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Abstract

This paper provides a theoretical understanding of Deep Q-Network (DQN) with
the ε-greedy exploration in deep reinforcement learning. Despite the tremendous
empirical achievement of the DQN, its theoretical characterization remains un-
derexplored. First, the exploration strategy is either impractical or ignored in the
existing analysis. Second, in contrast to conventional Q-learning algorithms, the
DQN employs the target network and experience replay to acquire an unbiased
estimation of the mean-square Bellman error (MSBE) utilized in training the Q-
network. However, the existing theoretical analysis of DQNs lacks convergence
analysis or bypasses the technical challenges by deploying a significantly over-
parameterized neural network, which is not computationally efficient. This paper
provides the first theoretical convergence and sample complexity analysis of the
practical setting of DQNs with ε-greedy policy. We prove an iterative procedure
with decaying ε converges to the optimal Q-value function geometrically. More-
over, a higher level of ε values enlarges the region of convergence but slows down
the convergence, while the opposite holds for a lower level of ε values. Experi-
ments justify our established theoretical insights on DQNs.

1 Introduction

Reinforcement learning (RL) is a sequential decision-making process for a learning agent taking
actions in the environment. RL has found important applications in autonomous control [37, 36],
healthcare [16], Internet of Things [40, 33], and natural language processing [70]. The environment
of an RL problem is modeled as a Markov decision process (MDP) with an underlying state transi-
tion probability matrix. The goal of the problem is to find an optimal policy to select the best actions
to maximize the immediate and future rewards. Q-learning [77] has been recognized as one of the
most promising and efficient learning algorithms for seeking the optimal policy because it does not
require the knowledge of the model of the environment (namely, “model free”) and can learn from
data generated from a non-optimal policy (namely, “off-policy”). Traditional Q-learning approaches
are centered on tabular methods [82, 41] or linear function approximations [65, 13] to estimate the
optimal action-value (Q-value) function. However, tabular methods require sample complexity scal-
ing in the order of state space, which is impractical for modern RL problems involving large or even
infinite state space [82]. Q-learning with linear function approximation is limited to applications
only when the transition matrix admits a linear feature representation [23].
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Table 1: Comparison among some representative works of Q-learning with function approximation.

Work Neural Approximation Convergence of MSBE ε-greedy
Yang & Wang (2019) ✗ ✓ ✗

Xu & Gu (2020) ✓ ✓ ✗

Fan et al. (2020) ✓ ✗ ✗

Liu et al. (2022) ✓ ✗ ✓

This work ✓ ✓ ✓

Due to the remarkable advancements in deep neural networks (DNNs), the Deep Q-network (DQN)
framework has emerged as a powerful approach that leverages the expressive power of non-linear
functions and the ability to generalize to unknown states. DQN has proven to be a pioneering
solution that addresses challenges encountered by traditional approaches. In the DQN framework
[51], the Q-value function is approximated using a DNN, and the algorithm iteratively updates the Q-
value function by collecting data following the ε-greedy policy. The ε-greedy policy is the simplest
approach to balance exploration and exploitation. Namely, with a probability of ε, we select a
random action (exploration), and with a probability of 1 − ε, we choose the best action according
to the current estimated Q-value function (exploitation). ε-greedy is myopic compared with other
strategic explorations, e.g., Thompson sampling-based [71, 55, 25] and optimism in the face of the
uncertainty (OFU)-based [30, 31] ones. However, implementing these strategic explorations is not
computationally efficient in DQNs [17], while DQNs equipped with ε-greedy policy have shown
empirical success in diversified applications, e.g., the game of Go [63], Atari games [51], robotics
[34], and autonomous vehicles [61, 12, 60].

Despite the numerical success, the theoretical understanding of DQN remains elusive, which could
prevent its applications in domains requiring reliable and safe decision-making. First, updating the
Q-value function involves minimizing a mean-squared Bellman error (MSBE) function. However,
existing convergence analysis and statistical properties are predominantly limited to linear models,
failing to capture the complexities present in non-linear neural networks like DQN. Second, the sam-
ple complexity required for the convergence of MSBE is still not well comprehended. Achieving the
desired accuracy in this context often demands a sample complexity that grows exponentially with
the input dimension [46], rendering it impractical and inefficient in real-world scenarios. Third, the
optimal selection of the ε value in DQN remains a gap in existing research. The hyperparameter
tuning in algorithms involved with neural networks can be arduous and time-consuming. For in-
stance, without a well-designed hyperparameter configuration, only a small fraction (e.g., 1%) of
the possible combinations yield satisfactory results in neural network training [76].

Contributions. To the best of our knowledge, this paper presents the first theoretical study with con-
vergence analysis for Deep Q-Networks (DQNs) utilizing the ε-greedy policy. A comparison with
existing works can be found in Table 1. The paper focuses on the Q-value function approximated
by a DNN. It offers a comprehensive analysis of the convergence of DQNs and provides insights
into the estimation error of the learned Q-value function, accompanied by an analysis of the sample
complexity. The key contributions of this study are as follows:

1. The convergence analysis of DQN with bounded estimation errors. Assuming the existence
of a DNN with unknown weights W ⋆ that matches the optimal Q-value function, this paper proves
that the learned model via DQNs equipped with ε-greedy policy through the (accelerated) gradient
descent algorithm converges linearly to W ⋆ up to some characterizable estimation error.

2. The theoretical characterization for a wide selection range of ε over iterations. This pa-
per provides lower and upper bounds of ε at each iteration for the convergence of DQNs and, in
particular, characterizes the sample complexity, estimation error, and convergence rate of the DQN
equipped with ε-greedy with decreasing ε. Moreover, this paper proves that a higher level of ε val-
ues leads to an enlarged region of convergence, which relaxes the requirement on the initialization,
while a lower level of ε values leads to faster convergence.

3. The sample complexity analysis for learning a desired Q-value function. We quantify the
required sample complexity, depending on the neural network parameters and distribution shift of the
collected data, for the learned model to converge to the desired accuracy. Typically, the estimation
error of the converged model scales in the order of 1/

√
Ns, where Ns is the number of samples.
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2 Related Works.

Q-learning with linear function approximation. In the setting of linear function approximation,
the Q-function is assumed to be a linear function of either the feature mapping [83, 32, 92] or a
mixture of some basis kernels [91, 52]. Early works mainly focus on the algorithm design [6, 48,
2] and convergence analysis [38, 47, 67, 14, 69] but lacks theoretical guarantees with polynomial
sample complexity. Assuming the underlying Q-function can be exactly represented as a linear
function of the feature mapping with some unknown parameters, several sample-efficient algorithms
are proposed to find the ground-truth mapping with finite-sample guarantee [11, 80], and the sample
complexity depends linearly on the feature dimension [80].

Q-learning with non-linear function approximation. Recent approaches with non-linear function
approximation mainly fall into the frameworks of the Bellman Eluder (BE) dimension [30, 18, 58,
27], Neural Tangent Kernel (NTK) [81, 10, 79, 10, 20, 53], and Besov regularity [68, 29, 54, 46,
24]. The Eluder dimension is at least in an exponential order even for a two-layer neural network
[19], leading to uncharacterizable sample complexity. The NTK framework linearizes deep neural
networks to tackle convergence in non-linear models. However, it requires using computationally
inefficient extremely wide neural networks [81]. Moreover, the sample complexity can exponentially
increase with the input feature dimension, necessitating a substantial number of samples for accurate
estimation. Furthermore, the NTK approach fails to explain the advantages of non-linear neural
networks over linear function approximation [46, 24]. Besov space requires the neural networks to
be sparse and makes an unpractical assumption that the algorithm can find the global optimal of the
non-convex objective function [29, 54, 46, 24]. To the best of our knowledge, only [46] considers
ε-greedy policy with theoretical analysis applicable to DQNs. However, the model is limited to
sparse neural networks, and it cannot characterize the case of varying ε.

Supervised learning with neural networks. Compared with Q-learning in RL, where the label of
the sampled data depends on the currently estimated Q function, analyzing supervised learning is
less challenging, where sampled data label is known and fixed across the training. Existing theo-
retical results for supervised learning are largely built upon NTK [28, 21, 39, 15, 43, 45], model
recovery [90, 26, 3, 64, 88, 85, 87], and structured data [44, 62, 8, 1, 35, 78, 84, 42]. Due to the high
non-convexity of neural networks [59], the one-hidden-layer neural network is still a state-of-the-
art practice for convergence analysis and generalization guarantees. Additional assumptions, e.g.,
Gaussian distribution [89, 7], linear separable data [75, 9] on the data distribution, are needed for
finite-sample analysis.

3 Problem Formulation: Notation, Background, and Algorithm

The Markov Decision Process and Q-learning. A discounted Markov decision process (MDP) is
defined as (S,A,P, r, γ), where S is the state space, A is the action set. P : S×A −→ ∆(S) is the
transition operator, and pas,s′ := P

(
s′|s, a

)
denotes the transition probability from current state s

and action a to the next state s′. In addition, r : S × A −→ [−Rmax, Rmax] is the reward function,
and γ ∈ (0, 1) is the discount factor.

At a state s ∈ S, the agent takes action a ∈ A according to some behavior policy π, denoted
as a ∼ π(s) (or a = π(s) for deterministic policy). Then, the system moves to the next state
s′ following the transition probability pas,s′ . Meanwhile, the agent receives an immediate reward
r(s, a) from the environment. Let {si, ai}∞i=0 be the generated sequential data given the behavior
policy π and transition probability P . We define the state-value function Vπ at state s as

V π(s) =Eπ,P
[∑∞

i=0 γ
ir(si, ai) | s0 = s

]
, (1)

which is the expected total discounted reward starting from the state s. For any state-action (s, a),
the corresponding Q-value (or action-value) function Qπ of a policy π is defined as

Qπ(s, a) =Eπ,P
[∑∞

i=0 γ
ir(si, ai) | s0 = s, a0 = a

]
. (2)

Then, the goal of the agent is to find an optimal policy π⋆ that maximizes the state-value function in
(1) for all states, which is equivalent to

Q⋆(s, a) := max
π

Qπ(s, a) =r(s, a) + γ · Es′|s,amax
a′

Q⋆(s′, a′), (3)
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where (3) is known as the Bellman equation. With the optimal Q-value function Q⋆, the optimal
policy can be derived via π⋆(s) = argmaxaQ

⋆(s, a) [77, 66].

The Deep Neural Network Model. The DQN utilizes a deep neural network (DNN)H : Rd −→ R
to approximate the optimal Q-value function Q⋆ in (3). Specifically, given input x ∈ Rd, the output
of the L-hidden-layer DNN with K neurons in each hidden layer is defined as

H(W ;x) := 1⊤/K · ϕ(W⊤
L · · ·ϕ(W⊤

1 x)), (4)

where W1 ∈ Rd×K , Wl ∈ RK×K with l = 2, · · · , L, and W = [vec(W1)
⊤, · · · , vec(WL)

⊤]⊤

is the concatenation of the vectorization of all parameter matrices. ϕ(·) is the nonlinear activation
function, and we consider the ReLU activation function, i.e., ϕ(z) = max{0, z}. Then, the Q-value
function Q(s, a) is parameterized using the DNN as

Q(W ; s, a) = H
(
W ;x(s, a)

)
, (5)

where x : S × A −→ Rd is the feature mapping of the state-action pair. Without loss of generality,
we assume |x(s, a)| ≤ 1. Then, the goal of DQN-based Q-learning is to minimize the mean squared
Bellman error (MSBE) as

min
W

: f(W ) := E(s,a)∼π⋆
(
Q(W ; s, a)− r(s, a)− γ · Es′|s,amax

a′
Q(W ; s′, a′)

)2
, (6)

where µ is the distribution of (s, a) following the optimal policy π⋆.

3.1 The Deep Q-Network Algorithm

Algorithm 1 Deep Q-Network

1: Input: Number of iterations T×M , and experience replay buffer size N , exploration probability {εt}Tt=1,
step size η, and momentum parameter β.

2: Initialize the Q-network with weights W (0,0).
3: for t = 0, 1, 2, · · · , T − 1 do
4: Select the initial weights W (t,0).
5: for m = 0, 1, 2, · · · ,M − 1 do
6: Sample data and store in the experience replay buffer Dt following εt-greedy policy,

namely, at state sn, with probability εt, select a random action an, otherwise select an =

argmaxa Q(W (t,0); sn, a).
7: Sample random mini-batch of transition D(m)

t from the replay buffer Dt.
8: Set yn = rn + γmaxa Q(W (t,0); s′

n, a) for n ∈ 1, 2, · · · , |D(m)
t |.

9: Perform a gradient descent step

W (t,m+1) =W (t,m) − η · g(m)
t (W (t,m)) + β(W (t,m) −W (t,m−1)).

10: end for
11: Set W (t+1,0) = W (t,M).
12: end for

The learning problem (6) is solved via the DQN equipped with ε-greedy exploration, as summarized
in Algorithm 1. In t-th outer loop, we initialize the Q-value function using currently estimated
weights W (t,0) as Q(W (t,0)) (line 4). Then, for each inner loop, the agent selects and executes
actions according to the ε-greedy policy (line 6), namely, with probability ε, we select a random
action, and with probability 1 − ε, we select the action based on the greedy policy with respect to
Q(W (t,0)). The data are stored in a replay buffer with size N (line 7). Then, we sample a mini-
batch of independent samples from Dt, denoted as D(m)

t for the m-th inner loop (line 8). Next, we
update the current weights using a mini-batch (accelerated) gradient descent algorithm (line 9). The
gradient descent (GD) direction in this step at point W is represented as

g
(m)
t (W ) =

∑
n∈D(m)

t

(
Q(W ; sn, an)− y(t)n

)
· ∇WQ(W ; sn, an), (7)

where y(t)n = rn + γ ·max
a′∈A

Q(W (t,0); s′n, a
′). (8)

Note that (7) can be viewed as the gradient of

E(s,a)∼µt

(
Q(W ; s, a)− r − Es′|s,a max

a′
Q(W (t,0); s′, a′)

)2
, (9)
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which is the approximation to (6) via fixing the maxaQ(W ) as maxaQ(W (t,0)). After moving
along the GD direction, accelerated gradient descent (AGD) adds a momentum term, denoted by
β(W (t,m) − W (t,m−1)) to accelerate the convergence rate [57]. Vanilla SGD can be viewed as a
special case of AGD by letting β = 0. After updating neuron weights in the inner loop, we set the
network as the currently estimated Q-value functionQ(W (t,0)) (line 11) and repeat the steps above.

