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Abstract

We address the task of 6D multi-object pose: given a
set of known 3D objects and an RGB or RGB-D input im-
age, we detect and estimate the 6D pose of each object.
We propose a new approach to 6D object pose estimation
which consists of an end-to-end differentiable architecture
that makes use of geometric knowledge. Our approach it-
eratively refines both pose and correspondence in a tightly
coupled manner, allowing us to dynamically remove outliers
to improve accuracy. We use a novel differentiable layer to
perform pose refinement by solving an optimization problem
we refer to as Bidirectional Depth-Augmented Perspective-
N-Point (BD-PnP). Our method achieves state-of-the-art
accuracy on standard 6D Object Pose benchmarks. Code
is available at https://github.com/princeton-
vl/Coupled-Iterative-Refinement .

1. Introduction

Given an RGB or RGB-D image containing a set of ob-
ject instances of known 3D shapes, 6D multi-object pose is
the task of detecting and estimating the 6D pose—position
and orientation—of each object instance. Accurate poses
are important for robotics tasks such as grasping and aug-
mented reality applications involving shape manipulation.

In the standard 6D multi-object pose setup, we are given
a set of 3D models of known object instances. Given an
RGB or RGB-D input image, the goal is to jointly detect ob-
ject instances and estimate their 6D object pose. Early work
solved this problem by first estimating correspondences be-
tween the 3D model and the image [22], producing a set of
2D-3D correspondences, which are then used to obtain 6D
object pose using Perspective-n-Point (PnP) solvers [16,19]
or iterative algorithms like Levenberg-Marquardt.

While 2D-3D correspondence is sufficient to solve for
6D pose, it is difficult to obtain accurate correspondence in
practice. In many applications, we wish to estimate the pose
of poorly textured objects where local feature matching is
unreliable. Furthermore, problems such as heavy occlusion,
object symmetry, and lighting variation can make detecting
and matching local features near impossible. These prob-

Figure 1. Given an image and collection of 3D models, our method
outputs the position and orientation of each object instance.

lems cause classical systems to be too brittle for many use
cases which require a greater degree of robustness.

Recently, many of these issues have been partially ad-
dressed using deep learning. A simple approach is to train
a network to directly regress 6D poses [18, 20, 35]. Direct
pose regression simply learns to map input to output, and
makes no use of the fact that the pixels are a perspective pro-
jection of a known 3D object. Although direct pose regres-
sion can be quite effective in practice, an intriguing question
is whether there exist better deep learning methods that take
advantage of projective geometry.

Many works on 6D pose have attempted to combine
deep learning and projective geometry. One approach is
to train a deep network to detect keypoints of a known
3D object [12, 26–29, 33], producing a set of 2D-3D cor-
respondences which can serve as input to a Perspective-
n-Point (PnP) solver. Another approach is to impose ge-
ometric knowledge in the form of implicit or declarative
layers [5, 6]. These works showed that PnP could be im-
plemented as a modular component in end-to-end differen-
tiable architectures. However, both approaches are “one-
shot” in the sense that correspondence is predicted once and
then used to solve for pose through a PnP solver (differen-
tiable or not); this makes the approaches sensitive to outliers
and errors in the correspondences.

We propose a new approach to 6D object pose estima-
tion. Our approach consists of an end-to-end differentiable
architecture that makes use of geometric knowledge. The
main novelty of our approach over prior work on 6D pose



is the use of “coupled iterative refinement”: unlike prior
work which operates in a single shot setting, we iteratively
refine pose and correspondence in a tightly coupled man-
ner, allowing us to dynamically remove outliers to improve
accuracy.

Our approach builds on top of the RAFT [31] architec-
ture developed for optical flow (i.e. dense correspondence).
The basic idea is to estimate flow between the input image
and a set of rendered images of the known 3D object, gen-
erating 2D-3D correspondences that are used to solve for
pose. Like RAFT, we use a GRU to perform recurrent iter-
ative updates, but at each iteration we update not only flow
but also object pose. The flow update and pose update are
tightly coupled: the flow update is conditioned on the cur-
rent pose, and the pose update is conditioned on the flow.

