝛼−𝑖)

]
= 0 . (A.1)

From a strategic viewpoint, uniform harmonic games complement potential games: Candogan et al.
[6] showed that any finite game can be uniquely decomposed into the sum of a potential game and a
uniform harmonic game, up to linear transformations of the payoff functions that do not change the
strategic structure of the game.

Since their introduction, harmonic games have generated a substantial body of literature; for a brief
survey, we refer the reader to [36].

A.1. Harmonic games, measures and comeasures. The class of uniform harmonic games exhibits
intriguing, yet restrictive, properties. Notably, a UHG always admits the uniformly mixed strategy as

9We include here the word “uniform” to distinguish the class of harmonic games introduced by Candogan
et al. [6] from the more general class of harmonic games considered in this work, cf. Definition 1.
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a NE, and it generally possesses a continuum of Nash equilibria [6]. Additionally, the framework
of UHGs and the decomposition proposed by Candogan et al. [6] are incompatible with common
game-theoretical transformations, such as the duplication of strategies or rescaling of payoffs [1].
To address the above limitations, Abdou et al. [1] extended the definition of harmonic games by the
introduction of two parameters: a measure, that is a positive weight each player assigns to each of
their own strategy; and a comeasure, that is a positive weight each player assigns to each of the other
players’ action profiles.
Definition A.1. Let Γ(N ,A, 𝑢) be a finite game. A player measure 𝜇𝑖 is a function 𝜇𝑖 : A𝑖 → ℝ++;
a player co-measure 𝛾𝑖 is a function 𝛾𝑖 : A−𝑖 → ℝ++. Correspondingly, a collection 𝜇 = {𝜇𝑖}𝑖∈N
(resp. 𝛾 = {𝛾𝑖}𝑖∈N ) of player measures (resp. comeasures) is called game measure (resp. game
comeasure). If 𝜇𝑖 is a player measure, we will write |𝜇𝑖 | :=

∑
𝛼𝑖
𝜇𝑖𝛼𝑖

. Finally, a probability measure
is a game measure 𝜇 such that |𝜇𝑖 | = 1 for all 𝑖 ∈ N ; a uniform measure is a game measure 𝜇 such
that 𝜇𝑖𝛼𝑖

= 1 for all 𝑖 ∈ N , 𝛼𝑖 ∈ A𝑖; and a uniform comeasure is a game comeasure 𝛾 such that
𝛾𝑖𝛼−𝑖 = 1 for all 𝑖 ∈ N , 𝛼−𝑖 ∈ A−𝑖 .

With these notions in place, Abdou et al. [1] define a finite game Γ to be (𝜇, 𝛾)-harmonic if there
exist a game measure 𝜇 and a game comeasure 𝛾 such that, for all 𝛼 ∈ A,∑︁

𝑖

∑︁
𝛽𝑖

𝜇𝑖𝛽𝑖𝛾𝑖𝛼−𝑖
[
𝑢𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛽𝑖;𝛼−𝑖)

]
= 0 . (A.2)

In this work, we focus solely on harmonic games with uniform comeasure. As discussed after
Definition 1 in the main body of the article, this choice comes without loss of generality: the game
comeasure in Eq. (A.2) can be absorbed by a payoff rescaling to give a game that is still harmonic,
and preference equivalent to the original game – in a sense that we make precise in the next section.

A.2. Preference equivalence between harmonic games. The strategic structure of a game is
preserved under monotonic transformations of the utility functions, since the set of pure Nash
equilibria of a game is an ordinal object – it depends only on the signs of unilateral payoff differences,
and not on their absolute values. For this reason, two games Γ(N ,A, 𝑢) and Γ′ (N ,A, 𝑢′) are called
preference-equivalent (PE) if for all 𝛼, 𝛽 ∈ A and all 𝑖 ∈ N , we have

sgn
[
𝑢′𝑖 (𝛽𝑖;𝛼−𝑖) − 𝑢′𝑖 (𝛼𝑖;𝛼−𝑖)

]
= sgn

[
𝑢𝑖 (𝛽𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛼𝑖;𝛼−𝑖)

]
. (A.3)

Two games are strategically equivalent (SE) – and we write Γ ∼ Γ′ – if they have the same unilateral
payoff differences, that is if

𝑢′𝑖 (𝛽𝑖;𝛼−𝑖) − 𝑢′𝑖 (𝛼𝑖;𝛼−𝑖) = 𝑢𝑖 (𝛽𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛼𝑖;𝛼−𝑖) (A.4)

for all 𝛼, 𝛽 ∈ A and all 𝑖 ∈ N ; strategically equivalent games are clearly preference-equivalent.
Lemma A.2. Let Γ𝜇,𝛾 = Γ𝜇,𝛾 (N ,A, 𝑢) be a harmonic game in the sense of Eq. (A.2). Then the
game (N ,A, 𝑢′) with 𝑢′

𝑖
(𝛼𝑖;𝛼−𝑖) = 𝛾𝑖𝛼−𝑖𝑢𝑖 (𝛼𝑖;𝛼−𝑖) is preference-equivalent to the game Γ𝜇,𝛾 , and

it is harmonic in the sense of Eq. (A.2) with measure 𝜇 and uniform comeasure.

Proof. Let 𝑢′′
𝑖
(𝛼𝑖;𝛼−𝑖) = 𝜇𝑖𝛼𝑖

𝛾𝑖𝛼−𝑖𝑢𝑖 (𝛼𝑖;𝛼−𝑖). Then replacing above, for all 𝛼 ∈ A,

0 =
∑︁
𝑖∈N

∑︁
𝛽𝑖∈A𝑖

𝜇𝑖𝛽𝑖

[
𝑢′′
𝑖
(𝛼𝑖;𝛼−𝑖)
𝜇𝑖𝛼𝑖

−
𝑢′′
𝑖
(𝛽𝑖;𝛼−𝑖)
𝜇𝑖𝛽𝑖

]
.

Let 𝑢′
𝑖
(𝛼𝑖;𝛼−𝑖) =

𝑢′′
𝑖
(𝛼𝑖 ;𝛼−𝑖 )
𝜇𝑖𝛼𝑖

= 𝛾𝑖𝛼−𝑖𝑢𝑖 (𝛼𝑖;𝛼−𝑖). The game 𝑢′ is preference-equivalent to 𝑢, and

0 =
∑︁
𝑖∈N

∑︁
𝛽𝑖∈A𝑖

𝜇𝑖𝛽𝑖
[
𝑢′𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢′𝑖 (𝛽𝑖;𝛼−𝑖)

]
(A.5)

for all 𝛼 ∈ A, so 𝑢′ is harmonic in the sense of A.2 with measure 𝜇 and uniform comeasure. ■

In the proof above we perform the intermediate step 𝑢 → 𝑢′′ rather than defining directly 𝑢 → 𝑢′ to
stress the difference between rescaling the payoffs of a game by a game measure 𝜇 and by a game
comeasure 𝛾. The game with payoffs 𝑢′ = 𝛾𝑢 (the meaning of this notation made precise in the
proof above) is preference-equivalent to the game with payoffs 𝑢, i.e., rescaling the payoffs by a
comeasure does not change the strategic structure of the game. On the other hand, the game with
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payoffs 𝑢′′ = 𝜇𝑢′ – again, the meaning made precise in the proof – is not PE to the game with payoffs
𝑢′: rescaling the payoffs by a measure can change the preferences of the players, and leads to a game
with intrinsically different strategic structure.

Lemma A.2 motivates our choice to focus in this work on harmonic games with arbitrary measures
and uniform comeasures, and to adopt (HG) from Definition 1 to characterize harmonic games: a
harmonic game (HG) Γ𝜇 = Γ𝜇 (N ,A, 𝑢) is a finite game (N ,A, 𝑢) with a game measure 𝜇 such that
(HG) holds, i.e.,

∑
𝑖∈N

∑
𝛽𝑖∈A𝑖

𝜇𝑖𝛽𝑖 [𝑢𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛽𝑖;𝛼−𝑖)] = 0 for all 𝛼 ∈ A.

A.3. Mixed characterization of harmonic games. The defining property (HG) allows for an
equivalent characterization of harmonic games in terms of their mixed payoffs:

Lemma A.3. A finite game Γ = Γ(N ,A, 𝑢) is harmonic with measure 𝜇 if and only if∑︁
𝑖∈N
|𝜇𝑖 |

〈
𝑣𝑖 (𝑥), 𝑥𝑖 −

𝜇𝑖

|𝜇𝑖 |

〉
= 0 for all 𝑥 ∈ X . (HG-mixed)

Proof. Given a finite game Γ = Γ(N ,A, 𝑢) and a game measure 𝜇, let 𝐹𝑖 : A → ℝ be defined by
𝐹𝑖 (𝛼) =

∑
𝛽𝑖∈A𝑖

𝜇𝑖𝛽𝑖 [𝑢𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛽𝑖;𝛼−𝑖)]. By definition, Γ is a 𝜇-harmonic game if and only
if 𝐹 (𝛼) := ∑

𝑖∈N 𝐹𝑖 (𝛼) = 0 for all 𝛼 ∈ A. Denote (with slight abuse of notation) by 𝐹 : X → ℝ the
multilinear extension of 𝐹 : A→ ℝ, i.e., 𝐹 (𝑥) = ∑

𝛼 𝑥𝛼𝐹 (𝛼), with 𝑥𝛼 := ∏
𝑖 𝑥𝑖𝛼𝑖

. Now, 𝐹 (𝛼) = 0
for all 𝛼 ∈ A if and only if 𝐹 (𝑥) = 0 for all 𝑥 ∈ X , which is the case if and only if

0 = 𝐹 (𝑥) =
∑︁

𝛼
𝑥𝛼

∑︁
𝑖
𝐹𝑖 (𝛼) =

∑︁
𝑖

∑︁
𝛼𝑖

∑︁
𝛼−𝑖

𝑥𝑖𝛼𝑖
𝑥−𝑖𝛼−𝑖

∑︁
𝛽𝑖
𝜇𝑖𝛽𝑖 [𝑢𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛽𝑖;𝛼−𝑖)]

=
∑︁

𝑖

∑︁
𝛽𝑖
𝜇𝑖𝛽𝑖 [𝑢𝑖 (𝑥𝑖; 𝑥−𝑖) − 𝑢𝑖 (𝛽𝑖; 𝑥−𝑖)] =

∑︁
𝑖

[
|𝜇𝑖 |⟨𝑣𝑖 (𝑥), 𝑥𝑖⟩ − ⟨𝑣𝑖 (𝑥), 𝜇𝑖⟩

]
for all 𝑥 ∈ X ,

from which we conclude by factoring out the |𝜇𝑖 | terms. ■

Remark. The first equality in the second line holds true for harmonic games with uniform comeasure
𝛾𝑖𝛼−𝑖 = 1, since 𝛾𝑖𝛼−𝑖 ≠ 1 terms would couple with the corresponding 𝑥−𝑖𝛼−𝑖 terms in the sum.

