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Abstract

Practical implementations of convolutional neural networks (CNNs) involve training and
using models on the GPU. In order for this to work, memory must be allocated for not only
the CNN’s weights but also all intermediate feature maps, the size of which depends on
the input image size. Medical image data can routinely exceed the available GPU RAM.
Additionally, CNNs cannot naively stitch together cropped inputs and expect identical
results compared to the scenario when CNNs run on the full image. In this work, we propose
an architectural design which allows test-time patch evaluation with identical results to
full-slice evaluation. We call this property crop-equivariance and show its equivalence to
scenarios where the entire image is loaded into vRAM. We showcase our approach in a
self-super-resolution task on test data where we can compare test-time patch evaluation to
full slice evaluation as well as on light-sheet fluorescence microscopy images that are too
large to fit into vRAM. An added benefit of our approach is dramatically reduced network
size and train-/test-times.
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1. Introduction

Medical images often are too large to fit into GPU RAM (or vRAM). This affects training
and testing; researchers make a trade-off between model size, batch size, and image size.
At train-time this is remedied by training on patches—a contiguous smaller portion of the
image(s). Patch-wise training alleviates the train-time vRAM burden; however at test-time,
naively running on input patches is not equivalent to running on the entire image.

CNN architectures can be designed to satisfy certain mathematical properties to en-
hance their performance for specific tasks. For example, a network is shift-equivariant if
spatially shifting the input equally shifts the output. Shift-equivariance is often desired for
consistency in image-to-image translation, segmentation, and super-resolution (SR) tasks.
Shift-invariance is desirable for classifications tasks. Mathematically, the definitions of shift-
equivariance and shift-invariance for the function f can be stated as:

f(Shift(x)) = Shift(f(x)) Shift-equivariance

f(Shift(x)) = f(x) Shift-invariance

From Zhang (2019), we note that a CNN is shift-equivariant if we do not change the sizes
of feature maps. We propose to extend shift-equivariance to crop-equivariance to permit a
test-time patch evaluation with identical results to full-slice evaluation. For a function to be
crop-equivariant it is necessarily shift-equivariant, which we will expand upon in Sec. 2.1.

Other types of equivariances have been explored for neural networks. Han et al. (2020)
developed reflection-equivariant networks to take advantage of the left-right similarity that
occurs in the brain, thalamus, and cerebellum. Rotation-equivariant (Ecker et al., 2019)
CNNs were proposed as a means to model the human visual system. Scale-equivariant
networks (Sosnovik et al., 2021) aim to capture and respect features across scales. However,
to the best of our knowledge, crop-equivariant networks have not been previously explored.

In this work we first make three contributions: 1) we define crop-equivariance as a stricter
extension of shift-equivariance; 2) we propose and validate an architectural constraint that
restricts the total receptive field of a CNN; 3) we develop a test-time patch extraction strategy.
Both 2) and 3) are needed to achieve crop-equivariant CNNs, which produce identical
results between test-time patches and full images. We then make a fourth contribution: the
application of our architecture to the task of self-SR with validation on the ADNI phantom
and evaluation on 50 T1-weighted brain MR images from the OASIS-3 dataset. A fifth
contribution is to demonstrate our approach on light-sheet fluorescence microscopy images,
which are too large to fit into vRAM. A consequence of our crop-equivariant CNNs is a
dramatically reduced network size and train-/test-times.

2. Methods

2.1. Crop-equivariance

Without loss of generality we proceed with 2D definitions, understanding that this expo-
sition readily generalizes to higher dimensions. For a discrete image I[N,M ] with coor-
dinate support ΩNM = {(1, 1), (2, 1), · · · , (N, 1), · · · , (N,M)} and a model f , we define
crop-equivariance as

f(CropLK(I[N,M ])) = CropLK(f(I[N,M ])). (1)
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(a) (b)

Figure 1: (a) On the left the output produced by a single kernel of size 3× 3 with padding
on an input of size 5×5 is of the same size as the input; tainted pixels are marked
with a magenta ’×’. However on the right, the output produced by the same kernel
but without padding cannot have tainted pixels. (b) Test-time patch extraction
strategy: f uses valid convolutions, its output has smaller spatial size than its
input. Patches overlap with a stride of k × k and are concatenated together.