4 Theoretical Results

4.1 Takeaways of the Theoretical Findings

We consider the general setup of DQNs with ε-greedy under some commonly used assumptions. To
the best of our knowledge, we provide the first theoretical characterization of both the convergence
and sample complexity analysis for DQNs with ε-greedy. The major notations are summarized in
Table 2. We first briefly introduce the key takeaways of our results, and the formal theoretical results
are introduced in Section 4.3.

Table 2: Some Important Notations
K Number of neurons in each hidden layer. L Number of the hidden layers.
d Dimension of the feature mapping of (s, a). Ns The sample complexity for δ-optimal policy.

W ⋆ The global optimal to (6). et The value of ∥W (t,0) −W ⋆∥F .
cε A small positive constant with a linear depen-

dence on εt.
Ct The fraction of actions with data at itera-

tion t such that argmaxa Q(W (t,0); s, a) ̸=
argmaxa Q(W ⋆; s, a).

(T1) Theoretical characterizations of {εt}Tt=1 for convergence. We prove that for a wide selection
of {εt} values that decrease over time, Algorithm 1 converges to Q⋆ linearly up to some estimation
error. Let cε measure the value level of εt’s. A higher level of ε values (i.e., a larger cε) leads to an
enlarged region of convergence (in the order of cε), measured by the distance from the initialization
W (0,0) to W ∗. Thus, larger ε values relax the requirements on W (0,0). A lower level of ε values
(i.e., a smaller cε) leads to faster convergence with a rate in the order of cε. Our findings explain the
intuition that the agent tends to explore more at the beginning and exploit more after gaining enough
knowledge during the exploration.

(T2) Convergence to the optimal Q-value functionQ⋆ with geometric decay. The learned models
converge to the ground truth modelQ⋆ with a geometric decay up to some bounded estimation error.
The convergence rate is upper bounded by γ + cε · (1 − γ). When γ is close to one, the problem
emphasizes long-term rewards. While the immediate reward can be observed directly, the future
reward needs to be estimated by the learned Q function as shown in (7). Therefore, with a large γ,
the learned Q function needs more iterations to converge, which leads to a slow convergence rate.

(T3) Sample complexity for achieving a desired estimation error of the optimal Q-value func-
tion. With the proper selection of {εt}Tt=1, the estimation error of the learned model scales in the
order of CT

(1−γ)2
√
Ns

. CT is the fraction of actions following the current greedy policy that differ from
the ones following the optimal policy. Ns is the number of samples. With a smaller discounted fac-
tor γ, the problem focuses more on the immediate reward, which can be observed directly, making
Q⋆ easier to learn. The learned model achieves a small estimation error given a small distribution
shift, a large sample size, or a small discounted factor.

4.2 Assumptions

We propose assumptions commonly used in existing RL and neural network learning theories and
notations to simplify the presentation. Assumption 1 assumes the existence of a good approximation
of DNN to Q⋆, which guarantees (6) is solvable. The assumption is commonly used in both deep
learning theories [90, 86] and reinforcement learning theories [46, 24]. Assumption 2 assumes the
samples from experience replay are independent and identically distributed (i.i.d.), which follows
the assumptions in existing theoretical analysis of DQN [24, 53] and matches the intuition of using
experience replay to break temporal dependence among the samples. Specifically, we have

Assumption 1. There exists a DNN with weights W ⋆ such that minimizes (6) as f(W ⋆) = 0.
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Assumption 1 assumes that the Q-value function with some unknown ground truth W ⋆ 1 can repre-
sent the optimal Q-value function.
Assumption 2. Suppose the mini-batch data are i.i.d. samples from the replay buffer following the
distribution µt, which is the stationary distribution of the behavior policy at t-th outer loop.

Assumption 2 assumes the mini-batch at the t-th outer loop are i.i.d. samples following µt, where
µt is the stationary distribution of (s, a) generated by εt-greedy policy at t-th outer loop2. The mini-
batch samples are close to being independent given the experience size in practice is sufficiently
large (∼ millions [51]).

In what follows, we define two quantities Ct and ρ to simplify the presentation of theoretical results.
Definition 1. Ct ∈ [0, 1] is the fraction of non-optimal state-action pair (s, a) in the greedy policy
with respect to Q(W (t,0)), i.e., the fraction of (s, a) pairs that satisfy

a = argmax
a′

Q(W (t,0); s, a′) ̸= π⋆(s) (10)

among all (s, a) pairs following the greedy policy at t-th outer loop as a =
argmaxa′ Q(W (t,0); s, a′).

Ct can be viewed as the difference between behavior policy and optimal policy. Theorem 1 shows
the general results for any value of Ct. Nevertheless, the greedy policy is improved over time, e.g.,
updating the weights every few steps (line 11 in Algorithm 1). Hence, Ct depends on W (t,0) and is
expected to decrease as W (t,0) approaching W ⋆ [56, 92], which will be discussed in Corollary 3.
Definition 2. Let ρ be the value of

ρ := min∥α∥2≥1 E(s,a)∼π⋆
(
α⊤∇WQ(W ⋆; s, a)

)2
. (11)

ρ suggests the radius of the local convex region of the objective function. We provide the lower
bound for ρ in Lemma 7 (see the proof in Appendix E.2), suggesting a sufficiently large local convex
region near W ⋆.

4.3 Major Theoretical Results

Lemma 1 characterizes the convergent point when minimizing (9) using the mini-batch gradient
descent in the t-th outer loop under certain conditions. Specifically, given that the initial weights at
the t-th outer loop are sufficiently close to the ground truth as shown in (12) and the replay buffer is
large enough as shown in (13), the distance between the learned model weights W (t+1,0) and W ⋆

are bounded from above as shown in (14).
Lemma 1 (Estimation error of W (t+1,0)). Suppose Assumptions 1 & 2 hold and the initial neuron
weights at the t-th outer loop satisfy

et := ∥W (t,0) −W ⋆∥F ≤ O
(
1− 1−Θ(εt)

Θ(
√
N)

)
· ρ · ∥W

⋆∥F
K

, (12)

The step size η is 1/T , and the size of the replay buffer is

N = Ω(ρ−2 ·K3 · L · d · log q · T ). (13)

Then, with the high probability of at least 1 − q−d, the neuron weights W (t+1,0) generated from
Algorithm 1 satisfy

∥W (t+1,0) −W ⋆∥F ≤
(
1−Θ(εt)

)
· γ · ∥W (t,0) −W ⋆∥F +

Ct + (1− Ct)εt

Θ(
√
N)

· |A| ·Rmax

1− γ
. (14)

Remark 1 (Large replay buffer reduces the estimation error and the requirement for W (t,0)). From
(14), a largerN leads to a reduced distance between W (t+1,0) and W ⋆. Moreover, (12) implies that
if we increase the size of replay buffer N , the upper bound of et increases, indicating the algorithm
can tolerant a large range of W (t,0).

1Note that W ⋆ does not need to be unique. We abuse the notation ∥W − W ∗∥2 to denote the minimum
distance of W to any W ∗ satisfying Assumption 1.

2The framework can be extended into non i.i.d. samples, see Appendix G.
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In the following corollary, we show the upper and lower bound of εt at the t-th outer loop. The
lower bound guarantees that the RHS of (12) is larger than 0, so we have a sufficiently large radius
for convergence. The upper bound ensures (14) be less than et, indicating an improved estimation
of Q⋆ across the iterations.
Corollary 1 (Range of ε). Given the assumptions and conditions in Theorem 1 hold. To ensure the
existence of a good initialization at iteration t, εt needs to satisfy

εt ≥ 1−Θ(
√
N) · (1− et), (15)

To ensure the estimated learned model is improving over iterations, εt needs to satisfy

εt ≤
(1− γ)2 ·Θ(

√
N) · et

(1− Ct) · |A| ·Rmax
− Ct

1− Ct
. (16)

Remark 2 (Reduce εt as t increases). The lower bound can always be smaller than the upper bound
given a sufficiently large N as shown in (13). From both (15) and (16), we know that εt needs to
decrease as et decreases. Specifically, the lower bound of εt is a linear function of et, and the upper
bound of εt is a linear function of et. Namely, we need a relatively large ε0 at the beginning since
the distance between initial point W (0,0) and W ⋆ is large. As t increases, et, which is the distance
of learned neuron weights W (t,0) to the ground truth W ⋆, becomes smaller, and we should decrease
εt to guarantee an improved Q(t+1,0) over Q(t,0).

Theorem 1 shows that the learned model from Algorithm 1 converges to the optimal Q-value func-
tion Q⋆ with geometric decay up to an estimation error shown in (20).
Theorem 1 (Convergence to Q⋆). Suppose Assumptions 1 and 2 hold, the buffer size N satisfies
(13). Let us define Cmax be a constant that is larger than Ct for 1 ≤ t ≤ T , when εt satisfy

εt =
cε ·Θ(

√
N) · et

(1− Cmax) · |A| ·Rmax
− Cmax

1− Cmax
(17)

for a fixed constant cε ∈ (0, (1− γ)2], and the initialization satisfies

∥W (0,0) −W ⋆∥F ≤ O
(
1− 1− cε

Θ(
√
N)

)
· ρ · ∥W

⋆∥F
K

. (18)

Then, with the high probability of at least 1− T · q−d, we have

1. the learned weights decay geometrically with

∥W (t+1,0) −W ⋆∥F ≤
(
γ + cε · (1− γ)

)
· ∥W (t,0) −W ⋆∥F , ∀t ≤ logγ(1/N). (19)

2. the returned model Q(W (T,0)) exhibits an estimation error in the order of 1/
√
N with

sup
(s,a)

∣∣Q(W (T,0))−Q⋆
∣∣ =Θ

(
∥W (T,0) −W ⋆∥F

)
≤ Cmax · |A| ·Rmax

(1− γ)2 ·Θ(
√
N)

, (20)

where T ≥ logγ(1/N).

Remark 3 (Selection of εt). The value of εt is influenced by three key factors: cε, Cmax, and the
current estimation error bound et. The constant cε is fixed and controls the magnitude of the values
in the sequence εtTt=1, providing a way to regulate the level of εt. Regarding Cmax, Ct tends to
decrease as the iteration index t increases, indicating a progressive improvement in the policy and
resulting in a smaller data distribution shift. Hence, to estimate Cmax, we can leverage C0, which is
obtained by collecting data based on the policy maxaQ(W (0,0); s, a). Moreover, with cε fixed, the
estimation error et follows a geometric decay pattern, as depicted in (19). This behavior allows us
to use the expression

(
γ + cε · (1− γ)

)t · e0 as an estimate for et.

Remark 4 (Geometric decay to Q⋆). From (19) and (20), we know that the learned model from
the proposed algorithm converges to Q⋆ with a geometric decay up to some estimation error. The
convergence rate is in the order of γ + cε · (1 − γ), and the estimation error is in the order of
(1− γ)−2 ·Cmax/

√
N . As we mentioned in the takeaways in Section 4.1, a small discounted factor

γ leads to a fast convergence rate. We have a reduced estimation with a large buffer with size N , a
small distribution shift CT , and a small γ.
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Remark 5 (Larger ε values for enlarged region of convergence and smaller ε values for faster con-
vergence). From (17), we know that cε controls the value level of εt. From (18), a larger cε (i.e.,
a higher level of ε values) increases the upper bound of ∥W (0,0) − W ⋆∥2 and, thus, enlarges the
proper region of W (0,0). (19) indicates that the convergence rate is in the order of cε. A smaller cε
(i.e., lower level of ε values) leads to faster convergence.

In the following corollary, we provide the sample complexity for achieving δ estimation error as
shown in (21), where Ω̃(·) omits some log factors. The corollary can be obtained by letting (20) to
be less than a desired accuracy δ.
Corollary 2 (Sample complexity). To achieve an estimation error of δ, the required number of
samples, referred to as the sample complexity, needs to satisfy

Ns = N · log γ = Ω̃
(
(1− γ)4 · Cmax · |A|2R2

max ·K3 · L · d · T/δ2
)
. (21)

Remark 6 (Sample complexity). (21) shows that the sample complexity is a linear function of d and
L, where d is the feature mapping of the state-action pair (s, a) and L is the number of layers. Given
the freedom of degree of W is a linear function of d and L, respectively, the sample complexity is
almost order-wise optimal with respect to d and L.

The following corollary presents a tighter bound for the model estimation error compared with
(20). This improvement arises from a stronger assumption on Ct, which becomes a function of
∥W (t,0) − W ⋆∥2. Compared with (20), the estimation error bound in (24) and (25) considers the
cases that the behavior policy is improved as W (t,0) becomes closer to W ⋆. As a result, we achieve
a more precise and tighter estimation of the error in the model.
Corollary 3 (Distribution shift and estimation error). Assume that Ct is Hölder continuous with a
factor α as

Ct = O(∥W (t,0) −W ⋆∥α2 ), (22)
3 for 0 < α ≤ 1 and all t ∈ [T ]. When εt satisfy

εt =
cε ·Θ(

√
N) · et

(1− Ct) · |A| ·Rmax
− Ct

1− Ct
, (23)

the estimation error of the Q-function satisfies

sup
(s,a)

∣∣∣Q(W (T,0))−Q⋆
∣∣∣ = (|A| ·Rmax)

1
1−α

(1− γ)
2

1−α ·Θ(N
1

2(1−α) )
. (24)

In the special case that Ct = O(∥W (t,0) −W ⋆∥2), then

sup(s,a)
∣∣Q(W (T,0))−Q⋆

∣∣ = 0. (25)

Remark 7 (Reduced or zero estimation error when behavior policy is improved over iterations).
Recall the definition ofCt in Definition 1. If et is zero, i.e., Wt = W ⋆, the action selected following
the greedy policy is always the optimal action, which means that Ct = 0. Therefore, it is reasonable
to assume that Ct is Hölder continuous as shown in (22). When α > 0, we can see that (24) is less
than (20), indicating a reduced estimation error and sample complexity. Typically, if Ct has an order
of growth less than et near W ⋆, a zero estimation error is achievable.