The above result can be reformulated as follows:

Proposition A.4. A finite game Γ = Γ(N ,A, 𝑢) is harmonic if and only if it admits a strategic center
(𝑚, 𝑞), viz. if there exist (i) a vector 𝑚 ∈ ℝ𝑁

++ and (ii ) a fully mixed strategy 𝑞 ∈ X such that∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥), 𝑥𝑖 − 𝑞𝑖⟩ = 0 for all 𝑥 ∈ X . (HG-center)

This expression is intriguing: it suggest that a game is harmonic precisely if there exists a fully
mixed strategy 𝑞 such that, for all 𝑥 ∈ X , the payoff vector 𝑣(𝑥) is perpendicular (with respect
to a 𝑚-weighted inner product) to 𝑥 − 𝑞; cf. Example A.1 and Fig. 2. The striking dynamical
consequences of this “circular” strategic structure – hinted at in Fig. 2, showing a periodic orbit of
FTRL in continuous time – are captured precisely by Theorem 2 in the main text.

Proof of Proposition A.4. Let Γ𝜇 = Γ𝜇 (N ,A, 𝑢) be harmonic; then by Lemma A.3 that there exist
a strategic center (𝑚, 𝑞) given by 𝑚𝑖 := |𝜇𝑖 | and 𝑞𝑖 := 𝜇𝑖/|𝜇𝑖 | with 𝑖 ∈ N . Conversely let Γ =

Γ(N ,A, 𝑢) admit a strategic center (𝑚, 𝑞); then by the same argument Γ is harmonic with 𝜇𝑖 := 𝑚𝑖𝑞𝑖
for all 𝑖 ∈ N . ■

An immediate corollary is the following:

Corollary A.5. If a finite game Γ admits a strategic center (𝑚, 𝑞), then 𝑞 is a Nash equilibrium.

Proof. By Proposition A.4 if Γ admits a strategic center (𝑚, 𝑞) then it is 𝜇-harmonic with 𝜇𝑖 = 𝑚𝑖𝑞𝑖
for all 𝑖 ∈ N ; and (𝜇𝑖/|𝜇𝑖 |)𝑖∈N is always a NE for 𝜇-harmonic games [1, Theorem 1]. ■

Remark. The converse does not hold: a fully mixed Nash equilibrium is not necessarily a strategic
center. If it were, a game would be harmonic precisely if it admitted a fully mixed NE, which is not
the case – think for example of coordination or anti-coordination games, that admit a fully mixed
Nash equilibrium and are not harmonic.
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Prob. player 1 assigns to N in {A, N}

Pr
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 {

D,
 N

}

(A,N) : u = (2, -4) (N,N) : u = (0, 0)

(A,D) : u = (-3, 1) (N,D) : u = (0, -1)

Figure 2: Representation of the harmonic payoff structure for the game in Example A.1. Each payoff vector 𝑣(𝑥)
(black arrows) is perpendicular (with respect to a weighted inner product) to the vector 𝑥 − 𝑞 (dotted segment)
between the evaluation point 𝑥 of the payoff field and the fully mixed Nash equilibrium 𝑞 (red point). As a
consequence every orbit of FTRL in continuous time (such as the one represented by the black curve) is Poincaré
recurrent (in this low-dimensional example, even periodic), as detailed in Theorem 2 in the main text. Color
shading and dotted lines represents player 1’s utility level sets, with brighter regions indicating higher payoffs.

Example A.1 (A harmonic game: Siege). Consider the following 2 × 2 game: an army (the row
player) must choose between Attacking a fortress (pure strategy 𝐴 ) and Not attacking (pure strategy
𝑁 ). Simultaneously, the fortress (the column player) decides whether to activate its Defenses (pure
strategy 𝐷 ) or Not (pure strategy 𝑁 ). Engaging in either action (the attack or the defense) incurs
a preparation cost of 𝑐 > 0. The army gains 𝑎𝑠 > 𝑐 if it attacks an undefended fortress, but suffers
a loss of 𝑎 𝑓 > 0 if it attacks and encounters defenses (the subscripts 𝑠 and 𝑓 standing respectively
for “successful” and “failed”). Conversely, the fortress benefits by 𝑑𝑠 > 0 if it is defended against an
attack, while it incurs a loss of 𝑑 𝑓 > 0 if attacked without defenses; defeating the attacking army is
worth the preparation cost for the fortress, namely 𝑑𝑠 − 𝑐 > −𝑑 𝑓 . This scenario is captured by the
following payoff matrix, specialized on the right to the case 𝑐 = 1, 𝑎𝑠 = 3, 𝑎 𝑓 = 2, 𝑑𝑠 = 2, 𝑑 𝑓 = 4:

𝐷 𝑁

𝐴
(
−𝑎 𝑓 − 𝑐, 𝑑𝑠 − 𝑐

) (
𝑎𝑠 − 𝑐, −𝑑 𝑓

)
𝑁 (0, −𝑐) (0, 0)

𝐷 𝑁

𝐴 −3, 1 2,−4
𝑁 0,−1 0, 0

(A.6)

To determine if the game is harmonic, look for a solution of the linear system∑︁
𝑖∈N

∑︁
𝛽𝑖∈A𝑖

𝜇𝑖𝛽𝑖 [𝑢𝑖 (𝛼𝑖;𝛼−𝑖) − 𝑢𝑖 (𝛽𝑖;𝛼−𝑖)] = 0 for all 𝛼 ∈ A , (HG)

subject to the constraints 𝜇𝑖𝛼𝑖
> 0 for all 𝑖 ∈ N , 𝛼𝑖 ∈ A𝑖 . For a fixed payoff function 𝑢, this is a system

of
∏

𝑗∈N 𝐴 𝑗 linear equations (one for each 𝛼 ∈ A) in the
∑

𝑗∈N 𝐴 𝑗 variables
(
(𝜇𝑖𝛼𝑖

)𝛼𝑖∈A𝑖

)
𝑖∈N ,

where 𝐴𝑖 is the number of pure actions of player 𝑖 ∈ N . With 𝑢 given by (A.6) – left,

𝜇 = 𝜆

[(
𝑐

𝑎 𝑓 + 𝑐
,
−𝑐 + 𝑑 𝑓 + 𝑑𝑠

𝑎 𝑓 + 𝑐

)
,

(
𝑎𝑠 − 𝑐
𝑎 𝑓 + 𝑐

, 1
)]

(A.7)

is a feasible solution of (HG) for any 𝜆 > 0, so the game is harmonic with a 1-dimensional set of
measures. The corresponding strategic center (𝑚, 𝑞) with 𝑚𝑖 =

∑
𝛼𝑖
𝜇𝑖𝛼𝑖

, 𝑞𝑖 = 𝜇𝑖/𝑚𝑖 , 𝑖 ∈ {1, 2} is

𝑚 = 𝜆

(
𝑑 𝑓 + 𝑑𝑠
𝑎 𝑓 + 𝑐

,
𝑎 𝑓 + 𝑎𝑠
𝑎 𝑓 + 𝑐

)
, 𝑞 =

[(
𝑐

𝑑 𝑓 + 𝑑𝑠
,
−𝑐 + 𝑑 𝑓 + 𝑑𝑠
𝑑 𝑓 + 𝑑𝑠

)
,

(
𝑎𝑠 − 𝑐
𝑎 𝑓 + 𝑎𝑠

,
𝑎 𝑓 + 𝑐
𝑎 𝑓 + 𝑎𝑠

)]
. (A.8)

As a sanity check, compute the payoff field and verify that (HG-center) holds true in the spe-
cialized case (A.6) – right. Denoting the mixed strategies of players 1 and 2 respectively by
𝑥 ∈ Δ({𝐴, 𝑁}) and 𝑦 ∈ Δ({𝐷, 𝑁}), the payoff fields are 𝑣1 (𝑥, 𝑦) = (−3𝑦𝐷 + 2𝑦𝑁 , 0) , 𝑣2 (𝑥, 𝑦) =
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(𝑥𝐴 − 𝑥𝑁 ,−4𝑥𝐴) . Choosing 𝜆 = 3 the strategic center gives weights 𝑚 = (6, 5) and Nash equilibrium
𝑞 = [(1/6, 5/6) , (2/5, 3/5)]. Condition (HG-center) boils down to 6 ⟨𝑣1, 𝑥 − 𝑞1⟩ +5 ⟨𝑣2, 𝑦− 𝑞2⟩ = 0,
which one readily verifies to hold true by replacing the expressions above and recalling that
𝑥𝐴 + 𝑥𝑁 = 1 = 𝑦𝐷 + 𝑦𝑁 . Fig. 2 illustrates the situation: each payoff vector 𝑣(𝑥) (black arrows) is
perpendicular (with respect to a weighted inner product) to the vector 𝑥 − 𝑞 (dotted segment) between
the evaluation point 𝑥 of the payoff field and the fully mixed Nash equilibrium 𝑞 (red point). ⋄

A.4. Harmonic and zero-sum games. Candogan et al. [6]’s uniform harmonic games, defined by
Eq. (A.1), are precisely the harmonic games with uniform measure, which makes uniform harmonic
games a strict subset of the set of HGs. Importantly, HGs include another archetypal class of perfect-
competition games: as we show in this section, two-player zero-sum games (2ZSGs) with an interior
NE 𝑥∗ are harmonic with (probability) measure 𝜇 = 𝑥∗.

To show this, we will need the following definition and lemma:
Definition A.6 (Non-strategic game). A finite normal form game Γ = Γ(N ,A, 𝑘) is called non-
strategic if the payoff of each player does not depend on their own choice, viz. if 𝑘𝑖 (𝛼𝑖 , 𝛼−𝑖) =
𝑘𝑖 (𝛽𝑖 , 𝛼−𝑖) for all 𝑖 ∈ N , 𝛼 ∈ A, 𝛽𝑖 ∈ A𝑖 .
Lemma A.7. Two finite games Γ(N ,A, 𝑢), Γ′ (N ,A, 𝑢′) are strategically equivalent in the sense of
Eq. (A.4) if and only if their difference is a non-strategic game.

Proof. Let Γ − Γ′ be non-strategic; then 𝑘 := 𝑢′ − 𝑢 fulfills the condition of Definition A.6, which
shows that 𝑢 and 𝑢′ fulfill Eq. (A.4). Conversely let Γ and Γ′ be strategically equivalent; set 𝑘 := 𝑢′−𝑢
and rearrange the terms in Eq. (A.4) to immediately conclude that 𝑘 is a non-strategic game. ■

Proposition A.8. Let Γ𝜇 = Γ𝜇 (N ,A, 𝑢) be a harmonic game. If the measure 𝜇 fulfills |𝜇𝑖 | = |𝜇 𝑗 |
for all 𝑖, 𝑗 ∈ N then Γ𝜇 is strategically equivalent to a zero-sum game.