Here, CropLK : ΩNM → ΩLK is a function that reduces the discrete coordinate support of
the image, with ΩLK = {(n1,m1), (n1 + 1,m1), · · · , (n2,m2)|1 ≤ n1 ≤ n2 ≤ N, 1 ≤ m1 ≤
m2 ≤ M}, L = (n1,m1) and K = (n2,m2). That is, the cropped image is a contiguous
portion of equal or smaller size to its input. We note that crop-equivariant models f must
also be shift-equivariant, since realizations of ΩLK can occur at various shifts of one another.

When f is the convolution of a single kernel of size k×k with input I[N,M ], two scenarios
commonly occur. First, if f pads its input to permit the kernel operation at corners and
edges, the resulting image will have support ΩNM . Alternatively, if f does not pad its input
then the resulting image will have support ΩXY , withX = N−2⌊k2⌋ and Y = M−2⌊k2⌋. The
second case (where a convolution does not pad the input) is known as a “valid” convolution.
For example, if k = 3 and N = M = 5, then in the first case f produces a 5× 5 image where
all pixels around the border use the padding as input, and in the second it produces a 3× 3
image where none of the pixels use the padding as input. This is illustrated in Fig. 1(a). We
consider any output pixels that incorporate information from padding as “tainted”. Tainted
pixels manifest as “seam” artifacts after aggregation (concatenation or weighted summation)
of test-time patches. In such a situation, the result after test-time patch evaluation will differ
from full image evaluation. Clearly, when padding is not used, no pixel can be tainted by
definition. To maintain crop-equivariance, we must avoid or discard tainted pixels.

In the single-kernel case, we can simply remove all tainted pixels. For a cascade of kernels,
we can calculate which pixels are tainted and then discard those. Thus, the number of tainted
pixels in an image is a function of the total receptive field (Long et al., 2014; Araujo et al.,
2019). In practice, if f is a deep CNN with zero-padding, it has been shown that the network
learns to assign near-zero weights at kernel edges, yielding an empirically smaller receptive
field than theoretical predicted (Zhou et al., 2015). However, there is no guarantee that the
empirical receptive field optimizes to a particular value, and therefore there is no control
over how many pixels are tainted by padding.

When f processes the image I[N,M ], no pixels are tainted except those that incorporate
padded pixels. Precise removal of tainted pixels in padded networks requires layer-by-layer
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adjustment; however, in networks without padding from layer to layer, no pixels are tainted.
As f does not pad its input, the coordinate support is reduced. It is reduced by the receptive
field of f ; for a single-path CNN with layer-constant kernel size k × k and l layers, the
reduction in the receptive field can be expressed as,

f : RN×M → RS×T where S = N − 2l

⌊
k

2

⌋
and T = M − 2l

⌊
k

2

⌋
. (2)

Equation 2 dictates our patch extraction strategy at test-time to guarantee slice-perfect
test-time patch-wise evaluation. When performing conventional full-slice evaluation, the
CNN kernels stride along the input uninterrupted. For our construction to be equivalent, we
must draw patches at test-time that overlap in a particular way which allows concatenation
of the resulting patches. We illustrate this in Fig 1(b). Patches of size N ×M are drawn
from the input image with a stride of S × T , (as defined in Eq. 2) which is equivalent to
the size of the output produced by our network. This allows the results to be concatenated
together in order. We note that if we try this same strategy with a padded CNN, we do not
have control over which pixels are tainted.

However, in many imaging applications, it is undesirable to reduce the size of the input
image. To address this, we pre-pad the input image prior to test-time patch extraction
such that Npad = N + 2l⌊k2⌋ and Mpad = M + 2l⌊k2⌋. This does admit tainted pixels at
the true boundaries of the input, but only at the boundaries and nowhere else. This same
phenomenon occurs with full-slice evaluation as well.

We now have the elements of crop-equivariant CNNs. Specifically, we propose to design
crop-equivariant CNNs by 1) omitting any resampling layers from the network and restricting
all kernel strides to 1 for all layers; 2) removing all padding from all convolutional layers in
the input; and 3) performing test-time patch extraction as illustrated in Fig. 1.