To perform the pose update, we introduce a novel dif-
ferentiable layer we call “Bidirectional Depth-Augmented
PnP (BD-PnP)”. This layer is similar to a differentiable PnP
solver in that it produces a Gauss-Newton update to object
pose by minimizing reprojection error. However, it is novel
in two aspects. First, it is bidirectional: it solves for a single
pose update to simultaneously satisfy two sets of 2D-3D
correspondences, one set defined on the input image, the
other set defined on a rendered image. Second, our layer
is “depth-augmented”: the optimization objective also in-
cludes the reprojection error on inverse depth, which we
show to be important for improving accuracy.

Our method achieves state-of-the-art accuracy on the
YCB-V [4], T-LESS [14] and Linemod (Occluded) [2]
RGB-D multi-object BOP [15] pose benchmarks, signifi-
cantly outperforming prior work. A variant of our method
can handle RGB-only input, with performance on par with
the current state-of-the-art.

2. Related Work

Classical Approaches Early works on 6D object pose es-
timation used invariant local features [1, 23] to generate
correspondences between 2D image features and 3D model
features [24]. Given the set of 2D-3D correspondences, PnP
solvers are then used to estimate 6D object pose, that is,
the position and orientation of the object in world coordi-
nates [10]. Both closed form [10, 19, 37] and iterative algo-
rithms [25] exist for recovering pose from correspondence.
In practice, it is common to use a closed form solution as
initialization followed by iterative refinement [19]. Due to
the presence of outliers, robust estimation techniques such
as RANSAC [9] are typically required. Local features per-
form well on highly textured objects, but often fail to pro-
duce a sufficient number of accurate correspondences on
textureless objects.

In this work, we also estimate correspondence between
the 3D model and the input image to produce a set of 2D-
3D correspondences. However, instead of predicting a set of

sparse matches, we predict dense correspondence fields be-
tween the input image and rendered views of the 3D model
together with per-pixel confidence weights. By predicting
dense correspondence, we can ensure a sufficient number
of matches allowing us to solve for accurate pose even on
textureless objects where classical methods fail.

Learning-based Approaches Several works propose to es-
timate pose by directly regressing rotation and translation
parameters [7, 17, 36].

Other works generate 2D-3D correspondences by detect-
ing or regressing keypoints. One type of keypoint parame-
terization is object coordinates [3, 6, 26, 29]. Given a canon-
ical pose of an object, the object coordinates represent the
position of a 3D point in the coordinate system of the canon-
ical pose. Brachmann et al. [3] showed that a random for-
est could be used to regress object coordinates from image
features. Pix2Pose [26] uses a neural network to regress
object coordinates from the image, while BB8 [29] esti-
mates bounding box corners. By regressing object coor-
dinates, these systems produce a dense set of 2D-3D corre-
spondences which can be used to estimate object pose using
PnP solvers. BPNP [6] takes this idea a step further and im-
plements the PnP solver as a differentiable network layer.
During training, BPNP uses the implicit function theorem
to backpropagate gradients through the PnP solver such that
the full system can be trained end-to-end. Our work is simi-
lar to these approaches in the sense that we also regress 2D-
3D correspondences (in the form of optical flow between
the input image and rendered views of the 3D model), but
we differ by performing coupled iterations where both cor-
respondences and object pose are iteratively refined.

Iterative Refinement It can be challenging to estimate ac-
curate pose in a single-shot setting. This has motivated sev-
eral works to apply iterative refinement techniques to pro-
duce more accurate pose estimates. DeepIM [20] is an it-
erative “render-and-compare” approach to pose estimation.
During each iteration, DeepIM uses the current estimate of
object pose to render the 3D model, then uses the render and
the image to regress a pose update to better align the image
with the render. CosyPose [18] builds on this idea using im-
proved network architectures and rotation paramterizations.