Proof. Recall that |𝜇𝑖 | ≡
∑

𝛼𝑖
𝜇𝑖𝛼𝑖

. Under the assumption |𝜇𝑖 | = |𝜇 𝑗 | for all 𝑖, 𝑗 ∈ N , let 𝑐 := |𝜇𝑖 |
for any 𝑖 ∈ N . By (HG), the payoff 𝑢 of Γ𝜇 in this case fulfills

∑
𝑖∈N [𝑢𝑖 (𝛼) − 𝑘𝑖 (𝛼)] = 0 for all

𝛼 ∈ A, with 𝑘𝑖 (𝛼𝑖;𝛼−𝑖) := 𝑐−1 ∑
𝛽𝑖 𝜇𝑖𝛽𝑖𝑢𝑖 (𝛽𝑖 , 𝛼−𝑖). Set 𝑢′

𝑖
:= 𝑢𝑖 − 𝑘𝑖 . By definition 𝑢′ is a zero-sum

game; furthermore, the difference between 𝑢𝑖 and 𝑢′
𝑖

is non-strategic, since 𝑘𝑖 (𝛼𝑖;𝛼−𝑖) does not
depend on 𝛼𝑖 . Thus 𝑢𝑖 and 𝑢′

𝑖
are strategically equivalent by Lemma A.7. ■

In particular we have the following:
Corollary A.9. Let Γ𝜇 = Γ𝜇 (N ,A, 𝑢) be a harmonic game. If the measure 𝜇 is a probability
measure, then Γ𝜇 is strategically equivalent to a zero-sum game.

The converse holds true only in the case of two-player games:
Proposition A.10. Every two-player zero-sum game with an interior Nash equilibrium 𝑥∗ is harmonic,
with (probability) measure 𝜇 = 𝑥∗.

Proof. Let Γ = Γ(N ,A, 𝑢) be a two-player zero-sum game with interior Nash equilibrium 𝑥∗. If we
show that ∑︁

𝑖∈N
|𝑥∗𝑖 |

〈
𝑣𝑖 (𝑥), 𝑥𝑖 −

𝑥∗
𝑖

|𝑥∗
𝑖
|

〉
= 0 for all 𝑥 ∈ X , (A.9)

then we can conclude by Lemma A.3 that Γ is harmonic with measure 𝑥∗. Eq. (A.9) holds indeed
true: |𝑥∗

𝑖
| = 1 for all 𝑖 ∈ N , and it is well known [41, 42] that two-player zero-sum games with an

interior equilibrium 𝑥∗ fulfill
∑

𝑖∈N ⟨𝑣𝑖 (𝑥), 𝑥𝑖 − 𝑥∗𝑖 ⟩ = 0 for all 𝑥 ∈ X , so we are done. ■

Harmonic games thus encompass and substantially generalize two prototypical classes of games with
anti-aligned incentives, serving as an ideal complement to the class of potential games. This is made
precise in [1]: building on the work of Candogan et al. [6], Abdou et al. [1] showed that, for any
choice of game measure 𝜇, every finite game can be uniquely decomposed into the sum of a potential
and a 𝜇-harmonic game, up to strategic equivalence.

This establishes harmonic games as the natural complement of potential games from a strategic
perspective; Theorem 2 in the main text shows that this holds true from a dynamic perspective as
well.
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B Basic properties of regularizers and the induced choice maps

In this appendix, we collect a number of properties concerning regularizers and the associated choice
maps. To avoid carrying around the player index 𝑖 ∈ N , we state all our results for a generic convex
subset C of some real vector space V . The desired properties for FTRL will then be obtained by
specializing C to X𝑖 or X and V to ℝA𝑖 or

∏
𝑗 ℝ

A 𝑗 , depending on the context.

B.1. Preliminary definitions. To begin, let V be a 𝑑-dimensional normed space with norm ∥·∥. In
what follows, we will write Y := V∗ for the dual space of V , ⟨𝑦, 𝑥⟩ for the canonical pairing between
𝑥 ∈ V and 𝑦 ∈ V∗, and ∥𝑦∥∗ = max{⟨𝑦, 𝑥⟩ : ∥𝑥∥ ≤ 1} for the induced dual norm on Y . Following
standard conventions in convex analysis, functions will be allowed to take values in the extended real
line ℝ∪ {∞}, and if 𝑓 : V → ℝ∪ {∞} is a convex function on V , we will denote its effective domain
as

dom 𝑓 := {𝑥 ∈ V : 𝑓 (𝑥) < ∞} . (B.1)
In addition, assuming dom 𝑓 ≠ ∅, the subdifferential of 𝑓 at 𝑥 is defined as

𝜕 𝑓 (𝑥) := {𝑦 ∈ Y : 𝑓 (𝑥′) ≥ 𝑓 (𝑥) + ⟨𝑦, 𝑥′ − 𝑥⟩ for all 𝑥′ ∈ V} (B.2)

and we will denote the domain of subdifferentiability of 𝑓 as

dom 𝜕 𝑓 = {𝑥 ∈ V : 𝜕 𝑓 (𝑥) ≠ ∅} . (B.3)

Finally, to ease notation, a convex function 𝑓 : C → ℝwill be identified with the extended-real-valued
function 𝑓 : V → ℝ∪ {∞} that agrees with 𝑓 on C and is identically equal to∞ on V \ C.

With all this in hand, let C be a closed convex subset of V , and let ℎ : C → ℝ be a 𝐾-strongly convex
regularizer on C, that is,

ℎ(𝑝) ≥ ℎ(𝑥) + 𝜕ℎ(𝑥; 𝑝 − 𝑥) + 𝐾
2
∥𝑝 − 𝑥∥2 for all 𝑝, 𝑥 ∈ X , (B.4)

where 𝜕ℎ(𝑥; 𝑥′−𝑥) = lim𝜃→0+ [ℎ(𝑥+𝜃 (𝑥′−𝑥))−ℎ(𝑥)]/𝜃 denotes the one-sided directional derivative
of ℎ at 𝑥 along the direction of 𝑥′ − 𝑥. To proceed, we will need the following basic objects:

1. The convex conjugate ℎ∗ : Y → ℝ of ℎ:

ℎ∗ (𝑦) = max
𝑥∈X
{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} for all 𝑦 ∈ Y . (B.5)

2. The regularized choice map – or mirror map – 𝑄 : Y → X induced by ℎ:

𝑄(𝑦) = arg max
𝑥∈X

{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} for all 𝑦 ∈ Y (B.6)

3. The associated Fenchel coupling 𝐹 : X × Y → ℝ of ℎ:

𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩ for all 𝑝 ∈ X , 𝑦 ∈ Y . (B.7)

Remark. The terminology “Fenchel coupling” is due to [38, 40], which we follow closely in terms of
notation and conventions.

The proposition below provides some basic properties concerning the first two objects above:
Proposition B.1. Let ℎ be a 𝐾-strongly convex regularizer on C. Then:

(a) 𝑄 is single-valued on Y; in particular, for all 𝑥 ∈ dom 𝜕ℎ and all 𝑦 ∈ Y , we have:

𝑥 = 𝑄(𝑦) if and only if 𝑦 ∈ 𝜕ℎ(𝑥) . (B.8)

(b) The image im𝑄 of 𝑄 satisfies ri C ⊆ im𝑄 = dom 𝜕ℎ ⊆ C.

(c) The convex conjugate ℎ∗ : Y → ℝ of ℎ is differentiable and

𝑄(𝑦) = ∇ℎ∗ (𝑦) for all 𝑦 ∈ Y . (B.9)

(d) 𝑄 is (1/𝐾)-Lipschitz continuous, that is,

∥𝑄(𝑦′) −𝑄(𝑦)∥ ≤ (1/𝐾)∥𝑦′ − 𝑦∥∗ for all 𝑦, 𝑦′ ∈ Y . (B.10)
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(e) For all 𝑝 ∈ X and all 𝑦 ∈ Y , 𝑥 = 𝑄(𝑦), we have

𝜕ℎ(𝑥; 𝑝 − 𝑥) ≥ ⟨𝑦, 𝑝 − 𝑥⟩ (B.11)

Proof. These properties are fairly well known (except possibly the last one), so we only provide a
quick proof or a specific pointer to the literature.

(a) The maximum in (B.6) is attained for all 𝑦 ∈ V∗ and is unique because ℎ is strongly convex.
Furthermore, 𝑥 solves (B.6) if and only if 𝑦 − 𝜕ℎ(𝑥) ∋ 0, i.e., if and only if 𝑦 ∈ 𝜕ℎ(𝑥).

(b) By (B.8), we readily get im𝑄 = dom 𝜕ℎ. Consequently, the rest of our claim follows from
standard results in convex analysis, see e.g., Rockafellar [52, Chap. 26].

(c) The equality 𝑄 = ∇ℎ∗ follows immediately from Danskin’s theorem, see e.g., Bertsekas [4,
Proposition 5.4.8, Appendix B].

(d) See Rockafellar & Wets [53, Theorem 12.60(b)].

(e) Since 𝑦 ∈ 𝜕ℎ(𝑥) by (B.8), we readily get that

ℎ(𝑥 + 𝜃 (𝑝 − 𝑥)) ≥ ℎ(𝑥) + 𝜃⟨𝑦, 𝑝 − 𝑥⟩ for all 𝜃 ∈ [0, 1] . (B.12)

Hence, by rearranging and taking the limit 𝜃 → 0+, we conclude that

𝜕ℎ(𝑥; 𝑝 − 𝑥) = lim
𝜃→0+

ℎ(𝑥 + 𝜃 (𝑝 − 𝑥)) − ℎ(𝑥)
𝜃

≥ ⟨𝑦, 𝑝 − 𝑥⟩ (B.13)

as claimed. ■

Our next proposition collects some basic properties of the Fenchel coupling.
Proposition B.2. Let ℎ be a 𝐾-strongly convex regularizer on C. Then, for all 𝑝 ∈ X and all
𝑦, 𝑦′ ∈ Y , we have:

(𝑎) 𝐹 (𝑝, 𝑦) ≥ 0 with equality if and only if 𝑝 = 𝑄(𝑦). (B.14a)

(𝑏) 𝐹 (𝑝, 𝑦) ≥ 1
2𝐾 ∥𝑄(𝑦) − 𝑝∥

2. (B.14b)

Proof. These properties are also fairly standard, but we provide a quick proof for completeness.

(a) By the Fenchel–Young inequality, we have ℎ(𝑝) + ℎ∗ (𝑦) ≥ ⟨𝑦, 𝑝⟩ for all 𝑝 ∈ X , 𝑦 ∈ Y , with
equality if and only if 𝑦 ∈ 𝜕ℎ(𝑝), so our claim is immediate by (B.8).

(b) Let 𝑥 = 𝑄(𝑦) so 𝑦 ∈ 𝜕ℎ(𝑥) by (B.8). Then, by the definition of 𝐹, we have

𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩
= ℎ(𝑝) + ⟨𝑦, 𝑥⟩ − ℎ(𝑥) − ⟨𝑦, 𝑝⟩ ⊲ since 𝑦 ∈ 𝜕ℎ(𝑥)
≥ ℎ(𝑝) − ℎ(𝑥) − 𝜕ℎ(𝑥; 𝑝 − 𝑥) ⊲ by Proposition B.1

≥ 1
2𝐾 ∥𝑥 − 𝑝∥

2 ⊲ by (B.4)

and our proof is complete. ■

In view of Proposition B.2, 𝐹 (𝑝, 𝑦) can be seen a “primal-dual” measure of divergence between
𝑝 ∈ X and 𝑦 ∈ Y . This observation will play a major role in the sequel.