3. Experiments

We conducted two experiments to validate our method. First, we compared our crop-
equivariant approach to the conventional method on a slice-vs-patch test-time evaluation to
determine whether our method is correct. Then, we evaluated our approach on light-sheet
fluorescence microscopy (LSFM) data, which is too large to fit into vRAM conventionally.

3.1. Validation: Slice vs. Patch Evaluation

To validate the correctness of our approach, we first consider the SR task of a magnetic
resonance volume, using a similar internal training scheme to Zhao et al. (2021). Briefly, we
create training data by drawing high-resolution (HR) 2D patches from the in-plane slices
and simulate their low-resolution (LR) counterparts, then train a CNN to learn the mapping
from LR to HR. The implementation here forgoes the anti-aliasing network in Zhao et al.
(2021), learning both anti-aliasing and SR with one network.

We compare two architectures under this task: an EDSR-based network as in Zhao et al.
(2021) and our proposed network, illustrated in Fig. 2. We will refer to these as “zero-padded”
and “valid” networks respectively. The first network zero-pads the feature maps between
convolutional layers while the second network does not, and only performs convolutions over
“valid” portions of the input.
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Figure 2: Our proposed architecture is 16 convolution layers, 14 of which comprise 7 residual
blocks. Since valid convolutions are used, feature maps must be spatially cropped
before the residual sum.

The summary of important differences in the networks is shown in Table 1. The valid
network is necessarily much shallower than the zero-padded network due to the reduction in
feature map size from layer to layer. Since the number of filters per layer is fixed, this reduces
the number of trainable parameters considerably. Notably, the total theoretical receptive
field of the zero-padded network is much larger than the proposed valid network; this is
because the receptive field is a function of the number of layers from Eq. 2.

3.2. Data

We evaluate these two networks on MR images of the ADNI phantom with dimensions
256× 256× 180 (as a sanity check) and on 50 T1-weighted MR brain volumes with similar
dimensions from the OASIS-3 dataset. The ADNI phantom was acquired at 0.8×0.8×z mm3

resolution, with z ∈ 1, 2, 4 and resampled to 1× 1 mm2 in-plane resolution, resulting in one
isotropic volume and two LR volumes at 2× and 4× scaling.

The OASIS volumes were acquired at varying isotropic resolutions, and we individually
downsampled each of them 2×, 3×, 4×, and 5× to evaluate our SR method at each of these
scales. Our downsampling process uses through-plane convolution with a Gaussian filter of
FWHM equal to the downsampling factor followed by quintic b-spline interpolation to the
corresponding scale.

Table 1: Network architecture differences used in the slice vs. patch experiment.

Zero-padded Valid

Number of Layers 66 16
Receptive field 133× 133 33× 33
Training patch size 32× 32 64× 64
Filters / layer 256 256
Trainable parameters 38,360,065 2,365,185
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Figure 3: Difference maps comparing slice evaluation to patch evaluation for the the zero-
padded network at 2× and 4× scale. LR and ground truth (GT) images shown on
the right for reference. Our proposed network has zero difference between patch
and slice evaluation, and are omitted. See Table 2 for numeric comparison.

3.3. Training Details

Our approach uses internal supervised learning; thus, the networks must be re-trained on
each input volume. However, training is patch-based in both cases and we therefore train
each model once and use the same set of weights for both slice and patch evaluation. Our
training scheme is similar to Zhao et al. (2021) and creates training data from in-plane
patches. To expand the training set, prior to patch extraction we augment in-plane slices
with rotation, flips, and intensity shifts.

The training hyperparameter setups for both networks are identical: We used AdamW

as our optimizer with a learning rate of 10−4 and an L1 + Sobel Edge loss. As internal
supervision still permits a validation set, we set aside one rotation of the data as validation
and define convergence as no improvement of the validation loss by 10−2 after 10 epochs.
We train and validate for 320,000 and 640 patches, respectively, with a batch size of 32.