Similar to DeepIM, our approach also includes an outer
loop that re-renders the 3D model using the current pose
estimate. However, our pose updates are produced not by
regression but by our BD-PnP layer that makes use of ge-
ometric constraints. In particular, the BD-PnP layer solves
for a pose update based on the current estimate of flow.

RAFT-3D [32] applies iterative refinement in the context
of scene flow estimation. Like our work, they iterate be-
tween optical flow refinement and fitting rigid body trans-
formations. However, RAFT-3D predicts pixelwise trans-
formation fields between pairs of frames using the Dense-
SE3 layer, while our work predicts transformations on the



object level using our novel BD-PnP layer, which is sub-
stantially different from the Dense-SE3 layer.

3. Approach

Our method operates on a single input image and pro-
duces a set of object pose estimates (Fig. 1). For simplicity
of exposition, we assume RGB-D input unless otherwise
noted. Our method can be decomposed into 3 stages: (1)
object detection, (2) pose initialization, and (3) pose refine-
ment. The first two stages (object detection and pose initial-
ization) follow the method proposed by CosyPose [18]. Our
primary contribution concerns the pose refinement stage,
where we seek to transform the initial coarse pose estimates
into refined poses with subpixel reprojection error.

Preliminaries Given a textured 3D mesh of an object, we
can render images and depth maps of the object from differ-
ent viewpoints using PyTorch3D [30], with views parame-
terized by intrinsic and extrinsic parameters

G i =
R t
0 1

K i =
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0 0 1


 . (1)

where G i is the object pose in camera coordinates. Let-
ting G0 be the pose for the image and{G1, ..., GN }be the
poses for a set of renders, we can define a function which
maps points in a render to points in the image
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or from the image to a render
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We use depth-augmented pinhole projection functions Π
and Π−1 which convert not just image coordinates of a point
but also its inverse depth between frames
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where it is assumed pixels coordinates are normalized using
the camera intrinsics.

The goal then is to solve for poseG0 such that Eqn 2 cor-
rectly maps points between the image and renders. Usually,
we want to return object pose in world coordinates which
can be computed by simply invertingG0.
Object Candidate Detection Given an input image, we
first apply Mask-RCNN [11] to generate a set of object de-
tections and associated labels. We use the pretrained Mask-
RCNN weights from CosyPose [18] which were trained
on the BOP [15] object classes. We then use the detected
bounding boxes to generate crops from the image, segmen-
tation mask, and depth map (in the RGB-D setting). We
resize crops to 320 × 240and adjust intrinsics accordingly.

Pose Initialization Following detection, our system oper-
ates in parallel for each object candidate. Given an object,
we start by generating an initial pose estimate G (0) .

We first compute a translation vector tbbox which aligns
the bounding box of the 3D model to the detected object
mask, such that the diameter of the mesh aligns with the
projected bounding box. We then render the 3D model
using the estimated translation and concatenate the render
with the image crop. This input is fed directly to an Resnet-
based architecture which regresses a rotation and translation
update (R , ∆t ) where rotation is predicted using the con-
tinuous 6D parameterization proposed by Zhou et al. [38].
The initial pose estimate can be written as a 4 × 4matrix

G (0)
0 =

R t bbox + ∆t
0 1

. (5)

Feature Extraction and Correlation Given our initial pose
estimate, we render several viewpoints at our pose estimate
as well as centered around it by adding or subtracting22.5◦

from either pitch, yaw or roll (7 rendered views in total).
For each render, our network estimates bidirectional, dense
correspondence between the render and the image crop. The
object pose of each of the renders is known; the pose of the
object in the image crop needs to be estimated.

For all N renders we extract dense H
4 × W

4 feature maps.
We also apply the same feature extraction network to the
image crop using shared weights.

We then build two correlation volumes for each image-
render pair, one from the image to the render and another
from the render to the image. The correlation volume is
computed by taking the dot product between all pair of fea-
ture vectors. Like RAFT [31], we pool the last two dimen-
sion of each correlation volume to produce a set of 4-level
correlation pyramids. These pyramids contain correlation
features useful for matching.