B.2. Basic lemmas. Moving forward, we note that the various update steps in (FTRL+) can be
written as

𝑦+ = 𝑦 + 𝑤 and 𝑥+ = 𝑄(𝑦+) (B.15)
for some 𝑦, 𝑤 ∈ Y . With this in mind, we proceed below to state a series of basic lemmas for the
Fenchel coupling before and after an update of the form (B.15). These results are not new, see e.g.,
[32, 40] and references therein; however, the assumptions used to derive them vary significantly in
the literature, so we provide detailed proofs for completeness.

All of the results that follow below are stated for a 𝐾-strongly convex regularizer on C. The first
result is a primal-dual version of the so-called “three-point identity” for mirror descent [7]:
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Lemma B.1. Fix some 𝑝 ∈ X , 𝑦 ∈ Y , and let 𝑥 = 𝑄(𝑦). Then, for all 𝑦+ ∈ Y , we have:
𝐹 (𝑝, 𝑦+) = 𝐹 (𝑝, 𝑦) + 𝐹 (𝑥, 𝑦+) + ⟨𝑦+ − 𝑦, 𝑥 − 𝑝⟩. (B.16)

Proof. By definition, we have:
𝐹 (𝑝, 𝑦+) = ℎ(𝑝) + ℎ∗ (𝑦+) − ⟨𝑦+, 𝑝⟩ (B.17a)
𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩ (B.17b)
𝐹 (𝑥, 𝑦+) = ℎ(𝑥) + ℎ∗ (𝑦+) − ⟨𝑦+, 𝑥⟩ (B.17c)

Thus, subtracting (B.17b) and (B.17c) from (B.17a), and rearranging, we get
𝐹 (𝑝, 𝑦+) = 𝐹 (𝑝, 𝑦) + 𝐹 (𝑥, 𝑦+) − ℎ(𝑥) − ℎ∗ (𝑦) + ⟨𝑦+, 𝑥⟩ − ⟨𝑦+ − 𝑦, 𝑝⟩ . (B.18)

Our assertion then follows by recalling that 𝑥 = 𝑄(𝑦), so ℎ(𝑥) + ℎ∗ (𝑦) = ⟨𝑦, 𝑥⟩. ■

The next result we present concerns the Fenchel coupling before and after a direct update step; similar
results exist in the literature, but we again provide a proof for completeness.
Lemma B.2. Fix some 𝑝 ∈ X and 𝑦, 𝑤 ∈ Y . Then, letting 𝑥 = 𝑄(𝑦), 𝑦+ = 𝑦 + 𝑤, and 𝑥+ = 𝑄(𝑦+) as
per (B.15), we have:

𝐹 (𝑝, 𝑦+) = 𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥+ − 𝑝⟩ − 𝐹 (𝑥+, 𝑦) (B.19a)

≤ 𝐹 (𝑝, 𝑥) + ⟨𝑤, 𝑥 − 𝑝⟩ + 1
2𝐾 ∥𝑤∥

2
∗ . (B.19b)

Proof. By the three-point identity (B.16), we have
𝐹 (𝑥, 𝑦) = 𝐹 (𝑥, 𝑦+) + 𝐹 (𝑥+, 𝑥) + ⟨𝑦 − 𝑦+, 𝑥+ − 𝑝⟩ (B.20)

so our first claim follows by rearranging. For our second claim, simply note that
𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥+ − 𝑝⟩ − 𝐹 (𝑥+, 𝑦) = 𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥 − 𝑝⟩ + ⟨𝑤, 𝑥+ − 𝑥⟩ − 𝐹 (𝑝, 𝑦)

≤ 𝐹 (𝑝, 𝑦) + ⟨𝑤, 𝑥 − 𝑝⟩ + 1
2𝐾
∥𝑤∥2∗ +

𝐾

2
∥𝑥 − 𝑝∥2 − 𝐹 (𝑝, 𝑦)

(B.21)
so our claim follows from Proposition B.2. ■

The last result we present here is sometimes referred to as a “four-point lemma”, and concerns the
Fenchel coupling before and after an extrapolation step:
Lemma B.3. Fix some 𝑝 ∈ X and 𝑦, 𝑤1, 𝑤2 ∈ Y . Then, letting 𝑥 = 𝑄(𝑦), 𝑦+

𝑖
= 𝑦 + 𝑤𝑖 , and

𝑥+
𝑖
= 𝑄(𝑦+

𝑖
), 𝑖 = 1, 2, as per (B.15), we have:

𝐹 (𝑝, 𝑦+2 ) = 𝐹 (𝑝, 𝑦) + ⟨𝑤2, 𝑥
+
1 − 𝑝⟩ +

[
⟨𝑤2, 𝑥

+
2 − 𝑥

+
1 ⟩ − 𝐹 (𝑥

+
2 , 𝑦)

]
(B.22a)

= 𝐹 (𝑝, 𝑦) + ⟨𝑤2, 𝑥
+
1 − 𝑝⟩ + ⟨𝑤2 − 𝑤1, 𝑥

+
2 − 𝑥

+
1 ⟩ − 𝐹 (𝑥

+
2 , 𝑦
+
1 ) − 𝐹 (𝑥

+
1 , 𝑦) (B.22b)

≤ 𝐹 (𝑝, 𝑦) + ⟨𝑤2, 𝑥
+
1 − 𝑝⟩ +

1
2𝐾
∥𝑤2 − 𝑤1∥2∗ −

𝐾

2
∥𝑥+1 − 𝑥∥

2 . (B.22c)

Proof. By Lemma B.2, we have
𝐹 (𝑝, 𝑦+2 ) = 𝐹 (𝑝, 𝑦) + ⟨𝑤2, 𝑥

+
2 − 𝑝⟩ − 𝐹 (𝑥

+
2 , 𝑦) (B.23)

so (B.22a) follows by writing ⟨𝑤2, 𝑥
+
2 − 𝑝⟩ = ⟨𝑤2, 𝑥

+
1 − 𝑝⟩ + ⟨𝑤2, 𝑥

+
2 − 𝑥

+
1 ⟩, and (B.22b) follows from

the three-point identity (B.16) for the Fenchel coupling. Finally, for (B.22c), the Fenchel-Young
inequality in Peter-Paul form yields

⟨𝑤2 − 𝑤1, 𝑥
+
2 − 𝑥

+
1 ⟩ ≤

1
2𝐾
∥𝑤2 − 𝑤1∥2∗ +

𝐾

2
∥𝑥+2 − 𝑥

+
1 ∥

2 (B.24)

and our claim follows again by invoking Proposition B.2 to write
𝐾

2
∥𝑥+2 − 𝑥

+
1 ∥

2 − 𝐹 (𝑥+2 , 𝑦
+
1 ) − 𝐹 (𝑥

+
1 , 𝑦) ≤ −𝐹 (𝑥

+
1 , 𝑦) ≤ −

𝐾

2
∥𝑥+1 − 𝑥∥

2 (B.25)

and then substituting the result in (B.24) ■

Lemmas B.2 and B.3 will be responsible for most of the heavy lifting to derive a Lyapunov function
for (FTRL+). We discuss the relevant details in Appendix D.
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C Continuous-time analysis

C.1. Dynamical systems notions. To fix notation, we recall here some basics from the theory of
dynamical systems, roughly following [2, 51]. In this section, M is an open subset of a Euclidean
space of dimension 𝑑.

We consider a system of ordinary differential equations (ODEs) of the form

¤𝑥(𝑡) = 𝑋 (𝑥(𝑡)) , (DS)

where 𝑥(𝑡) is a curve in M defined on an open interval I ⊆ ℝ (that without loss of generality we
assume to contain 0), and 𝑋 : M→ ℝ𝑑 is a smooth function. The function 𝑋 is called vector field
because it assigns a vector 𝑋 (𝑥) to each point 𝑥 in M, and (DS) is called dynamical system generated
by 𝑋 .

Given 𝑥0 ∈M, an orbit with initial condition 𝑥0 is a solution 𝑥(𝑡) of (DS) with 𝑥(0) = 𝑥0. The flow
generated by 𝑋 is the smooth function Θ : I ×M→M such that Θ0 (𝑥0) = 𝑥0 for all 𝑥0 ∈M and
𝑑
𝑑𝑡
Θ𝑡 (𝑥) = 𝑋 (Θ𝑡 (𝑥)) for all 𝑡 ∈ I. In words, Θ𝑡 (𝑥0) is the orbit 𝑥(𝑡) with initial condition 𝑥0; the

existence and uniqueness of this function is guaranteed by the existence and uniqueness theorem of
solutions of ordinary differential equations.

A flow Θ is called volume-preserving if vol(Θ𝑡 (U)) = vol(U) for any (Lebesgue) measurable
subset U ⊆ M and all 𝑡 ∈ I. Liouville’s theorem gives a sufficient condition for a flow to be
volume-preserving based on the divergence of its generating field:10

Theorem (Liouville). If div 𝑋 ≡ 0 then the flow generated by 𝑋 is volume-preserving.

Volume-preserving flows are closely related to recurrent dynamical patterns. A point 𝑥 ∈M is said to
be recurrent under (DS) if, for every neighborhood U of 𝑥 ∈M, there exists an increasing sequence
of time 𝑡𝑛 ↑ ∞ such that Θ𝑡𝑛 (𝑥) is defined and falls in U for all 𝑛. Moreover, (DS) is said to be
Poincaré recurrent if almost every point 𝑥 ∈M is recurrent. The celebrated Poincaré recurrence
theorem gives a sufficient condition for a dynamical system to be Poincaré recurrent:
Theorem (Poincaré). Let 𝑋 be a smooth vector field on M. If the flow induced by 𝑋 is volume-
preserving and all the orbits of (DS) are bounded, then (DS) is Poincaré recurrent.

C.2. Basic properties of FTRL. In this section we survey some of the properties of the follow-
the-regularized-leader learning scheme in a continuous-time, multi-agent setting, in line with the
presentations of [16, 38, 41]. For ease of reference we recall here some of the notions introduced in
Appendix B and in Sections 2 and 3 from the main body of the paper.

