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Abstract
Neural networks (NNs) have emerged as promis-
ing tools for solving constrained optimization
problems in real-time. However, ensuring con-
straint satisfaction for NN-generated solutions re-
mains challenging due to prediction errors. Exist-
ing methods to ensure NN feasibility either suf-
fer from high computational complexity or are
limited to specific constraint types. We present
Bisection Projection, an efficient approach to en-
sure NN solution feasibility for optimization over
general compact sets with non-empty interiors.
Our method comprises two key components: (i) a
dedicated NN (called IPNN) that predicts interior
points (IPs) with low eccentricity, which naturally
accounts for approximation errors; (ii) a bisec-
tion algorithm that leverages these IPs to recover
solution feasibility when initial NN solutions vio-
late constraints. We establish theoretical guaran-
tees by providing sufficient conditions for IPNN
feasibility and proving bounded optimality loss
of the bisection operation under IP predictions.
Extensive evaluations on real-world non-convex
problems demonstrate that Bisection Projection
achieves superior feasibility and computational
efficiency compared to existing methods, while
maintaining comparable optimality gaps.

1. Introduction
Constrained Optimization (CO) plays an essential role in
various engineering fields, such as supply chain, transporta-
tion, and power systems. To solve CO problems, iterative
algorithms, such as interior point methods, have been devel-
oped and embedded within commercial solvers like Gurobi.
These tools are designed to tackle CO with high precision,
providing high-quality solutions. However, they can be slow
for real-time applications with tight time constraints.
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Recent advancements in machine learning (ML) have in-
troduced innovative strategies for solving CO problems in
real-time, including the end-to-end (E2E) solution map-
ping (Amo22), the learning-to-optimize (L2O) iterative
scheme (CCC+21), the generative modeling framework
(LC23), and hybrid approaches (KFVHW21). One pow-
erful idea is to leverage the universal approximation ability
of neural networks (NNs) (HSW89; LLPS93) to predict
high-quality solutions given input parameters, significantly
reducing computation time compared to iterative solvers.
For instance, NNs have been trained to solve non-convex
optimal power flow problems in grid operations, achiev-
ing 2-4 orders of magnitude speedup over iterative solvers
(PZC19; GWWM19; PZCZ20; FMVH20; ZB20; DRK20).

Despite the minor optimality loss and significant speedup
of NN-based methods, guaranteeing the feasibility of NN
solutions with respect to problem constraints, which is im-
portant to safe-critical scenarios, remains a challenge due to
inherent NN prediction errors. Existing methods to ensure
NN feasibility either suffer from high computational com-
plexity or are limited to specific constraints. See Sec . 2 for
discussions on related works.

In this paper, we develop Bisection Projection (BP) as a
simple yet efficient scheme to recover NN solutions fea-
sibility over a (fairly) general compact set with a non-
empty interior, beyond previous works on linear (WZG+23;
ZPCL23), convex (THH23), or ball-homeomorphic con-
straints (LCL23; LCL24). Our contributions are as follows:

▷ In Sec. 4, we introduce the BP framework for ensuring
NN solution feasibility. It comprises two steps: (i) a dedi-
cated NN (called IPNN) that predicts interior points (IPs)
of low eccentricity; (ii) an efficient bisection algorithm that
leverages these IPs to recover solution feasibility.

▷ In Sec. 5, we establish theoretical guarantees by provid-
ing sufficient conditions for IPNN feasibility and proving
bounded eccentricity-related optimality loss of the bisection
operation under IP predictions.

▷ In Sec. 6, we carry out extensive experiments over convex
and non-convex problems to evaluate the performance of
BP. The results show that it outperforms existing methods in
feasibility and run-time complexity while achieving similar
optimality losses.
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Table 1. Existing work for ensuring NN solution feasibility for continuous constrained optimization problems.

Existing Work
(refer to Sec. 2 for details)

Constraint Setting Performance Guarantee
Input Non-linear Non-convex Feasibility Optimality Low

dependent equality inequality ensuring bound run-time

Penalty training ✓ ✓ ✓ ✗ ✗ ✓
Orthogonal Proj. ✓ ✓ ✓ ✓ ✓ ✗
Preventive learning ✓ ✗ (linear) ✗ (linear) ✓ ✗ ✓
Gauge mapping ✓ ✗ (linear) ✗ (linear) ✓ ✗ ✓
DC3 ✓ ✓ ✓ ✗ ✗ ✓
Gauge Proj. ✗ ✗ (linear) ✗ (convex) ✓ ✓ ✓
Homeomorphic Proj. ✓ ✓ ✓ (BH1) ✓ ✓ ✓
Bisection Proj. ✓ ✓ ✓ ✓ ✓ ✓
1 BH indicates the constraint set is homeomorphic to a ball, which includes all compact convex sets and a part of non-convex sets.

2. Related Work
Machine Learning (ML)-driven optimization has emerged
as an active research field (PZC19; KFVHW21; CCC+21;
Amo22). A fundamental challenge is ensuring neural net-
work (NN) solution feasibility under input-dependent con-
straints. For basic constraints like simplexes or boxes, fea-
sibility can be enforced through activation functions (e.g.,
Softmax or Sigmoid). For complex constraints, various
approaches have been developed, as summarized in Table 1.

Equality constraints. Linear equations and certain non-
linear equations with constant ranks, can be embedded as
neural network layers by predicting a subset of variables and
solving for the remaining variables to satisfy the equality
constraints (Aba69; PZC19; DRK20; LCL23; DWDS23).

Warm-start approach. The NN predictions can serve as
warm-start points for iterative solvers, potentially reduc-
ing the number of iterations required to reach the opti-
mal/feasible solution (Die19; Bak19; SHAS24; GXW+24).

Penalty training. To reduce constraint violations of pre-
dicted solutions, various penalty functions, such as quadratic
penalties, have been incorporated into the NN loss function
(COMB19; PZCZ20; ZB20; FMVH20). Additionally, inte-
gration of the Karush–Kuhn–Tucker (KKT) conditions as
equality constraints has been explored to refine NN perfor-
mance (NC21b; NC21a; ZCZ21). However, these methods
do not ensure solution feasibility.

Provable training/verification. A Preventive Learning
framework is proposed for ensuring linear constraint fea-
sibility without post-processing in (ZPC+20; ZPCL23),
which adjusts inequality constraints to account for NN pre-
diction errors. A NN editing method applies parametric
linear relaxation to find NN weights and ensure output feasi-
bility over the polytope (TT24). Additionally, NN verifica-
tion techniques can also be applied to assess the worst-case
performance after training (VQLC20; uAYKJ22; LAL+21).

Set representation/approximation. To guarantee feasibil-
ity, an inner approximation of the original constraint set

can be constructed. The convex combination of vertices
and rays can represent feasible points of linear constraints
(FNC20; ZSRZ21). For general compact constraint sets, the
probabilistic transformer utilizes collected feasible samples
to ensure feasibility (KZLD21). However, scalability re-
mains a challenge due to the exponential growth in required
samples with increasing dimensionality.

Projection approach. To enforce solution feasibility, or-
thogonal/L2 projection is often employed. However, solving
projection problems either by iterative solvers or equivalent
optimization layers (AK17; AAB+19; CDB+21; WZG+23;
ZYZ+24) over complex constraints is computationally in-
tensive. Alternative strategies include gradient-based meth-
ods (e.g., DC3 (DRK20)) and L2O models (HWFGY21;
HFL+22). However, those projection-analogous methods
do not guarantee feasibility for general constraints.

Homeomorphic Projection ensures NN solution feasibility
over ball-homeomorphic (BH) constraints by constructing
a homeomorphism between the constraint set and a unit
ball using invertible NN, allowing efficient projection via
bisection (LCL23; LCL24).

Gauge function. These works utilize gauge/Minkowski
functions (BM08) to conduct projection or constrain NN
output. For fixed convex sets, given an interior point, gauge
projection can be applied to find feasible boundary so-
lutions (Mha22). Similar approaches have been applied
in the following works (LBGH23; THH23; KU23; LM23;
TVH24). The gauge function can also be used to construct
a bijection, known as gauge mapping, to constrain the NN
output within a polytope (TZ22a; TZ22b; LKM23; LLC25).

In summary, existing approaches either have limited appli-
cability or incur significant computational overhead. We
propose Bisection Projection as a simple yet efficient frame-
work to ensure NN solution feasibility over (fairly) general
compact sets while maintaining bounded optimality loss.
While algorithmically related to gauge-based methods, our
method offers broader applicability and provides rigorous
theoretical analysis.
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3. Setting and Open Issue
We consider the following continuous optimization problem

min
x∈Rn

f(x, θ) s.t. x ∈ Cθ, (1)

where x ∈ Cθ ⊂ Rn denotes the decision variable and θ ∈
Θ ⊂ Rd represents the input contextual parameter. Without
loss of generality, the input domain Θ and constraint set Cθ
are assumed to be compact. The objective function f(x, θ)
is Lipschitz continuous and potentially non-convex, with
optimal solution denoted as x∗θ ∈ argminx∈Cθ

{f(x, θ)}.
The constraint set Cθ is specified by a set of inequalities:
g(x, θ) = [g1(x, θ), . . . , gnineq

(x, θ)] ≤ 0.

While equality constraints are not explicitly included in
this formulation, certain classes of equality constraints of a
constant rank can be embedded as neural network layers and
satisfied exactly (Aba69; Lee13; PZC19; DRK20; LCL23;
DWDS23). We do carry out simulations for problems with
linear/nonlinear equality constraints in Sec. 6 and provide
detailed discussion in Appendix A.4.

We further specify the constraint set as follows, beyond
those discussed in related works in Sec. 2.

Assumption 1. ∀θ ∈ Θ, (i) the constraint set Cθ has positive
measure 1; (ii) the set-valued mapping θ 7→ Cθ is continuous
in the Hausdorff metric 2.

We remark that assumption (i) guarantees the existence
of interior points, which is fundamental to the bisection
approach detailed in Sec. 4.1; and assumption (ii) en-
sures continuous deformation of the constraint set with
respect to the input parameter, enabling the learning of
continuous mappings from inputs to interior points as dis-
cussed in Sec. 4.3. These assumptions deliberately ex-
clude unusual sets (e.g., vertices of a hypercube) from
consideration in our continuous optimization problem, en-
abling rigorous algorithmic development and theoretical
analysis. Despite these restrictions, Assumption 1 encom-
passes a broad class of constraint sets, including linear, con-
vex, and ball-homeomorphic sets studied in existing works
(ZPCL23; WZG+23; LCL23; THH23; LCL24).

Open issue. As discussed in Sec. 2, various NN-based meth-
ods have demonstrated success in solving constrained opti-
mization problems, offering low run-time complexity and
small optimality gaps (PZC19; DRK20; PVH23; HCL24).
We denote one such trained NN predictor as F (θ) :
Rd → Rn and define its prediction error as ϵpre =
supθ∈Θ{∥F (θ) − x∗θ∥}. Due to the error ϵpre, ensuring
NN solution feasibility is non-trivial. As illustrated in Fig.

1i.e., ∀x ∈ int(Cθ), ∃ϵ > 0 such that B(x, ϵ) ⊆ Cθ , where
B(x, ϵ) is the open ball centered at x with radius ϵ.