4.4 The Roadmap of Proofs, Comparison with Existing Works, and Limitations

The proof of Theorem 1 draws inspiration from the model estimation framework in the supervised
learning setting [90, 88]. The key idea is to use a population risk function (PRF) to characterize the
objective function in (9). By satisfying certain conditions such as having sufficient training sam-
ples and a bounded data distribution shift, the approximation error between the PRF and objective
function can be bounded. This allows for the characterization of the optimization problem in (9) by
analyzing the landscape and convergence properties of the PRF.

3Although this equation depends on the algorithm’s trajectory, it can be easily derived from a time-
independent equation |πW (s|a) − π⋆(s|a) ≤ C||W − W ⋆||2. Also, this equation is a weaker condition
than (2) in [92], which holds universally across the entire space and model parameter space.
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In comparison to existing proofs based on the model estimation frameworks, this paper addresses
two additional challenges. Firstly, it extends the proof from one-hidden-layer neural networks to
multi-layer neural networks. This extension is achieved by providing new tools for characterizing
the Hessian matrix (refer to Lemma 3) and concentration bound (refer to Lemmas 3 and 6). Addi-
tionally, this paper characterizes the differences between the two functions caused by the interaction
of neuron weights across layers in the gradient and Hessian matrix. Secondly, the paper extends the
proof from supervised learning settings to Q-learning settings. This requires characterizing the addi-
tional error term caused by the data distribution shift and ”noisy” labels (refer to Lemma 3) because
the empirical risk function is no longer an expectation of the defined population risk function.

Existing state-of-the-art theoretical results on Q-learning with neural network approximations pri-
marily revolve around the NTK and Besov regularity frameworks. In the NTK framework, the
networks are assumed to be extremely over-parameterized, requiring an impractical projection step
and resulting in error bounds that cannot be characterized for networks with finite width. In the
Besov regularity framework, the neural network needs to be sparse, which does not align with the
DQN algorithm. Furthermore, the analysis in the Besov regularity framework relies on the achiev-
ability of the global minimizer of the non-convex problem in (9), which cannot be guaranteed using
GD algorithms. This paper takes a significant step towards bridging the gap between theoretical
understanding and practical applications of DQN by addressing these challenges. However, there
still remains a gap between the theoretical results and numerical findings. Future research directions
include devising efficient exploration strategies for DQNs to further enhance their performance and
extending the theoretical analysis to variants of DQNs and policy gradient-based methods.

5 Numerical Experiments

In this section, we provide numerical justification that our theoretical findings are aligned with
practical DQNs through the Atari Pong game, which is commonly used for DQNs in [50, 51, 73].
We take the Double DQN (DDQN) [73], one of the most popular variants of DQN, as the backbone
in the setup. DDQN differs from DQN only in (8) via changing y = r + γ · Q(W (t,0); s′, a⋆) to
y = r+γ ·Q(W (t,m); s′, a⋆), where a⋆ = argmaxaQ(W (t,0); s′, a). DDQN outperforms DQN in
the relief of overoptimism and the improvement of stability. Our numerical experiments on DDQN
also indicates that our analysis applies to the variants of DQN.

The input to the network is 84× 84× 4 images, where the last dimension represents the number of
frames in history. The network is a convolutional neural network consisting of three convolutional
layers and one fully-connected layer. The algorithm terminates if the average score over the recent
20 episodes does not improve or the algorithm reaches the maximum episode set as 200, which is
around 4×105 training steps. The testing score is calculated based on a similar setup as the training
process by fixing the maximum memory size N as 2000 and greedy policy, i.e., ε = 0. Each point
in the plot is averaged over 10 experiments with an error bar representing the standard deviation.

Estimation errors with respect to the sample complexity N . As the Q-value function is the
estimate of the expected cumulative reward, we use the difference between the reward obtained from
the estimated Q-value function and the maximum reward as the estimation error of the learned model
to the optimal Q-value function, which is also consistent with the experiments in [50, 51, 73]. Given
that the full test score in the Pong game is 21, we set the test error as the value of (21 - test score)
in each experiment. The εt in ε-greedy policy decreases geometrically from 1 to 0.01. We vary the
number of samples in the replay buffer from 400 to 2500. Figure 1 shows that the test error is almost
linear in 1/

√
N , which is consistent with our characterization in (20). In addition, experiments with

a large N have a shorter error bar indicating a more stable learning performance with a large sample
complexity as shown in (12).

Convergence with different selections of ε. Figure 2 illustrates the convergence rate when εt in the
ε-greedy policy changes. For each point, ε0 is selected as the value in the x-axis, and we decrease
εt geometrically as the iteration t increases. Each point is averaged over 5 independent trials. We
can see that the convergence rate is a linear function of cε, matching our findings in (19).

Performance with different selections of ε. We investigate the effect of ε-greedy policy during
the training. In Figure 3, we show the test scores using ε-greedy policy with (1) geometrically
decreasing ε from 1 to 0.01, (2) fixed ε as 0.1, and (3) fixed ε as 0. Each test score in the curve is
averaged over the past 10 episodes to smooth the trend. One can observe that a gradually decreasing
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ε leads to a better score than fixing ε to be the final value. The test score of ε = 0.1 shares a similar
trend to the ε-greedy policy but with a slower speed, matching our findings in (19) that a small ε
leads to a slow convergence rate. The test score of ε = 0 has the fastest convergence rate at the early
stage, but the convergent point is the worst and the most unstable, matching our findings in (18) that
a small ε leads to a reduced radius of convergence.

6 Conclusions and Discussions

This paper provides the first convergence and sample complexity analysis of the DQN algorithm
equipped with ε-greedy exploration. We establish the theoretical guarantee for the convergence of
the learned model to the optimal Q-value function Q⋆, which can be used to derive the optimal
policy. We provide a nearly optimal sample complexity for achieving an arbitrarily small estimation
error. We also prove that ε-greedy with decreasing ε achieves both an enlarged radius of convergence
and an improved convergence rate. Future directions include the generalization of the theoretical
analysis to the variants of DQNs and the design of efficient exploration strategies for DQNs.

One of the anonymous reviewers raised concerns about (12) regarding its demanding requirements
on the initial policy. We would like to clarify that (12) primarily concerns the optimization analysis
of the objective function rather than the initial policy. Instead, we impose only a minor assumption
on the initial policy, with no specific environmental constraints. In our work, C0 quantifies the initial
policy’s difference from the optimal policy and is independent of (12) in our primary theoretical
results. With a sufficiently large replay buffer, C0 can approach one, except when it equals 1,
indicating an extreme divergence from the optimal policy in all states. Thus, our initial policy
assumption is minimal. Considering the highly non-convex nature of deep neural network objective
functions with countless local minima, (12) represents the state-of-the-art assumption for optimizing
deep neural networks.

As mentioned by the anonymous reviewers, the selections of εt in (17) depends on et = ∥W (t) −
W ⋆∥2, which is unknown to the agent. Here, we would like to clarify that et can be replaced by its
upper bound in (19) and lower bound in (20). By plugging (19) and (20) into (17), we have

εt = max
{cε ·Θ(

√
N) ·

(
γ + cε · (1− γ)

)t
e0

(1− Cmax) · |A| ·Rmax
− Cmax

1− Cmax
, cε ·

Cmax

1− Cmax

}
. (26)

As mentioned by one of the anonymous reviewers, Corollary 3 relies on an assumption that depends
on the algorithm’s trajectory, which lacks mathematical rigor. Here, we would like to clarify that
although this equation depends on the algorithm’s trajectory, it can be easily derived from a time-
independent equation

|πW (s|a)− π⋆(s|a)| ≤ C||W −W ⋆||2. (27)
Additionally, it is worth mentioning the difference between (22) in this paper and (2) in [92]. Specif-
ically, we want to highlight that the equation above, (27), leads to (22). In contrast, (2) in [92]
requires the following condition to hold for for all W1 and W2:

|πW1
(s|a)− πW2

(s|a) ≤ C||W1 −W2||2 (28)

As a comparison, (27) only requires W2 to be the ground truth and W1 to be some weights near the
ground truth. In other words, (27) is a sufficient condition for (22). While equation (2) in [92] does
not hold with epsilon-greedy, (27) can hold with Q-learning using epsilon-greedy, thus ensuring the
mathematical rigor of (22).
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Supplementary Materials for:

On the Convergence and Sample Complexity Analysis of
Deep Q-Network with Epsilon-Greedy Exploration

The structure of the appendix mainly follows the roadmap of the proof described in Section 4.4.

In Appendix A, we define the characterizable population risk function in (31) to approximate the
objective function. Also, some notations to simplify the analysis are introduced in Appendix A, and
we recommend the readers to refer to Table 3 for the major notations used in the proofs.

In Appendix B, we provide the proof for Lemma 1 and Theorem 1 following the steps as (1) Char-
acterization of the local convex region of population risk function (Lemma 2), (2) Characterization
of the distance between the population risk function and the objective function (Lemma 3), (3)
Characterization of the convergence of two consecutive iterations W (t,m+1) and W (t,m), and (4)
Mathematical induction over the t and m to obtain the error bound between the convergent point
W (T,0) and the desired point W ⋆.

In Appendix C, we provide the preliminary lemmas and the whole proof for Lemma 2, which char-
acterizes the local convex region of the non-convex population risk function.

In Appendix D, we provide the preliminary lemmas and the whole proof for Lemma 3, which char-
acterizes the difference of gt and the gradient descent of defined population risk function in (31).

In Appendix E, we provide the proofs for the preliminary lemmas in proving Lemmas 2 and 3.

Before moving to the details, we provide an overview of the techniques in the proofs.

(P1.) The local convex region near W ⋆. To characterize the local convex region, we first bound
the Hessian matrix of the defined population risk function in (31) at W ∗. Then, we derive the
changes in the Hessian matrix when the neuron weights move around the W ∗. Specifically, we
prove that when neuron weights W are not far away W ⋆, then the Hessian matrix in this region
is always positive-definite, indicating that a local convex region near W ∗. [90] considers the one-
hidden-layer neural network, and the lower bound of the Hessian matrix only holds for Gaussian
input. Instead, in this paper, we consider multi-layer cases and need to derive a lower bound for
the Hessian matrix for all the layers. Instead, the input of the intermediate layer cannot be proved
to be Gaussian but belong to sub-Gaussian distribution. Therefore, we built the proof for the lower
bound of the Hessian matrix when the input belongs to the sub-Gaussian distribution. Compared
with Gaussian input, Sub-Gaussian does not have a closed form of the probability density function.
Instead of directly calculating the lower bound, we convert the problem into proving a series of
functions are linearly independent over a Hilbert space (see Lemma 7 and the proof in Appendix
E). Instead of directly calculating the distance of the population risk function in different points,
we characterize a Gaussian variable such that the distance over the sub-Gaussian distribution can be
upper bounded by the one over the Gaussian variable (see Lemma 6 and the proof in Appendix E).

(P2.) The difference between the gradient gt and the population risk function. With the local
convex region of the population risk function, we can characterize the convergence of the population
risk function. With Lemma 3, we can prove that the distance between the population risk function
and gt is small enough, the behaviors of the iterations via gt can be described by the ones in the
population risk function with some additional error terms. Compared with the proof in [90], We need
to address the extension from supervised learning settings to Q learning settings and the extension
from the one-hidden-layer neural networks to the multi-layer neural networks. First, similar to
challenges in (P.1), we provide a new concentration bound to characterize the distance between
the two functions for the intermediate layers (see I1 in the proof of Lemma 3). Second, the distance
between the two functions has an additional error term due to the inconsistency of the label defined in
(31) and (8) (see I2 in the proof of Lemma 3). Third, we need to develop a new concentration bound
to characterize the error term caused by the distribution shift when training samples are collected by
ε-greedy policy (see I3 in the proof of Lemma 3).
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(P3.) The convergence analysis of Algorithm 1. When the initialization is not far away from W ⋆,
the initialization lies in the local convex region of W ⋆ for the population risk function. When we
have enough samples N and a large enough εt, we can guarantee that the distance between the gt
and the gradient of the population risk function is small enough such that the iterations following gt
converges to a point nearby W ⋆ as well. However, if εt is too large, the convergent point nearby W ⋆

can be even worse than the initial point. To avoid this issue, we have an upper bound for selecting
εt, and the upper bound decreases as ∥W (t,0) − W ⋆∥ decreases over t. Therefore, we build the
convergence analysis of Algorithm 1.

A Definitions and Notations

In this section, we implement the details of algorithms described in Algorithm 1, and some important
notations are defined to simplify the presentation of the proof.

A.1 Definition of the Empirical Risk Function and Its Corresponding Notations

Recall that the goal of Q-learning is to find the Q⋆-function to minimize (6). Therefore, we have
Q⋆(s, a) = r(s, a) + γ · Es′|s,amax

a′∈A
Q⋆(s′, a′) for (s, a) ∼ µ⋆. (29)

Since W ⋆ is the global minimal to (6), we have
Q(W ⋆; s, a) = r(s, a) + γ · Es′|s,amax

a′∈A
Q(W ⋆; s′, a′). (30)

Therefore, the population risk function is defined as

f(W ) = E(s,a)∼µ⋆
[
Q(W ; s, a)− r(s, a)− γ · Es′|s,amax

a′∈A
Q(W ⋆; s′, a′)

]2
= E(s,a)∼µ⋆

[
Q(W ; s, a)−Q(W ⋆; s, a)

]2
,

(31)

where µ∗ is the distribution of the sampled data following the optimal policy π⋆.

The gradient of the (31) is

∇W f(W ) =Ex∼µ⋆
(
Q(W ;x)− r(x)− γ · Es′∼pa

s,s′
max
a′∈A

Q⋆(s′, a′)
)
· ∇WQ(W ;x)

=Ex∼µ⋆,s′∼pa
s,s′

(
Q(W ;x)− r(x)− γ ·max

a′∈A
Q(W ⋆; s′, a′)

)
· ∇WQ(W ;x).