Let Γ = Γ(N ,A, 𝑢) be a finite normal form game, and let 𝑣 denote its payoff field. The game’s
strategy space is X =

∏
𝑗∈N Δ(A 𝑗 ) ⊆ V := ∏

𝑗 ℝ
A 𝑗 , and the game’s payoff space is Y := V∗. The

payoff field is a map 𝑣 : V → Y that evaluated at a strategy 𝑥 ∈ X acts linearly on any 𝑥′ ∈ X by

⟨𝑣(𝑥), 𝑥′⟩ =
∑︁

𝑖∈N ⟨𝑣𝑖 (𝑥), 𝑥
′
𝑖⟩ =

∑︁
𝑖∈N

∑︁
𝛼𝑖∈A𝑖

𝑣𝑖𝛼𝑖
(𝑥) 𝑥′𝑖𝛼𝑖

=
∑︁

𝑖∈N 𝑢𝑖 (𝑥′𝑖 , 𝑥−𝑖) ∈ ℝ .
(C.1)

Assume now that Γ is played continuously over time. As discussed in Section 3, the main idea behind
the follow-the-regularized-leader learning scheme is that, at any given time 𝑡 ≥ 0, each player 𝑖 ∈ N
tracks their cumulative payoff up to time 𝑡 and plays a “regularized” best response strategy in light of
this information. Concretely, given a cumulative payoff vector 𝑦𝑖 (𝑡) ∈ Y𝑖 , each player 𝑖 ∈ N selects
this optimal strategy 𝑥𝑖 (𝑡) ∈ X𝑖 by means of a regularized best response map 𝑄𝑖 : Y𝑖 → X𝑖 , a single-
valued analogue of the best-response correspondence 𝑦𝑖 ↦→ arg max𝑥𝑖∈X𝑖

⟨𝑦𝑖 , 𝑥𝑖⟩. A standard way
[56] of obtaining such map is to introduce a regularizer function ℎ𝑖 : X𝑖 → ℝ that is (i ) continuous on
X𝑖 , (ii ) smooth on riX𝑖 , the relative interior of X𝑖 , and (iii ) strongly convex on X𝑖 (as per Eq. (B.4));
and to consider the induced choice map 𝑄𝑖 : Y𝑖 → X𝑖 defined by

𝑄𝑖 (𝑦𝑖) = arg max𝑥𝑖∈X𝑖
{⟨𝑦𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} for all 𝑦𝑖 ∈ Y𝑖 . (6)

By Proposition B.1, 𝑄𝑖 is well-defined and Lipschitz continuous, and it coincides with the differential
∇ℎ∗

𝑖
of ℎ∗

𝑖
: Y𝑖 → ℝ, the convex conjugate of ℎ𝑖 .

10Recall here that the divergence is a differential operator mapping a vector field 𝑋 on M to the real-valued
function div 𝑋 (𝑥) := ∑𝑑

𝛼=1 𝜕𝛼𝑋
𝛼 (𝑥), where 𝜕𝛼 is a shorthand for the partial derivative 𝜕/𝜕𝑥𝛼
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In a continuous time setting, this regularized learning scheme translates into the following implicit
equations of motion, which govern the evolution of the cumulative payoff 𝑦(𝑡) ∈ Y and of the mixed
strategy profile 𝑥(𝑡) ∈ X as the players attempt to maximize their payoff over time:

𝑦𝑖𝛼𝑖
(𝑡) = 𝑦𝑖𝛼𝑖

(0) +
∫ 𝑡

0
𝑣𝑖𝛼𝑖
(𝑥(𝜏)) 𝑑𝜏 with 𝑥𝑖 (𝑡) = 𝑄𝑖 (𝑦𝑖 (𝑡)) , (C.2)

for all 𝑖 ∈ N , 𝛼𝑖 ∈ A𝑖 . A straightforward computation shows that this is equivalent to Eq. (5) from
Section 3 in the main text, that governs the evolution of the mixed strategy 𝑥(𝑡) ∈ X :

𝑥𝑖 (𝑡) = arg max
𝑝𝑖∈X𝑖

{∫ 𝑡

0
𝑢𝑖 (𝑝𝑖; 𝑥−𝑖 (𝜏)) 𝑑𝜏 − ℎ𝑖 (𝑝𝑖)

}
= arg max

𝑝𝑖∈X𝑖

{∫ 𝑡

0
⟨𝑣𝑖 (𝑥(𝜏)), 𝑝𝑖⟩ 𝑑𝜏 − ℎ𝑖 (𝑝𝑖)

}
. (5)

Importantly, Eq. (C.2) can be cast in the form (DS) of a dynamical system in the game’s payoff space.
For each 𝑖 ∈ N , differentiation with respect to 𝑡 yields

¤𝑦𝑖 (𝑡) = 𝑣𝑖 (𝑥(𝑡)) 𝑥𝑖 (𝑡) = 𝑄𝑖 (𝑦𝑖 (𝑡)) , (FTRL-D)

and by aggregating the player indices we obtain the system of ODEs

¤𝑦 = 𝑌 (𝑦) , (C.3)

where 𝑌 := 𝑣 ◦𝑄 : Y → Y is a continuous vector field on Y; cf. Fig. 3.

Existence and uniqueness of a global solution 𝑦(𝑡) ∈ Y of Eq. (C.3) for any initial condition 𝑦(0) ∈ Y
are guaranteed by standard arguments [38, Prop. 3.1]; in line with the terminology of the previous
section we will refer to such a solution as a dual orbit.

C.3. Constant of motion for harmonic games. The following result shows that FTRL in harmonic
games admits a constant of motion.

Proposition C.1. Let Γ = Γ(N ,A, 𝑢) be a finite game and consider a vector 𝑚 ∈ ℝ𝑁
++ and a fully

mixed strategy 𝑞 ∈ X . Then the weighted Fenchel coupling 𝐹𝑚,𝑞 : Y → ℝ defined by

𝐹𝑚,𝑞 (𝑦) :=
∑︁

𝑖
𝑚𝑖𝐹𝑖 (𝑞𝑖 , 𝑦𝑖) =

∑︁
𝑖
𝑚𝑖

(
ℎ𝑖 (𝑞𝑖) + ℎ∗𝑖 (𝑦𝑖) − ⟨𝑞𝑖 , 𝑦𝑖⟩

)
(C.4)

is a constant of motion under (FTRL-D) if and only if Γ is harmonic with strategic center (𝑚, 𝑞).

Proof. Let 𝑦(𝑡) be a dual orbit. Then by chain rule

𝑑

𝑑𝑡
𝐹𝑚,𝑞 (𝑦(𝑡)) =

∑︁
𝑖
𝑚𝑖

[
⟨∇ℎ∗𝑖 (𝑦𝑖), ¤𝑦𝑖⟩ − ⟨𝑞𝑖 , ¤𝑦𝑖⟩

]
=
∑︁

𝑖
𝑚𝑖 ⟨𝑥𝑖 (𝑡) − 𝑞𝑖 , 𝑣𝑖 (𝑥(𝑡))⟩ (C.5)

where the second equality holds by (FTRL-D) and Eq. (B.9). Then, by the characterization of
harmonic games in terms of a strategic center (HG-center), the time derivative of the weighted
Fenchel coupling vanishes identically along a dual orbit of (FTRL-D) precisely if the underlying
game is harmonic. ■

The existence of this constant of motion is fundamental for proving Theorem 2, i.e., the Poincaré
recurrence of continuous-time FTRL in harmonic games. With this key element established, the
remainder of this appendix closely follows the proof technique described by [41] for the analogous
result in the context of two-player zero-sum games.

C.4. FTRL in the space of payoff differences. For any initial condition 𝑦(0) ∈ Y , a dual orbit of
(FTRL-D) induces a curve 𝑥(𝑡) = 𝑄(𝑦(𝑡)) in the game’s strategy space X which solves Eq. (5) for
all 𝑡 ≥ 0; in the following we will refer to such curve as trajectory of play. Crucially, a trajectory
of play is in general not the global solution of a dynamical system ¤𝑥 = 𝑋 (𝑥) for some vector field
𝑋 : X → X in the game’s strategy space. The reason for this is that the map 𝑄 : Y → X is not
necessarily invertible, so there is in general no way to identify a unique a vector field 𝑋 on X that is
related to the vector field 𝑌 on Y via 𝑄.
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V =
∏

𝑗 ℝ
A 𝑗 Y = V∗ ℝ

X Z

𝑣

Π

𝐹

𝑄

�̂�

Figure 3: FTRL diagram. Commutative diagram of the maps discussed in Appendices C.2–C.4; note in
particular that 𝑣 ◦𝑄 is a vector field on Y . The notation X ↩→ V is equivalent to X ⊆ V .

Related vector fields and induced dynamical systems The concept of vector fields related by a
smooth map is standard in differential geometry (e.g., [35, p. 181]). Let M,M′ be open subsets of
Euclidean space: given a vector field 𝑌 on M and a smooth map 𝐹 : M→M′, a vector field 𝑋 on
M′ is called 𝐹-related to 𝑌 if, for all 𝑦 ∈M, (Jac 𝐹)𝑦 · 𝑌 (𝑦) = 𝑋 (𝑥), with 𝑥 = 𝐹 (𝑦). Here Jac 𝐹 is
the Jacobian matrix of 𝐹, and · represents matrix-vector multiplication. If 𝐹 is invertible then such
vector field exists always and is unique; else, it might exist and not be unique, or not exist at all.

Vector fields that are related via a smooth map are useful inasmuch as they generate “compatible”
dynamical systems:
Lemma C.2. Let 𝐹 : M→M′ be a smooth map between open subsets of Euclidean spaces, and
let ¤𝑦 = 𝑌 (𝑦) be a dynamical system on M. Let 𝑦(𝑡) be an orbit with initial condition 𝑦0 ∈M, and
consider the curve on M′ defined by 𝑥(𝑡) := 𝐹 (𝑦(𝑡)). If there exists a vector field 𝑋 on M′ that is
𝐹-related to 𝑌 , then the curve 𝑥(𝑡) is an orbit of the dynamical system ¤𝑥 = 𝑋 (𝑥) with initial condition
𝑥0 = 𝐹 (𝑦0).

Proof. By chain rule,

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑑

𝑑𝑡
𝐹 (𝑦(𝑡)) = (Jac 𝐹)𝑦(𝑡 ) · ¤𝑦(𝑡) = (Jac 𝐹)𝑦(𝑡 ) · 𝑌 (𝑦(𝑡)) = 𝑋 (𝑥(𝑡)) , (C.6)

where the last equality follows by the assumption that 𝑋 is 𝐹-related to 𝑌 . ■

In the following, if 𝐹 : M→M′ is a smooth function between open subsets of Euclidean spaces,
and 𝑌, 𝑋 are vector fields fulfilling the assumptions of Lemma C.2, we say that the dynamical system
¤𝑦 = 𝑌 (𝑦) on M induces the dynamical system ¤𝑥 = 𝑋 (𝑥) on M′ via 𝐹.

FTRL induced in the space of payoff differences The choice map 𝑄 : Y → X is in general not
smooth, and neither injective nor surjective [16, Sec.3], so it generally does not allow to induce
the dynamical system (C.3) from the game’s payoff space Y to the game’s strategy space X . 11 In
other words, the learning process (FTRL-D) in a finite game gives rise to a dynamical system in
the game’s payoff space Y , to which the theorems presented in Appendix C.1 can in principle be
applied; however, it can be shown that the orbits of Eq. (C.3) in Y are not bounded, preventing the
application of Poincaré’s theorem. Furthermore, the dual orbits do not convey direct information on
the day-to-day behavior of the players, due to the lack of invertibility of the choice map.