3.1. Coupled Iterative Refinement

We use a GRU-based update operator (Fig. 2) to produce
a sequence of updates to our pose estimates. The GRU also
has a hidden state which gets updated with each iteration.

Let G be the set of all poses, including both the renders
and the image. The poses of the renders are fixed, while the
first pose G0, the pose of the image, is a variable.

Using Eqn. 2, we compute the dense correspondence
field bidirectionally between the image and each render. We
compute xi→0 using Eqn. 2 and x0→i using Eqn. 3. The
correspondence field xi→0 ∈ RH×W×3 tells us, for every
pixel in render i , its estimated 2D location in the image. It
is worth noting that the correspondence field is augmented
with inverse depth, that is, xi→0 contains not just 2D coor-
dinates but also inverse depth.

Correlation Lookup We use xi→0 to index from the cor-
responding correlation pyramid using the lookup operator
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Figure 2. The update operator. A GRU produces revisions r and
confidence weights w. The revisions and confidence weights are
used to solve for a pose update.

defined in RAFT [31]. The lookup operator constructs a lo-
cal grid around each point with radiusr and uses the grid to
index from each level in the correlation pyramid, producing
a total ofL correlation features. The result of the lookup op-
eration is a map of correlation features si→0 ∈ RH×W×L .
Similarly, we use x0→i to produce the correlation features
s0→i ∈ RH×W×L .

GRU Update For each image-render pair, the correlation
features si→0 and the hidden state hi→0 , together with ad-
ditional context and depth features described in the sup-
plemental material, are fed to a 3x3 convolution GRU,
which outputs (1) a new hidden state, (2) revisions ri→0 ∈
RH×W×3 to each of the dense correspondence fields, and
(3) a dense map of confidence wi→0 in the predicted revi-
sions. The revision ri→0 represents a new flow estimate in
the form of a dense map of corrections that should be ap-
plied to the correspondences produced by the current pose
estimate. Note that ri→0 includes not just revisions for 2D
coordinates but also revisions for inverse depth. The revi-
sions for depth are necessary to compensate for the fact that
the input sensor depth may be noisy and the corresponding
point may be occluded.

We also apply the same GRU for the other direction of
the image-render pair. That is, we use the correlation fea-
tures s0→i to produce revisions r0→i and confidence map
w0→i . Note that the weights of the GRU are shared across
all image-render pairs in both directions.

Bidirectional Depth-Augmented PnP (BD-PnP) The BD-
PnP layer converts the predicted revisionsr and confidences
w to a camera pose update ∆G 0. We first use the revisions

to update the correspondence fields

x′
i→0 = xi→0 + ri→0

x′
0→i = x0→i + r0→i

(6)

and define an objective function to minimize the distance
between the reprojected coordinates and the revised corre-
spondence

E(G 0) =
NX

i=1

|x′
i→0 − Π(G0G−1

i Π−1(xi )|
2

Σ i→0
+

NX

i=1

|x′
0→i − Π(Gi G

−1
0 Π−1(x0)|

2

Σ 0→i

(7)

where || · ||Σ is the Mahalanobis distance with Σ i→0 =
diag wi→0 . The objective in Eqn. 7 states that we want
camera poses G0 such that the reprojected points match the
revised correspondence x′

ij . It is important to note that this
objective is similar to conventional PnP because it optimizes
reprojection error. But unlike conventional PnP, which opti-
mizes a single set of 2D-3D correspondences, our objective
is bidirectional because it optimizes two sets of 2D-3D cor-
respondences, one defined on the render and the other de-
fined on the input image. In addition, unlike conventional
PnP, our objective also includes reprojection error of inverse
depth, which experiments show to be important for improv-
ing accuracy.

We linearize Eqn. 7 using the current pose and perform
a fixed number of Gauss-Netwon updates (3 during train-
ing and 10 during inference). Each Gauss-Newton update
produces a pose update δξ ∈ se(3)which is applied to the
current pose estimate using retraction on the SE3 manifold

G (t+1)
0 = exp(δξ) · G(t)0 . (8)

Inner and Outer Update Loops For a given set of renders,
we run 40 iterations of the update operator. Upon comple-
tion, we use the refined pose estimate to re-render a new set
of 7 viewpoints and repeat the process. As we show in our
experiments, we can trade speed for accuracy by increasing
the number of inner and outer iterations.

