
Reproducibility study of “Robust Counterfactual
Explanations on Graph Neural Networks”

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

The aim of this paper is to reproduce the claims made in the paper Robust Counterfactual Explanations on Graph3

Neural Networks [2]. The authors claim to have developed a novel method for explaining Graph Neural Networks4

(GNNs) which outperforms the existing explainer methods in three different ways, by being (1) more counterfactual,5

(2) more robust to noise and (3) efficient in terms of time.6

Methodology7

The original author’s code contained the code necessary to train both GNNs and explainer models from scratch.8

However, some alterations made by us were necessary to be able to use it. To validate the authors’ claims, the trained9

RCExplainer model is compared with other explainer models in terms of fidelity, robustness and efficiency. We extended10

the work by investigating the generalisation to the image domain and verified the authors’ implementation.11

Results12

For the validation of the original paper, we compare the pre-trained model and the retrained model to the results13

reported in the original paper. The retrained RCExplainer outperformed the other methods on fidelity and robustness,14

which corresponds with the results of the original authors. The measured efficiency of the method also corresponds to15

the original result. To extend the paper, this comparison is also performed using a train-test split, which showed no16

significant difference. The implementation of the metric is investigated and concerns are raised. Finally, the method17

generalises well to MNISTSuperpixels in terms of fidelity, but lacks in robustness.18

What was easy19

The original paper described their metrics for comparing multiple explainer models clearly, which made it easier to20

reproduce. Moreover, a codebase was available which included a pre-trained explainer model and files for training the21

other models. Because of this, we could easily find the reason for differences between our results and those of the paper.22

What was difficult23

The most difficult part of the reproduction study was determining the functionality of the provided codebase. The24

original authors did provide a general README file that included instructions for all code parts. However, using these25

provided instructions, we were not able to run this code without changes. As the provided codebase was very extensive,26

it was difficult to understand and determine how the different modules worked together.27

Communication with original authors28

We found it not necessary to contact the original authors for this reproduction study.29

Submitted to ML Reproducibility Challenge 2021(Fall Edition). Do not distribute.



1 Introduction30

Graph Neural Networks (GNNs) [5] are a recent development in the field of deep learning, aiming to exploit structural31

information by representing the input data as graphs. By passing messages along the nodes of the input graphs, these32

networks can use the structured nature of these graphs to reason on them. This allows GNNs to achieve groundbreaking33

results in a variety of fields such as the modelling of physics systems or molecular analysis [15].34

However, GNNs are similar to conventional neural networks (NNs) and can therefore similarly be considered a black35

box. Hence, they do not always provide a sufficient explanation for their outcome. Nevertheless, such an explanation36

might be useful in some applications. An explanation, as presented in [2], is simply a subset of edges of the input graph.37

The authors of [2], to whom we will refer as the original authors from this point on, consider an explanation to be38

counterfactual if the prediction on the input graph changes significantly when the edges in the explanation are removed39

from the input graph.40

Several methods to explain the reasoning of GNNs have already been proposed [12, 14, 10, 7]. However, these models41

fall short in that their generated explanations are neither counterfactual nor robust to noise. These features are important42

for a model because they make the explanations concise, easy to understand for humans and more trustworthy [2]. The43

original authors propose the RCExplainer model [2], which meets both criteria, and claim it is capable of outperforming44

existing explainer models, on the task of graph classification, while also being at least as time-efficient.45

2 Scope of reproducibility46

With this paper, we aim to validate the original authors’ claims, their experimental setup, and investigate the application47

of their method to another domain. Our code1 is publicly available and builds upon the code2 of [2].48

The original authors tested the RCExplainer model on three different datasets, however, due to long training times, we49

employed only one of these three. This reproduction paper aims to validate the following claims as made by the original50

authors:51

• The RCExplainer model produces superior counterfactual explanations in comparison to previous methods52

based on fidelity scores for all levels of sparsity.53

• The RCExplainer model is more robust to noise than competitive methods based on ROC AUC score.54

• The RCExplainer model is at least as efficient in terms of inference time as existing explainer models.55

Moreover, we conduct a set of additional experiments to inspect the following extensions to the original paper:56

• Split the dataset into a proper train test split, that is no overlap between those sets, for training the explainer57

model and validating the effect on its performance in terms of fidelity and ROC AUC scores.58

• Apply the RCExplainer method to the task of image classification using the MNISTSuperpixels dataset.59