(32)

As W ⋆ is one of the ground truths to f(W ), i.e., f(W ⋆) achieves the minimum value as f(W ⋆) =
0 ≤ f(W ) for any other W . Given f is a smooth function, we have the gradient of f with respect
to any Wℓ at the ground truth W ⋆ equals to zero, namely,

∇ℓf(W
⋆) := ∇Wℓ

f(W ⋆) = 0, ∀ℓ ∈ [L]. (33)

In addition, without special descriptions, α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤ stands for any unit vector that
in RKℓKℓ−1 with αj ∈ RKℓ−1 (K0 = d). Therefore, we have

∥∇ℓh∥2 = max
α

∥α⊤∇ℓh∥2 = max
α

∣∣∣ K∑
j=1

α⊤
j

∂h

∂wℓ,j

∣∣∣,
∥∇2

ℓh∥2 = max
α

∥α⊤∇2
ℓ h α∥2 = max

α

( K∑
j=1

α⊤
j

∂h

∂wℓ,j

)2

.

(34)

A.2 Notations in Algorithm 1

Recall that the gradient in the t-th loop is

gt(W ) =
1

|D(m)
t |

∑
n∈D(m)

t

(Q(W ;xn)− y(t)n ) · ∇WQ(W ;xn)

=
1

N

N∑
n=1

(
Q(W ;xn)− r(xn)− γ ·max

a′∈A
Q(W (t−1); s′n, a

′)
)
· ∇WQ(W ;xn).

(35)
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Then, we define g(m)
t (Wℓ;W ) as the components of g(m)

t (W ) with respect to Wℓ. Recall that in
(4) we have

W = [vec(W1)
⊤, vec(W2)

⊤, · · · , vec(WL)
⊤]⊤. (36)

Then, with the definition of g(m)
t (Wℓ;W ), we have

g
(m)
t (W ) = [g

(m)
t (W1;W )⊤, g

(m)
t (W2;W )⊤, · · · , g

(m)
t (WL;W )⊤]⊤. (37)

To simplify the analysis, the update of W (t,m) is analyzed in the form of

W
(t,m+1)
ℓ = W

(t,m)
ℓ − η · g(m)

t (Wℓ;W
(t,m)) + β(W

(t,m)
ℓ −W

(t,m−1)
ℓ ), ∀ℓ ∈ [L]. (38)

One can see that (38) returns the same W (t,m+1) as the gradient step at line 9 in Algorithm 1.

Table 3: Notations for the proofs

gt(W ) The gradient function at point W in the t-th outer loop, defined in (7).

gt(Wℓ;W ) The gradient function of gt(W ) with respect to the components of Wℓ.

d Dimension of the feature mappings of the state-action pair (s, a) ∈ S ×A.

K Number of neurons in the hidden layer.

L Number of hidden layers.

W ⋆ The desired Weights for approximating the optimal Q function.

W (t,m) Model returned by Algorithm 1 at t-th outer loop and m-th inner loop.

f The population risk function defined in (31).

∇W f(W
⋆) The full gradient of a function f at point W ⋆.

∇ℓf(W
⋆) The gradient of a function f with respect to the components of Wℓ at point W ⋆.

∇2
ℓf(W

⋆) The Hessian matrix of a function f with respect to the components of Wℓ at
point W ⋆.

n The dimension of W .

nℓ The dimension of vectorized Wℓ.

h(ℓ)(W ) The input to the ℓ-th layer, defined in (39).

Kℓ The dimension of h(ℓ).

Jℓ(W ) A function in Rn −→ RK , defined in (42).

εt The value of ε in the behavior policy at t-th outer loop.

Ct The distribution shift between the optimal policy and behavior policy at iteration
t.

N The size of the experience replay buffer.

Rmax The upper bound of the reward.

A.3 Notations for the Deep Neural Networks.

Let n denote the dimension of W defined in (4). We denote nl as the dimension of the vectorized
neuron weights in the ℓ-th layer, namely, nℓ = dim(vec(Wℓ)).

Then, let h(ℓ)(W ) denote the input in the ℓ-th layer (or the output in the (ℓ−1)-th layer) with respect
the neuron weights as W , and h(1) = (s, a), where

h(ℓ)(W ) = ϕ(W⊤
ℓ−1h

(ℓ−1)) = · · · = ϕ
(
W⊤

ℓ ϕ
(
Wℓ−1 · · ·ϕ(W⊤

1 x)
))
. (39)
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h(ℓ)(W ) may be shortened as h(ℓ) when the neuron weights are clear from the contexts. Then, we
denote the dimension of h(ℓ) as Kℓ, where

Kℓ =

{
K, if ℓ > 1

d, if ℓ = 1.
(40)

Then, Q(W ; s, a) can be written as

Q(W ; s, a) =
1⊤

K
ϕ(w⊤

L,kh
(L)) =

1⊤

K
ϕ
(
W⊤

L ϕ(W
⊤
L−1h

(L−1))
)
, (41)

where wℓ,k denotes the k-th neuron weights in the ℓ-th layer. Then, we define a group of functions
Jℓ(W ) ∈ Rn −→ RK such that

Jℓ(W ) =

{[
1⊤ϕ′(W⊤

L h(L))W⊤
L · ϕ′(W⊤

L−1h
(L−1))W⊤

L−1 · · ·ϕ′(W⊤
ℓ+1h

(ℓ+1))W⊤
ℓ+1

]⊤
if ℓ > 1

1 if ℓ = 1.

(42)
Then, the gradient of Q can be represented as

∂Q

∂wℓ,k
(W ) =

1

K
Jℓ,k(W )ϕ′

(
w⊤
ℓ,kh

(ℓ)(W )
)
h(ℓ)(W ), (43)

where Jℓ,k stands for the k-th component of Jℓ.

A.4 Notations for Order-wise Analysis

Without loss of generality, we consider the case that d ≫ K. If K ≫ d, we can always switch the
order of K and d in the proof. Let σi(L) denote the i-th largest singular value of W ⋆

L. In this paper,
we consider the case that W ⋆

L is will-conditioned and bounded, i.e., σ1(L) and σ1(L)/σK(L) can
be viewed as the constant and will be ignored in the analysis. In addition, some constant numbers
will be ignored in most steps. In particular, we use h1(z) ≳ (or ≲,≂)h2(z) to denote there exists
some positive constant C such that h1(z) ≥ (or ≤,=)C · h2(z) when z ∈ R is sufficiently large.

B Proof of Lemma 1 and Theorem 1

The main idea in proving Theorem 1 is to characterize the gradient descent term by the Mean Value
Theorem (MVT) in Lemma 4 as shown in (47) and (48). The MVT is not directly applied in gt
because it is not smooth. However, the population risk functions defined in (31), which are the
expectations over random variables, are smooth. Lemma 2 characterizes the bounds of the Hessian
matrix defined in (49). Lemma 3 characterizes the bounds of gradient differences between the
population risk function defined in (31) and gt in (7) as shown in (60). Furthermore, according
to Lemma 3, we know that the distance ∥∇ℓf(W ) − ∇ℓf(W

∗)∥2 is upper bounded in the order
of ∥W − W ∗∥2 as shown in (60). Then, we can establish the connection between ∥W (t,m+1) −
W ∗∥2 and ∥W (t,m) −W ∗∥2 as shown in (59). Then, by mathematical induction over m, one can
characterize the iteration of {∥W (t,0) − W ∗∥2}Tt=1 as shown in (65), which completes the proof
of Lemma 1. Finally, selecting εt based on (68) for all t ∈ [T ], we derive the error bound of
∥W (T,0) −W ⋆∥2 by mathematical induction over t, which completes the proof of Theorem 1.
Lemma 2. Given any W ∈ Rn, let W satisfy

∥W −W ⋆∥2 ≲
ρ · cI · σK

K
(44)

for some constant cI ∈ (0, 1). Then, for the f defined in (31), we have
(1− cI)ρ

K2
⪯ ∇2

ℓf(W ) ⪯ 7

K
. (45)

Lemma 3. Let f be the function defined in (31). Let gt be the function defined in (7). Then, we have

∥∇ℓf(W )− gt(Wℓ;W )∥2 ≲
2− εt
K

√
Kℓ · log q

N
· ∥W −W ⋆∥2

+
(1− εt/2) · γ

K
· ∥W (t,0) −W ⋆∥2

+ Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
.

(46)
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with probability at least 1− q−Kℓ .
Lemma 4 (Mean Value Theorem). Let U ⊂ Rd1 be open and f : U −→ Rd2 be continuously
differentiable, and x ∈ U , h ∈ Rd1 vectors such that the line segment x + th, 0 ≤ t ≤ 1 remains
in U . Then we have:

f(x+ h)− f(x) =

(∫ 1

0

∇f(x+ th)dt

)
· h,

where ∇f denotes the Jacobian matrix of f .

Proof of Theorem 1. Let Wℓ denote the neuron weights in the ℓ-th layer. From Algorithm 1 and
(38), in the s-th iteration and t-th episode, we have

W
(t,m+1)
ℓ = W

(t,m)
ℓ − ηg

(m)
t (Wℓ;W

(t,m)) + β(W
(t,m)
ℓ −W

(t,m−1)
ℓ )

= W
(t,m)
ℓ − η∇ℓf(W

(t,m)) + β(W
(t,m)
ℓ −W

(t,m−1)
ℓ )

+ η ·
(
∇ℓf(W

(t,m))− g
(m)
t (Wℓ;W

(t,m))
)
.

(47)

From (31), we can see that W ⋆ is the global optimal to f because f(W ⋆) achieves the minimum
value as 0. Therefore, we have ∇ℓft(W

⋆) = 0. Since ∇ℓf is a smooth function W ⋆, from the
Mean Value Theorem in Lemma 4, we have

∇ℓf(W
(t,m)) =∇ℓf(W

(t,m))−∇ℓf(W
⋆)

=

∫ 1

0

∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
du · (W (t,m)

ℓ −W ⋆
ℓ ).

(48)

For notational convenience, we use H to denote the integration as

H :=

∫ 1

0

∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
du. (49)

Then, we have [
W (t,m+1) −W ⋆

W (t,m) −W ⋆

]
=

[
I − ηH βI

I 0

][
W (t,m) −W ⋆

W (t,m−1) −W ⋆

]

+ η

[
∇ℓf(W

(t,m))− g
(m)
t (Wℓ;W

(t,m))

0

]
.

(50)

Let H = SΛST be the eigen-decomposition of H . Then, we define

A(β) :=

[
S⊤ 0

0 S⊤

]
A(β)

[
S 0

0 S

]
=

[
I − ηΛ+ βI βI

I 0

]
. (51)

Since

[
S 0

0 S

][
S⊤ 0

0 S⊤

]
=

[
I 0

0 I

]
, we know A(β) and

[
I − ηΛ+ βI βI

I 0

]
share the same

eigenvalues. Let λ(Λ)
i be the i-th eigenvalue of H(ℓ)

t , then the corresponding i-th eigenvalue of (51),
denoted by λ(A)

i , satisfies

(λ
(A)
i (β))2 − (1− ηλ

(Λ)
i + β)λ

(A)
i (β) + β = 0. (52)

By simple calculation, we have

|λ(A)
i (β)| =


√
β, if β ≥

(
1−

√
ηλ

(Λ)
i

)2
,

1
2

∣∣∣∣(1− ηλ
(Λ)
i + β) +

√
(1− ηλ

(Λ)
i + β)2 − 4β

∣∣∣∣ , otherwise.
(53)

Specifically, we have

λ
(A)
i (0) > λ

(A)
i (β), for ∀β ∈

(
0, (1− ηλ

(Λ)
i )2

)
, (54)
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and λ(A)
i achieves the minimum λ

(A)⋆
i =

∣∣∣1−√
ηλ

(Λ)
i

∣∣∣ when β⋆ =
(
1−

√
ηλ

(Λ)
i

)2

. From Lemma

2, for any a ∈ Rd with ∥a∥2 = 1, we have

a⊤∇ℓf(W
(t,m))a =

∫ 1

0

a⊤∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
a · du

≤
∫ 1

0

λmax∥a∥22du = λmax,

a⊤∇ℓf(W
(t,m))a =

∫ 1

0

a⊤∇2
ℓf

(
W (t,m) + u · (W (t,m) −W ⋆)

)
a · du

≥
∫ 1

0

λmin∥a∥22du = λmin,

(55)

where λmax ≂ 1
K , and λmin ≂ ρ

K2 . Therefore, we have

λ
(Λ)
min ≂

(1− cI)ρ

K2
, and λ(Λ)

max ≂
1

K
. (56)

Thus, when η ≤ 1

2λ
(Λ)
max

≲ K, ∥A(β⋆)∥2 can be bounded by

∥A(β⋆)∥2 =1−
√
η · λ(Λ)

min ≤ 1−
√

(1− cI)ηρ

K2
. (57)

Therefore, we have

∥W (t,m+1)
ℓ −W ⋆

ℓ ∥2 ≤
(
1−

√
(1− cI)ηρ

K2

)
· ∥W (t,m)

ℓ −W ⋆
ℓ ∥2

+ η · ∥∇ℓf(W
(t,m))− g

(m)
t (W (t,m))∥2

≲
(
1−

(
1− cI

2

)√ ηρ

K2

)
· ∥W (t,m)

ℓ −W ⋆
ℓ ∥2

+ η · ∥∇ℓf(W
(t,m))− g

(m)
t (W (t,m))∥2.

(58)

Take the sum of (58) from ℓ = 1 to ℓ = L, we have

∥W (t,m+1) −W ⋆∥2 ≤
(
1−

(
1− cI

2

)√ ηρ

K2

)
· ∥W (t,m) −W ⋆∥2

+ η ·
L∑
ℓ

∥∇ℓf(W
(t,m))− g

(m)
t (W (t,m))∥2.

(59)

From Lemma 3, we have∥∥∥∇ℓf(W
(t,m))− g

(m)
t (Wℓ;W

(t,m))
∥∥∥
2
≲
2− εt
K

√
Kℓ log q

Nt
· ∥W (t,m) −W ⋆∥2

+
(1− εt/2)γ

K
· ∥W (t,0) −W ⋆∥2

+ Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
.

(60)

For some small constant cN ≥ 0, let

η · 1

K

√
Kℓ log q

Nt
≤ cN

L

√
ηρ

K2
, (61)

which requires

Nt ≳ c−2
N · ρ−1 · η−1 · L2 ·max

ℓ
Kℓ · log q

= c−2
N · ρ−1 · L · d · log q.