3.2. RGB Input

To handle RGB input, we can use the current pose G (t)
0

to render the depth from the known 3D model, and proceed
as if we have RGB-D input. However, this basic approach
is not mathematically sound because the rendered depth is
a function of the object pose but is treated as a constant
in the optimization. On the other hand, a fully principled
treatment is difficult to implement because it requires com-
puting the Jacobian of the rendering function, as well as the
derivatives of the Jacobian during backpropagation. As a



middle ground, we use the rendered depth to linearize the
optimization objective, and introduce depth as a variable in
the optimization so that we jointly optimize pose and depth
but discard the depth update (full details in supplemental
material). This revised approach gives better results.

3.3. Training

Each training step, we randomly sample a visible object
in the input image and randomly purturb the ground-truth
rotation and translation to initialize the pose. Our model is
trained to recover the ground truth pose from this initial-
ization. In order to save GPU memory, we use 10 inner-
loops and one outer-loop during training, and render only
one viewpoint at each training step.

Supervision We supervise on the predicted correspondence
revisions and the updated pose estimates from all update it-
erations in the forward pass, with exponentially increasing
loss weights similar to RAFT [31]. Specifically, we super-
vise on the geodesic L1 distance between the estimated pose
and the ground truth pose. The flow is supervised using an
L1 endpoint error loss, as is standard for optical flow prob-
lems. All ground truth poses in the BOP benchmark [15],
which we use for experiments, have a set of discretized
symmetries which are considered equivalent with regard to
the MSSD and MSPD error metrics. In order to align the
loss with the error metrics, we compute the loss using all
discretized symmetries and backpropagate the minimum.

4. Experiments

Evaluation Metrics In keeping with the BOP benchmark
evaluation, we report Maximum Symmetry-Aware Surface
Distance (MSSD) Recall, Maximum Symmetry-Aware Pro-
jection Distance (MSPD) Recall, Visible Surface Discrep-
ancy (VSD) Recall, as well as the average over all three
metrics. MSSD is the maximum euclidean distance be-
tween associated mesh vertices in the predicted and ground
truth poses. MSPD is the maximum reprojection error be-
tween all associated vertices from the predicted and ground
truth poses. Both MSSD and MSPD assume the mini-
mum value across all symmetrically equivalent ground truth
poses. VSD is the depth discrepancy between the mesh ren-
dered at the predicted and ground truth poses, measured
over pixels where the model is visible. All three metrics
are reported as recall percentages over a set of thresholds
defined in the BOP benchmark [15], scaled between 0 and
1. Higher is better for all three.

Datasets We evaluate our method on the varying number
of instances of a varying number of objects in a single
RGB-D image (the ViVo task) from the official BOP bench-
mark [15]. Specifically, we evaluate our method on the
YCB-V [4], T-LESS [14] and LM-O (Linemod-Occluded)
[2] datasets from the BOP benchmark [15]. Each dataset

Method Avg. MSPD VSD MSSD

YCB-V [4]

Ours 0.893 0.885 0.872 0.923
CosyPose [18] 0.861 0.849 0.831 0.903
W-PoseNet w/ICP [17] 0.779 0.734 0.779 0.824
Pix2Pose-BOP20 (w/ ICP) [26] 0.780 0.758 0.766 0.817
Koenig-Hybrid-DL-PointPairs [8] 0.701 0.635 0.778 0.690
CDPNv2-BOP20 (w/ ICP) [21] 0.619 0.565 0.590 0.701
EPOS [13] 0.696 0.783 0.626 0.677
Vidal-Sensors18 [34] 0.450 0.347 0.623 0.380

T-LESS [14]