• Calculate the ROC AUC scores in two additional ways.60

The next section will discuss the method of [2] in more detail and introduce our additional experiments. Section 461

reports the results to validate the original authors’ claims as well as the results of our extensions. Finally, Section 562

reflects on our work and concludes that we were able to partly reproduce the original paper.63

3 Methodology64

3.1 Model description65

The original authors propose a method consisting of two steps. First, the common decision logic of a GNN is extracted66

based on a set of linear decision boundaries (LDBs). This set comes from a GNN that is trained for graph classification.67

Second, the explainer model, based on the set of LDBs, which is a simple neural network, is trained to generate68

counterfactual explanations.69

1Our source code is located at https://anonymous.4open.science/r/FACTAI-467E/.
2The original authors’ code is available at https://marketplace.huaweicloud.com/markets/aihub/notebook/detail/?id=e41f63d3-

e346-4891-bf6a-40e64b4a3278.

2

https://anonymous.4open.science/r/FACTAI-467E/
https://marketplace.huaweicloud.com/markets/aihub/notebook/detail/?id=e41f63d3-e346-4891-bf6a-40e64b4a3278
https://marketplace.huaweicloud.com/markets/aihub/notebook/detail/?id=e41f63d3-e346-4891-bf6a-40e64b4a3278


Graph neural network The graph neural network, denoted by ϕ, is trained to classify input graphs. This model70

consists of an arbitrary number of graph convolutional layers, which produce an embedding vector, and a fully connected71

head. This head predicts the class probabilities from the embeddings.72

Explanation network The explanation model, denoted by ϕθ, is trained using the embedding vectors as produced by73

the GNN. The network consists of two linear layers with ReLU activations.74

3.1.1 Linear Decision Boundaries75

The architecture of the classification GNN, ϕ, can be divided into two distinct parts: the graph convolutional layers,76

denoted by ϕgc, and the fully connected layers, denoted by ϕfc. The RCExplainer model proposed by the original77

authors works by partitioning the output space of the graph convolutional layers into a set of decision regions, one for78

each class of the dataset. Given that the GNN uses piecewise linear activations on the neurons [1], its decision regions79

can be modelled by a set of linear decision boundaries (LDBs), the combination of which forms a convex polytope. As80

the total number of LDBs of a GNN grows exponentially with respect to the number of neurons [9], it is intractable81

to compute all the LDBs of a model. However, an LDB can be written as a linear equation of the form wT x + b = 0,82

where the basis w and the bias b can be computed with the following equations:83

w =
∂ (max1(ϕfc(α))− max2(ϕfc(α)))

∂α
, (1)

b = max1(ϕfc(α))− max2(ϕfc(α))− wTα, (2)

where α = ϕgc(G), so the embedding of the graph G in the output space of the graph convolutional layers, and the84

max1 and max2 operations take the highest and second-highest value of the input respectively. The original authors,85

therefore, propose to uniformly sample a random subset of input graphs and extract their respective LDB, in order to86

circumvent the complexity of computing all LDBs, giving a subset of decision boundaries H̃ ⊂ H.87

The set of LDBs forming a decision region for a specific class is then chosen to cover the maximum amount of graphs88

belonging to that class while ensuring that this region covers as few graphs of other classes as possible. The set of89

LDBs H̃c that forms the decision regions of a class c is determined by iteratively applying the following rule:90

h = min
h∈H̃\H̃c

g(H̃c, c)− g(H̃c ∪ {h}, c) + ε

k(H̃c, c)− k(H̃c ∪ {h}, c)
, (3)

where g(H̃c, c) is the total number of graphs belonging to class c that are covered by the LDBs in H̃c, k(H̃c, c) is the91

total number of graphs not belonging to class c that are covered by H̃c, and ε is a small noise term that ensures the best92

LDB is chosen, even when the numerator equals zero. This rule is applied until H̃c covers all graphs of class c, and93

then repeat this process for every class.94

3.1.2 Explanations95

Having extracted a decision region for each class, the original authors use this to generate an explanation S for each96

graph G, where S consists of a subset of the edges in G. This explanation is generated through the fully connected97

neural network ϕθ, parameterized by θ. This model takes the node embeddings of nodes i and j generated by ϕgc, and98

returns the probability that an edge between these two nodes is part of G’s explanation. Over all node pairs, this forms99

the matrix M, where each entry is the probability of the corresponding edge in the adjacency matrix belonging to S,100

which is then chosen to be the set of all edges with a value greater than 0.5 in M.101