2i.e., ∀θ0 ∈ Θ, ∀ϵ > 0, ∃δ > 0 such that dH(Cθ, Cθ0) < ϵ
whenever ∥θ−θ0∥ < δ, where dH denotes the Hausdorff distance.

Figure 1. NN predicting optimal solution (on boundary) may incur
infeasibility; NN predicting interior points accommodates errors.

1, an optimal solution often lies on the constraint boundary
with active constraints, making NN feasibility particularly
challenging — Any positive prediction errors can push NN
predictions outside of feasible regions.

Current approaches, as summarized in Table 1, are either
computationally intensive or fail to provide performance
guarantees over general input-dependent constraint sets. To
date, ensuring NN solutions feasibility for constraint op-
timization in (1) under Assumption 1, while maintaining
bounded optimality loss and low computational complexity,
remains an open and pressing challenge.

4. The Bisection Projection Framework
We propose Bisection Projection (BP) to “project” infeasi-
ble NN solutions onto the constraint set with low run-time
complexity and minor optimality loss. As detailed in Sec.
4.1, this framework applies bisection to iteratively narrow
the gap between infeasible points and one interior point (IP)
to find feasible solutions. In Sec. 4.2, to bound the optimal-
ity loss induced by bisection, we introduce the concept of
eccentricity for IP and establish its connection to projection
distance. In Sec. 4.3, to reduce the inference time for find-
ing IPs under varying inputs, we train another NN, denoted
as IPNN, to predict IPs in real time.

4.1. Bisection with Interior Points

Given an infeasible NN prediction x̃θ /∈ Cθ and an IP x◦θ ∈
Cθ, we can “project” x̃θ to Cθ as:

x̂θ = BP(x̃θ, x
◦
θ) ≜ α∗ · (x̃θ − x◦θ) + x◦θ, (2)

where α∗ ∈ [0, 1] leads to x̂θ ∈ ∂Cθ and ∂Cθ is the bound-
ary of Cθ. As illustrated in Fig. 2, the “projected” solution
x̂θ is located on the straight line segment connecting the
infeasible solution x̃θ and an IP x◦θ . We note that there could
be multiple α∗ and corresponding x̂θ, given a pair of x̃θ and
x◦θ . To determine one such α∗, we employ the bisection
method, as elaborated in Alg. 1. We initiate by drawing a
straight line connecting x̃θ with an IP x◦θ . This segment is
guaranteed to intersect the boundary of the feasible region
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Figure 2. The Bisection Projection framework: we apply one NN to predict a solution for the constraint optimization problem (near-
optimal but may not be feasible), and another NN to predict interior points (robust and feasible); then we apply bisection (Alg. 1) to
recover solution feasibility.

at least once. Subsequently, we apply the bisection algo-
rithm to iteratively pinpoint one feasible solution along this
segment toward the constraint boundary. Such a bisection
operation is applicable to general compact sets with non-
empty interiors (Assumption 1), and is also efficient with
a linear convergence rate and maintains low per-iteration
computational cost involving feasibility checks.
Remark 1. We note that the concept of projection-analogous
operation with IPs is non-sophisticated, and some works
also leverage similar ideas to “project” infeasible prediction
(Mha22; THH23; KU23; LM23; TVH24; LCL24), see Ap-
pendix A.1 for details of these methods. However, these
works primarily focus on fixed convex constraint sets where
a single IP can be computed offline for online deployment.
Two critical gaps remain in the literature: (i) theoretical
analysis of how IP selection influences the quality of pro-
jected solutions; (ii) developing efficient schemes to obtain
IPs for general input-dependent constraint sets in real-time.

Our work advances these fundamental issues by: (i) we first
introduce the eccentricity of IP and establish its connection
to the bisection-induced projection distance in Sec. 4.2. (ii)
We then employ another NN, called IPNN, to efficiently pre-
dict IPs under varying inputs for input-dependent constraint
in Sec. 4.3. We also present a comprehensive performance
analysis in Sec. 5.

4.2. Minimum-Eccentricity IP for Bisection

We first define the eccentricity of IP, which is crucial for
bounding the bisection-induced projection distance.

Definition 4.1 (Eccentricity of IP). For a compact set Cθ
satisfying Assumption 1 with a non-empty interior, the ec-
centricity for one IP x◦θ ∈ Cθ with respect to a compact
subset of boundary Γ ⊆ ∂Cθ is defined as:

E(x◦θ,Γ) ≜ max
y∈Γ
∥y − x◦θ∥ −min

y∈Γ
∥y − x◦θ∥ . (3)

Algorithm 1 Bisection for Feasibility.
Input: an NN prediction x̃θ /∈ Cθ and an IP x◦θ ∈ Cθ

1: set total iteration K, αl = 0, and αu = 1
2: for n = 1 : K do
3: bisection: αm = (αl + αu)/2
4: if x◦θ + αm · (x̃θ − x◦θ) ∈ Cθ then
5: increase lower bound: αl ← αm
6: else
7: decrease upper bound: αu ← αm
8: end if
9: end for

Output: feasible solution x̂θ = αl · (x̃θ − x◦θ) + x◦θ ∈ Cθ

When Γ = ∂Cθ, eccentricity quantifies the variation in
point-to-boundary distances, effectively measuring the in-
terior point’s centrality within the feasible region. For in-
stance, the center of a unit ball achieves zero eccentricity.
This measure directly relates to the optimality loss in bisec-
tion projection — lower eccentricity corresponds to smaller
bisection-induced optimality gaps.

When Γ ⊂ ∂Cθ is a subset of the boundary, eccentricity pro-
vides a localized characterization focused on specific bound-
ary regions of interest. Particularly, when Γ encompasses
the projected solutions of neural network predictions with
bounded errors, this local eccentricity measure yields tighter
bounds on the optimality loss compared to the global eccen-
tricity measure (i.e., E(x◦θ,Γ1) ≤ E(x◦θ,Γ2) if Γ1 ⊆ Γ2).

Next, we establish the connection between eccentricity mea-
sure and the bisection-induced projection distance.

Proposition 4.1. Let x̃θ = F (θ) be an infeasible NN predic-
tion with bounded prediction error as ∥F (θ)− x∗θ∥ ≤ ϵpre;
x̂θ = BP(x̃θ, x

◦
θ) be the projected solution with IP x◦θ ∈ Cθ;

Then, the worst-case projection distance is bounded as:

max
x̃θ∈B(x∗

θ ,ϵpre)
∥x̃θ − BP(x̃θ, x

◦
θ)∥ ≤ ϵpre + E(x◦θ,Γθ),
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where B(x∗θ, ϵpre) represents the NN prediction region, con-
taining all possible NN predictions with an error ϵpre; and
Γθ = {BP(x̃θ, x◦θ), ∀x̃θ ∈ B(x∗θ, ϵpre) \ Cθ} defines a sub-
set of the constraint boundary, containing all “projected”
infeasible NN predictions.

The complete proof and a geometric illustration are included
in Appendix B.1. We remark that the applicability of this
bound extends to general compact sets under Assumption 1.
Further, informed by Prop. 4.1, we seek to find an IP with
minimized eccentricity (MEIP) with respect to constraint
boundary ∂Cθ to reduce the worst-case 3 bisection-induced
projection distance for any infeasible NN solutions.

However, computing MEIP exactly presents significant
challenges even for convex constraints, due to the non-
convex boundary constraints in (26). To address this, we
can bound the eccentricity by finding a surrogate central
point4 such as the Chebyshev center (BBV04), defined as
the IP maximizing the minimum distance to the boundary:
max
x◦
θ∈Cθ

{ min
y∈∂Cθ

∥y − x◦θ∥}, which is also equivalent to mini-

mizing the second term of the eccentricity in Def. 4.1.

Thus, this Chebyshev center serves as a relaxation for MEIP
and provides an upper bound on the eccentricity. Moreover,
it admits a tractable reformulation as the center of the largest
Euclidean ball that can be inscribed in Cθ, which eliminates
the non-convex boundary constraints in (26):

max
x◦
θ∈Cθ

γ, s.t. B(x◦θ, γ) ⊆ Cθ (4)

However, computing the Chebyshev center for constraint
set Cθ under varying input θ poses significant computational
challenges, particularly when rapid response times are essen-
tial for online applications. To overcome this limitation, we
develop a learning-based approach in the following section.
We train another neural network (denoted as IPNN) offline
to learn the mapping from input parameters to the Cheby-
shev centers, thereby reducing the computational burden of
finding interior points during real-time deployment.

4.3. Interior Points Neural Network (IPNN) Training

We utilize another neural network, denoted as IPNN ψ(·) :
Rd → Rn, to predict the IPs. We remark that such a con-
tinuous mapping from input to some IPs of interest exists
under Hausdorff continuity specified in the Assumption 1.

3We consider minimize eccentricity E(x◦
θ , ∂Cθ) with respect

to the entire constraint boundary, which is prediction-agnostic
and provides robust performance across different NN predictors
over the same constraint set. In the appendix C, we also discuss
prediction-aware eccentricity minimization when NN predictions
or optimal solution data are given in advance.

4We provide a comprehensive review of different center defini-
tions in Appendix A.3 to justify the design of MEIP.

Algorithm 2 IPNN Training.
Input: Input data {θi}Ni=1 ∈ Θ, unit ball samples {ui}Mi=1

1: Training epoch E, batch size B, IPNN ψ
2: Initialize robust margins γ = 10−2

3: for e = 1 : E do
4: Sampling batched data: {θi}Bi=1, {ui}Bi=1

5: Loss: L(ψ, γ) = 1
B

B∑
i=1

P(x◦θi+γ ·ui, θi)−λ·log(γ)

6: Model update: (ψ, γ)← Adam(L(ψ, γ))
7: end for

Output: Trained IPNN ψ.

We design the following loss function for IPNN training:

L(ψ(θ), γ) = Eu [P(x◦θ + γ · u, θ)]− λ · log(γ) (5)

where the IP prediction is denoted as x◦θ = ψ(θ). The
first loss term, P(x◦θ + γ · u, θ) = ∥g(x◦θ + γ · u, θ)+∥, de-
notes the constraint violation under the perturbed prediction
with random samples u from a unit ball, and its expecta-
tion represents the penalty for the inscribed ball constraint
B(x◦θ, γ) ⊆ Cθ in (4). The regularization term, log(γ),
represents the radius maximization objective in (4) and is
adjusted by a positive coefficient λ.

We also note that the loss function is analogous to the ad-
versarial learning techniques like randomized smoothing
(CRK19) with Gaussian perturbations and fixed γ, ensur-
ing the predicted IPs maintain a robust margin γ from
the constraint boundary. Finally, to optimize the aver-
age performance across different input parameters, we
uniformly sample θ ∈ Θ and minimize the total loss as
L(ψ, γ) = Eθ[L(ψ(θ), γ)]. The IPNN training procedure
outlined in Alg. 2 involves sampling input parameters θ and
unit vectors u and follows regular NN training procedures.