(62)
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Then, the sample complexity

N =

T∑
t=1

Nt ≳ c−2
N · ρ−1 · L · d · log q · T. (63)

Therefore, we have

∥W (t,m+1) −W ⋆∥2 ≤
(
1−

(
1− (2− εt)cN − cI

2

)√ ρ

TK2

)
· ∥W (t,m) −W ⋆∥2

+
√
η · (1− εt/2)γ

K
· ∥W (t,0) −W ⋆∥2

+ η · Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
.

(64)

By mathematical induction, when M = log γ−1 and η = 1/T = 1/Θ(N), we have

∥W (t,M) −W ⋆∥2

≲

√
K2

N
· Cd ·

(
Ct + (1− Ct)εt

)
· Rmax

1− γ
+ (1− εt/2)γ · ∥W (t,0) −W ⋆∥2

≤
cN · Cd ·

(
Ct + (1− Ct) · εt

)
K

· Rmax

1− γ
+ (1− εt/2)γ · ∥W (t,0) −W ⋆∥2

≤
cN · Cd ·

(
Cmax + (1− Cmax) · εt

)
K

· Rmax

1− γ
+ (1− εt/2)γ · ∥W (t,0) −W ⋆∥2.

(65)

From Algorithm 1, we know that W (t+1,0) = W (t,M). To guarantee that iteration converge to the
ground truth W ⋆, namely, ∥W (t+1,0) −W ⋆∥2 < ∥W (t,0) −W ⋆∥, we need

εt ≤
(1− γ)2 ·K · ∥W (t,0) −W ⋆∥2

(1− Ct) · cN · Cd ·Rmax
− Ct

1− Ct
. (66)

To guarantee that εT ≥ 0, then we have

∥W (T,0) −W ⋆∥F ≳
CT · cN · Cd ·Rmax

(1− γ)2 ·K
. (67)

Specifically, let

εt =
cε ·K · ∥W (t,0) −W ⋆∥2
(1− Ct) · cN · Cd ·Rmax

− Ct
1− Ct

, (68)

we have
∥W (t+1,0) −W ⋆∥2 ≲ γ + cε(1− γ) · ∥W (t,0) −W ⋆∥2,

and ∥W (T,0) −W ⋆∥2 ≲
[
γ + cε(1− γ)

]T · ∥W (0,0) −W ⋆∥2,
(69)

which completes the proof.

C Proof of Lemma 2

Lemma 2 provides the lower and upper bounds for the eigenvalues of the Hessian matrix of popu-
lation risk function in (31). According to Weyl’s inequality in Lemma 5, the eigenvalues of ∇2

ℓf(·)
at any fixed point W can be bounded in the form of (75). Therefore, we first provide the lower
and upper bounds for ∇2

ℓf at the desired ground truth W ⋆. Then, the bounds for ∇2
ℓf at any other

point W is bounded through (31) by utilizing the conclusion in Lemma 6. Lemma 6 illustrates the
distance between the Hessian matrix of f at W and W ∗. Lemma 7 provides the lower bound of
Ex

(∑K
j=1 α

⊤
j

∂Q
∂wℓ,k

(W ⋆)
)2

when x belongs to sub-Gaussian distribution, which is used in proving
the lower bound of the Hessian matrix in (76).
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Lemma 5 (Weyl’s inequality, [5]). Let B = A+E be a matrix with dimension m×m. Let λi(B)
and λi(A) be the i-th largest eigenvalues of B and A, respectively. Then, we have

|λi(B)− λi(A)| ≤ ∥E∥2, ∀ i ∈ [m]. (70)

Lemma 6. Let f(W ) be the population risk function defined in (31). If W is close to W ⋆ such
that

∥W −W ⋆∥2 ≲
ρ

K
(71)

we have

∥∇2
ℓf(W )−∇2

ℓf(W
⋆)∥2 ≲

1

K
· ∥W −W ⋆∥2. (72)

Lemma 7. Suppose the following assumptions hold:

1. {wj}Kj=1 ∈ RKℓ are linear independent,

2. pH(h) : RKℓ −→ [0 1] be the probability density for h such that Eh∥h∥22 ≤ +∞.

Let α ∈ RK1K2 be the unit vector defined in (34), we have

ρ := min
∥α∥2=1

∫
R

( K∑
j=1

α⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh > 0, (73)

where R ⊂ RKℓ with
∫
R fH(h) > 0. Moreover, if further assuming P is Gaussian distribution and

R = RKℓ , we have ρ > 0.091.

Lemma 8. Let h(ℓ)(W ) be the function defined in (39). When W is sufficiently close to W ⋆, i.e.,
∥W −W ⋆∥2 is smaller than some positive constant c < 1, we have

∥h(ℓ)(W )∥2 ≲ ∥x∥2,
∥h(ℓ)(W )− h(ℓ)(W ⋆)∥2 ≲ ∥W −W ⋆∥2 · ∥x∥2.

(74)

Proof of Lemma 2. Let λmax(W ) and λmin(W ) denote the largest and smallest eigenvalues of
∇2
ℓf(W ) at a point W , respectively. Then, from Lemma 5, we have

λmax(W ) ≤ λmax(W
⋆) + ∥∇2

ℓf(W )−∇2
ℓf(W

⋆)∥2,
λmin(W ) ≥ λmin(W

⋆)− ∥∇2
ℓf(W )−∇2

ℓf(W
⋆)∥2.

(75)

Then, we provide the lower bound of the Hessian matrix of the population function at W ⋆. Let P
be the distribution for h(ℓ)(W ) when x ∼ µt with probability density function denoted as pH . For
any α ∈ RKℓK defined in (34) with ∥α∥2 = 1, we have

min
∥α∥2=1

α⊤∇2
ℓf(W

⋆)α

=
1

K2
min

∥α∥2=1
Eh∼P

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

=
1

K2
min

∥α∥2=1

∫
RKℓ−1

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

pH(h(ℓ)) · dh(ℓ)

=
1

K2
min

∥α∥2=1

∫
{h(ℓ)|Jℓ,k ̸=0}

( K∑
j=1

α⊤
j h

(ℓ)ϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

pH(h(ℓ)) · dh(ℓ)

≳
ρ

K2
,

(76)

where the last inequality comes from Lemma 7, and Lemma 7 holds since h(ℓ) belongs to sub-
Gaussian distribution and Wℓ is full rank.
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Next, the upper bound of ∇2
ℓf can be bounded as

max
∥α∥2=1

α⊤∇2
ℓf(W

⋆)α

=
1

K2
max

∥α∥2=1
Ex

( K∑
j=1

α⊤
j h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j h

(ℓ))
)2

=
1

K2
max

∥α∥2=1
Ex

K∑
j1=1

K∑
j2=1

α⊤
j1h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j1h

(ℓ)) ·α⊤
j2h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j2h

(ℓ))

=
1

K2

K∑
j1=1

K∑
j2=1

Exα
⊤
j1h

(ℓ) · Jℓ,kϕ′(w⋆T
ℓ,j1h

(ℓ)) ·α⊤
j2h

(ℓ) · Jℓ,kϕ′(w⋆⊤
ℓ,j2h

(ℓ))

≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α

⊤
j1h

(ℓ))4 · E(ϕ′(w⋆⊤
ℓ,j1h

(ℓ)))4 · Ex(α
⊤
j2h

(ℓ))4 · Ex(ϕ
′(w⋆⊤

ℓ,j2h
(ℓ)))4

]1/4
≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α

⊤
j1x)

4 · Ex(α
⊤
j2x)

4
]1/4

≤ 3

K2

K∑
j1=1

K∑
j2=1

∥αj1∥2 · ∥αj2∥2 ≤ 6

K2

K∑
j1=1

K∑
j2=1

1

2

(
∥αj1∥22 + ∥αj2∥22

)
=

6

K
.

(77)

Therefore, we have

λmax(W
⋆) = max

∥α∥2=1
α⊤∇2

ℓf(W
⋆; p)α ≤ 6

K
. (78)

Then, given (71), we have

∥W −W ⋆∥2 ≲
2ρ

K
. (79)

Combining (79) and Lemma 6, we have

∥∇2
ℓf(W )−∇2

ℓf(W
⋆)∥2 ≲

ρ

K2
. (80)

Therefore, from (80) and (75), we have

λmax(W ) ≤ λmax(W
⋆) + ∥∇2

ℓf(W )−∇2
ℓf(W

⋆)∥2 ≤ 6

K
+

ρ

2K2
≤ 7

K
,

λmin(W ) ≥ λmin(W
⋆)− ∥∇2

ℓf(W )−∇2
ℓf(W

⋆)∥2 ≥ ρ

K2
− ρ

2K2
=

ρ

2K2
,

(81)

which completes the proof.

D Proof of Lemma 3

Before illustrating the whole proof, we first introduce some preliminary lemmas and definitions.
Lemma 9 is the concentration theorem for independent random matrices. The definitions of the
sub-Gaussian and sub-exponential variables are summarized in Definitions 3 and 4, and it is easy to
verify that any bounded variables belong to sub-Gaussian distribution. Lemmas 10 and 11 serve as
the technical tools in bounding matrix norms under the framework of the confidence interval.

The error bound between ∥∇ℓf − gt∥2 is divided into bounding I1, I2, and I3 as shown in (91). I1
in (92) represent the deviation of the mean of several random variables to their expectation, which
can be bounded through concentration inequality, i.e, Chernoff bound. I2 in (93) come from the
inconsistency of ”noisy” label in (8) and the ”ground truth” label in the population risk function
(31). I3 in (94) come from the data distribution shift defined in Definition 1.
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Lemma 9 ([72], Theorem 1.6). Consider a finite sequence {Zk} of independent, random matrices
with dimensions d1 × d2. Assume that such a random matrix satisfies

E(Zk) = 0 and ∥Zk∥ ≤ R almost surely.
Define

δ2 := max
{∥∥∥∑

k

E(ZkZ⊤
k )

∥∥∥,∥∥∥∑
k

E(Z⊤
k Zk)

∥∥∥}.
Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t

}
≤ (d1 + d2) exp

( −t2/2
δ2 +Rt/3

)
.

Definition 3 (Definition 5.7, [74]). A random variable X is called a sub-Gaussian random variable
if it satisfies

(E|X|p)1/p ≤ c1
√
p (82)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2∥X∥2
ψ2
s2 (83)

for all s ∈ R and some constant c2 > 0, where ∥X∥ϕ2 is the sub-Gaussian norm of X defined as
∥X∥ψ2

= supp≥1 p
−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional
marginal α⊤X is sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm of X is defined as
∥X∥ψ2

= sup∥α∥2=1 ∥α⊤X∥ψ2
.

Definition 4 (Definition 5.13, [74]). A random variable X is called a sub-exponential random
variable if it satisfies

(E|X|p)1/p ≤ c3p (84)
for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4∥X∥2
ψ1
s2 (85)

for s ≤ 1/∥X∥ψ1
and some constant c4 > 0, where ∥X∥ψ1

is the sub-exponential norm of X
defined as ∥X∥ψ1

= supp≥1 p
−1(E|X|p)1/p.

Lemma 10 (Lemma 5.2, [74]). Let B(0, 1) ∈ {α
∣∣∥α∥2 = 1,α ∈ Rd} denote a unit ball in Rd.

Then, a subset Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be approximated to
within ξ by some point α ∈ B(0, 1), i.e., ∥z −α∥2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ
satisfies

|Sξ| ≤ (1 + 2/ξ)d. (86)
Lemma 11 (Lemma 5.3, [74]). Let A be an d1 × d2 matrix, and let Sξ(d) be a ξ-net of B(0, 1) in
Rd for some ξ ∈ (0, 1). Then

∥A∥2 ≤ (1− ξ)−1 max
α1∈Sξ(d1),α2∈Sξ(d2)

|α⊤
1 Aα2|. (87)

Proof of Lemma 3. From (7), we know that
gt(wℓ,k;W )

=
1

N

N∑
n=1

(
Q(W ; sn, an)− y(t)n

)
· ∂Q(W ; sn, an)

∂wℓ,k

=
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an) + γ ·max

a
Q(sn, a;W

⋆)

− γ ·max
a

Q(sn, a;W
(t,0))

)
· ∂Q(W ; sn, an)

∂wℓ,k

=
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

+
1

N

N∑
n=1

γ ·
(
max
a

Q(sn, a;W
⋆)−max

a
Q(sn, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k
.

(88)
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From (31), we know that

∂f

∂wℓ,k
(W ) = E(s,a)∼µ⋆

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k
. (89)

Then, from (88) and (89), we have

gt(wℓ,k;W )− ∂f

∂wℓ,k
(W ) = gt(wℓ,k;W )− E(s,a)∼Dtgt(wℓ,k;W )

+ E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W ),

(90)

where Dt and µt are equivalent because of Assumption 2. Then, we have

gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

=

[
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

− E(s,a)∼µt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

]
+

[
1

N

N∑
n=1

γ ·
(
max
a

Q(sn, a;W
⋆)−max

a
Q(sn, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k

]
+ E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W ).

(91)

For convenience, we define I1, I2, and I3 in the following ways with xn := (sn, an) be the feature
mapping of state-action pair (sn, an).

Then, I1 is defined as

I1 :=
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

− E(s,a)∼Dt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k
,

(92)

I2 is defined as

I2 :=
1

N

N∑
n=1

γ ·
(
max
a

Q(s′n, a;W
⋆)−max

a
Q(s′n, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k
, (93)

and I3 is defined as

I3 := E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W ), (94)

where
∂Q(W ; sn,an)

∂wℓ,k
=

1

K
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ(W ) (95)

from (43). Therefore, we have∥∥∥gt(wℓ,k;W )− ∂ft
∂wℓ,k

(W )
∥∥∥
2
≤ ∥I1∥2 + ∥I2∥2 + ∥I3∥2. (96)

Next, we will provide the bound for ∥I1∥2, ∥I2∥2, and ∥I3∥2.