The goal during training is to train a model such that the prediction of the GNN on the explanation is consistent with102

the prediction on the original graph, such that ϕ(S) = ϕ(G). Furthermore, the original authors want to ensure that103

removing the edges in S from G changes the prediction on G significantly, such that ϕ(G\S) ̸= ϕ(G).104

In order to satisfy these goals, the original authors define the following loss function:105

L(θ) =
∑
G∈D

(λLsame(θ,G) + (1− λ)Lopp(θ,G) + βRsparse(θ,G) + µRdiscrete(θ,G)) (4)

3



where Lsame is a term ensuring that the explanation of G has the same classification as G itself, Lopp ensures that106

removing S from G changes G’s classification, the combination of these terms ensuring that the explanations are107

counterfactual. Furthermore, Rsparse is a simple L1-regularization over M, ensuring only a small amount of edges108

is selected to be part of the explanation by minimizing this term, and Rdiscrete is a term that pushed the values in M109

closer to either 0 or 1 to more closely resemble an actual adjacency matrix.110

3.2 Datasets111

The original paper evaluates the model on three different datasets: Mutagenicity [4], BA-2motifs [7], and NCl1 [13].112

Due to time constraints, our reproducibility paper only attempts to reproduce the results on the Mutagenicity dataset.113

The Mutagenicity dataset is a binary dataset containing over 4000 molecules of different sizes represented as graphs114

(see Table 1), with a target stating whether these molecules are mutagenic or not. Besides the Mutagenicity dataset,115

we also employed the MNISTSuperpixels dataset [8], containing 60, 000 graphs, in order to evaluate the RCExplainer116

model on a task in a different field. These graphs are obtained from the MNISTSuperpixels dataset [6], which contains117

images of handwritten digits, and are based on the images that are segmented using a superpixel segmentation [11].118

This decreases the size of the graphs, by reducing the image from 28× 28 pixels to 75 superpixels. Furthermore, where119

the graph representation of a standard image would be a regular grid, where each pixel is only connected to its direct120

neighbours, which is identical for each image, the superpixel representation introduces irregularity between the different121

images, as the segmentation of each image is different ensuring each image has a different graph.122

Table 1: Dataset information

Dataset # Samples Avg. # Nodes Avg. # Edges # Labels

Mutagenicity 4337 30 31 2
MNISTSuperpixels 60000 75 1393 10

3.3 Experimental setup and code123

This section is split into two parts: the experiments concerning the validation of the claims made by the original paper’s124

authors, and the experiments which validate our aforementioned extensions.125

3.3.1 Reproducibility126

First, the original authors train a GNN from scratch on the classification task. This GNN is then used to obtain127

the predictions and node embeddings of the input graphs. These embeddings and predictions are used to train the128

RCExplainer model as described in Section 3.1. Subsequently, the trained RCExplainer model is compared with other129

explainer models in terms of fidelity, robustness and efficiency (see Section 4.1). Due to long training times, we chose130

to compare the RCExplainer only to the RCExp-NoLDB [2] and PGExplainer models [7], all trained from scratch on131

10 different seeds using the hyperparameters mentioned in the original paper. The GNN used as the prediction model is132

the pre-trained GNN provided alongside the codebase, with 3 graph convolutional layers.133

Moreover, the original paper uses the entirety of the Mutagenicity dataset for training the GNN, but for training the134

explainer network only 1742 samples are used. We follow this same setup in our experiments. However, the original135

authors only mention an 80/10/10% train-val-test split for training the GNN, but no specific split for training the136

explanation networks. After inspecting the codebase, we observed that the training set is always a subset of the test set137

and, therefore, it appears that the data used for the evaluation of the RCExplainer is not entirely unseen by the model.138

Consequently, we decided to also evaluate all models using a train-test split of 80/20%, which is a more common split139

used in artificial intelligence. The results of the comparison between both splits are discussed in Section 4.2.140

Furthermore, for evaluating the model based on robustness, the area under the curve (AUC) of a computed receiver141

operating characteristic curve (ROC) is calculated. In the provided codebase there were some unclear aspects of the142