5. Performance Analysis
In this section, we present a comprehensive analysis of the
BP framework: (i) the sufficient conditions for IPNN train-
ing for producing feasible IP under any input parameter in
Sec. 5.1; (ii) the optimality loss and run-time complexity for
the bisection operation in Sec. 5.2. We also discuss the con-
nection to existing approaches (TZ22b; LCL23; THH23)
and IPNN training guarantees in Sec. 5.3.

5.1. Sufficient Conditions for IPNN Feasibility

Proposition 5.1. Let D be an rθ-covering dataset for input
domain as Θ ⊆

⋃N
i=1 B(θi, rθ); the constraint violation

function G(x, θ) = max
1≤j≤nineq

{gj(x, θ)} with Lipschitz LG,x

and LG,θ for x and θ, respectively; and IPNN ψ is Lψ-
Lipschitz continuity for θ. if G(ψ(θi), θi) + LG,xLψrθ +
LG,θrθ ≤ 0 for i = 1, · · · , N , then ∀θ ∈ Θ, ψ(θ) ∈ Cθ.
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The complete proof is included in Appendix B.2. Prop. 5.1
establishes sufficient conditions for the trained IPNN to gen-
erate IPs for unseen input parameters. These conditions
require two key components: (i) the IPNN must achieve fea-
sibility over finite training samples (i.e., G(ψ(θi), θi) ≤ 0)
— a condition readily satisfied in practice, as demonstrated
by our empirical results in Sec. 6. The robust penalty loss in
(5) effectively minimizes constraint violations for perturbed
IP predictions. (ii) to extend feasibility guarantees to the
entire input space θ ∈ Θ, the IPNN must maintain a robust
margin for IP prediction that accounts for generalization
errors, which can be bounded by Lipschitz conditions (i.e.,
LG,xLψrθ + LG,θrθ).

While direct verification of these Lipschitz constants re-
mains computationally intractable, they provide valuable
insights into the relative difficulty of guaranteeing feasibil-
ity across different constraint types. Specifically, a smaller
covering radius rc is required for: “thin” constraint sets (i.e.,
small robust margin) or highly variable constraint geome-
tries (i.e., large LG,θ). For such challenging constraints,
a smaller covering radius necessitates a larger number of
training samples (N ), scaling as O((diam(Θ)/rc)

d) to ad-
equately cover the input space.

We also remark that this condition is based on the Lipschitz-
based worst-case analysis, while the empirical experiment
shows that IPNN trained over less than 10,000 uniform
sample inputs already induces feasible IP prediction under
unseen input parameters for high-dimensional problems.

5.2. Optimality and Run-time Complexity for Bisection

Theorem 1. Given constraint set Cθ under Assumption 1,
an infeasible NN prediction x̃θ with bounded error to the
optimal solution x∗θ as ∥x̃θ − x∗θ∥ ≤ ϵpre, and valid IP
prediction x◦θ ∈ Cθ produced by IPNN, after executing K
steps of bisection shown in Alg. 1. We obtain a solution x̂Kθ
satisfying the following:

(i) it is guaranteed to be feasible, i.e., x̂Kθ ∈ Cθ;

(ii) it has a bounded optimality gap as ∥x̂Kθ − x∗θ∥ ≤
2ϵpre + E(x◦θ,Γθ) + 2−K(ϵpre + diam(Cθ)),

(iii) the run-time complexity is O(mKG), where G is the
complexity of checking the feasibility of a solution.

The complete proof is included in Appendix B.3. First,
given an interior point, The bisection in Alg. 1 consistently
returns a feasible solution. The optimality loss of the re-
turned feasible solution is mainly bounded by three factors:
the initial NN prediction error for the optimal solution, the
eccentricity measure of the predicted IP, and the error due
to finite-step bisection. (i) The initial prediction error is
typically small, thanks to the NN’s universal approximation
capabilities. (ii) The eccentricity represents the upper bound
of the deviation caused by employing bisection with IPs,

which is mitigated by the Chebyshev center-informed loss
function in (5). (iii) The error from finite bisection decreases
exponentially with each additional iteration.

The algorithm’s run-time complexity, i.e., the number of
arithmetic operations, is primarily affected by the number of
bisection steps (K) and the complexity of checking feasibil-
ity at each step (G). Such a feasibility checking procedure
is also known as membership oracle, which has been exten-
sively analyzed in (Mha22; LBGH23). Further, for common
convex sets, the bisection projection has a closed-form com-
putation provided in (THH23).

5.3. Discussions
Connection to existing works: As discussed in Sec. 2, the
BP framework is algorithmically related to the homeomor-
phic projection (LCL23; LCL24) and gauge function-based
methods (TZ22b; Mha22; THH23). The following proposi-
tion reveals the connection between the BP framework and
some existing schemes.

Proposition 5.2. The homeomorphic projection (LCL23)
with gauge mapping (TZ22a) is equivalent to bisection
projection over a convex set. The Gauge projection
(Mha22; THH23) is equivalent to bisection projection with
a fixed IP.

The complete proof is included in Appendix A.2. Thus, the
bisection projection framework provides a unified view for
some existing projection-analogous approaches over convex
sets. Meanwhile, we highlight the theoretical analysis and
application scenario for BP works on general compact sets
under Assumption 1. It also achieves better performance in
feasibility and speedup as shown in Sec. 6.

Availability and guarantees of IPs. Several existing
NN feasibility approaches rely on IPs, including gauge
mapping (TZ22a; TZ22b; LKM23), gauge projections
(THH23; KU23; LM23; TVH24), and homeomorphic pro-
jections (LCL23; LCL24). While our BP framework sim-
ilarly utilizes IPs, it advances the state-of-the-art through:
general constraints (Sec. 3), eccentricity-based optimal-
ity bound (Sec. 4), and IPNN loss design (5). Despite
these advances, the guarantees for NN-based IP findings
depend on NN training by minimizing penalty-based loss
functions. While exact convergence has been established for
over-parameterized NNs (SJL18; LZB22), The general con-
vergence analysis remains challenging for practical scenar-
ios involving finite-size networks and non-convex penalties
and warrants future exploration.

Extension to Multiple Interior Points. The BP framework
naturally extends to multiple IPs. Specifically, we can per-
form bisection from multiple IPs and select the projected
point with the minimal projection distance. A detailed dis-
cussion of this extension is provided in Appendix A.5.
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6. Numerical Experiments
We first consider a toy example to visualize the training
and testing performance of our framework in Sec. 6.1. We
then carry out comprehensive simulations to validate the
efficiency of BP against existing methods on various con-
strained optimization problems in Sec. 6.2. We also demon-
strate the efficacy of key design and parameters in the BP
framework through sensitivity analysis in Sec. 6.3. The
detailed experimental setting and problem formulations are
provided in D.

6.1. Illustrative Toy Examples

Figure 3. Perturbed penalty loss (left) and IPNN prediction feasi-
bility rate (right) during training.

Figure 4. Robust margin log(γ) during training (left) and esti-
mated eccentricity (right), calculated by the gap between max-
imum and minimum IP-to-boundary distances.

Figure 5. BP with IPNN prediction given test input parameters.

To validate that the proposed training algorithm for IPNN
can indeed produce low-eccentricity points or approximated
Chebyshev centers, we consider a non-convex quadratic con-
straint set Cθ = {x | x⊤Qix+q⊤i x+bi ≤ 0, i = 1, · · · , 6},
where the input parameter is defined as θ = {Q, q, b}6i=1.
We train IPNN over such constraint sets and visualize its
training and testing performance. Our experiments yield the
following observations: (i) Minimizing the penalty loss suc-
cessfully improves feasibility over test input parameters, as
shown in Fig. 3; (ii) Maximizing the robust margin indeed
reduces the eccentricity of IPNN predictions, as shown in
Fig. 4; (iii) After training, bisection projection with IPNN-
predicted “central” IPs incurs low projection distance, as

shown in Fig. 5. We provide comprehensive visualizations
from Fig. 12 to 17 in Appendix E.

6.2. NN feasibility for Constrained Optimization

Dataset: We apply the BP framework to four benchmark
convex problems (QP, convex QCQP, SOCP, and SDP) and
two non-convex real-world scenarios, including optimal
power flow problems in grid operation (AC-OPF) and joint
chance-constrained problems in inventory management (JC-
CIM). We follow the established parameter configuration
and sampling strategy from available codes in previous
works (DRK20; LCL23). We first train an NN predictor
to learn the mapping from input parameters to the optimal
solutions in existing works (DRK20), where the training and
testing data are generated by randomly sampling the input
parameter and solve the corresponding optimal solutions
through iterative solvers as ground truth (DRK20; LCL23).

Baselines: (i) Optimizer: for convex optimization, we
use MOSEK to solve the optimal solution. For JCC-IM,
we adopt its scenario-based approximation and solve it by
MOSEK (PAS09); For AC-OPF problems, we adopt PY-
POWER as the specialized solver (ZMS11); (ii) NN: it
directly maps the input parameter to the solution without
post-processing; (iii) WS: The infeasible prediction of NN
is regarded as the warm-start initialization for the iterative
solver; (iv) Proj: the infeasible predicted solution by NN is
processed by orthogonal projection and solved with the iter-
ative solver; (v) D-Proj: this is proposed in DC3 (DRK20),
which applies gradient descent with equality completion to
minimize the constraint violation; (vi) H-Proj: the home-
omorphic projection are applied to the infeasible predic-
tions (LCL23); (vii) B-Proj: we apply bisection in Alg. 1
with predicted IPs to recover the feasibility. To ensure the
feasibility of equality constraints, we utilize predict-then-
reconstruct techniques (PZCZ20; DRK20), as detailed in
Appendix A.4. Note that some baselines shown in Table 1
are not included due to their limited applicability.

Table 2 summarizes our experimental results across six con-
straint optimization problems, revealing several key insights.
The BP framework consistently achieves 100% feasibility
for initially infeasible NN predictions while offering up
to four orders of magnitude speedup compared to standard
projection approaches, all while maintaining competitive op-
timality loss. Direct NN outputs cannot guarantee complete
feasibility due to prediction errors that may push solutions
outside the constraint set. Iterative solver-based methods
such as warm-start and orthogonal projection ensure fea-
sibility with minimal optimality loss but incur substantial
computational overhead (exceeding 400 seconds for QCQP
problems). The gradient-based D-Proj method, though flexi-
ble across different constraint sets, fails to guarantee feasibil-
ity and exhibits high sensitivity to step size selection. While
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Table 2. Performance comparison for constrained optimization problems.