Bound of I1. We first divide the data in Dt into two parts, namely, Dt,1 and Dt,2. Dt,1 includes the
state-action pair (s, a) such that an is randomly selected from action space A, and Dt,2 includes the
state-action pair (s, a) such that an is selected based on the greedy policy with respect toQ(W (t,0)).
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Then, we define a random variable Z(ℓ,1) =
(
Q(x;W ) − Q(x;W ⋆)

)
· Jℓ,k · αTh(ℓ)(W ) with

x ∼ Dt,1 and Z(ℓ,1)
n =

(
Q(xn;W ) −Q(xn;W

⋆)
)
· Jℓ,k · αTh(ℓ)

n (W ) as the realization of Z(1)
ℓ

for n = 1, 2 · · · , N , where α ∈ Rd is any fixed unit vector with ∥α∥2 ≤ 1. We know that s and a
are independent for x ∼ Dt,1. Let Σ1 denote the covariance matrix of x ∼ Dt,1. Moreover, x(s, a)
is bounded by 1, then we have ∥Σ1∥2 ≤ 1.

Similar toZ(ℓ,1), we define a random variableZ(ℓ,2) =
(
Q(x;W )−Q(x;W ⋆)

)
·Jℓ,k ·αTh(ℓ)(W )

with x ∼ Dt,2 and Z(ℓ,2)
n =

(
Q(xn;W ) −Q(xn;W

⋆)
)
· Jℓ,k · αTh(ℓ)

n (W ) as the realization of
Z(ℓ,2) for n = 1, 2 · · · , N . Differ from Z(ℓ,1), s and a are dependent for x ∼ Dt,2. Let Σ2 denote
the covariance matrix of x ∼ Dt,1. Then, we have ∥Σ2∥2 ≤ 1 + maxj ρxj ,a ≤ 2, where ρxj ,a
denotes the correlation between a and xj .

According to the definition of (92), we can rewrite I1 as

I1 =
1

K

[
1

N

N∑
n=1

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

− Ex∼Dt
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

]
=

1

K

[
1

N

( ∑
n∈Dt,1

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

+
∑

n∈Dt,2

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

)
−
(
εEx∼Dt,1

(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

+ (1− ε)Ex∼Dt,2
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

)]
=

1

K2

[
ε ·

( 1

εN

∑
n∈Dt,1

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

− Ex∼Dt,1
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

)
+ (1− ε)

( 1

(1− ε)N

∑
n∈Dt,2

(
Q(W ;xn)−Q(W ⋆;xn)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ
n)h

ℓ
n

− Ex∼Dt,2
(
Q(W ;x)−Q(W ⋆;x)

)
Jℓ,kϕ′(w⊤

ℓ,kh
ℓ)hℓ

]

(97)

Then, for any p ∈ N+, we have(
E|Z(1)|p

)1/p
=
(
Ex∼Dt,1 |Q(W ;x)−Q(W ⋆;x)|p · |Jℓ,kϕ′(w⊤

ℓ,kx)| · |αThℓ|p
)1/p

≤
(
Ex∼Dt,1 |Q(W ;x)−Q(W ⋆;x)|p · |αThℓ|p

)1/p

≤
(
Ex∼Dt,1

∣∣∣∥W −W ⋆∥2 · ∥x∥2
∣∣∣p · ∣∣αTx∣∣p)1/p

≤C1 · ∥W −W ⋆∥2 · p

(98)

where C1 is a positive constant.

From Definition 4, we know that Z(ℓ,1) belongs to sub-exponential distribution with ∥Z(ℓ,1)∥ψ1 ≤
C1∥W −W ⋆∥2. Therefore, by Chernoff inequality, we have

P
{∣∣∣ 1
N

N∑
n=1

Z(ℓ,1)
n (j)− EZ(ℓ,1)(j)

∣∣∣ < t

}
≤ 1− e−C(C1∥W−W ⋆∥2)

2·Ns2

eNst
(99)

for some positive constant C and any s ∈ R.
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Let t = C1∥W −W ⋆∥2
√

d log q
N and s = 2

C∥W−W ⋆∥2
· t for some large constant q > 0. Then, we

have ∣∣∣ 1
N

N∑
n=1

Z(ℓ,1)
n (j)− EZ(ℓ,1)(j)

∣∣∣ ≲ C1∥W −W ⋆∥2 ·
√
d log q

N
(100)

with probability at least 1− q−d.

Similar to (98), we have (
E|Z(ℓ,2)|p

)1/p

≤ C2 · ∥W −W ⋆∥2 · p, (101)

where C2 = 2 · C1. Then, we have∣∣∣ 1
N

N∑
n=1

Z(ℓ,2)
n (j)− EZ(ℓ,2)(j)

∣∣∣ ≲ 2C1∥W −W ⋆∥2 ·
√
d log q

N
(102)

with probability at least 1− q−d.

From Lemma 11 and (97), we have

∥I1∥2 ≤2 · 1

K2

[
ε ·

∣∣∣ 1

εN

∑
n∈Dt,1

Z(ℓ,1)
n (j)− EZ(ℓ,1)(j)

∣∣∣
+ (1− ε) ·

∣∣∣ 1

(1− ε)N

∑
n∈Dt,2

Z(ℓ,2)
n (j)− EZ(ℓ,2)(j)

∣∣∣]

≲
2− ε

K2
∥W −W ⋆∥2 ·

√
d log q

N

(103)

with probability at least 1− |S 1
2
(d)| · q−d.

From Lemma 10, we know that |S 1
2
(d)| ≤ 5d. Therefore, the probability for (103) holds is at least

1−
(
q
5

)−d
. Because q ≫ 5, we denote the probability as 1− q−d for convenience.

Bound of I2. Let a⋆n = argmaxa∈AQ(W ⋆; s′n,a). While for Q(W ), we have
max
a

Q(W ; s′n,a) ≥ Q(W ; s′n,a
⋆). (104)

Then, we have
max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a) =Q(W ⋆; s′n,a
⋆
n)−max

a
Q(W ; s′n,a)

≤Q(W ⋆; s′n,a
⋆
n)−Q(W ; s′n,a

⋆
n).

(105)

Similarly to (105), let us define ã⋆n = argmaxaQ(W ; sn,a). Then, we have
max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a) ≥Q(W ⋆; s′n, ã
⋆
n)−Q(W ; s′n, ã

⋆
n). (106)

Combining (105) and (106), we have∣∣∣max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a)
∣∣∣ ≤ max

a

∣∣∣Q(W ⋆; s′n,a)−Q(W ; s′n,a)
∣∣∣. (107)

Following the definition of Z(ℓ,1) in (98), we define

Z(ℓ,3)(j) =
(
max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a)
)
· Jℓ,kϕ′(w⊤

ℓ,kh
(ℓ)) ·α⊤h(ℓ).

Therefore, from (105) and (106), we know

(E|Z(3)|p)1/p ≤
(
Ex∼Dt

∣∣∣max
a

Q(W ⋆; s′n,a)−max
a

Q(W ; s′n,a)
∣∣∣p

·
∣∣∣Jℓ,kϕ′(w⊤

ℓ,kh
(ℓ))

∣∣∣p · |α⊤h(ℓ)
n

∣∣p)1/p

≤
(
Ex∼Dt max

a

∣∣∣Q(W ⋆; s′n,a)−Q(W ; s′n,a)
∣∣∣p · |α⊤h(ℓ)

n |p
)1/p

≲ (2− ε) ·
∥∥W −W ⋆

∥∥
2
· log |A| · p.

(108)
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Following the steps in (98) to (100), we have

∥I2∥2 ≲
(1− ε/2)γ

K
·
(
∥W −W ⋆∥2 ·

√
d · log q · log |A|

N
+ EZ(ℓ,3)

)
≲
(1− ε/2)γ

K
·
(
∥W −W ⋆∥2 ·

(√d · log q · log |A|
N

+ C
)

≲
(1− ε/2)γ

K
· ∥W −W ⋆∥2

(109)

with probability at least 1− q−d, where the last inequality holds when N ≳ d · log q · log |A|.
Bound of I3. We have

I3

=E(s,a)∼µt gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

=E(s,a)∼µt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

− E(s,a)∼µ⋆
(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

=E(s,a)∼µt

(
Q(W ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

Q(W ⋆; s′, a′)
)
· ∂Q(W ; s, a)

∂wℓ,k

− E(s,a)∼µ⋆
(
Q(W ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

Q(W ⋆; s′, a′)
)
· ∂Q(W ; s, a)

∂wℓ,k

=E(s,a)∼µt,s′∼pa
s,s′

(
Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

)
· ∂Q(W ; s, a)

∂wℓ,k

− E(s,a)∼µ⋆,s′∼pa
s,s′

(
Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

)
· ∂Q(W ; s, a)

∂wℓ,k

(110)

Then, we have

|I3| =
∣∣∣∣ ∫

(s,a)

∫
s′

(
Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

)
· ∂Q(W ; s, a)

∂wℓ,k

·
(
µ⋆(ds, da)P(ds′|s, a)− µt(ds, da)P(ds′|s, a)

)∣∣∣∣
≤
∣∣∣Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

∣∣∣ · ∣∣∣∂Q(W ; s, a)

∂wℓ,k

∣∣∣
·
∣∣∣∣ ∫

(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt(ds, da)P(ds′|s, a)

)∣∣∣∣
=
∣∣∣Q(W ; s, a)− r(s, a)− γ ·max

a′
Q(W ⋆; s′, a′)

∣∣∣ · ∣∣∣∂Q(W ; s, a)

∂wℓ,k

∣∣∣
·
[
(1− ε) ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
+ ε ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,2(ds, da)P(ds′|s, a)

)∣∣∣]
≤Rmax

1− γ
·
[
(1− ε) ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
+ ε ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,2(ds, da)P(ds′|s, a)

)∣∣∣].

(111)
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Then, we have∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
=
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)π⋆(da|s)P(ds′|s, a)− Pt,1(ds)πt,1(da|ds)P(ds′|s, a)

)∣∣∣
≤
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)− Pt,1(ds)

)
π⋆(da|s)P(ds′|s, a)

∣∣∣
+
∣∣∣ ∫

(s,a)

∫
s′
Pt,1(ds)

(
πt,1(da|ds)− π⋆(da|ds)

)
P(ds′|s, a)

∣∣∣
≤|A| · Ct.

(112)

Therefore, the bound of I3 can be found as

|I3| ≲
Rmax

1− γ
· |A| ·

(
(1− ε)Ct + ε · Ct

)
=Cd ·

(
Ct + (1− Ct)ε

)
· Rmax

1− γ
,

(113)

where Cd = |A|.
In conclusion, let α ∈ RKd and αj ∈ Rd with α = [αT1 ,α

T
2 , · · · ,αTK ]T , we have

∥gt(W )−∇ft(W )∥2

=
∣∣∣αT (gt(W )−∇ft(W )

)∣∣∣
≤

K∑
k=1

∣∣∣αTk (gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

)∣∣∣
≤

K∑
k=1

∥∥∥gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

∥∥∥
2
· ∥αk∥2

≤
K∑
k=1

(∥I1∥2 + ∥I2∥2 + ∥I3∥2) · ∥αk∥2

≤2− ε

K

√
d log q

N
· ∥W −W ⋆∥2 +

(1− ε/2)γ

K
· ∥W (t,0) −W ⋆∥2

+ Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ

(114)

with probability at least 1− q−d.

E Additional proof of the lemmas in Appendix C

E.1 Proof of Lemma 6

The distance of the second order derivatives of the population risk function f(·) at point W and W ⋆

can be converted into bounding P1, P2, which are defined in (116). The major idea in proving P1 is
to connect the error bound to the angle between W and W ⋆ given h(ℓ) belongs to the sub-Gaussian
distribution.

Proof of Lemma 6. From the definition of f in (31), we have

∂2f

∂wℓ,j1∂wℓ,j2

(W ⋆) =
1

K2
ExJℓ,kϕ′(w⋆⊤

j1 h) · Jℓ,kϕ′(w⋆⊤
j2 h) · h⋆h⋆⊤,

and
∂2f

∂wℓ,j1∂wℓ,j2

(W ) =
1

K2
Exϕ

′J ⋆
ℓ,k(w

⊤
ℓ,j1h) · J

⋆
ℓ,kϕ

′(w⊤
ℓ,j2h) · hh

⊤,

(115)
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where h = h(ℓ)(W ) and h⋆ = h(ℓ)(W ⋆).

Then, we have
∂2f

∂wℓ,j1∂wℓ,j2

(W ∗)− ∂2f

∂wℓ,j1∂wℓ,j2

(W )

=
1

K2
Ex

[
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h

⋆)J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)h⋆h⋆⊤ − Jℓ,kϕ′(w⊤
ℓ,j1h)Jℓ,kJℓ,kϕ

′(w⊤
ℓ,j2h)hh

⊤]
=

1

K2
Ex

[
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h

⋆)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)h⋆h⋆⊤ − Jℓ,kϕ′(w⊤
ℓ,j2h)hh

⊤)
+ Jℓ,kϕ′(w⊤

ℓ,j2h)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h)h

⋆h⋆⊤ − Jℓ,kϕ′(w⊤
ℓ,j1h)hh

⊤)]
:=

1

K2
(P1 + P2).

(116)
For any a ∈ RKℓ with ∥a∥2 = 1, we have

a⊤P1a =ExJ ⋆
ℓ,kϕ

′(w⋆T
ℓ,j1h

⋆)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
)
. (117)

Then, we have

|a⊤P1a| =
∣∣∣ExJ ⋆

ℓ,kϕ
′(w⋆T

ℓ,j1h
⋆)
(
J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
)∣∣∣

≤Ex

∣∣∣J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
∣∣∣

≤Ex

∣∣∣J ⋆
ℓ,kϕ

′(w⋆T
ℓ,j2h

⋆)(a⊤h⋆)2 − J ⋆
ℓ,kϕ

′(w⋆⊤
ℓ,j2h

⋆)(a⊤h)2
∣∣∣

+ Ex

∣∣∣J ⋆
ℓ,kϕ

′(w⋆⊤
ℓ,j2h

⋆)(a⊤h)2 − Jℓ,kϕ′(w⋆⊤
ℓ,j2h)(a

⊤h)2
∣∣∣

+ Ex

∣∣∣Jℓ,kϕ′(w⋆⊤
ℓ,j2h)(a

⊤h)2 − Jℓ,kϕ′(w⊤
ℓ,j2h)(a

⊤h)2
∣∣∣

≲∥W −W ⋆∥2 + ∥W −W ⋆∥2

+ Ex

∣∣∣(ϕ′(w⋆⊤
ℓ,j2h)− ϕ′(w⋆⊤

ℓ,j2h)
)
· (a⊤h)2

∣∣∣
≲∥W −W ⋆∥2 + Ex

∣∣∣(ϕ′(w⋆⊤
ℓ,j2h)− ϕ′(w⋆⊤

ℓ,j2h)
)
· (a⊤h)2

∣∣∣.