AUC computation, which are addressed in Section 4.3.2.143

4



3.3.2 Extension144

In addition to reproducing the results of the original codebase and the original datasets, we applied the method in a145

different domain to evaluate the method’s ability to generalise to a new domain. Where the original authors employed146

the Mutagenicity dataset, which requires a certain level of chemical knowledge in order to interpret the qualitative147

results. Therefore, we applied the RCExplainer model on the image domain as we expect these qualitative results to be148

easier to interpret intuitively (see 5). For this purpose, the MNISTSuperpixels dataset [8] is used. This dataset was149

chosen because of its relative simplicity compared to other vision datasets.150

In order to apply the RCExplainer model to the MNISTSuperpixels dataset, a GNN was trained from scratch, using 4151

graph convolutional layers, with 100 hidden units, followed by an embedding layer consisting of 30 units. This increase152

in model size is necessary to obtain results comparable to state-of-the-art [3]. More details are presented in Appendix C.153

We used the hyperparameters as specified in the original paper and trained the model for 600 epochs.154

For comparison, both an RCExplainer and PGExplainer model have been trained to explain this GNN. The training155

uses the default hyperparameters for both models, similar to the comparison in the original paper. Again, following the156

original paper, we do not make use of a test train split, and evaluation is performed on part of the training set.157

3.4 Computational requirements158

To run all experiments, that is to say, both the reproduction study and the extension, we made use of 6 computers with159

varying specifications, but that contain at least one NVIDIA 2080TI GPU. The exact specifications can be found in160

Appendix B. Table 2 states the training time in GPU hours per model. The total training time for all models adds up to161

±454 hours of GPU runtime.162

Table 2: GPU computing time in hours per model. All models without superscript are trained on the Mutagenicity
dataset. The † superscript denotes models trained on the MNISTSuperpixels dataset.

Model RCExplainer PGExplainer RCExp-NoLDB GNN† PGExplainer† Total
Time (h) 8 6 6 20 16 454

4 Results163

4.1 Results reproducing original paper164

The RCExplainer is evaluated on three metrics: fidelity, robustness, and time efficiency. We compare the pre- and165

re-trained RCExplainer to the results reported in the original paper. For each of the metrics, the results are averaged166

over 10 different seeds and the standard deviations are mentioned. Note that for the pre-trained model we only have167

access to a single pre-trained model, so the metrics for this model are reported for only a single seed.168

As mentioned in Section 3.3.1, we compare the models using two different train-test splits. In this section, we only169

focus on the split as the original authors did. The findings of the adjusted train-test split are discussed in Section 4.2.170

Fidelity The original authors use fidelity to compare which model produces explanations with the strongest counter-171

factual characteristics. Fidelity is the amount the prediction confidence decreases when the explanation is removed172

from the input graph. A higher value indicates stronger counterfactual characteristics. This metric can be sensitive173

to the sparsity of explanations, which is the percentage of the remaining edges of the input graph after deleting the174

explanation.175

The results for this metric can be seen on the right-hand side in Figure 1. Note that the sparsity values are shown from176

50% instead of 75%, because of a lack of datapoints for the PGExplainer on the 75-80% interval. Figure 1 shows177

that the RCExplainer has the highest performance of the models, corresponding to the findings of the original authors.178

However, the performance of the RCExp-NoLDB and PGExplainer in Figure 1 is significantly lower than in the original179

authors’ paper.180

As mentioned in Section 3.3.1, we use the hyperparameters as specified in the original paper. For comparison, the model181

was also evaluated using the hyperparameters mentioned in the README file of the codebase, changing the parameters182

5



µ, λ and β in the loss function. The corresponding results are reported in Appendix E and show that changing the183

hyperparameters significantly affects performance. Therefore, we hypothesise that the hyperparameters are the reason184

for the performance discrepancies as seen in Figure 1.185

Figure 1: A comparison between different explainer models on the metric fidelity for two different train-set splits.

Robustness The robustness of a model is measured by how much an explanation changes after noise is added to the186

input graphs. The graphs are modified by adding random noise to the node features and randomly adding or deleting187

edges. The produced explanation of each noisy input graph is compared to the ground truth, the k best (top-k) edges of188

the explanation of the unmodified graph, by computing a ROC curve and computing the AUC of this ROC curve. The189

higher the AUC score of the model, the more robust it is.190

Each model is evaluated for different levels of noise, measured in the percentage of nodes and edges that are modified,191

ranging from 0% to 30%. The results are shown on the right-hand side of Figure 2. It shows that the re-trained192

RCExplainer performs the best for almost all noise values. This corresponds with the findings in the original paper.193

However, similar to the fidelity results, the results of the RCExp-NoLDB and PGExplainer are much lower than shown194

in the original author’s paper. We again hypothesise that this is explained by the hyperparameter tuning, following the195

same reasoning as in the previous paragraph.196

Figure 2: A comparison between different explainer models on the metric robustness for two different train-set splits.