Method Feasibility Solution Objective Pred. Post. Feasibility Solution Objective Pred. Post.
rate (%) opt. (%) opt. (%) cost (s) cost (s) rate (%) opt. (%) opt. (%) cost (s) cost (s)

QP (n=400, d=100, neq=100, nineq=100) QCQP (n=400, d=100, neq=100, nineq=100)

NN 80.8 2.26 0.97

0.0014

− 92.0 3.91 3.26

0.0017

−
NN+WS 100 1.81 0.79 5.37 100 3.58 3.01 434
NN+Proj 100 2.26 0.97 5.23 100 3.91 3.26 401
NN+D-Proj 80.9 2.26 0.97 11.1 92.3 3.91 3.26 7.23
NN+H-Proj 100 16.49 15.42 0.763 100 3.95 3.31 0.413
NN+B-Proj 100 2.31 1.00 0.0160 100 3.94 3.30 0.0162

SOCP (n=400, d=100, neq=100, nineq=100) SDP (n=40×40, d=40, neq=40, nineq=1)

NN 89.6 1.24 0.55

0.0015

− 58.0 2.10 2.74

0.0017

−
NN+WS 100 1.10 0.50 136 100 1.20 1.57 105
NN+Proj 100 1.24 0.55 128 100 2.10 2.74 158
NN+D-Proj 95.5 1.24 0.55 5.03 58.0 2.10 2.74 236
NN+H-Proj 100 1.25 0.56 0.571 100 31.51 33.67 0.958
NN+B-Proj 100 1.25 0.56 0.0272 100 2.26 2.96 0.0163

AC-OPF (n=476, d=400, neq=400, nineq=1042) JCC-IM (n=400, d=100, neq=0, nineq=10,100)

NN 94.0 0.15 0.001

0.251

− 84.5 1.94 1.40

0.0013

−
NN+WS 100 0.14 0.001 4.73 100 1.64 1.21 48.3
NN+Proj 100 0.25 0.002 14.1 100 1.94 1.40 128
NN+D-Proj 96.5 0.15 0.001 14.9 84.5 1.94 1.40 81.1
NN+H-Proj 100 0.63 0.042 1.32 100 10.24 10.39 0.876
NN+B-Proj 100 0.15 0.001 1.13 100 1.98 1.45 0.193
1 Evaluation metrics: (i) Feasibility: Percentage of feasible solutions among 1,024 test instances, where feasibility requires satisfying

equality and inequality constraints within tolerance ϵ = 10−5; (ii) Optimality: Mean absolute percentage error (MAPE) between output
and optimal solutions for both decision variables and objective values; (iii) Running-time: Total inference time comprising NN predictions
and post-processing for constraint satisfaction. Iterative solvers are parallelized when computing projections or warm-start solutions.

2 d and n represent the dimensions for input parameter θ and output decision x, respectively. neq and nineq denote the number of equality
and inequality constraints, respectively.

H-Proj also achieves 100% feasibility, it introduces larger
optimality gaps and is less efficient than B-Proj, particu-
larly for high-dimensional constraint sets (e.g., SDP), due to
complex invertible NN (INN) training and computationally
intensive INN calculations during inference.

In summary, across both convex and non-convex constraint
sets, BP demonstrates superior performance by achieving
perfect feasibility or significantly reduced computational
complexity while maintaining comparable optimality loss.

6.3. Sensitivity Analysis for BP Framework

We investigate the impact of key components in the BP
framework to validate their effectiveness.

Impacts of γ on out-of-sample feasibility (Fig. 6):

Figure 6. Feasibility rates over unseen test instances for QP (left)
and JCC-IM (right) under varying training sample sizes N .

Prop. 5.1 establishes that increasing both training sample
size (N ) and robust margin (γ) enhances IPNN’s feasibil-
ity guarantees on unseen inputs. We empirically validate
this relationship by evaluating three IPNN variants: trained
with maximizing γ, trained with fixed γ, and trained with-
out γ, under varying training sample sizes. Fig. 6 demon-
strates that maximizing the robust margin γ improves out-
of-sample feasibility (over 1024 test inputs) compared to
fixed or zero-margin approaches. These improvements are
particularly pronounced under limited training data scenar-
ios, confirming the effectiveness of our proposed Chebyshev
center-informed loss function (5).

Impacts of γ on optimality of projected solution (Fig. 7):

Figure 7. Distribution of projection distances for IPNN trained
with and without γ over QP (left) and JCC-IM (right).

We conducted an ablation study to evaluate the effectiveness
of incorporating eccentricity minimization (approximated
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by maximizing γ) on the projection loss. We generated
10,000 infeasible test instances by random Gaussian sam-
pling with varying variance magnitudes (noise levels shown
in Fig. 7). For each infeasible point, we applied bisection
projection using three IPNN variants: trained with maximiz-
ing γ, trained with fixed γ, and trained without γ.

Fig.7 shows the distributions of projection distances (mea-
sured between infeasible points and their respective pro-
jections). The results demonstrate that our MEIP-informed
IPNN (trained with γ) produces smaller projection distances,
confirming the theoretical bounds established in Prop. 4.1.
This improved projection quality directly translates to bet-
ter optimality preservation when correcting infeasible NN
predictions.

Impacts of number of bisection steps (Fig. 8):

Figure 8. Effect of the number of bisection steps (B) on optimality
gap and running time for QP (left) and JCCIM (right).

We investigated how the number of bisection steps during
inference affects both solution quality and computational
efficiency. As shown in Fig. 8, and in accordance with
Theorem 1, the optimality gap decreases exponentially as
the number of bisection steps increases. Concurrently, the
running time exhibits linear growth due to the sequential
nature of the computation, continuing until reaching the
convergence threshold.

Notably, our experiments demonstrate that for real-time ap-
plications, only a small number of bisection steps (typically
5-10) are sufficient to achieve well-converged feasible solu-
tions, offering an excellent trade-off between solution qual-
ity and computational efficiency. This confirms the practical
utility of our approach in time-sensitive decision-making
contexts.

Impacts of bisection stepsize on optimality (Fig. 19):

As illustrated in Fig. 2, when multiple intersections exist
between the projection ray and the feasible set boundary,
the bisection algorithm may converge to any of these inter-
section points. While this phenomenon did not occur in our
benchmark optimization problems, it remains a theoretical
concern for constraint sets with complex geometries.

To address potential convergence to boundary points dis-
tant from the initial prediction, we may employ a reduced

bisection stepsize (e.g., β = 0.1 instead of the standard
β = 0.5), which modifies the midpoint calculation to
αm = β · αl + (1 − β) · αu. This more conservative ap-
proach guides the solution trajectory incrementally from the
infeasible prediction toward the feasible boundary, typically
resulting in an intersection point closer to the original neural
network output.

While this strategy better preserves the quality of initial
predictions, it necessitates additional iterations due to the
smaller stepsize. This trade-off between solution quality and
computational efficiency should be considered based on the
specific application requirements and constraint geometry.

Scalability on constraint dim. and decision dim.: We
further remark on the BP framework’s scalability based
on large-scale problems in Table 2. For joint chance con-
straints, where constraint dimension grows linearly with
sampled scenarios, iterative solver-based approaches face
memory limitations (NS06). For AC-OPF in large-scale
power grids, non-linear power balance and branch flow con-
straints incur high computational complexity for existing
solvers (ZMS11). Our bisection methods require only con-
straint checking per iteration, with GPU-based batch pro-
cessing further accelerating these calculations.

7. Conclusion and Limitation
We introduce Bisection Projection, an efficient scheme to
project infeasible NN predictions onto general compact con-
straint sets through bisection. We establish the connection
between the eccentricity of interior points (IPs) and pro-
jection distance, then employ IPNN to efficiently predict
IPs. Our theoretical analysis provides sufficient conditions
for IPNN feasibility and proves bounded optimality loss
under IP predictions. Extensive simulations demonstrate
that bisection projection outperforms existing methods in
feasibility and efficiency with comparable optimality.

Our framework has several limitations, suggesting future
research directions: (i) extending BP to discrete constraints
such as mixed-integer problems for broader applicability,
(ii) jointly optimizing interior point selection and bisection
trajectory to further reduce optimality gaps, (iii) and exploit-
ing problem-specific structures like symmetry and sparsity
to design NN/IPNN to improve training efficiency.
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A. Discussion and Connection of Related Work
A.1. Availability of Interior Points

We note that there is a line of research on NN feasibility operating under assumptions regarding the availability of IPs.

• Gauge Mapping (for Linear Sets): This approach was proposed in (TZ22a; TZ22b), establishing a bijective mapping
between a unit cube and a polytope, which can be used as the output layer of neural networks to ensure feasibility over
polytopes. The method relies on input-dependent IPs (IPs) and assumes the existence of an affine mapping from input
to IP, solving this mapping through semidefinite programming (SDP). However, it does not guarantee the existence of
such an affine policy. LOOP-LC (LKM23) directly assumes the existence of an input-invariant IP and solves it by linear
constraint residual minimization, but it also does not provide a guarantee or sufficient conditions for such an invariant IP.

• Gauge Projection (for Convex Sets): Gauge projection (Mha22) restores solution feasibility by scaling infeasible
solutions along rays from a (fixed) offline-computed IP to find feasible solutions at the constraint boundary. This
projection technique is differentiable and computationally efficient, which has been successfully integrated into neural
network architectures to enforce output feasibility with respect to input-invariant convex sets. Notable implementations
include RAYEN (THH23) (supporting linear, quadratic, second-order cone, and linear matrix inequality constraints),
ConstraiNet (KU23) (handling linear and quadratic constraints), LOOP-LC 2.0 (LM23) (for linear sets), and the radial
projection approach (TVH24) (applicable to several convex cones).

• Homeomorphic Projection (for Ball-homeomorphic Sets): It ensures NN solution feasibility over ball-homeomorphic
constraints by constructing a homeomorphism between the constraint set and a unit ball using invertible NN (INN),
allowing efficient projection via bisection (LCL23; LCL24). This approach also relies on a valid INN to map the center
of a unit ball to an IP of the constraint set. It provides a sufficient condition for feasibility guarantee (LCL23; LCL24).
However, INNs have higher training and inference complexity than regular fully connected neural networks due to their
sophisticated architectural design requirements.
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• Bisection Projection (for General sets): In this work, we consider a more general input-dependent constraint set and
propose an efficient bisection projection framework. We first characterize the eccentricity of the IP, which is directly
related to the bisection-induced optimality loss. We then relax the minimum-eccentricity IP problem into a tractable
Chebyshev center-based formulation and employ another neural network, called IPNN, to efficiently predict IPs under
varying inputs for input-dependent constraints. We also provide a sufficient condition for IPNN feasibility similar to
(LCL23; LCL24), but applicable to more general sets beyond the ball-homeomorphic ones.

A.2. Connections to Related Works (Prop. 5.2)

As discussed in Sec. 2, the proposed framework is conceptually related to the homeomorphic projection (LCL23; LCL24)
and gauge function based methods (TZ22b; THH23).

Definition A.1 (Gauge/Minkowski function (BM08)). Let C ⊂ Rn be a compact convex set with a non-empty interior. The
Gauge/Minkowski function γC : Rn × int(C)→ R+ is defined as

γC(x, x
◦) = inf{λ ≥ 0 | x ∈ λ(C − x◦)}, (6)

where x◦ ∈ int(C) is an IP of C.

The Gauge function generalizes the concept of a norm. For a set C that is symmetric about the origin, the gauge function
γC(x, 0) defines a norm. In particular, when C = Bp = {x ∈ Rn | |x|p ≤ 1} is the unit ball of the p-norm, we have
γBp(x, 0) = ∥x∥p.

Based on the gauge function, we can construct the following bijection between two compact convex sets:

Definition A.2 (Gauge Mapping (TZ22a)). Let Z,X ⊂ Rn be compact convex sets with IPs z◦ ∈ int(Z) and x◦ ∈ int(X ),
respectively.