(118)

Utilizing the Gram-Schmidt process, we can demonstrate the existence of a set of normalized or-
thonormal vectors denoted as B = {a, b, c,a⊥

4 , · · · ,a⊥
d } ∈ Rd. This set forms an orthogonal

and normalized basis for Rd, wherein the subspace spanned by a, b, c includes a,wℓ,j2 , and w∗
ℓ,j2

.
Then, for any x ∈ Rd, we have a unique z = [z1, z2, · · · , zd]⊤ such that

h = z1a+ z2b+ z3c+ · · ·+ zda
⊥
d .

Because (i) a,wℓ,j2 , and w∗
ℓ,j2

belongs to the subspace spanned by vectors {a, b, c} and (ii)
a⊥
4 , · · · ,a⊥

d , · · · are orthogonal to a, b, and c. Then, we know that

w⋆⊤
ℓ,j2h =w⋆⊤

ℓ,j2(z1a+ z2b+ z3c+ · · ·+ zda
⊥
d )

=z1w
⋆⊤
ℓ,j2a+ z2w

⋆⊤
ℓ,j2b+ z3w

⋆⊤
ℓ,j2c+ · · ·+ zdw

⋆⊤
ℓ,j2a

⊥
d

=z1w
⋆⊤
ℓ,j2a+ z2w

⋆⊤
ℓ,j2b+ z3w

⋆⊤
ℓ,j2c+ 0

=w⋆⊤
ℓ,j2(z1a+ z2b+ z3c)

:=w⋆⊤
ℓ,j2h̃.

(119)

where h̃ = z1a+ z2b+ z3c. Similar to (119), we have w⊤
ℓ,j2

h = w⊤
ℓ,j2

h̃ and a⊤h = a⊤h̃.

Then, we define I4 as

I4 :=Eh

∣∣∣(ϕ′(w⋆⊤
ℓ,j2h)− ϕ′(w⊤

ℓ,j2h)
)
·
(
a⊤h

)∣∣∣
=

∫
Rh

|ϕ′
(
w⊤
ℓ,j2h

)
− ϕ′

(
w⋆T
ℓ,j2h

)
| · |a⊤h|2 · fH(h)dh

=

∫
Rz

|ϕ′
(
w⊤
ℓ,j2h

)
− ϕ′

(
w⋆T
ℓ,j2h

)
| · |a⊤h|2 · fZ(z) · |Jh(z)|dz

(120)
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where |Jh(z)| is the determinant of the Jacobian matrix ∂h
∂z . Since z is a representation of h based

on an orthogonal and normalized basis, we have |Jh(z)| = 1. According to (119), I4 can be
rewritten as

I4 =

∫
Rz

|ϕ′
(
w⊤
ℓ,j2h̃

)
− ϕ′

(
w⋆T
ℓ,j2h̃

)
| · |a⊤h̃|2 · fZ(z)dz

=

∫
Rz

|ϕ′
(
w⊤
ℓ,j2h̃

)
− ϕ′

(
w⋆T
ℓ,j2h̃

)
| · |a⊤h̃|2 · fZ(z1, z2, z3)dz1dz2dz3

(121)

where in the last equality we abuse fZ(z1, z2, z3) to represent the probability density function of
(z1, z2, z3) defined in region Rz .

Next, we show that z is rotational invariant over Rz . Let R = [a b c · · · a⊥
d ], we have h = Rz.

For any z(1) and z(2) with ∥z(1)∥2 = ∥z(2)∥2. We define h(1) = Rz(1) and h(2) = Rz(2). Since
x is rotational invariant and ∥h(1)∥2 = ∥h(2)∥2 = ∥z(1)∥2 = ∥z(2)∥2, then we know h(1) and
h(2) has the same distribution density. Then, z(1) and z(2) has the same distribution density as well.
Therefore, z is rotational invariant over Rz .

Then, we consider spherical coordinates with z1 = Rcosϕ1, z2 =
Rsinϕ1sinϕ2, z3 = Rsinϕ1cosϕ2. Hence, we have

I4 =

∫
|ϕ′

(
w⊤
ℓ,j2h̃

)
− ϕ′

(
w⋆⊤
ℓ,j2h̃

)
| · |R cosϕ1|2 · fZ(R,ϕ1, ϕ2) ·R2 sinϕ1 · dRdϕ1dϕ2. (122)

Since z is rotational invariant, we have that

fZ(R,ϕ1, ϕ2) = fZ(R). (123)

Then, we have

I4 =

∫
|ϕ′

(
w⊤
ℓ,j2(h̃/R)

)
− ϕ′

(
w⋆T
ℓ,j2(h̃/R)

)
| · |R cosϕ1|2 · fZ(R)R2 sinϕ1dRdϕ1dϕ2

=

∫ ∞

0

R4fz(R)dR

∫ ψ1(R)

0

∫ ψ2(R)

0

| cosϕ1|2 · sinϕ1

· |ϕ′
(
w⊤
ℓ,j2(h̃/R)

)
− ϕ′

(
w⋆T
ℓ,j2(h̃/R)

)
|dϕ1dϕ2

≤
∫ ∞

0

R4fz(R)dR

∫ π

0

∫ 2π

0

sinϕ1 · |ϕ′
(
w⊤
ℓ,j2 x̄

)
− ϕ′

(
w⋆T
ℓ,j2 x̄

)
|dϕ1dϕ2,

(124)

where the first equality holds because ϕ′
(
w⊤
i,,j2

h
)

only depends on the direction of h, and x̄ :=
h/R = (cosϕ1, sinϕ1 sinϕ2, sinϕ1 cosϕ2) in the last inequality.

Because z belongs to the sub-Gaussian distribution, we have Fz(R) ≥ 1−2e−
R2

σ2 for some constant
σ > 0. Then, the integration of R can be represented as∫ ∞

0

R4fZ(R)dR =

∫ ∞

0

R4d
(
1− Fz(R)

)
≤
∫ ∞

0

4R3
(
1− Fz(R)

)
dR

≤
∫ ∞

0

8R3e−
R2

σ2 dR

≤ 32√
2π
σ

∫ ∞

0

R2e−
R2

σ2 dR

=32σ2

∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR,

(125)

where the last inequality comes from the calculation that∫ ∞

0

2R2e−
R2

σ2 dR =
√
2πσ3,∫ ∞

0

2R3e−
R2

σ2 dR = 4σ4.

(126)
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Then, we define x̃ ∈ RKℓ belongs to Gaussian distribution as x̃ ∼ N (0, σ2I). Therefore, we have

I4 ≤ 32σ2 ·
∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR

∫ π

0

∫ 2π

0

sinϕ1 · |ϕ′
(
w⊤
ℓ,j2 x̄

)
− ϕ′

(
w⋆⊤
ℓ,j2 x̄

)
|dϕ1dϕ2

= 32σ2 · Ez1,z2,z3
∣∣ϕ′(w⊤

ℓ,j2 x̃
)
− ϕ′

(
w⋆⊤
ℓ,j2 x̃

)
|

≂ Ex̃

∣∣ϕ′(w⊤
ℓ,j2 x̃

)
− ϕ′

(
w⋆T
ℓ,j2 x̃

)
|,

(127)

where x̃ belongs to Gaussian distribution.

Therefore, the inequality bound over a sub-Gaussian distribution is bounded by the one over a
Gaussian distribution. In the following contexts, we provide the upper bound of Ex̃

∣∣ϕ′(w⊤
ℓ,j2

x̃
)
−

ϕ′
(
w⋆T
ℓ,j2

x̃
)
|.

Define a set A1 = {x|(w⋆⊤
ℓ,j2

x̃)(w⊤
ℓ,j2

x̃) < 0}. If x̃ ∈ A1, then w⋆⊤
ℓ,j2

x̃ and w⊤
ℓ,j2

x̃ have different
signs, which means the value of ϕ′(w⊤

ℓ,j2
x̃) and ϕ′(w⋆⊤

ℓ,j2
x̃) are different. This is equivalent to say

that

|ϕ′(w⊤
ℓ,j2 x̃)− ϕ′(w⋆⊤

ℓ,j2 x̃)| =
{

1, if x̃ ∈ A1

0, if x̃ ∈ Ac
1

. (128)

Moreover, if x̃ ∈ A1, then we have

|w⋆T
ℓ,j2 x̃| ≤|w⋆T

ℓ,j2 x̃−w⊤
ℓ,j2 x̃| ≤ ∥w⋆

ℓ,j2 −wℓ,j2∥2 · ∥x̃∥2. (129)

Let us define a set A2 such that

A2 =
{
x̃
∣∣∣ |w⋆T

ℓ,j2
x̃|

∥w∗
ℓ,j2

∥2∥x̃∥2
≤

∥w∗
ℓ,j2

−wℓ,j2∥2
∥w∗

ℓ,j2
∥2

}
=
{
θx̃,w∗

ℓ,j2

∣∣∣| cos θx̃,w⋆
ℓ,j2

| ≤
∥w⋆

ℓ,j2
−wℓ,j2∥2

∥w⋆
ℓ,j2

∥2

}
.

(130)

Hence, we have that

Ex̃|ϕ′(w⊤
ℓ,j2 x̃)− ϕ′(w⋆T

ℓ,j2 x̃)|
2 =Ex̃|ϕ′(w⊤

ℓ,j2 x̃)− ϕ′(w⋆T
ℓ,j2 x̃)|

=Prob(x̃ ∈ A1)

≤Prob(x̃ ∈ A2).

(131)

Since x̃ ∼ N (0, ∥a∥22I), θx̃,w⋆
ℓ,j2

belongs to the uniform distribution on [−π, π], we have

Prob(x̃ ∈ A2) =
π − arccos

∥w⋆
ℓ,j2

−wℓ,j2∥2

∥w⋆
ℓ,j2

∥2

π
≤ 1

π
tan(π − arccos

∥w⋆
ℓ,j2

−wℓ,j2∥2
∥w⋆

ℓ,j2
∥2

)

=
1

π
cot(arccos

∥w⋆
ℓ,j2

−wℓ,j2∥2
∥w⋆

ℓ,j2
∥2

)

≤ 2

π

∥w⋆
ℓ,j2

−wℓ,j2∥2
∥w⋆

ℓ,j2
∥2

≤∥W ⋆
ℓ −Wℓ∥2

(132)

Hence, (124) and (132) suggest that

I4 ≲ ∥Wi −W ⋆
i ∥2 · ∥a∥22,

and ∥P1∥2 ≤ ∥W −W ⋆∥2 + I4 ≲ ∥W −W ⋆∥2,
(133)

The same bound that is shown in (133) holds for P2 as well.
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Therefore, we have

∥∇2
ℓf(W

⋆)−∇2
ℓf(W )∥2 = max

∥α∥2≤1

∣∣∣α⊤
(
∇2
ℓf(W

⋆)−∇2
ℓf(W )

)
α
∣∣∣

≤ 1

K2

K∑
j1=1

K∑
j2=1

∥P1 + P2∥2 · ∥αj1∥2 · ∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥W −W ⋆∥2 · ∥αj1∥2∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥W −W ⋆∥2 ·
(∥αj1∥22 + ∥αj2∥22

2

)
≲

1

K
· ∥W ⋆ −W ∥2,

(134)

where α ∈ RKd and αj ∈ RKℓ with α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤.

E.2 Proof of Lemma 7

We aim to prove that
∫
R

(∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh is strictly greater than zero
for any α. Therefore, the ρ in (2) is strictly greater than zero. The proof is inspired by

Theorem 3.1 in [22]. It is obviously that
(∑K

j=1 α
⊤hϕ′(w⊤

ℓ,jh)
)2

is greater or equal to

zero. Given
(∑K

j=1 α
⊤hϕ′(w⊤

ℓ,jh)
)2

is continuous, we only need to show that α such that∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh) ̸= 0 for any α, namely, {hϕ′(w⊤

ℓ,jh)}Kj=1 are linear independent. Com-
pared with Theorem 3.1 in [22], we need to address two challenges: (1) the neuron weights w is the
random variable in [22] while the input h is the random variable in this paper and (2) the random
variable belongs to Gaussian distribution in [22] while the random variable belongs to sub-Gaussian
distribution in this paper.

Proof of Lemma 7. Let H be a Hilbert space on RKℓ , and the inner product of H is defined as

⟨f, g⟩ =
∫
R
f(h)⊤g(h)fH(h) · dh, ∀f, g ∈ H, (135)

where the Lebesgue measure of R over RKℓ is non-zero. Instead of directly proving∫
R

(∑K
k=1 α

⊤hϕ′(w⊤
k h)

)2

fH(h) · dh > 0 for any α, we note that it is sufficient to prove that

{hϕ′(w⊤
k h)}k∈[K] are linear independent over the Hilbert space H. Namely, if {hϕ′(w⊤

k h)}k∈[K]

are linear independent, we have

α⊤hϕ′(w⊤
k h) ̸= 0 almost everywhere. (136)

Therefore, we can know that
∫
R

(∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh is strictly greater than zero.

Next, we provide the whole proof for that {xϕ′(w⊤
k h)}k∈[K] are linear independent over the Hilbert

space H.

We define a group of functions {ψj(h)}Kj=1, where ψj(h) = hϕ′(w⊤
j h). From the assumption in

Lemma 7, we can justify that Eh∼D|ψj(h)|2 ≤ Eh∼D|h|2 <∞.