3.4. Results

ADNI Phantom: We compare slice vs. patch evaluation for the two network architectures
on the ADNI phantom. Slice evaluation takes a full 256 × 256 slice as input, and patch
evaluation takes p×p patches as input using the test-time patch extraction method illustrated
in Fig. 1(b), with p varying as shown in Fig. 3. For both evaluation approaches, the same
set of weights were used, since training is patch-wise regardless. We compared results at
different test-time patch sizes and show the difference maps in Fig. 3. We see clear “seams”
in the zero-padded network’s results, especially at smaller patch sizes. Line profiles across
the seams are shown in Fig. 4. This suggests that, although the network is trained on 32×32
patches, the effective receptive field is between 32× 32 and 133× 133. However, as apparent
from Fig. 3, this differs at different scales (and potentially with different realizations after
training); e.g., at 2× scale, the seams start to vanish at 64 × 64 patches, but at 4× scale
they are still visible. In contrast, our proposed valid network is crop-equivariant, and has
zero difference between slice and patch evaluation with 64× 64 input patches, the same as
its training patch size.

We report the mean squared error between slice and patch prediction in Table 2. We note
that the intensity of error at the seams tends towards zero even for traditional zero-padded
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Figure 4: Line profiles from the zero-padded network at 2× (left) and 4× scale. As the
test-time patch size increases, they approach the full-slice evaluation result. Our
proposed network is identical for patch and slice evaluation and thus is omitted.

Table 2: Quantitative comparative results on the ADNI phantom for both architectures
between patch and slice evaluation. While larger test-time patches tend towards
zero for zero-padded networks, our proposed method (Valid) has exactly zero error.
MSE denotes mean squared error.

Scale 2× Scale 4×
Patch Size MSE Time (s) MSE Time (s)

Z
er
o-
p
ad

d
ed

Full slice 0 128 0 128
32× 32 275.138829 154 3049.724542 154
48× 48 0.137236 300 32.134624 300
64× 64 0.000008 526 0.20588 526
134× 134 0.000017 3736 0.000041 3736
164× 164 0.000006 6653 0.000022 6653

V
al
id Full slice 0 45 0 45

64× 64 0 110 0 110

networks, yet the compute time increases due to redundant computation. Notably, naively
stitching together patches at the training size leads to visible seams and the worst error with
zero-padded networks, whereas our proposed approach yields identical results to full-slice
evaluation.

OASIS-3: To evaluate whether the proposed method sacrifices performance, we trained
and ran each method on 50 T1-weighted MR volumes at four different scales. We used slice
predictions from the zero-padded network. We show the comparisons at each scale in Fig. 5;
we see that our proposed method does not sacrifice significant performance compared to the
zero-padded formulation.

4. Super-Resolution of Light-Sheet Fluorescence Microscopy

Equipped with a crop-equivariant approach for SR, we ran our method on light-sheet fluores-
cence microscopy (LSFM) data. This data consists of two channels that capture lectin and
neurons of a mouse brain, acquired at 0.4112 µm2 in-plane with a through-plane PSF FWHM
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Figure 5: PSNR and SSIM at each scale for both the zero-padded and valid networks on
the set of 50 OASIS-3 human brain volumes.

Figure 6: Zoomed region of the maximum intensity projection of a through-plane direction.
Cyan: neuron; magenta: lectin-stained cerebrovasculature. The scale bar on the
super-resolved image indicates 41.1 µm. The horizontal axis is the direction of SR.
Yellow arrows indicate improved depictions of neurons.

of 2.2µm and through-plane step-size of 1µm. This results in a LR volume of pixel dimensions
2000× 2000× 2400. After SR to isotropy, this volume has dimensions 2000× 2000× 5839;
evaluation on slices at this scale are possible only due our crop-equivariant network.

We trained our valid network as in the above experiment with slight adjustments: we
sample a total of 500,000 patches, we also add Poisson and uniform noise to the LR training
patches as augmentation, and the in-plane patch sampling strategy selects patches with high
gradient values. Overall, the train time is about 45 mins on a Tesla V100, and the test-time
with patches of size 64 × 64 is 66 hours on a single GPU. We compare the super-resolved
maximum intensity projection to bicubic interpolation on a zoomed region in Fig. 6.

5. Discussion

In this work, we have introduced crop-equivariant CNNs to address the “seam” artifacts
that occur when naively concatenating test-time results from conventional zero-padded
architectures. We showed that our method produces identical results to full-slice prediction
without sacrificing performance and showed qualitative results on LSFM data acquired at
the micron scale. We hope this method of architecture design will allow deep networks to
feasibly be run on larger images in other domains.
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