The gauge mapping Φ : Z → X is defined as:

Φ(z) =
γZ(z − z◦, z◦)
γX (z − z◦, x◦)

(z − z◦) + x◦, z ∈ Z (7)

The inverse mapping Φ−1 : X → Z is given by:

Φ−1(x) =
γX (x− x◦, x◦)
γZ(x− x◦, z◦)

(x− x◦) + z◦, x ∈ X (8)

• In essence, the gauge mapping scales the boundary of a convex set from an IP to another convex set and with translation
to its IP.

• When Z is a unit p-norm ball, the gauge mapping is simplified as:

Φ(z) =
∥z∥p

γC(z, x◦)
z + x◦, ∀z ∈ B, Φ−1(x) =

γC(x− x◦, x◦)
∥x− x◦∥p

(x− x◦), ∀x ∈ C, (9)

Definition A.3 (Gauge Projection (Mha22; THH23)). Let C ⊂ Rn be a compact convex set with x◦ ∈ int(C). For any
x ∈ Rn \ C, the Gauge Projection ΠGC : Rn \ C → ∂C is defined as

x̂ = ΠGC (x) := x◦ +
x− x◦

γC(x− x◦, x◦)
∈ ∂C, (10)

where ∂C denotes the boundary of C.

Definition A.4 (Homeomorphic Projection (LCL23)). Let K ⊂ Rn be a compact set that is homeomorphic to the unit ball B.
Let Φ : B → K be a homeomorphism with inverse mapping Φ−1 : K → B. For any point x̃ ∈ Rn \ K, the Homeomorphic
Projection ΠHK : Rn \ K → ∂K is defined as:

x̂ = ΠHK (x̃) := Φ(ΠB(Φ
−1(x̃))), (11)

where ΠB is the Euclidean projection operator.
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The following observation reveals the connection between the bisection projection framework and some existing schemes.
Proposition A.1. The homeomorphic projection (LCL23) with gauge mapping (TZ22a) is equivalent to bisection projection
over a convex set. The gauge projection (Mha22) is a special case of bisection projection with one fixed IP.

Proof. Let’s consider applying the gauge mapping to the homeomorphic projection for a compact convex set. Then we can
simplify the homeomorphic projection operator as:

x̂ = Φ(ProjB(Φ
−1(x̃))) = Φ(ProjB(

γC(x̃− x◦, x◦)
∥x̃− x◦∥

(x̃− x◦))) (12)

= Φ(

γC(x̃−x◦,x◦)
∥x̃−x◦∥ (x̃− x◦)

∥γC(x̃−x
◦,x◦)

∥x̃−x◦∥ (x̃− x◦)∥
) = Φ(

x̃− x◦

∥x̃− x◦∥
) (13)

=
∥ x̃−x◦

∥x̃−x◦∥∥
γC(

x̃−x◦

∥x̃−x◦∥ , x
◦)
(
x̃− x◦

∥x̃− x◦∥
) + x◦ (14)

=
x̃− x◦

γC(x̃− x◦, x◦)
+ x◦ (15)

When considering x̃ as an infeasible point, we need scale down x̃ of 1
γC(x̃−x◦,x◦) such that the 1

γC(x̃−x◦,x◦) (x̃− x
◦) + x◦

will be located in the boundary. Therefore, we take α∗ = 1
γC(x̃−x◦,x◦) , the homeomorphic projection operator is indeed the

bisection projection operator in (2). It is also equivalent to the gauge projection or RAYEN methods by its definition in
Def. A.3.

Thus, the bisection projection framework provides a unified view for some existing projection-analogous approaches over
convex sets. Meanwhile, we highlight the theoretical analysis and application scenario for BP works on general compact
sets under Assumption 1 beyond those in the existing studies, further exploring the projection-based design and achieving
substantially better performance in feasibility, optimality loss, and speedup as shown in Sec. 6.

A.3. Comparison of Different Centers

Defining the centers of a set is a classic problem in mathematics, which involves various definitions tailored to serve specific
purposes. Each definition captures a unique aspect of “centrality” depending on the application or theoretical requirements.
Here, as shown in Table 3, we discuss several classic definitions including the proposed minimum-eccentricity interior point
(MEIP) in our work.

Table 3. Comparison of different definitions of center for a set
Name Definition Description

MEIP x◦ = argmin
x∈X

(
max
y∈∂X

∥x− y∥ − min
y∈∂X

∥x− y∥
)

Minimizes the discrepancy between the maximum and
minimum IP-to-boundary distances.

Chebyshev Center x◦ = argmax
x∈X

min
y∈∂X

∥x− y∥ Maximizes the minimum IP-to-boundary.

Circumcircle Center x◦ = argmin
x∈X

max
y∈∂X

∥x− y∥ Minimizes the maximum IP-to-boundary.

Analytical Center x◦ = argmax
x∈X

(∑nineq

i=1 log(−gi(x))
)

Maximizes the logarithmic barrier of the inequality resid-
uals (gi(x) ≤ 0).

Max-residual Center max
x◦,t≥0

t s.t. gi(x
◦) + t ≤ 0, i = 1, . . . , nineq Maximize the constraint residual to find a “central” IP.

Centroid x◦ = 1
n

∑n
i=1 xi Calculates the average position of all points in the set.

Barycenter x◦ =
∑n

i=1 wixi/
∑n

i=1 wi Calculates the weighted average position of all points in
the set, where each point has an associated weight wi.

• Geometric: The MEIP, Chebyshev Center, and Circumcircle Center focus on geometric properties of sets, specifically
distances to the boundary. We propose the MEIP for bisection operation, justified by the performance guarantee in Prop.
4.1.
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• Barrier: The Analytical Center and Max-residual Center use optimization techniques (BBV04; THH23) to find a “central”
IP within a feasible region. This approach is crucial for solving linear and nonlinear programming problems. However,
maximizing the log-residual or residual directly of the inequality function does not directly reflect the point-to-boundary
distance for general constraint sets, which may result in a large deviation for the bisection operation.

• Statistical: The Centroid and Barycenter represent statistical approaches to defining centrality by calculating averages of
point sets. The Centroid computes a simple arithmetic mean, suitable for applications in statistics and machine learning.
The Barycenter incorporates weights, allowing for differentiated influence among points. Despite their simplicity, these
centers are not necessarily interior points for general non-convex sets X , making them unsuitable for our bisection
operation.

A.4. Tackling Equality Constraint

Consider the following constraint set Cθ defined by both inequality and equality constraints:

Cθ = {x ∈ Rn | h(x, θ) = 0, g(x, θ) ≤ 0}, (16)

where the functions h(·, ·) : Rn+d → Rneq and g(·, ·) : Rn+d → Rnineq are continuous with respect to x and θ. For simplicity,
we use hθ(·) = h(·, θ).

Assuming the equality constraint maintains a constant rank:

rank(Jhθ
(x)) = r, ∀θ ∈ Θ and ∀x ∈ Cθ, (17)

This condition implies that Cθ has a Euclidean dimension5 of n− r, as per the Constant-Rank Level Set Theorem (Lee13).

In simpler terms, we can utilize a subset of decision variables x1 ∈ Rn−r and reconstruct the complete set of decision
variables [x1, x2] ∈ Rn by solving x2 = ϕθ(x1), such that hθ([x1, ϕθ(x1)]) = 0. Note that such a parametrization are not
necessarily held globally for non-linear equality constraints. This method of reconstruction, which ensures the feasibility
of the equality constraint, is extensively used in optimization literature (Aba69; PZC19; ZB20; DRK20; LCL23; THH23;
LM23; DWDS23).

We then denote the reduced constraint set as

Csθ = {x ∈ Rn−r | g([x1, ϕθ(x1)], θ) ≤ 0} (18)

This set Csθ is not only equivalent to the original constraint set Cθ but also homeomorphic to it, implying a one-to-
one, continuous, and bicontinuous correspondence between the two sets. The forward and inverse mappings of this
homeomorphism are described by the following transformations:

[x1, x2] ∈ Cθ → x1 ∈ Csθ , (19)
x1 ∈ Csθ → [x1, ϕθ(x1)] ∈ Cθ. (20)

Let’s consider two examples to illustrate this equality completion/reconstruction process:

Linear equality constraint

Let’s consider an equality constraint defined as {x ∈ Rn | Ax = θ,A ∈ Rr×n, θ ∈ Rr}, where x is the decision variable
and θ is the input parameter. We can assume, without loss of generality, that the rank of matrix A is rank(A) = r.

To facilitate the reconstruction process, we partition the decision variable x into two groups: x1 ∈ Rn−r and x2 ∈ Rr.
Accordingly, we also partition matrix A into A = [A1, A2], where A1 ∈ Rr×(n−r) and A2 ∈ Rr×r. Hence, the equality
constraint can be represented as A1x1 +A2x2 = θ. The reconstruction process indicates that we can determine x2 using
only the subset of variables x1, with the explicit relationship given by:

x2 = ϕθ(x1) = A−1
2 (θ −A1x1). (21)

5If an open set X is Euclidean of dimension, then every point x ∈ X has a neighborhood that is homeomorphic to an open subset of
Rn (Lee13).

16



Bisection Projection

Here, we choose the partition of x1 and x2 such that A2 has the full rank of r.

The relevant Jacobian matrix for back-propagation in this context is:

Jϕθ
(x1) = −A−1

2 A1. (22)

Non-linear equality constraint

For a non-linear equality constraint defined as {x ∈ Rn | h(x, θ) = 0, θ ∈ Rd, h : Rn+d → Rr}, we partition the decision
variable into x1 ∈ Rn−r and x2 ∈ Rr in a similar fashion to the linear case. Under the assumption that the Jacobian matrix
of h with respect to x2 has a constant rank, the completion function ϕθ is well-defined and satisfies:

h([x1, ϕθ(x1)], θ) = 0. (23)

To solve for ϕθ(x1) when h is non-linear, we can employ an iterative technique such as Newton’s method. The necessary
Jacobian matrix for back-propagation can be computed using the Implicit Function Theorem, which provides the derivative
of the implicitly defined function ϕθ. The Jacobian matrix is given by:

Jϕθ
(x1) = − J−1

hθ
(x2) Jhθ

(x1). (24)

Note that ϕθ for such a non-linear constraint may not be single-valued globally and depends on the initial value for the
iterative algorithm, which may bring potential convergence issues.

In conclusion, reconstruction techniques utilizing equality constraints allow for a reduction in the dimensionality of the
decision variable space. By modeling only a subset of the decision variables, we can focus on the inequality constraints and
use the equality constraints to define the remaining variables implicitly. This process is differentiable, making it suitable
for integration into the training of machine learning models, hence providing a powerful tool for incorporating equality
constraints into such models (Aba69; PZC19; PCZL22; DRK20; DWDS23). For the implementation issues, we follow the
established procedures in previous works (DRK20; LCL23), where the partial variables for convex problems are randomly
sampled, and the ones for AC-OPF problems are strategically selected.

A.5. Extension BP to Multiple Interior Points

The bisection method can be executed in batch for multiple interior points X◦
θ,m := {xθ,k}mk=1 ⊂ Cθ, and we select the

projected point as the one with minimum deviation, defined as:

x̂θ = BP(x̃θ, X
◦
θ,m) ≜ argmin

x̂θ,k

{∥x̂θ,k − x̃θ∥}, (25)

where x̂θ,k = BP(x̃θ, x
◦
θ,k) is the returned feasible point by bisection w.r.t. the k-th IP x◦θ,k ∈ X◦

θ,m.