Efficiency The original authors claim their method is at least as efficient as previous methods, and report a 0.01s±0.02197

execution time to produce a single explanation. Our experiments show a 0.007s± 0.0006 execution time. This slight198

6



Figure 3: RCExplainer vs PGExplainer on the MNISTSuperpixels dataset. Fidelity performance shows the task is too
simple, and noise robustness shows RCEexplainer is outperformed.

difference is likely due to differences in hardware platform and library versions. So, while unable to compare the199

performance of the RCExplainer model to other explainers, regarding their time efficiency, we were able to achieve200

results in line with the findings of the original authors on the run time of the RCExplainer model.201

4.2 Results beyond original paper202

As mentioned in section 3.3.1, the RCExplainer is evaluated using data that has already been encountered during203

training. Therefore, all models have also been evaluated on fidelity and robustness with a train-test split to see the effect204

of this experimental setup. Figure 1 and 2 show the results of these evaluations, where the 80/20% split is shown on the205

left side and the 100/100% on the right side. For both metrics, the figures show no significant differences. This lack of206

difference is likely because the explainer model is trained to explain the GNN, not the data, and therefore a train-test207

split does not seem to have a significant influence on the performance for training the explainer models.208

4.3 Extension209

This section discusses the results of our extensions to the original method. First, the results of the extension to a new210

domain are presented in Section 4.3.1. Then, the results of two additional AUC computations are reported in Section 3.211

4.3.1 MNISTSuperpixels212

In order to determine whether the claims of the original authors also extend to other domains, we measured the fidelity213

performance and noise robustness of the RCExplainer on the MNISTSuperpixels dataset (see Figure 3). To compare214

these curves, the same evaluation is also performed using the PGExplainer.215

Fidelity Figure 3 show that both models achieve high fidelity, especially for sparsity lower than 90%, indicating that216

both methods saturate the task, achieving near-optimal performance.217

The explainers have been trained using a 100/100% train-test split following the original paper. While this makes it218

significantly easier to saturate performance on the test set, as the samples are seen during training, results on other219

datasets in Section 4.1 show no clear difference between a more conventional train-test split and evaluating on the full220

set. Therefore, we hypothesise that the explainers still generalise well to this domain. Performing this evaluation with a221

split of 80/20% is still preferred, but not feasible in this reproduction study due to the long training time of the models.222

We speculate that the decrease in fidelity for higher sparsity levels is likely not due to the model’s ability to select223

explanations, but rather because the explanations are smaller as the sparsity level increases. As they become smaller,224

the counterfactual graph is more similar to the original graph retaining the same prediction. While unable to verify the225

performance advantage of the RCExplainer over the PGExplainer in this domain, we can verify its ability to generalise226

to new domains.227

7



Robustness In contrast to the fidelity performance, the noise robustness shows a clear difference according to Figure228

3. This difference could be caused due to an inherent difference in robustness threshold in the MNISTSuperpixel229

dataset compared to Mutagenicity. As not every pixel in an image is essential, and even with large parts missing, it is230

still possible to correctly classify an image. The PGExplainer is more robust to noise, remaining close to the original231

explanation, even with noisy input graphs. However, the performance of the RCExplainer falls short, and the method232

appears to be less robust to noise in this domain.233

4.3.2 AUC computation234

When examining the implementation of the AUC computation we found this was adjusted when compared to the235

standard definition of the AUC-score, without motivation, leaving us unsure of these adjustments. The AUC-score is236

used to compare the accuracy of S′ to S, where S′ is produced from noisy input graphs to evaluate robustness to this237

noise. The explanation problem is formulated as a binary classification problem. For this classification, the original238

authors only consider true positives and false positives when measuring the AUC, discarding the false negatives and239

giving the metric a positive bias.240

A false negative could occur when an edge in S is no longer in S′, for example, when S′ covers a different part of the241

original graph. If the explainer producing S′ is not robust to noise, its AUC score could be incorrectly high if it only242

produces a subset of the ground truth explanation S. This means, under noisy circumstances, an explainer only has243

to predict a single correct edge to attain a perfect AUC score, instead of predicting the full ground truth. Therefore,244

false negatives appear to provide important information. True negatives are also discarded, but while their inclusion is245

standard practice, they only add information about the size of the graph compared to the explanation. When evaluating246

robustness, this is not as relevant and mostly reduces the difference between the scores.247