Ours 0.776 0.795 0.758 0.773
CosyPose [18] 0.728 0.821 0.669 0.695
Pix2Pose-BOP20 (w/ ICP) [26] 0.512 0.549 0.438 0.548
Koenig-Hybrid-DL-PointPairs [8] 0.655 0.696 0.580 0.689
CDPNv2-BOP19 (w/ ICP) [21] 0.490 0.674 0.377 0.418
EPOS [13] 0.476 0.635 0.369 0.423
Vidal-Sensors18 [34] 0.538 0.574 0.464 0.575

LINEMOD-Occluded [2]

Ours 0.735 0.825 0.602 0.780
CosyPose [18] 0.714 0.826 0.567 0.748
W-PoseNet w/ICP [17] 0.707 0.793 0.601 0.726
Pix2Pose-BOP20 (w/ ICP) [26] 0.588 0.659 0.473 0.631
Koenig-Hybrid-DL-PointPairs [8] 0.631 0.703 0.517 0.675
CDPNv2-BOP20 (w/ ICP) [21] 0.630 0.731 0.469 0.689
EPOS [13] 0.547 0.750 0.389 0.501
Vidal-Sensors18 [34] 0.582 0.647 0.473 0.625

Table 1. Top performing methods on the BOP Benchmark [15].
The MSPD, VSD and MSSD columns are their recall across a
range of thresholds (sec. 4). We use the same detector as cosy-
pose [18]

Method Avg. MSPD VSD MSSD

YCB-V [4]

Ours 0.824 0.850 0.783 0.838
CosyPose [18] 0.821 0.850 0.772 0.842
EPOS [13] 0.696 0.783 0.626 0.677
CDPN [21] 0.532 0.631 0.396 0.570

T-LESS [14]

Ours 0.708 0.795 0.656 0.673
CosyPose [18] 0.728 0.821 0.669 0.695
EPOS [13] 0.476 0.635 0.369 0.423
CDPN [21] 0.490 0.674 0.377 0.418

LINEMOD-Occluded [2]

Ours 0.657 0.822 0.505 0.645
CosyPose [18] 0.633 0.812 0.480 0.606
EPOS [13] 0.547 0.750 0.389 0.501
CDPN [21] 0.624 0.731 0.469 0.612

Table 2. Results on the BOP Benchmark [15] excluding methods
that use depth. The MSPD, VSD and MSSD columns are their re-
call across a range of thresholds (sec. 4). We use the same detector
as cosypose [18].



consists of a unique set of objects designed to evaluate
a method’s accuracy in different real-world settings. The
YCB-V dataset consists of 21 household objects with tex-
ture and color, the T-LESS dataset consists of 30 highly-
similar industry-relevant objects with no texture or color,
and the Linemod (Occluded) dataset consists of 15 texture-
less colored household objects. For each image in the test
sets, we must classify and predict the rotation and trans-
lation of all visible objects. There are 900 YCB-V test
images, 1000 T-LESS test images and the 200 Linemod-
Occluded test images. Each image contains 3 to 8 objects.

Training Data On the YCB-V Objects dataset [4], we use
the 80K synthetic and 113K real training images provided
in the BOP challenge [15]. On the T-LESS [14] dataset, we
train using the 50K synthetic and 38K real training images.
On the Linemod dataset, we train exclusively using the 50K
synthetic training images provided. Please see the supple-
mental material for additional implementation details.

4.1. BOP Benchmark Results

RGB-D Results Our approach significantly outperforms all
other methods on YCB-V, T-LESS and LM-O for RGB-D
input (see Tab. 1). Inline with the BOP benchmark guide-
lines, all of our RGB-D methods use the exact same hy-
per parameter settings across all datasets. For each prior
work against which we compare, we report their best single-
image method per-dataset, with or without ICP, whichever
is better. Our reported results do not use ICP.
RGB-Only Results Using our adaptation to RGB-only in-
put, we compare our method to all prior work on the BOP
benchmark. Our method performs competitively with the
state-of-the-art on the BOP benchmark (See Tab. 2), out-
performing on Linemod (Occluded) and YCB-V, and un-
derperforming on T-LESS. Just as with our RGB-D results,
all our RGB results were obtained using the same hyper pa-
rameter settings.