Similarly, we can define the eccentricity of a set of IPs, crucial for bounding the bisection-induced projection distance.
Definition A.5 (Eccentricity of IPs). For a compact set X satisfying Assumption 1 with non-empty interior, the eccentricity
of a set of IPs X◦

m := {x◦k}mk=1 ⊂ X with respect to a compact subset of boundary Γ ⊆ ∂X is defined as:

E(X◦
m,Γ) ≜ max

y∈Γ
∥d(y,X◦

m)∥ −min
y∈Γ
∥d(y,X◦

m)∥, (26)

where d(y,X◦
m) = min1≤k≤m{∥y − x◦k∥} is the point-to-set distance.

Next, we establish the connection between eccentricity and the bisection-induced projection distance.
Proposition A.2. Let x̃θ = F (θ) be an infeasible NN prediction with bounded prediction error as ∥F (θ)− x∗θ∥ ≤ ϵpre;
x̂θ = BP(x̃θ, X

◦
θ,m) be the projected solution with m interior points X◦

θ,m ⊂ Cθ; Then, the worst-case projection distance
is upper bounded as:

max
x̃θ∈B(x∗

θ ,ϵpre)
∥x̃θ − BP(x̃θ, X

◦
θ,m)∥ ≤ ϵpre + E(X◦

θ,m,Γθ), (27)

where B(x∗θ, ϵpre) represents the NN prediction region, enclosing all infeasible NN predictions with prediction error ϵpre,
and Γθ = {BP(x̃θ, X◦

θ,m), ∀x̃θ ∈ B(x∗θ, ϵpre) \ Cθ} defines a subset of the constraint boundary containing all projected
NN solutions from the NN infeasibility region.

The proof is similar to the single IP case and presented in the next section.
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Figure 9. A geometric illustration of eccentricity and the proof.

B. Proof for Main Results
B.1. Proof for Bisection-induced Projection Distance (Prop. 4.1)

Proof. Without loss of generality, we assume that the optimal solution x∗θ ∈ ∂Cθ lies on the boundary of the constraint set,
implying the existence of active constraints at optimality. This is a standard assumption in constrained optimization theory
(NW99).

For an infeasible solution x̃θ ∈ B(x∗θ, ϵpre), recall the definition of the projected solution x̂θ as:

x̂θ ≜ BP(x̃θ, x
◦
θ) = α∗ · (x̃θ − x◦θ) + x◦θ, (28)

where α∗ ∈ [0, 1] leads to x̂θ ∈ ∂Cθ.

Prediction-agnostic bound:

Then, the projection distance for an infeasible prediction x̃θ is bounded as:

∥x̃θ − x̂θ∥
(a)
= ∥x̃θ − x◦θ∥ − ∥x̂θ − x◦θ∥ (29)
(b)

≤ ∥x̃θ − x∗θ∥+ ∥x∗θ − x◦θ∥ − ∥x̂θ − x◦θ∥ (30)
(c)

≤ ϵpre + ∥x∗θ − x◦θ∥ − ∥x̂θ − x◦θ∥ (31)
(d)

≤ ϵpre +max
x∈Γθ

∥x− x◦θ∥ − min
x∈Γθ

∥x− x◦θ∥ (32)

(e)
= ϵpre + E(x◦θ,Γθ) (33)
≤ ϵpre + E(x◦θ, ∂Cθ) (34)

Equality (a) is by three points, x̃θ, x◦θ , and x̂θ, exist in the same straight line. Inequality (b) is by the triangle inequality with
auxiliary point x∗θ . Inequality (c) is by x̃θ ∈ B(x∗θ, ϵpre). Inequality (d) is by taking the maximum and minimum point over
local boundary Γθ = {BP(x̃θ, x◦θ), ∀x̃θ ∈ B(x∗θ, ϵpre) \ Cθ}. Equality (e) is by the definition of eccentricity in Def. 4.1.

Prediction-aware bound: Based on (31), the projection distance for an infeasible prediction x̃θ is bounded as:

∥x̃θ − x̂θ∥≤ϵpre + ∥x∗θ − x◦θ∥ − ∥x̂θ − x◦θ∥ (35)
≤ϵpre + ∥x∗θ − x◦θ∥ − min

x∈∂Cθ

∥x− x◦θ∥ (36)

where ϵint = ∥x∗θ−x◦θ∥ denotes the distance between the IP prediction and the optimal solution, and γ = minx∈∂Cθ
∥x−x◦θ∥

denotes minimum point-to-boundary distance.

Proof for Proposition A.2:
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For the multiple IPs setting X◦
θ,m = {x◦θ,k}mk=1 ⊂ Cθ, we derive the upper bound as follows:

min
1≤k≤m

∥x̃θ − x̂θ,k∥
(a)

≤ min
1≤k≤m

{ϵpre + ∥x∗θ − x◦θ,k∥ − ∥x̂θ,k − x◦θ,k∥} (37)

(b)

≤ ϵpre + min
1≤k≤m

∥x∗θ − x◦θ,k∥ − min
1≤k≤m

∥x̂θ,k − x◦θ,k∥ (38)

(c)

≤ ϵpre +max
x∈Γθ

min
1≤k≤m

∥x− x◦θ,k∥ − min
x∈Γθ

min
1≤k≤m

∥x− x◦θ,k∥ (39)

(d)
= ϵpre + E(X◦

θ,m,Γθ) (40)

Inequality (a) is by the bound for the single-IP setting above. Inequality (b) is by the minimization of the joint term, which
is smaller than the minimization separately. Inequality (c) is by taking the maximum and minimum point over the local
boundary Γθ = ∂Cθ ∩ {BP(x̃θ, X◦

θ,m), ∀x̃θ ∈ B(x∗θ, ϵpre) \ x̃θ /∈ Cθ}

Thus, we complete the proof as follows:

max
x̃θ∈B(x∗

θ ,ϵpre)
min

1≤k≤m
∥x̃θ − x̂θ,k∥ ≤ ϵpre + E(X◦

θ,m,Γθ) (41)

B.2. Proof for Feasibility Guarantee in (Prop. 5.1)

Proof. Since D is an rθ-covering dataset for Θ as Θ ⊆
⋃N
i=1 B(θi, rθ), for any θ ∈ Θ, there exists at least one θi ∈ D such

that:

∥θ − θi∥ ≤ rθ (42)

Given that ψ is Lψ-Lipschitz continuous over Θ, we have:

∥ψ(θ)− ψ(θi)∥ ≤ Lψ∥θ − θi∥ ≤ Lψrθ, (43)

Since constraint violation function G is LG,x-Lipschitz in x and LG,θ-Lipschitz in θ, we can bound the change in G due to
perturbations in both arguments:

G(ψ(θ), θ) ≤ G(ψ(θi), θi) + LG,x∥ψ(θ)− ψ(θi)∥+ LG,θ∥θ − θi∥
≤ G(ψ(θi), θi) + LG,xLψrθ + LG,θrθ.

Suppose for each θi ∈ D, the training requirement is satisfied as: G(ψ(θi), θi) + LG,xLψrθ + LG,θrθ ≤ 0, then we have
for any θ ∈ Θ, the constraint violation can be bounded as G(ψ(θ), θ) ≤ 0.

B.3. Proof for Optimality Gap and Run-time Complexity (Theorem 1)

Proof. First, the feasibility of the solution returned through bisection is guaranteed due to the bisection trajectory connecting
an infeasible point and an interior point, which must intersect the constraint boundary. Thus, the bisection algorithm can
always find a feasible solution by scaling down the infeasible solution along the line segment. We remark that for general
non-convex sets, the line segment between an infeasible point and an interior point may intersect the constraint boundary
multiple times, causing our bisection algorithm to converge to one of the multiple feasible solutions.

Let x̂θ ∈ ∂Cθ be the converged boundary feasible solution given infinite bisection with an interior point x◦θ .

We divide the optimality gap by the following three terms:

∥x̂Kθ − x∗θ∥ ≤ ∥x∗θ − x̃θ∥︸ ︷︷ ︸
prediction error

+ ∥x̃θ − x̂θ∥︸ ︷︷ ︸
projection error

+ ∥x̂θ − x̂Kθ ∥︸ ︷︷ ︸
bisection error

(44)
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The prediction error is determined by the provided NN predictor, and we denoted it as ϵpre = sup
θ∈Θ
{∥F (θ)− x∗θ∥}, where

F (·) is the NN predictor to predict the optimal solution.

The projection error from bisection-projection, as proved in Proposition 4.1, can be bounded by the eccentricity-related term
as:

∥x̃θ − x̂θ∥ ≤ max
y∈B(x∗

θ ,ϵpre)
∥x̃θ − x̂θ∥ (45)

≤ ϵpre + E(x◦θ,Γθ) (46)

Since x̂θ is the converged boundary feasible solution under the bisection algorithm, the bisection error induced by finite step
iteration can be derived as:

∥x̂θ − x̂Kθ ∥ ≤ ∥α∗ · (x̃θ − x◦θ) + x◦θ − (αK · (x̃θ − x◦θ) + x◦θ)∥ (47)

= (α∗ − αK)∥x̃θ − x◦θ∥ (48)

≤ 2−K∥x̃θ − x∗θ + x∗θ − x◦θ∥ (49)

≤ 2−K(∥x̃θ − x∗θ∥+ ∥x∗θ − x◦θ∥) (50)

≤ 2−K(ϵpre +D) (51)

where D = diam(Cθ) denote the diameter of a compact set.

Combining the three terms together, we have:

∥x̂Kθ − x∗θ∥ ≤ 2ϵpre + E(x◦θ,Γθ) + 2−K(ϵpre +D) (52)

The complexity of executing the bisection algorithm involves the iteration steps, the number of IPs, and the complexity
of verifying the inequality constraints at each iteration as G. For example, if the inequality constraint gi(x, θ) is a linear
function for all i = 1, · · · , nineq, then G = n · nineq. In contrast, iterative algorithms such as interior point methods have a
complexity of O((n+ nineq)

3) at each iteration due to the matrix inversion operation.

C. Training for IPNN
C.1. Prediction-agnostic training

In scenarios where prior information about the optimal solution or a trained neural network (NN) predictor is unavailable,
our objective is to minimize the worst-case projection distance induced by bisection under any NN predictor. Guided by
Proposition 4.1, we aim to minimize the eccentricity relative to the constraint boundary, denoted as E(ψ(θ), ∂Cθ).
Definition C.1 (Prediction-agnostic MEIP). For a compact set Cθ with a non-empty interior, the minimum eccentricity IP is
defined as the solution of the following problem:

min
x◦
θ

E(x◦θ, ∂Cθ) ≜ max
y∈∂Cθ

∥y − x◦θ∥ − min
y∈∂Cθ

∥y − x◦θ∥. (53)

To facilitate the minimization of the MEIP, we adopt the Chebyshev Center as a relaxation. The Chebyshev Center provides
a robust central point within the constraint set by maximizing the minimal distance from the center to the boundary.