Hence, we compared the original method and the inclusion of the false negatives, shown in Appendix A. For the highest248

noise percentage, this yields an 0.895% AUC score decrease. While this means the original method includes a slight249

positive bias, a bias is also present in the other explanation methods as the same evaluation code is used. Our foremost250

concern would be the comparison to other papers, where the metric might be implemented differently. We, therefore,251

chose to retain the original AUC computation method, as the bias is small and we prefer to retain the ability to compare252

our results to the original paper.253

5 Discussion254

This paper is a reproduction study of Robust Counterfactual Explanations on Graph Neural Networks [2]. We were255

partly able to reproduce the original authors’ claims that their model produces more counterfactual explanations, is256

more robust to noise and is at least as time-efficient. The RCExplainer showed equal results, while the RCExp-NoLDB257

and PGExplainer differed, which we hypothesise is because of the hyperparameters.258

For our reproduction paper, we only employed the experiments on the Mutagenicity dataset, and compared it solely to259

the RCExp-NoLDB and the PGExplainer, due to time constraints. Moreover, the results of the experiments have been260

obtained for 10 different seeds. Additionally, multiple extensions were performed to validate the experimental setup of261

the original paper and apply the model to the image domain.262

What was easy and what was difficult263

The original authors provided a codebase that included all code to reproduce the experiments. However, the instructions264

within this extensive codebase did not perfectly align with the method as proposed in the original paper. Therefore,265

we had to make some alterations to the code to be able to fully use it and hence mentioning all hyperparameters in266

the original paper would improve reproducibility. Moreover, a pre-trained explainer model was provided, but this267

only included a model for one seed, instead of 10 seeds. Furthermore, other explainer methods, to which the original268

authors compare their method were already implemented as well. Finally, the original paper described their metrics for269

comparing multiple explainer models clearly, which made it easier to reproduce.270

Communication with original authors271

There was no communication with the original authors, as we did not find it necessary in order to reproduce the paper.272

8



References273

[1] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim. Sanity checks for saliency maps. In274

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural275

Information Processing Systems, volume 31. Curran Associates, Inc., 2018.276

[2] M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang, P. C.-H. Lam, and Y. Zhang. Robust counterfactual explanations on277

graph neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural278

Information Processing Systems, 2021.279

[3] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking graph neural networks, 2020.280

[4] J. Kazius, R. McGuire, and R. Bursi. Derivation and validation of toxicophores for mutagenicity prediction.281

Journal of Medicinal Chemistry, 48(1):312–320, 2005. PMID: 15634026.282

[5] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. CoRR,283

abs/1609.02907, 2016.284

[6] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online]. Available:285

http://yann.lecun.com/exdb/mnist, 2, 2010.286

[7] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer for graph neural287

network, 2020.288

[8] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. Geometric deep learning on graphs289

and manifolds using mixture model cnns. In 2017 IEEE Conference on Computer Vision and Pattern Recognition290

(CVPR), pages 5425–5434, 2017.291

[9] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks.292

In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural293

Information Processing Systems, volume 27. Curran Associates, Inc., 2014.294

[10] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann. Explainability methods for graph convolutional295

neural networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10764–296

10773, 2019.297

[11] Ren and Malik. Learning a classification model for segmentation. In Proceedings Ninth IEEE International298