Conversely, the objects of interest from a dynamical, learning viewpoint – that is, the trajectories of
play in the game’s strategy space X – present technical difficulties and do not easily fit the dynamical
systems framework depicted in Appendix C.1. In the following we show how these difficulties can be
circumvented by analyzing the dynamics induced by (FTRL-D) in yet a third space Z , that arises by
taking the differences between payoffs – rather than their absolute values – as the objects of study.

To make this precise, given the game Γ = Γ(N ,A, 𝑢) fix a benchmark strategy �̂�𝑖 ∈ A𝑖 for every
player 𝑖 ∈ N , and consider the hyperplane Z𝑖 := {𝑧𝑖 ∈ ℝ𝐴𝑖 : 𝑧𝑖 �̂�𝑖

= 0} ⊂ ℝ𝐴𝑖 . Clearly, Z𝑖 � ℝ𝐴𝑖−1.
Each player’s strategy space Y𝑖 = ℝ𝐴𝑖 can be mapped onto Z𝑖 by the linear operator

Π𝑖 : Y𝑖 → Z𝑖 with 𝑧𝑖𝛼𝑖
= 𝑦𝑖𝛼𝑖

− 𝑦𝑖 �̂�𝑖
(C.7)

for all 𝛼𝑖 ∈ A𝑖 .
11A detailed treatment of the conditions under which a trajectory of play 𝑥(𝑡) actually is a solution of

dynamical system in the game’s strategy space X is beyond the scope of this work; we refer the interested reader
to [38, 39] for an in-depth treatment.
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Π𝑖 is clearly smooth, and a standard check shows that Π𝑖 is surjective and not injective: kerΠ𝑖 =

{𝑦𝑖 : 𝑦𝑖𝛼𝑖
= 𝑦𝑖𝛽𝑖 for all 𝛼𝑖 , 𝛽𝑖 ∈ A𝑖} is the 1-dimensional linear subspace spanned by the vector

1𝑖 = (1, . . . , 1) ∈ Y𝑖; and Π−1 (𝑧𝑖) = 𝑧𝑖 + kerΠ𝑖 for any 𝑧𝑖 ∈ Z𝑖 . In particular, for all 𝑦𝑖 , 𝑦′𝑖 ∈ Y𝑖 , we
have that Π𝑖 (𝑦𝑖) = Π𝑖 (𝑦′𝑖 ) if and only if 𝑦𝑖 − 𝑦′𝑖 is proportional to 1𝑖 .
Since every 𝑧𝑖 ∈ Z𝑖 is the image of some payoff 𝑦𝑖 via Π𝑖 , the space Z := ∏

𝑗 Z 𝑗 is called the game’s
payoff-difference space; we will denote by Π the product map Π ≡∏

𝑗 Π 𝑗 , i.e., (cf. Fig. 3)

Π : Y → Z , Π(𝑦) := (Π𝑖 (𝑦𝑖))𝑖∈N . (C.8)

Lemma C.3. The choice map 𝑄 : Y → X is invariant on the level sets of Π.

Proof. Let 𝑦, 𝑦′ ∈ Y . By the discussion above, Π(𝑦) = Π(𝑦′) iff 𝑦′
𝑖
− 𝑦𝑖 = 𝜆1𝑖 for some 𝜆 ∈ ℝ. Then

for each 𝑖 ∈ N ,

𝑄𝑖 (𝑦′𝑖 ) = arg max
𝑥𝑖∈X𝑖

{⟨𝑦′𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} = arg max
𝑥𝑖∈X𝑖

{⟨𝑦𝑖 , 𝑥𝑖⟩ + 𝜆⟨1𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} = 𝑄𝑖 (𝑦𝑖) . ■

Proposition C.4. The dynamical system (C.3) in the game’s payoff space Y induces a dynamical
system

¤𝑧 = 𝑍 (𝑧) (C.9)
in the game’s payoff-difference space Z via the map (C.8).

Proof. By the discussion in the previous section (and in particular Lemma C.2), if we exhibit a vector
field 𝑍 on Z that is Π-related to 𝑌 , then our proof is complete. Thus we look for a vector field 𝑍 such
that, for all 𝑦 ∈ Y ,

(JacΠ)𝑦 · 𝑌 (𝑦) = 𝑍 (𝑧), (C.10)
with 𝑧 = Π(𝑦). By Eq. (C.7), (JacΠ𝑖)𝛼𝑖𝛽𝑖 = 𝛿𝛼𝑖𝛽𝑖 − 𝛿 �̂�𝑖𝛽𝑖 . Since 𝑌 = 𝑣 ◦𝑄, the sought-after vector
field 𝑍 must fulfill, for all 𝑦 ∈ Y and all 𝛼𝑖 ∈ A𝑖 ,

(𝑣𝑖𝛼𝑖
− 𝑣𝑖 �̂�𝑖

) ◦𝑄𝑖 (𝑦𝑖) = 𝑍𝑖𝛼𝑖
(𝑧𝑖) , (C.11)

with 𝑧 = Π(𝑦). For each 𝑖 ∈ N define now (cf. Fig. 3)

�̂�𝑖 : Z𝑖 → X𝑖 , �̂�𝑖 (𝑧𝑖) = 𝑄(𝑦𝑖) (C.12)

for any 𝑦𝑖 ∈ Π−1
𝑖
(𝑧𝑖), and denote by �̂� : Z → X the induced product map. Such map exists since Π𝑖

is surjective, and is well-defined by Lemma C.3. It follows that the vector field on Z defined by

𝑍𝑖𝛼𝑖
(𝑧𝑖) := (𝑣𝑖𝛼𝑖

− 𝑣𝑖 �̂�𝑖
) ◦ �̂�𝑖 (𝑧𝑖) (C.13)

for all 𝑖 ∈ N , 𝑧𝑖 ∈ Z𝑖 , 𝛼𝑖 ∈ A𝑖 fulfills Eq. (C.11), and is hence Π-related to 𝑌 . ■

This result shows that, for every dual orbit 𝑦(𝑡) of Eq. (C.3) with initial condition 𝑦0 ∈ Y , the curve
𝑧(𝑡) = Π(𝑦(𝑡)) is an orbit of the dynamical system (C.9) in Z with initial condition Π(𝑦0). To
conclude this section we give a result implying that if the weighted Fenchel coupling (C.4) is a
constant of motion constant then the solution orbits of (C.9) in Z are bounded.
Lemma C.5. For any 𝑖 ∈ N , let 𝑦𝑖,𝑛 be a sequence in Y𝑖 , and let 𝑞𝑖 be a point in the relative
interior of X𝑖 . If sup𝑛 |ℎ∗ (𝑦𝑖,𝑛) − ⟨𝑦𝑖,𝑛, 𝑞𝑖⟩| < ∞, then also the score differences remain bounded, i.e.,
|𝑦𝑖𝛼𝑖 ,𝑛 − 𝑦𝑖𝛽𝑖 ,𝑛 | < ∞ for all 𝛼𝑖 , 𝛽𝑖 ∈ A𝑖 and all 𝑛.

Proof. See [41, Appendix D]. ■

Lemma C.6. If the weighted Fenchel coupling (C.4) is a constant of motion under (FTRL-D) for
some fully mixed 𝑞 ∈ X then the orbits of ¤𝑧 = 𝑍 (𝑧) as in Eq. (C.9) are bounded in Z .

Proof. Assume that 𝐹𝑚,𝑞 (𝑦) =
∑

𝑖 𝑚𝑖𝐹𝑖 (𝑞𝑖 , 𝑦𝑖) =
∑

𝑖 𝑚𝑖

(
ℎ𝑖 (𝑞𝑖) + ℎ∗𝑖 (𝑦𝑖) − ⟨𝑞𝑖 , 𝑦𝑖⟩

)
is a constant

of motion for (FTRL-D) for some fully mixed 𝑞 ∈ X and some 𝑚 ∈ ℝ𝑁
++. Let 𝑦(𝑡) be an orbit

of (FTRL-D) in Y , and let 𝑦𝑖,𝑛 := 𝑦𝑖 (𝑡𝑛) for any sequence of time 𝑡𝑛. Let furthermore 𝐹𝑖,𝑛 :=
ℎ∗
𝑖
(𝑦𝑖,𝑛) − ⟨𝑞𝑖 , 𝑦𝑖,𝑛⟩. Then sup𝑛 |𝐹𝑖,𝑛 | < ∞. By Lemma C.5, this implies that |𝑧𝑖𝛼𝑖 ,𝑛 | < ∞ for all

𝛼𝑖 ∈ A𝑖 , all 𝑖 ∈ N , and all 𝑛. ■
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C.5. Recurrence of FTRL in harmonic games. We now have all the ingredients to prove that
almost every trajectory of play 𝑥(𝑡) of (FTRL-D) in harmonic games returns arbitrarily close to its
starting point infinitely often.
Theorem 2. Suppose Γ is harmonic. Then almost every orbit 𝑥(𝑡) of (FTRL-D) returns arbitrarily
close to its starting point infinitely often: specifically, for (Lebesgue) almost every initial condition
𝑥(0) = 𝑄(𝑦(0)) ∈ X , there exists an increasing sequence of times 𝑡𝑛 ↑ ∞ such that 𝑥(𝑡𝑛) → 𝑥(0).

Proof of Theorem 2. The proof relies on the following steps:

1. the vector field 𝑍 defined in Eq. (C.13) has vanishing divergence, so its induced flow is volume-
preserving in Z by Liouville’s theorem;

2. the orbits of the dynamical system ¤𝑧 = 𝑍 (𝑧) of Eq. (C.9) are bounded in Z since the weighted
Fenchel coupling (C.4) is a constant of motion for FTRL in harmonic games;

3. the dynamical system ¤𝑧 = 𝑍 (𝑧) is recurrent in Z by Poincaré theorem;

4. by continuity of Eq. (C.12), almost every trajectory of play 𝑥(𝑡) of (FTRL-D) with initial
condition in the image of �̂� returns arbitrarily close to its starting point infinitely often.