Definition C.2 (Chebyshev center). For a compact set Cθ with a non-empty interior, the Chebyshev Center is defined as:

max
x◦
θ

γ, s.t. B(x◦θ, γ) ⊆ Cθ (54)

Building upon this formulation, we derive the Prediction-Agnostic loss function, which aims to encourage the NN predictor
ψ(θ) to lie within the feasible set while maximizing the robust margin γ.

L(ψ(θ), γ) = Eu [P(x◦θ + γu, θ)]− λ · log(γ) (55)
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where P(x, θ) represents the penalty function for constraint violations, u is sampled from unit ball to perturb the center
x◦θ , γ is a variable representing the robust margin to be maximized, and λ is a positive coefficient to balance different loss
terms. The first term ensures that perturbed points within the ball B(x◦θ, γ) satisfy the constraints, while the second term
encourages maximizing the margin γ.

C.2. Prediction-aware training

In contrast, when a trained NN predictor F (·) or a dataset of optimal solutions (θ, x∗θ) is available, the objective shifts to
identifying interior points with minimized eccentricity within a local region of the constraint boundary. Given the bound on
the bisection-induced projection distance from Equation (36):

∥x̃θ − x̂θ∥≤ϵpre + ∥x∗θ − x◦θ∥ − min
x∈∂Cθ

∥x− x◦θ∥ (56)

We define the following Prediction-Aware MEIP:
Definition C.3 (Prediction-aware MEIP).

min ∥x∗θ − x◦θ∥ (57)

s.t.

{
max
x◦
θ

γ

s.t. B(x◦θ, γ) ⊆ Cθ

}
(58)

To effectively minimize the bisection-induced projection distance when the optimal solution dataset x∗ or NN predictor F (·)
is available, we design the following Prediction-Aware loss function:

L(ψ(θ), γ) = Eu [P(x◦θ + γu, θ)]− λ · log(γ) + β∥x◦θ − x∗θ∥ (59)

• The first two terms are analogous to the Prediction-Agnostic loss, promoting feasibility and robustness.

• The third term penalizes the deviation of the IP from the known optimal solution or initial NN prediction x∗θ = F (θ),
enhancing optimality.

• β is a positive coefficient that balances the trade-off between maximizing the robust margin γ and minimizing the
distance to the optimal solution x∗θ .

• Further, to reduce training complexity, we can initialize the IPNN with the one trained NN solution predictor, then
follow the loss to fine-tune the IPNN to find interior points.

Notably, when γ = 0, the loss function reduces to regular supervised training with a constraint violation penalty, as
commonly used in NN-based constrained optimization solvers (PZC19; DRK20). By maximizing the robust margin γ, the
training process follows the preventive/adversarial approach (ZPC+20), seeking an NN predictor that maintains feasibility by
keeping distance from constraint boundaries. Rather than directly using such a feasible IP with its larger optimality gap, we
apply bisection between the IP and an infeasible but near-optimal NN solution, effectively balancing the feasibility-optimality
trade-off.

D. Data and Experiment Setting
D.1. Formulation for Optimization Problems

We test the Bisection Projection framework for four constrained optimization problems, including two convex optimization
problems and two real-world non-convex problems. we follow the established procedures from available codes in previous
works (DRK20; LCL23), where parameter configuration and sampling strategy are publicly available.

D.1.1. CONVEX PROBLEM FORMULATION

The Quadratic Program (QP) is a fundamental optimization problem where the objective function is quadratic and the
constraints are linear. The QP problem can be formulated as:

QP : minimize
x∈Rn

1

2
xTQx+ pTx (60)
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subject to Gx ≤ h, (61)
Ax = θ, (62)

where: Q ∈ Sn++ is a positive definite matrix, ensuring the convexity of the objective function, p ∈ Rn is a vector of linear
coefficients, A ∈ Rneq×n is a matrix defining equality constraints, G ∈ Rnineq×n is a matrix defining inequality constraints,
h ∈ Rnineq is a vector specifying the upper bounds for the inequality constraints, and θ ∈ Rneq is a vector specifying the
right-hand side of the equality constraints.

The Convex QCQP extends the QP by including quadratic constraints. The Convex QCQP problem is given by:

Convex QCQP : minimize
x∈Rn

1

2
xTQx+ pTx (63)

subject to xTHix+ gT
i x ≤ hi, i = 1, . . . , nineq, (64)

Ax = θ, (65)

where each Hi ∈ Sn++ is a positive definite matrix corresponding to the i-th quadratic constraint, gi ∈ Rn is a vector of
linear coefficients for the quadratic constraints, and hi ∈ R represents the upper bound for the i-th quadratic constraint.

The SOCP is a convex optimization problem that generalizes linear and quadratic programs by allowing conic constraints. A
SOCP problem is formulated as follows:

SOCP : minimize
x∈Rn

1

2
xTQx+ pTx (66)

subject to ∥Gix+ hi∥2 ≤ cTi x+ di, i = 1, . . . , nineq, (67)
Ax = θ, (68)

where Gi ∈ Rm×n and hi ∈ Rm define the second-order cone, ci ∈ Rn and di ∈ R are the coefficients and scalar terms of
the conic constraints, respectively.

The Semidefinite Program (SDP) is an optimization problem where the goal is to minimize a linear objective function
subject to semidefinite constraints. The standard formulation of an SDP is given by:

SDP : minimize
X∈Sn

tr(CX) (69)

subject to X ⪰ 0, (70)
tr(AiX) = bi, i = 1, . . . , neq, (71)

where X ∈ Sn is the symmetric matrix variable, C ∈ Rn×n is a given symmetric matrix of coefficients for the objective
function, tr(·) is the trace of a matrix, Ai ∈ Rn×n are given symmetric matrices that define the equality constraints, bi ∈ R
are the given scalars that specify the right-hand side of the equality constraints, and neq is the number of equality constraints.
We discuss the penalty design for PSD constraint in Appendix D.3.

D.1.2. JOINT CHANCE CONSTRAINED INVENTORY MANAGEMENT (JCC-IM)

We consider the Joint Chance-Constrained Inventory Management (JCC-IM) problem, which seeks to optimize inventory
levels across multiple warehouses under conditions of demand uncertainty, ensuring a high probability of meeting that
demand. The JCC-IM problem is formally defined as:

JCC-IM : minimize
x∈Rn

cTx (72)

subject to Prob(Ax ≥ θ + ω) ≥ 1− δ (73)

Gx ≤ h, xmin ≤ x ≤ xmax, (74)

where n denotes the number of warehouses located in distinct regions, the decision variable x represents the inventory order
quantity to be determined in advance for n warehouse, in order to satisfy future demand. The vector θ encapsulates the
historical average demand, and the term ω ∼ p(·) models the stochastic deviations from this average, capturing the inherent
uncertainty of demand. The matrix A characterizes the interdependencies among different warehouses, which may arise
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Figure 10. This figure visualizes a sample-based individual chance constraint defined as Prob(ω1x1 + ω2x2 ≤ 1) ≥ 90%, where
ω1, ω2 are independent Gaussian variables. The probability of satisfying this constraint is estimated using N samples and the indicator
function I(·) as: 1

N

∑N
i=1 I(ω

i
1x1 + ωi

2x2 ≤ 1) ≥ 90%. The visualizations underscore the non-smooth geometry and optimization
difficulty (PAS09). We remark that BP was tested in a high-dimensional scenario with 400 decision variables and joint constraints in our
experiments.

from shared types of inventory or geographical proximity. The parameter δ specifies the acceptable risk level, thus ensuring
that the probability of meeting demand across all warehouses is at least 1 − δ. The additional constraints, Gx ≤ h and
xmin ≤ x ≤ xmax, represent warehouse-specific capacity limitations and inventory bounds, respectively.

The Joint chance constraint (JCC) represents the probability of the joint event of feasibility for each constraint as:

Prob(Ax ≥ θ + ω) = Prob(A1x ≥ θ1 + ω1, · · · , Amx ≥ θm + ωm) ≥ 1− δ (75)

When m = 1 and with Gaussian uncertainty, the probability constraint can be reformulated into a second-order cone
constraint (BBV04). However, in the general case, given the absence of an analytical reformulation for the JCC, we employ
a Sample-Average (SA) approach to approximate the chance-constrained problem. This technique involves generating a
finite set of scenarios {ω̃j}Nj=1 from the underlying distribution of θ. The SA variant of the JCC-IM is formulated as:

SA-JCC-IM : minimize
x∈Rn

cTx (76)

subject to PN =
1

N

N∑
j=1

I(Ax ≥ θ + ω̃j) ≥ 1− δ (77)

Gx ≤ h, xmin ≤ x ≤ xmax (78)

where I(·) is the indicator function. A solution is deemed to have a probabilistic JCC feasibility guarantee if PN ≥ 1− δ.
This empirical evaluation provides a practical measure of the reliability of the SA-based solution in adhering to the demand
satisfaction requirements stipulated by the JCC-IM problem.

In practice, the problem can be solved as mixed-integer programming but is intractable for high-dimension problems with a
large number of scenarios; therefore, for iterative-solver-based baselines, we solve the robust version of this problem by
setting δ = 0, such that the problem becomes convex with a large number (N ) of constraints. But for BP methods, we can
still project the solution to the chance constraint in (77) through bisection with easy feasibility checking shown in Alg. 1.

D.1.3. ALTERNATING CURRENT OPTIMAL POWER FLOW (AC-OPF)

The Alternating Current Optimal Power Flow (AC-OPF) problem is pivotal in ensuring the efficient and safe operation of
power grids. It requires real-time decision-making and adherence to operational constraints to maintain system integrity. The
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Figure 11. The left figure displays a simple 3-node power network, while the right figure illustrates a part of its constraint set (MH+19).
These visuals highlight the complex geometry and inherent challenges of the ACOPF problem. It is noteworthy that in our experiments,
BP was tested on a 200-node power network involving more than 1,000 constraints.

AC-OPF is inherently a non-convex Quadratically Constrained Quadratic Program (QCQP) and is recognized as NP-hard,
posing significant computational challenges. The formal mathematical formulation of the AC-OPF problem is as follows:

AC-OPF : min
pg,qg,v

pTgQpg + bTpg (79)

subject to |vi(v̄i − v̄j)w̄ij | ≤ Smax
ij , ∀(i, j) ∈ E , (80)

(pg − pd) + (qg − qd) i = diag(v)W̄ v̄, ∀i ∈ N , (81)

pmin
g ≤ pg ≤ pmax

g , qmin
g ≤ qg ≤ qmax

g , vmin ≤ |v| ≤ vmax. (82)

where the power network comprises n nodes, indexed by the set N . The vectors pd, qd ∈ Rn represent the real and reactive
power demand at each node, respectively. The vectors pg, qg ∈ Rn denote the real and reactive power generation, which are
the decision variables of the optimization problem. The vector v ∈ Cn signifies the nodal voltage phasors. The admittance
matrix W ∈ Cn×n characterizes the physical properties and topology of the power network, with W̄ denoting its complex
conjugate transpose. The generation cost is represented by a quadratic function with matrix Q ∈ Rn×n and vector b ∈ Rn.
The constraints include generation limits (pmin

g , pmax
g , qmin

g , qmax
g ), voltage magnitude bounds (vmin, vmax), thermal line

limits (Smax
ij ), and power flow balance equations. The set E denotes the set of edges (transmission lines) connecting the

nodes in the power network. The equality constraint represents the complex power flow balance at each node, ensuring that
the generation and demand are matched while accounting for power losses.