Conference on Computer Vision, pages 10–17 vol.1, 2003.299

[12] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks. In 6th300

International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,301

2018, Conference Track Proceedings. OpenReview.net, 2018.302

[13] N. Wale, I. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound retrieval and303

classification. Knowl. Inf. Syst., 14:347–375, 03 2008.304

[14] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations for graph305

neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,306

Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.307

[15] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural networks: A review308

of methods and applications. AI Open, 1:57–81, 2020.309

9



Appendix310

A AUC comparison311

Table 3: AUC scores under different noise levels for RCExplainer

Noise level 0 0.05 0.1 0.15 0.2 0.25 0.3

All (FN+FP+TN+TP) 1.0000 0.9994 0.9981 0.9968 0.9960 0.9951 0.9945
Original (TP+FP) 0.9909 0.9512 0.8969 0.8475 0.8051 0.7622 0.7368
False negatives (TP+FP+FN) 0.9909 0.9503 0.8941 0.8429 0.7998 0.7560 0.7302
Original and false negatives difference 0.000% 0.091% 0.309% 0.546% 0.659% 0.811% 0.895%

Table 4: AUC scores under different noise levels for PGExplainer

Noise level 0 0.05 0.1 0.15 0.2 0.25 0.3

All (FN+FP+TN+TP) 0.9996 0.9988 0.9974 0.9964 0.9945 0.9933 0.9926
Original (TP+FP) 0.9279 0.8810 0.8293 0.7846 0.7487 0.7179 0.6941
False negatives (TP+FP+FN) 0.9279 0.8800 0.8265 0.7809 0.7425 0.7105 0.6863
Original and false negatives difference 0.000% 0.112% 0.339% 0.479% 0.822% 1.022% 1.127%

As concerns were raised about the specifics of the AUC computation and its effect, the AUC of different approaches312

are shown in Table 3 for RCExplainer and Table 4 for PGExplainer. These scores are computed on the Mutagenicity313

dataset using the provided pre-trained model for RCExplainer and PGExplainer, trained using the provided script and314

parameters. The effect is most notable under the highest noise levels, which causes S′ to differ the most from S. The315

original approach is positively biased for all explainers, but not equally and, therefore, affects the comparison. The316

effect is small enough that we chose to ignore it to retain the ability to compare to the original paper.317

B Hardware318

Table 5: Hardware specifications of the machines used for training.

CPU Intel i9-9900 @ 3.10 GHz
GPU NVIDIA GeForce RTX 2080 Ti
Memory 64 GB

C MNISTSuperpixels GNN Training319

For the MNISTSuperpixels dataset, we deviated from the GNN architecture used by the original authors, as it had low320

performance. A high accuracy of the prediction model is important because it validates the counterfactuals produced by321

the explanation model. A poorly trained prediction model may have arbitrary explanations, even if the explanation322

model is correctly trained, and therefore does not have meaningful counterfactuals. A properly trained explanation323

model should allow for qualitative evaluation of the method.324

By increasing the number of layers and hidden dimensions of the model, the larger GNN achieves a test-set score of325

85% accuracy, just short of the test-set score reached in [3]. This is shown in Figure 4. Training for the baseline model326

was stopped early due to low performance.327

10



Figure 4: Validation accuracy of GNN on MNISTSuperpixels dataset

D MNISTSuperpixels Qualitative Results328

Figure 5: Node Explanations on MNISTSuperpixels dataset

Figure 5 shows the qualitative results of the RCExplainer model on the MNISTSuperpixels dataset, using twelve329

randomly sampled graphs. The nodes overlayed on the images are the centroids of the superpixels of the input images,330

and the brighter their colour, the higher their probability of being included in the explanation of the model.331

While the original authors mainly define the explanation to be a set of edges they also provide a definition for an332

explanation consisting of nodes, which we employed for this visualization. There, a node n ∈ N has a weight an,333

defined as follows:334

an = max
i∈N

(Mni), (5)

where M is the matrix generated by the explanation network fθ. This means that the weight of a node corresponds335

to the probability of the edge with the highest probability of belonging to the explanation. Every node with a weight336

higher than 0.5 is then considered to be part of the explanation of that graph.337

11



E Hyperparameter comparison338

Figure 6: Comparison between two explainer models on the metric fidelity using a 100/100% train-test split.

Figure 7: Comparison between two explainer models on the metric robuustness using a 100/100% train-test split.

12


	Introduction
	Scope of reproducibility
	Methodology
	Model description
	Linear Decision Boundaries
	Explanations

	Datasets
	Experimental setup and code
	Reproducibility
	Extension

	Computational requirements

	Results
	Results reproducing original paper
	Results beyond original paper
	Extension
	MNISTSuperpixels
	AUC computation


	Discussion
	AUC comparison
	Hardware
	MNISTSuperpixels GNN Training
	MNISTSuperpixels Qualitative Results
	Hyperparameter comparison