Indeed, div 𝑍 (𝑧) = ∑
𝑖

∑
𝛼𝑖

𝜕
𝜕𝑧𝑖𝛼𝑖
((𝑣𝑖𝛼𝑖

− 𝑣𝑖 �̂�𝑖
) ◦ �̂�𝑖 (𝑧𝑖)). For the first term, by chain rule,

div 𝑍 (𝑧) =
∑︁

𝑖

∑︁
𝛼𝑖

𝜕𝑣𝑖𝛼𝑖

𝜕𝑧𝑖𝛼𝑖

(�̂�𝑖 (𝑧𝑖)) =
∑︁

𝑖

∑︁
𝛼𝑖

∑︁
𝑗

∑︁
𝛽 𝑗

𝜕𝑣𝑖𝛼𝑖

𝜕𝑥 𝑗𝛽 𝑗

(�̂�(𝑧))
𝜕�̂� 𝑗𝛽 𝑗

𝜕𝑧𝑖𝛼𝑖

(𝑧)

=
∑︁

𝑖

∑︁
𝛼𝑖

∑︁
𝛽𝑖

𝜕𝑣𝑖𝛼𝑖

𝜕𝑥𝑖𝛽𝑖
(�̂�(𝑧))

𝜕�̂�𝑖𝛽𝑖

𝜕𝑧𝑖𝛼𝑖

(𝑧) ≡ 0

since
𝜕𝑣𝑖𝛼𝑖
𝜕𝑥𝑖𝛽𝑖

≡ 0 by multilinearity of the payoff functions. The second term yields identical result with
�̂�𝑖 ← 𝛼𝑖 , so we conclude that div 𝑍 = 0. By Lemma C.6, the invariance of the weighted Fenchel
coupling under (FTRL-D) implies that the payoff differences 𝑧𝑖𝛼𝑖

(𝑡) = 𝑦𝑖𝛼𝑖
(𝑡) − 𝑧𝑖 �̂�𝑖

(𝑡) remain
bounded for all 𝑡 ∈ [0,∞). So, by Poincaré theorem, the dynamical system ¤𝑧 = 𝑍 (𝑧) is Poincaré
recurrent, i.e., there exists a sequence of time 𝑡𝑛 ↑ ∞ such that lim𝑛→∞ 𝑧(𝑡𝑛) = 𝑧0 for almost every
𝑧0 ∈ Z . By continuity of (C.12), almost every trajectory of play 𝑥(𝑡) = 𝑄(𝑦(𝑡)) = �̂�(𝑧(𝑡)) with
𝑥0 ∈ im �̂� fulfills lim𝑛→∞ 𝑥(𝑡𝑛) = 𝑥0, which concludes our proof by noting that the image of �̂� is the
same as the image of 𝑄. ■

D Discrete-time analysis

In this appendix, our aim is to provide the full proofs for the discrete-time guarantees of (FTRL+), as
presented in Section 4. Our analysis hinges on a series of energy functions and associated template
inequalities, which we introduce in the next section.

D.1. Lyapunov functions and template inequalities for (FTRL+). The main building block of
our analysis is a suitable Lyapunov function for the discrete-time algorithmic template (FTRL+).
Motivated by the continuous-time analysis of Appendix C, we begin by considering the player-specific
Fenchel couplings

𝐹𝑖 (𝑝𝑖 , 𝑦𝑖) = ℎ𝑖 (𝑝𝑖) + ℎ∗𝑖 (𝑦𝑖) − ⟨𝑦𝑖 , 𝑝𝑖⟩ for 𝑝𝑖 ∈ X𝑖 , 𝑦𝑖 ∈ Y𝑖 (D.1)

induced by the regularizer ℎ𝑖 of player 𝑖 ∈ N .

Suppose now that the game is harmonic relative to some measure 𝜇 = (𝜇1, . . . , 𝜇𝑁 ), let 𝑚𝑖 =∑
𝛼𝑖∈A𝑖

𝜇𝑖𝛼𝑖
denote the mass of 𝜇𝑖 , and assume further that each player is running (FTRL+) with

learning rate 𝜂𝑖 > 0. Our analysis will hinge on the energy function

𝐸𝑛 =
∑︁
𝑖∈N

𝑚𝑖

𝜂𝑖
𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛) (D.2)

which, as we show below, satisfies the following template inequality:
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Proposition D.1. Suppose that each player is running (FTRL+) with learning rate 𝜂𝑖 > 0 in a
harmonic game as above. Then, for all 𝑝𝑖 ∈ X𝑖 , 𝑖 ∈ N , and all 𝑛 = 1, 2, . . . , we have:

𝐸𝑛+1 ≤ 𝐸𝑛 +
∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑥𝑖,𝑛+1/2 − 𝑝𝑖⟩

+
∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩

+
∑︁
𝑖∈N

𝑚𝑖 (1 − 𝜆𝑖)⟨𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩

−
∑︁
𝑖∈N

𝑚𝑖

𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1, 𝑦𝑖,𝑛+1/2)

−
∑︁
𝑖∈N

𝑚𝑖

𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1/2, 𝑦𝑖,𝑛) (D.3)

Proof. We begin by applying the bound (B.22b) of Lemma B.3 with the array of substitutions

1. 𝑝 ← 𝑝𝑖

2. 𝑤1 ← 𝜂𝑖 �̂�𝑖,𝑛 = 𝜂𝑖𝜆𝑖 𝑣𝑖 (𝑥𝑛) + 𝜂𝑖 (1 − 𝜆𝑖) 𝑣𝑖 (𝑥𝑛−1/2)
3. 𝑤2 ← 𝜂𝑖 �̂�𝑖,𝑛+1/2 = 𝜂𝑖𝑣𝑖 (𝑥𝑛+1/2)
4. 𝑦← 𝑦𝑖,𝑛 so 𝑥 ← 𝑄𝑖 (𝑦𝑖,𝑛) = 𝑥𝑖,𝑛
5. 𝑦+1 ← 𝑦𝑖,𝑛+1/2 so 𝑥+1 ← 𝑥𝑖,𝑛+1/2

6. 𝑦+2 ← 𝑦𝑖,𝑛+1 so 𝑥+2 ← 𝑥𝑖,𝑛+1

We then get

⟨𝑤2 − 𝑤1, 𝑥
+
2 − 𝑥

+
1 ⟩ = 𝜂𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2) − 𝜆𝑖 𝑣𝑖 (𝑥𝑛) − (1 − 𝜆𝑖) 𝑣𝑖 (𝑥𝑛−1/2), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩

= 𝜂𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩
+ 𝜂𝑖 (1 − 𝜆𝑖)⟨𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩ (D.4)

and hence, by (B.22b):

𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛+1) ≤ 𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛) + 𝜂𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑥𝑖,𝑛+1/2 − 𝑝𝑖⟩
+ 𝜂𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩
+ 𝜂𝑖 (1 − 𝜆𝑖)⟨𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩
− 𝐹𝑖 (𝑥𝑖,𝑛+1, 𝑦𝑖,𝑛+1/2)
− 𝐹𝑖 (𝑥𝑖,𝑛+1/2, 𝑦𝑖,𝑛) . (D.5)

Accordingly, by the definition (D.2) of 𝐸𝑛, (D.3) follows by multiplying both sides by 𝑚𝑖/𝜂𝑖 and
summing over 𝑖 ∈ N . ■

Thanks to this template inequality, we are in a position to establish the following summability
guarantee for (FTRL+).
Proposition D.2. Suppose that each player in a harmonic game Γ with harmonic measure 𝜇 is
following (FTRL+) with learning rate 𝜂𝑖 ≤ 𝑚𝑖𝐾𝑖 [2(𝑁 + 2)max 𝑗 𝑚 𝑗𝐺 𝑗 ]−1. Then, for all 𝑇 , we have:

𝑇∑︁
𝑛=1
∥𝑥𝑛+1/2 − 𝑥𝑛∥2 +

𝑇∑︁
𝑛=2
∥𝑥𝑛 − 𝑥𝑛−1/2∥2 ≤

2𝐸1
(𝑁 + 2)max𝑖 𝑚𝑖𝐺𝑖

(D.6)

Proof. By reshuffling the terms of the template inequality (D.3), we get∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑝𝑖 − 𝑥𝑖,𝑛+1/2⟩ ≤ 𝐸𝑛 − 𝐸𝑛+1

+
∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩ (D.7a)

+
∑︁
𝑖∈N

𝑚𝑖 (1 − 𝜆𝑖)⟨𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩ (D.7b)
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−
∑︁
𝑖∈N

𝑚𝑖

𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1, 𝑦𝑖,𝑛+1/2) −

∑︁
𝑖∈N

𝑚𝑖

𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1/2, 𝑦𝑖,𝑛) . (D.7c)

We will now proceed to bound each term of (D.7) individually, paying no heed to make the resulting
bounds as tight as possible.

Bounding (D.7a). By the Fenchel-Young inequality, we have:

(D.7a) ≤
∑︁
𝑖∈N

𝑚𝑖

2𝐺𝑖

∥𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛)∥2∗ +
∑︁
𝑖∈N

𝑚𝑖𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2

≤
∑︁
𝑖∈N

𝑚𝑖𝐺𝑖

2
∥𝑥𝑛+1/2 − 𝑥𝑛∥2 +

∑︁
𝑖∈N

𝑚𝑖𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2 ⊲ NB: 𝑣𝑖 (𝑥) is 𝐺𝑖-Lipschitz

≤ 1
2𝑁 max𝑖 𝑚𝑖𝐺𝑖 · ∥𝑥𝑛+1/2 − 𝑥𝑛∥2 + 1

2 max𝑖 𝑚𝑖𝐺𝑖 · ∥𝑥𝑛+1 − 𝑥𝑛+1/2∥2 (D.8)

Bounding (D.7b). Again, by the Fenchel-Young inequality, we obtain:

(D.7b) ≤
∑︁
𝑖∈N

𝑚𝑖 (1 − 𝜆𝑖)
2𝐺𝑖

∥𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2)∥2∗ +
∑︁
𝑖∈N

𝑚𝑖 (1 − 𝜆𝑖)𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2

≤
∑︁
𝑖∈N

𝑚𝑖 (1 − 𝜆𝑖)𝐺𝑖

2
∥𝑥𝑛 − 𝑥𝑛−1/2∥2 +

∑︁
𝑖∈N

𝑚𝑖 (1 − 𝜆𝑖)𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2

⊲ NB: 𝑣𝑖 (𝑥) is 𝐺𝑖-Lipschitz

≤ 1
2𝑁 max𝑖 𝑚𝑖𝐺𝑖 · ∥𝑥𝑛 − 𝑥𝑛−1/2∥2 + 1

2 max𝑖 𝑚𝑖𝐺𝑖 · ∥𝑥𝑛+1 − 𝑥𝑛+1/2∥2 (D.9)

Bounding (D.7c). Finally, by the lower bound on the Fenchel coupling of Proposition B.2, we get:

−
∑︁
𝑖∈N

𝑚𝑖

𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1, 𝑦𝑖,𝑛+1/2) −

∑︁
𝑖∈N

𝑚𝑖

𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1/2, 𝑦𝑖,𝑛)

≤ −
∑︁
𝑖∈N

𝑚𝑖𝐾𝑖

2𝜂𝑖
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2 −

∑︁
𝑖∈N

𝑚𝑖𝐾𝑖

2𝜂𝑖
∥𝑥𝑖,𝑛+1/2 − 𝑥𝑖,𝑛∥2 ⊲ by (B.14b)

≤ −min𝑖
𝑚𝑖𝐾𝑖

2𝜂𝑖
· [∥𝑥𝑛+1 − 𝑥𝑛+1/2∥2 + ∥𝑥𝑛+1/2 − 𝑥𝑛∥2] (D.10)