D.2. Experiment Setting

Computational Infrastructure: All NN-based methods are implemented in Pytorch and executed on an Ubuntu server
with an NVIDIA A800 GPU. Iterative algorithms were executed in parallel on an AMD EPYC 7763 64-Core Processor.
For convex optimization problems, we employed the MOSEK optimizer under an academic license. The Joint Chance-
Constrained Inventory Management (JCC-IM) problem was approximated using sampled scenarios and solved with MOSEK.
Alternating Current Optimal Power Flow (AC-OPF) problems were addressed using the open-source PyPower toolkit
(ZMS11). Additional experimental configurations are detailed in the respective sections and table footnotes.

Baseline Methods: We compare our approach against the following baselines:

• Optimizer: For convex optimization problems, we employ MOSEK as the baseline solver. For AC-OPF problems, we
use PyPower (ZMS11) as the specialized solver.

• NN: A vanilla neural network that directly maps input parameters to solutions without feasibility guarantees. It is
trained with an optimal solution dataset in a supervised setting.
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• Proj: Infeasible predictions from NN are corrected via orthogonal projections. The projection problem is formulated
and solved by Optimizer.

• WS: Infeasible NN predictions serve as warm-start initializations for iterative solvers, which may accelerate the
convergence.

• D-Proj: The differentiable projection method from DC3 (DRK20), which employs gradient descent to minimize the
constraint violation for constraint satisfaction. The gradient is derived via the automatic differentiation mechanism in
PyTorch.

• H-Proj: Homeomorphic projection applied to infeasible predictions (LCL23). The invertible neural networks (INN)
are trained in advance for each constraint type.

• B-Proj: Our proposed bisection-based projection (Algorithm 1) applied to predicted interior points for feasibility
recovery.

Evaluation Metrics: We evaluate all methods using the following criteria on 1,024 test instances:

• Feasibility: The percentage of solutions satisfying all equality and inequality constraints within a tolerance of 10−5.

• Optimality: The relative solution and objective optimality gap, defined as ∥x−x∗∥
∥x∗∥ and |f(x)−f(x∗)|

|f(x∗)| , respectively, where
f(x) is the objective value of the predicted/projected solution and f(x∗) is the optimal objective value.

• Runtime: Wall-clock time for inference, including raw NN prediction and any post-processing steps.

D.3. Hyper-parameters of NN and IPNN

We employ a fully connected neural network with residual connections (HZRS16; LLC24) and equality reconstruction
(PZC19; DRK20), denoted as F , to predict optimal solutions or interior points for constrained optimization problems
given input parameters θ ∈ Θ. The network architecture incorporates skip connections to facilitate gradient flow and a
reconstruction module to enforce equality constraints.

Data Generation for NN predictor: Training and test datasets are generated by solving optimization instances across
diverse parameter configurations using established solvers:

• Convex problems: MOSEK optimizer

• AC-OPF problems: PyPower (ZMSG97)

• JCC-IM problems: Sample Average Approximation (SAA) solved with MOSEK

Loss Function for NN predictor: The neural network is trained via supervised learning with a composite loss function that
balances solution accuracy, constraint satisfaction, and objective quality:

L(F ) = Eθ∼D

∥F (θ)− x∗θ∥22 + λ1
∑
j

ReLU(gj(F (θ), θ)) + λ2f(F (θ), θ)

 (83)

where:

• The first term minimizes prediction error with respect to optimal solutions

• The second term penalizes inequality constraint violations, with gj representing the j-th inequality constraint.

• The third term encourages objective function minimization to reduce the objective optimality gap directly.

• λ1, λ2 > 0 are hyperparameters controlling the trade-off between feasibility and optimality
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Constraint Handling in NN and IPNN:

• Equality constraints: we employ variable selection and completion (detailed in Appendix A.4), which guarantees
exact satisfaction for equality constraints.

• Penalty function: For standard differentiable inequality constraints g(x) ≤ 0, we compute the constraint violation
directly as ∥ReLU(g(x))∥, which naturally naturally vanishes when constraints are satisfied.

• Positive semidefinite constraints: For matrix variables X ⪰ 0, We offer two penalty computation approaches

– We can compute the exact penalty using negative eigenvalues via ReLU(−eig(X)), where eigenvalues are
obtained through torch.linalg.eigvalsh. While this method provides exact gradients through automatic
differentiation, it may encounter numerical instability (e.g., singularity) during training.

– We can estimate the penalty as ReLU(−
∑
i v

⊤
i Xvi) using linear measurements {vi}ki=1, where the vectors vi

are computed iteratively following (NSW22). This approximation offers improved computational efficiency and
numerical stability compared to the eigenvalue approach.

NN and IPNN Training

We train the NN predictor following a regular ML training scheme with parameters in Table 4. The Interior Point Neural
Network (IPNN) shares the same base architecture as the standard NN predictor, with the same input and output dimensions.
Furthermore, for the IPNN training for constrained optimization problems, we directly initialize it with parameters from a
trained NN predictor to reduce its training time. Detailed architectural specifications and hyperparameters for both models
are provided in Table 4.

Table 4. Structure of IPNN/NN predictor in experiments
Parameter Value

NN/IPNN structure

dimension of input layer d
dimension of output layer n
dimension of hidden layer ⌊(d+ n)/2⌋
activation function ReLU(·)
number of layer 3
last-layer activation Sigmoid(·)

NN/IPNN training parameters

number of training samples 10,000
number of testing samples 1,024
number of iteration 10,000
optimizer AdamW
learning rate 0.0001
batch size 64
the coefficient for objective value 0.001
the coefficient for inequality penalty 0.01
the coefficient for robust margin 0.01

E. Supplementary Experiment Results
E.1. IPNN Training and Bisection Projection over Various Constraint Sets

We evaluate the effectiveness of our BP framework on two challenging non-convex constraint sets.

Test Cases: We consider two geometrically distinct non-convex sets:

Case 1: C1(θ) = {x ∈ Rd | x⊤Qix+ q⊤i x+ bi ≤ 0, i = 1, . . . , 6} (84)

Case 2: C2(θ) =
4⋃
i=1

B(ci, ri), where B(c, r) = {x | ∥x− c∥2 ≤ r} (85)
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where θ1 = {Qi, qi, bi}6i=1 and θ2 = {ci, ri}4i=1 parameterize the constraint sets. Case 1 represents a ball-homeomorphic
set defined by quadratic constraints, exhibiting complex non-convex geometry. Case 2 consists of a union of disjoint balls,
presenting the additional challenge of disconnectivity—a property that violates the assumptions of many projection-based
methods. For each case, we:

• Train the IPNN ψ to learn the chebyshev centers.

• Evaluate bisection projection on unseen test parameters

• Compare against Homeomorphic Projection (H-Proj) using identical test instances

Results and Discussion. Results are presented in Figures 12 - 17. We make the following key observations:

• The robust margin maximization scheme provides two key benefits: it increases the interior-to-boundary distance,
improving IPNN prediction feasibility on unseen samples, and enables the trained IPNN to predict central interior
points for projections.

• For ball-homeomorphic constraint sets (Case 1), bisection projection achieves comparable performance to home-
omorphic projection. However, when constraints are disconnected (i.e., non-ball-homeomorphic in Case 2), the
homeomorphic projection fails to identify a valid INN for projection, resulting in infeasibility. In contrast, our bisection
projection consistently identifies central interior points and maintains solution feasibility.

E.2. Sensitivity Analysis on γ for Out-of-Sample Feasibility and Projection Distance

We empirically evaluate the impact of the robust margin parameter γ maximization on two critical performance metrics:
(i) out-of-sample feasibility rates for interior point predictions on unseen parameter instances (Fig. 6), and (ii) incurred
projection distances after bisection-based feasibility recovery (Fig. 7).

We compare three IPNN training strategies:

• No γ: Trained exclusively to minimize constraint violations without margin regularization (γ = 0).

• Fixed γ: Trained with a constant margin parameter (e.g., γ = 10−2), analogous to randomized smoothing techniques
employed in adversarial training.

• Train γ: Trained with our proposed γ maximization regularization, initialized at γ = 10−2.

To ensure statistical reliability, we trained each model configuration five times with different random seeds and report results
with standard deviations.

E.3. Sensitivity Analysis on Bisection Steps on Optimality Gap and Iteration Complexity

As established in Theorem 1, the bisection algorithm exhibits a linear convergence rate with low per-step computational cost.
We empirically validate this theoretical property by systematically varying the number of bisection steps across multiple
problem classes, as illustrated in Fig. 18.

The results confirm our theoretical analysis, demonstrating exponential reduction in optimality gap as the number of
bisection steps increases, while computational time grows linearly. This favorable trade-off enables practitioners to select an
appropriate number of iterations based on their specific accuracy requirements and computational constraints. Notably, most
practical applications achieve acceptable convergence within 5-10 bisection steps, making our approach well-suited for
real-time decision-making scenarios.

As shown in Fig. 2, when the line segment between an interior point and an infeasible prediction intersects the constraint
boundary at multiple points, our bisection algorithm converges to one such intersection. The specific convergence point
depends on the bisection parameter β, which controls the search granularity.

The bisection update rule can be generalized as:

αm = β · αl + (1− β) · αu (86)
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where β ∈ (0, 1) determines the bisection stepsize. The standard choice β = 0.5 yields binary search.

A smaller values (e.g., β = 0.1) create a conservative search biased toward the infeasible prediction, and the algorithm
tends to converge to boundary points closer to the original NN prediction, better preserving the learned solution structure.
However, this comes at a computational cost: The number of bisection steps increases under the same convergence tolerance.

Figure 19 empirically demonstrates this trade-off, showing that practitioners can tune β based on their specific requirements
for solution quality versus computational budget.

Figure 12. Non-convex Case: Perturbed penalty loss (Left) and IPNN prediction feasibility rate (Middle Left) during training. Robust
margin log(γ) (Middle Right) and estimated eccentricity (Right) during training.

Figure 13. Non-convex Case: Bisection Projection with IPNN prediction given test input parameters.

Figure 14. Non-convex Case: Homeomorphic Projection with trained INN given test input parameters.

Figure 15. Disconnected Case: Perturbed penalty loss (Left) and IPNN prediction feasibility rate (Middle Left) during training. Robust
margin log(γ) (Middle Right) and estimated eccentricity (Right) during training.
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Figure 16. Disconnected Case: Bisection Projection with IPNN prediction given test input parameters.

Figure 17. Disconnected Case: Homeomorphic Projection with trained INN given test input parameters.

e

Figure 18. Effect of increasing bisection steps on optimality gap (top) and computational time (bottom) across four constraint classes.
Results are averaged over initially infeasible neural network predictions. The panels show QP, QCQP, SOCP, SDP, AC-OPF, and JCC-IM
problems sequentially, demonstrating consistent exponential convergence behavior with linear time complexity growth.

Figure 19. Effect of bisection parameter β on (a) optimality gap and (b) iteration count across different problem instances. Smaller β
values achieve better solution quality at the expense of increased iterations.
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