4.2. Ablation Experiments

All ablation experiments were conducted on held-out
scenes from the training data in YCB-V, T-LESS, and LM-
O. We mainly report ablation results for the RGB-D setting
(Tab. 3). We perform the same ablations for the RGB set-
ting and report the results in the supplemental material. The
better design choices based on RGB-D ablations also per-
form well for RGB input, and are used to obtain our final
results for both settings.

Bidirectional Depth-Augmented PnP Our method bene-
fits from being bidirectional between an image-render pair.
Using correspondence from only a single direction in the
PnP solver yields less accurate results. In addition, depth
augmentation improves accuracy.

Predicting Confidence Weights The predicted confidence
weights allow our model to down-weight correspondences

Figure 3. The accuracy / speed tradeoff of our method. Results of
one outer update loop (Ours 1x) and two (Ours 2x). Left: Accu-
racy on a held-out split of YCB-V training data. Right: Accuracy
on a held-out split of T-LESS training data. Our method converges
quickly, meaning few inner loops and one outer loop gives good
results. Timings are measured on single objects with random rota-
tion and translation perturbation.

which are outliers. This behavior is critical to performance,
as uniform confidence over all pixels within the masks is
much less accurate (see Tab. 3).

Multi-view renders In the forward pass, we can arbitrarily
add more viewpoints by rendering the object at additional
perturbations of the input pose. The memory usage scales
linearly with the number of viewpoints, therefore during in-
ference this is tractable. Even without explicitly training
using more than one render, rendering seven rotationally-
perturbed viewpoints leads to better results across the board
during inference (see Tab. 3). Viewpoints generated from
excessively large rotation perturbations share too few cor-
respondences with the input image to be useful, while too
small perturbations add little novel information. 22.5◦ per-
turbations work well in all situations.

Coupled iterative refinement Tightly coupled iterative re-
finement of both correspondence and pose performs sub-
stantially better than the single-shot approach that solves
for pose after predicting correspondence.

Flow and pose Loss Both the pose and flow loss functions
are critical, suggesting that there is strong coupling between
the pose updates and flow updates.

Outer loop It is beneficial to have an outer loop that regen-
erates the renders with the latest pose estimate.

Handling RGB-only input Tab. 4 compares the basic ap-
proach and the revised approach for handling RGB-only in-
put (see Sec. 3.2). The revised approach performs better.

4.3. Speed vs Accuracy Tradeoff

One can trade off accuracy for speed by varying the num-
ber of outer or inner update loops (sec. 3.1). In Fig. 3, we
report the accuracy of our method on a held-out portion of
the YCB-V and T-LESS training datasets as a function of
runtime, for both one and two outer-loops. For our final



YCB-V [4] T-LESS [14] LM-O [2]

MSPD Recall MSSD Recall MSPD Recall MSSD Recall MSPD Recall MSSD Recall

Bidirectional PnP 0.924 0.955 0.685 0.582 0.828 0.788
Unidirectional PnP (render to image) 0.905 0.941 0.677 0.546 0.605 0.465
Unidirectional PnP (image to render) 0.890 0.917 0.337 0.200 0.811 0.773

Depth-Augmented PnP (predicting depth revisions) 0.924 0.955 0.685 0.582 0.828 0.788
No depth augmentation (no depth revisions) 0.909 0.940 0.678 0.573 0.819 0.784

Predicting per-pixel confidence weights 0.924 0.955 0.685 0.582 0.828 0.788
Uniform confidence 0.721 0.832 0.587 0.424 0.812 0.760

Multiview renders 0.924 0.955 0.685 0.582 0.828 0.788
Single render 0.902 0.941 0.663 0.545 0.744 0.641

Coupled iterative refinement 0.924 0.955 0.685 0.582 0.828 0.788
One-shot (flow by RAFT followed by PnP) 0.562 0.643 0.483 0.275 0.569 0.054

Pose + Flow Loss 0.924 0.955 0.685 0.582 0.828 0.788
Flow Loss Only 0.740 0.733 0.558 0.386 0.804 0.735
Pose Loss Only 0.866 0.919 0.261 0.169 0.615 0.303

4 Outer Loops 0.933 0.958 0.694 0.601 0.831 0.787
1 Outer Loop 0.924 0.955 0.685 0.582 0.828 0.788

No refinement of initial pose 0.194 0.298 0.263 0.167 0.475 0.316

Table 3. Ablation experiments using our method for RGB-D input. We evaluate our method on held-out training images. Initial poses are
generated by randomly perturbing the ground truth pose. Options used in our full method are bolded.