Let Xi = {h | w⊤
i h = 0} for any i ∈ [K]. For any fixed k, we can justify that Xk cannot be

covered by other sets {Xk}j ̸=k as long as wk does not parallel to any other weights wj with j ̸= k.
Namely, Xk ̸⊂ ∪j ̸=kXj . The idea of proving the claim above is that the intersection of Xj and Xk
is only a hyperplane in Xk. The union of finite many hyperplanes is not even a measurable space
and thus cannot cover the original space. Formally, we provide the formal proof for this claim as
follows.
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Let λ be the Lebesgue measure on Xk, then λ(Xk) > 0. When wj does not parallel to wk, Xk ∩Xj
is only a hyperplane in Xk for j ̸= k. Hence, we have λ(Xj ∩ Xk) = 0. Next, we have

λ
(
Xk ∩ (∪j ̸=kXk)

)
≤

∑
j ̸=k

λ(Xk ∩ Xj) = 0. (137)

Therefore, we have

λ
(
Xk/(∪j ̸=kXk)

)
= λ(Xk)− λ

(
Xk ∩ (∪j ̸=kXk)

)
= λ(Xk) > 0. (138)

Therefore, we have Xk/(∪j ̸=kXj) is not empty, which means that Xk ̸⊂ ∪j ̸=kXj .
Next, Since Xk/(∪j ̸=kXj) is not an empty set, there exists a point zk ∈ Xk/(∪j ̸=kXj) and r0 > 0
such that

B(zk, r) ∩ Dj = ∅ with ∀r ≤ r0 and j ̸= k, (139)
where B(zk, r) stands for a ball centered at zk with a radius of r. Then, we divide B(zk, r) into two
disjoint subsets such that

B+
r = B(zk, r) ∩ {h | w⊤

k h > 0},
B−
r = B(zk, r) ∩ {h | w⊤

k h < 0}.
(140)

Because zk is a boundary point of {h|w⊤
k h = 0}, both B+

r and B−
r are non-empty.

Note that ψj(h) is continuous at any point except for the ones in Xj . Then, for any j ̸= k, we know
that ϕj(w⊤

k h) is continuous at point zk since zk ̸∈ Xj . Hence, it is easy to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = ψk(zk). (141)

While for ψk, we know that ψk(h) ≡ 0 for h ∈ B−
r , (ii) ψk(h) = h for h ∈ B+

r . Hence, it is easy
to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = zk

lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = 0.

(142)

Now let us proof that {ψj}Kj=1 are linear independent by contradiction. Suppose {ψj}Kj=1 are linear
dependent, we have

K∑
j=1

αjψj(h) ≡ 0, ∀h. (143)

Then, we have

lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

(144)

Then, we have

0 = lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh− lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh

=αkzk

(145)

where the last equality comes from (141) and (142).

Note that zk cannot be 0 because zk ̸∈ Xj . Therefore, we have αk = 0. Similarly to (145), we
can obtain that αj = 0 by define zj following the definition of zk for any j ∈ [K]. Then, we know
that (143) holds if and only if α = 0, which contradicts the assumption that {ψj}Kj=1 are linear
dependent.

In conclusion, we know that {ψj}Kj=1 are linear independent, and∫
R

(∑K
j=1 α

⊤hϕ′(w⊤
ℓ,jh)

)2

pH(h) · dh is strictly greater than zero.
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E.3 Proof of Lemma 8

Proof of Lemma 8. From the definition of (39), we have

∥h(ℓ)(W )− h(ℓ)(W ⋆)∥2
=∥ϕ

(
W⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W ⋆)

)
∥2

=∥ϕ
(
W⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
+ ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W ⋆)

)
∥2

≤∥ϕ
(
W⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
∥2

+ ∥ϕ
(
W ⋆⊤

ℓ−1h
(ℓ−1)(W )

)
− ϕ

(
W ⋆⊤

ℓ−1h
(ℓ−1)(W ⋆)

)
∥2

≤∥Wℓ−1 −W ⋆
ℓ−1∥2 · ∥h(ℓ−1)(W )∥2 + ∥h(ℓ−1)(W )− h(ℓ−1)(W ⋆)∥2.

(146)

With the assumption in the Lemma 8 such that W is close enough to W ⋆, we have

∥Wi∥2 ≤ ∥W ⋆
i ∥2 + ∥Wi −W ⋆

i ∥2 ≲ 1. (147)

Therefore, we have

∥h(i)(W )∥2 ≤ ∥Wi∥2 · · · ∥W1∥2 · ∥x∥2 ≲ ∥x∥2. (148)

Then, we have

∥h(ℓ)(W )− h(ℓ)(W ⋆)∥2
≤∥Wℓ−1 −W ⋆

ℓ−1∥2 · ∥x∥2 + ∥h(ℓ−1)(W )− h(ℓ−1)(W ⋆)∥2

≤
ℓ−1∑
i=1

∥Wi −W ⋆
i ∥2 · ∥x∥2 + ∥h(1)(W )− h(1)(W ⋆)∥2

=

ℓ−1∑
i=1

∥Wi −W ⋆
i ∥2 · ∥x∥2 + ∥x− x∥2

=

ℓ−1∑
i=1

∥Wi −W ⋆
i ∥2 · ∥h(i−1)(W )∥2

≤∥W −W ⋆∥2 · ∥x∥2,

(149)

which completes the proof.

F Additional experiments

In this section, we provide numerical justification that our theoretical findings are aligned with
DDQN through the Atari Breakout game The neural network follows the same architecture as the
one used in Section 5. The algorithm terminates if the average score over the recent 100 episodes
does not improve or the algorithm reaches the maximum episode set as 200, which is around 4×105

training steps. The testing score is calculated based on a similar setup as the training process by
fixing the maximum memory size N as 2000 and greedy policy, i.e., ε = 0. Each point in the plot is
averaged over 10 experiments with an error bar representing the standard deviation.

Estimation errors with respect to the sample complexity N . We follow the setup in Section 5
to use the expected cumulative reward as the estimation error of the learned model to the optimal
Q-value function. The εt in ε-greedy policy decreases geometrically from 1 to 0.01. We vary the
number of samples in the replay buffer from 3000 to 10000. Figure 4 shows that the test error is al-
most linear in 1/

√
N , which is consistent with our characterization in (20). In addition, experiments

with a large N have a shorter error bar indicating a more stable learning performance with a large
sample complexity as shown in (12).

Convergence with different selections of ε. Figure 5 illustrates the convergence rate when εt in the
ε-greedy policy changes. For each point, ε0 is selected as the value in the x-axis, and we decrease
εt geometrically as the iteration t increases. Each point is averaged over 10 independent trials. We
can see that the convergence rate is a linear function of cε, matching our findings in (19).
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Figure 5: The convergence rate against the value
of cε.

G Extension to non i.i.d. samples

Assumption 3. At any fixed outer iteration t, the behavior policy πt and transition kernel Pt satisfy

sup
s∈S

dTV
(
P(sτ ∈ ·) | s0 = s),Pt

)
≤ λντ , ∀ τ ≥ 0 (150)

for some constant λ > 0 and ν ∈ (0, 1), where dTV denotes the total-variation distance between
the probability measures.

Assumption 3 assumes the Markov chain {st} induced by the behavior policy, i.e., εt-greedy policy
at t-th outer loop, is uniformly ergodic with the corresponding invariant measure Pt. Compared
with i.i.d. cases, we need to handle an additional error term when bounding the distance between
the gt and ∇f as shown in (91). Therefore, the upper bound in Lemma 3 changes, which suggests
an additional term in the final bound.

We present the major theoretical findings for non-i.i.d. samples in Theorem 2. The major proofs in
this context follow similar steps to the proof of Theorem 1, with slight changes in the error bound
between the sequences gt and ∇f . In this section, we omit the details of the proof for Theorem 2
but provide the proof for Lemma 3 under the assumptions outlined in Assumption 2 to simplify the
presentation.
Theorem 2 (Convergence for non-i.i.d. case). Suppose Assumption 1 and (143) hold, the buffer
size N satisfies (13). Let us define Cmax be a constant that is larger than Ct for 1 ≤ t ≤ T and
Cd = |A| · (1 + logν λ

−1 + 1
1−ν ), when εt satisfy

εt =
cε ·Θ(

√
N) · et

(1− Cmax) · Cd ·Rmax
− Cmax

1− Cmax
(151)

for a fixed constant cε ∈ (0, (1− γ)2], and the initialization satisfies

||W (0,0) −W ⋆||F ≤ O
(
1− 1− cε

Θ(
√
N)

)
· ρ · ∥W

⋆∥F
K

. (152)

Then, with the high probability of at least 1− T · q−d, we have

(C1) The learned weights decay geometrically with

||W (t+1,0) −W ⋆||F ≤
(
γ + cε · (1− γ)

)
· ||W (t,0) −W ⋆||F +

(2 + γ)Rmaxτ
⋆

(1− γ)Θ(N)
, (153)

(C2) the returned model Q(W (T,0)) exhibits an estimation error as

sup
(s,a)

∣∣Q(W (T,0))−Q⋆
∣∣ ≤ Cmax · Cd ·Rmax

(1− γ)2 ·Θ(
√
N · T )

+
(2 + γ)Rmaxτ

⋆

(1− γ)Θ(N · T )
, (154)

where τ⋆ = min{t | λνt ≤ 1/(N · T )}.

37



Proof of Lemma 3 under Assumption 2. Recall that in (91), we have

gt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

=

[
1

N

N∑
n=1

(
Q(W ; sn, an)−Q(W ⋆; sn, an)

)
· ∂Q(W ; sn, an)

∂wℓ,k

− E(s,a)∼Dt

(
Q(W ; s, a)−Q(W ⋆; s, a)

)
· ∂Q(W ; s, a)

∂wℓ,k

]
+

[
1

N

N∑
n=1

γ ·
(
max
a

Q(sn, a;W
⋆)−max

a
Q(sn, a;W

(t,0))
)
· ∂Q(W ; sn, an)

∂wℓ,k

]
+ E(s,a)∼µtgt(wℓ,k;W )− ∂f

∂wℓ,k
(W )

+ E(s,a)∼Dt,P
[
gt(wℓ,k;W )− E(s,a)∼µt,Pgt(wℓ,k;W )

]
:=I1 + I2 + I3 + I4.

(155)

Bound of I1 and I2. Compared with (91), the upper bound for I1 and I2 is the same as those shown
in (103) and (109), respectively.

Bound of I3. Following (111), the upper bound of I3 can be characterized as

∥I3∥2 ≤Rmax

1− γ
·
[
(1− ε) ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
+ ε ·

∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,2(ds, da)P(ds′|s, a)

)∣∣∣]. (156)

and ∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt,1(ds, da)P(ds′|s, a)

)∣∣∣
=
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)π⋆(da|s)P(ds′|s, a)− Pt,1(ds)πt,1(da|ds)P(ds′|s, a)

)∣∣∣
≤
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)− Pt,1(ds)

)
π⋆(da|s)P(ds′|s, a)

∣∣∣
+
∣∣∣ ∫

(s,a)

∫
s′
Pt,1(ds)

(
πt,1(da|ds)− π⋆(da|ds)

)
P(ds′|s, a)

∣∣∣.
(157)

From Theorem 3.1 in [49], we know that∣∣∣ ∫
(s,a)

(
P⋆(ds)− Pt,1(ds)

)∣∣∣ ≤ |A|(logν λ−1 +
1

1− ν
)Ct

and
∥∥πt,1(da|ds)− π⋆(da|ds)

∥∥ ≤ Ct.

(158)

Therefore, the bound of I3 can be found as

∥I3∥2 ≤ Rmax

1− γ
· |A| ·

(
(1− ε)Ct + ε · Ct

)
· (1 + logν λ

−1 +
1

1− ν
)

=Cd ·
(
Ct + (1− Ct)ε

)
· Rmax

1− γ
,

(159)

where Cd = |A| · (1 + logν λ
−1 + 1

1−ν ).

Bound of I4. I4 is the bias of the data because the data (s, a) at iteration t depends on the neural
network parameters W . Let us define ḡt as

ḡt(wℓ,k;W ) = Eµt,P gt(wℓ,k;W ) (160)

and
∆t = gt(wℓ,k;W )− ḡt(wℓ,k;W ). (161)
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It is easy to verify that

∥gt(wℓ,k;W )− gt(w̃ℓ,k; W̃ )∥ ≤ (1 + γ) · ∥W − W̃ ∥,

∥ḡt(wℓ,k;W )− ḡt(w̃ℓ,k; W̃ )∥ ≤ (1 + γ) · ∥W − W̃ ∥,

and ∥gt∥ ≲
Rmax

1− γ
.

(162)

Then, we have
∆t(W )−∆t(W̃ ) ≲ (1 + γ) · ∥W − W̃ ∥2. (163)

Therefore, we have

∆t(W
(t,0)) ≤ ∆t(W

(t−τ,0)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi. (164)

Then, we need to bound δt(W (t−τ,0)).

Let us define the observed tuple Ot(s, a, s′) as the collection of the state, action, and the next state
at the t-th outer loop. Note that

W (t−τ,0) −→ st−τ −→ st −→ Ot (165)

forms a Markov chain introduced by the policy πt−τ .

Let W̃ (t−τ,0) and Õt be independently drawn from the marginal distributions of W̃ (t−τ,0) and Ot,
respectively.

With Lemma 9 in [4], we have

E∆t(W
(t−τ,0), Ot)− E ∆t(W̃

(t−τ,0), Õt) ≲ 2 sup
w,O

|∆t(W , O)| · λ · ντ . (166)

By definition, we have E ∆t(W̃
(t−τ,0), Õt) = 0 and

|∆t(W , O)| ≤ 2 Rmax

1− γ
. (167)

Therefore, we have

E∆t(W
(t,0)) ≤E∆t(W

(t−τ,0)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi

≤Rmax

1− γ

(
λ · ντ + (1 + γ) · τ · ηt−τ

)
,

(168)

where the last inequality comes from the fact that the step size ηt is non-increasing.

Choose τ⋆ = min
{
t = 0, 1, 2, · · · | λντ ≤ ηT

}
. When t ≤ τ⋆, we choose τ = t and have

E∆t(W
(t,0)) ≤ Rmax

1− γ
· τ⋆ · η0. (169)

When t > τ⋆, we can choose τ = τ⋆ and obtain

E∆t(W
(t,0)) ≤ Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ . (170)

Combining (169) and (170), we have

|I4| ≤
Rmax

1− γ
· (1 + γ)τ⋆ · ηmax{0,t−τ⋆}, (171)

where τ⋆ = min{t | λνt ≤ ηT }.
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