Thus, by folding Eqs. (D.8)–(D.10) back into (D.7), we obtain the bound∑︁
𝑖∈N

𝑚𝑖 ⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑝𝑖 − 𝑥𝑖,𝑛+1/2⟩ ≤ 𝐸𝑛 − 𝐸𝑛+1

+ 1
2

(
𝑁 max𝑖 𝑚𝑖𝐺𝑖 −min𝑖

𝑚𝑖𝐾𝑖

𝜂𝑖

)
∥𝑥𝑛+1/2 − 𝑥𝑛∥2

+ 1
2

(
2 max𝑖 𝑚𝑖𝐺𝑖 −min𝑖

𝑚𝑖𝐾𝑖

𝜂𝑖

)
∥𝑥𝑛+1 − 𝑥𝑛+1/2∥2

+ 1
2
𝑁 max𝑖 𝑚𝑖𝐺𝑖 · ∥𝑥𝑛 − 𝑥𝑛−1/2∥2 . (D.11)

Now, if we instantiate (D.11) to 𝑝 ← 𝑞 where 𝑞 is the strategic center of Γ, its left-hand side (LHS)
will vanish by (HG-center). Hence, summing over all 𝑛 = 1, 2, . . . , 𝑇 , (D.11) ultimately yields

0 ≤ 𝐸1 +
1
2

(
𝑁 max𝑖 𝑚𝑖𝐺𝑖 −min𝑖

𝑚𝑖𝐾𝑖

𝜂𝑖

)
𝑇∑︁
𝑛=1
∥𝑥𝑛+1/2 − 𝑥𝑛∥2

+ 1
2

(
(𝑁 + 2)max𝑖 𝑚𝑖𝐺𝑖 −min𝑖

𝑚𝑖𝐾𝑖

𝜂𝑖

)
𝑇∑︁
𝑛=2
∥𝑥𝑛 − 𝑥𝑛−1/2∥2

+ 1
2

(
2 max𝑖 𝑚𝑖𝐺𝑖 −min𝑖

𝑚𝑖𝐾𝑖

𝜂𝑖

)
∥𝑥𝑇+1 − 𝑥𝑇+1/2∥2

+ 1
2
𝑁 max𝑖 𝑚𝑖𝐺𝑖 · ∥𝑥1 − 𝑥1/2∥2 . (D.12)
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Now, by our step-size assumption, we readily obtain

(𝑁 + 2)max𝑖 𝑚𝑖𝐺𝑖 ≤
1
2

min𝑖
𝑚𝑖𝐾𝑖

𝜂𝑖
(D.13)

so (D.12) becomes

0 ≤ 𝐸1 −
1
4

min𝑖
𝑚𝑖𝐾𝑖

𝜂𝑖

𝑇∑︁
𝑛=1
∥𝑥𝑛+1/2 − 𝑥𝑛∥2 −

1
4

min𝑖
𝑚𝑖𝐾𝑖

𝜂𝑖

𝑇∑︁
𝑛=2
∥𝑥𝑛 − 𝑥𝑛−1/2∥2 (D.14)

where we used our initialization convention 𝑥1 = 𝑥1/2 and the fact that the third line of (D.12) is
negative. We thus get

𝑇∑︁
𝑛=1
∥𝑥𝑛+1/2 − 𝑥𝑛∥2 +

𝑇∑︁
𝑛=2
∥𝑥𝑛 − 𝑥𝑛−1/2∥2 ≤

4𝐸1
min𝑖 𝑚𝑖𝐾𝑖/𝜂𝑖

(D.15)

from which our assertion follows immediately. ■

D.2. Proof of Theorem 3. We are now in a position to prove the regret guarantees of (FTRL+),
which we restate below for convenience.
Theorem 3. Suppose that each player in a harmonic game Γ is following (FTRL+) with learning
rate 𝜂𝑖 ≤ 𝑚𝑖𝐾𝑖 [2(𝑁 +2)max 𝑗 𝑚 𝑗𝐺 𝑗 ]−1 and payoff signals as per (13) and (16). Then the individual
regret of each player 𝑖 ∈ N is bounded as

Reg𝑖 (𝑇) := max
𝑝𝑖∈X𝑖

𝑇∑︁
𝑛=1
[𝑢𝑖 (𝑝𝑖; 𝑥−𝑖,𝑛) − 𝑢𝑖 (𝑥𝑛)] ≤

𝐻𝑖

𝜂𝑖
+ 2𝐺𝑖

𝑁 + 2
∑︁
𝑗∈N

𝐻 𝑗

𝜂 𝑗𝐺 𝑗

(17)

where 𝐻𝑖 = max ℎ𝑖 −min ℎ𝑖 , and 𝐺𝑖 is the Lipschitz modulus of 𝑣𝑖 .

Proof. By a minor reshuffling of terms in (D.5), we readily get

⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑝𝑖 − 𝑥𝑖,𝑛+1/2⟩ ≤
1
𝜂𝑖
[𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛) − 𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛+1)]

+ ⟨𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩

+ (1 − 𝜆𝑖)⟨𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2), 𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2⟩

− 1
𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1, 𝑦𝑖,𝑛+1/2) −

1
𝜂𝑖
𝐹𝑖 (𝑥𝑖,𝑛+1/2, 𝑦𝑖,𝑛) (D.16)

and hence, by a repeated application of the Fenchel-Young inequality in Peter-Paul form:

⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑝𝑖 − 𝑥𝑖,𝑛+1/2⟩ ≤
1
𝜂𝑖
[𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛) − 𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛+1)]

+ 1
2𝐺𝑖

∥𝑣𝑖 (𝑥𝑛+1/2) − 𝑣𝑖 (𝑥𝑛)∥2∗ +
𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2

+ 1 − 𝜆𝑖
2𝐺𝑖

∥𝑣𝑖 (𝑥𝑛) − 𝑣𝑖 (𝑥𝑛−1/2)∥2∗ +
(1 − 𝜆𝑖)𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2

− 𝐾𝑖

2𝜂𝑖
[
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2 + ∥𝑥𝑖,𝑛+1/2 − 𝑥𝑖,𝑛∥2

]
. (D.17)

Hence, by using the Lipschitz continuity of 𝑣𝑖 , we finally get

⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑝𝑖 − 𝑥𝑖,𝑛+1/2⟩ ≤
1
𝜂𝑖
[𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛) − 𝐹𝑖 (𝑝𝑖 , 𝑦𝑖,𝑛+1)]

+ 𝐺𝑖

2
∥𝑥𝑛+1/2 − 𝑥𝑛∥2 +

𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2

+ 𝐺𝑖

2
∥𝑥𝑛 − 𝑥𝑛−1/2∥2 +

𝐺𝑖

2
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2

− 𝐾𝑖

2𝜂𝑖
[
∥𝑥𝑖,𝑛+1 − 𝑥𝑖,𝑛+1/2∥2 + ∥𝑥𝑖,𝑛+1/2 − 𝑥𝑖,𝑛∥2

]
(D.18)
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Thus, summing over 𝑛 = 1, 2, . . . , 𝑇 , and keeping in mind that our assumptions for 𝜂𝑖 also give
𝐺𝑖 < 𝐾𝑖/(2𝜂𝑖), we finally get

𝑇∑︁
𝑛=1
⟨𝑣𝑖 (𝑥𝑛+1/2), 𝑝𝑖 − 𝑥𝑖,𝑛+1/2⟩ ≤

𝐻𝑖

𝜂𝑖
+ 𝐺𝑖

2

[
𝑇∑︁
𝑛=1
∥𝑥𝑛+1/2 − 𝑥𝑛∥2 +

𝑇∑︁
𝑛=2
∥𝑥𝑛 − 𝑥𝑛−1/2∥2

]
(D.19)

where we used the fact that 𝐹𝑖 (𝑝𝑖 , 0) = ℎ(𝑝) − min ℎ𝑖 ≤ max ℎ𝑖 − min ℎ𝑖 =: 𝐻𝑖 . Our result then
follows by invoking (D.6) and using the fact that 𝑚𝑖𝐺𝑖 ≤ max 𝑗 𝑚 𝑗𝐺 𝑗 for all 𝑖 ∈ N . ■

D.3. Proof of Theorem 4. With all this said and done, we are finally in a position to prove the
convergence of (FTRL+). For convenience, we restate the relevant result below.
Theorem 4. Suppose that each player in a harmonic game Γ follows (FTRL+) with learning rate
𝜂𝑖 ≤ 𝑚𝑖𝐾𝑖 [2(𝑁 + 2)max 𝑗 𝑚 𝑗𝐺 𝑗 ]−1 and payoff signals as per (13) and (16). Then 𝑥𝑛 converges to a
Nash equilibrium of Γ.

Proof. By telescoping the template inequality (D.3) over 𝑛 = 1, 2, . . . and invoking the summability
property of (FTRL+) as stated in Proposition D.2, we readily conclude that the “deflated” Fenchel
energy (D.2) has sup𝑛 𝐸𝑛 < ∞ for the range of step-sizes identified in the statement of the theorem
(which is the same range that guarantees summability under Proposition D.2).

Now, since X is compact, it follows further that 𝑥𝑛 and 𝑥𝑛+1/2 both admit convergent subsequences;
in particular, by invoking one more time the summability property (D.6) of (FTRL+), we conclude
that there exists some 𝑥 ∈ X and an increasing sequence of times 𝑡𝑛 ↑ ∞ such that 𝑥𝑡𝑛 and 𝑥𝑡𝑛+1/2
both converge to 𝑥. Moreover, since 𝑥 = 𝑄(𝑦) if and only if 𝑦 ∈ 𝜕ℎ(𝑥), and since the subdifferential
is upper hemicontinuous as a set-valued correspondence [52, Chap. 26], we conclude that there
exists some �̂� ∈ Y such that 𝑦𝑡𝑛 → �̂� + PC(𝑥), where PC(𝑥) denotes the polar cone to X at 𝑥, that is
PC(𝑥) = {𝑦 ∈ Y : ⟨𝑦, 𝑥 − 𝑥⟩ ≤ 0 for all 𝑥 ∈ X }, and the notion of set-theoretic convergence above
means that any limit point of 𝑦𝑡𝑛 lies in �̂� + PC(𝑥), which in turn means that 𝑥 ∈ PC(𝑥). However, by
the variational characterization (VI) of Nash equilibria, we have that 𝑥 ∈ PC(𝑥) if and only if 𝑥 is a
Nash equilibrium, implying in turn that 𝑥 is Nash. Since the above holds for every limit point of 𝑥𝑛,
we conclude that 𝑥𝑛 converges to the set of Nash equilibria of the game. Finally, for the pointwise
convergence of the algorithm, going back to (D.7) and instantiating it to a (Nash) limit point of 𝑥𝑛,
we conclude that 𝐸𝑛 is decreasing. Thus, by descending to the subsequence 𝑥𝑡𝑛 constructed above,
we conclude that 𝐸𝑛 → 0, and our proof is complete. ■
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Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: All simulations were performed on standard laptops and as such do not carry any
particular computational burden.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We discuss in the introduction the use of learning in games.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification:

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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