YCB-V [4] T-LESS [14] LM-O [2]

MSPD Recall MSSD Recall MSPD Recall MSSD Recall MSPD Recall MSSD Recall

Revised approach (depth as variable) 0.833 0.751 0.649 0.474 0.793 0.609
Basic approach (depth as constant) 0.814 0.678 0.637 0.343 0.808 0.570

Table 4. Ablation experiments using our method for RGB-Only input. We evaluate our method on a held-out subset of training images.
Initial poses are generated by randomly perturbing the ground truth pose. Options used in our full RGB method are bolded. Additional
ablations on our RGB method are in the supplemenary material.

results in Tab. 1 and 2, we use 4 outer loops and 40 inner
loops, which takes 10.80s per batch of detections. However,
Fig. 3 shows that our method converges quickly with few
inner loops and one outer loop.

4.4. Robustness

We evaluate the robustness of our method to inaccurate
initial pose estimates on the YCB-V test set. In addition to
a coarse pose estimation model, Cosypose [18] introduces
a regression-based refinement model. In Fig. 6, we plot the
accuracy of our model as a function of the rotation error of
the initial input pose. For comparison, we also include the
refinement model introduced in [18]. Both methods were
trained using the same random perturbations of the training
data. A limitation of our method is that its ability to refine
the poses diminishes for larger initial rotation errors.

5. Qualitative Results

Confidence Weights In the forward pass, our model gen-
erates a dense field of confidence weights for all predicted
correspondences between an image and rendered pose esti-

Figure 4. The predicted confidence weights on the YCB-V dataset.
The heatmaps provide insight into what surface features are most
helpful for pose optimization algorithms. Specifically, our method
has low confidence over textureless regions, and high confidence
over textured ones, over thin structures, and on edges.



Figure 5. Predictions on the YCB-V and T-LESS test datasets.
Known object models are rendered at the predicted poses.

mate. In Fig. 4, we visualize these confidence weights as
heatmaps over the images and renders. The heatmaps indi-
cate which parts of the images are most useful for predicting
the object’s pose. In Fig. 7, we show the correspondences
with highest confidence within 5-pixel radii.

Full Image Predictions In Fig. 5, we show the results of
our end-to-end method for multi-object pose prediction on
the T-LESS and YCB-V test datasets. Additional qualitative
results on the YCB-V, T-LESS and LM-O test datasets are
included in the supplementary material.

6. Conclusion

We have introduced a new approach to 6D multi-object
pose estimation. Our approach iteratively refines both pose
and dense correspondence together using a novel differ-
entiable solver layer. We also introduce a variant of our
method for RGB-only input. Our method achieves state-of-
the-art accuracy on standard benchmarks.

Figure 6. Our model is robust to partially incorrect initial input
poses. We plot the accuracy (MSSD recall) and rotation error of
the output pose as a function of the rotation error (SO3 geodesic
distance, denoted “RE”) of the initial input pose. Input poses were
randomly rotated from the ground-truth. Top: Output rotation er-
ror. Our RE is slightly higher on T-LESS. Middle: Output MSSD
Recall. Our method is more accurate. Bottom: Improvement to
MSSD Recall over the MSSD Recall of the initial pose.

Figure 7. The predicted high-confidence matches on the YCB-V
dataset between the input image and the rendered input pose. We
apply non-max suppression with 5-pixel radius to the confidence
weights and show the most confident predicted correspondences.
Our method learns to predict high confidence for matches that are
useful for solving for pose.
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