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Abstract

While audio quality is a key performance met-
ric for various audio processing tasks, including
generative modeling, its objective measurement
remains a challenge. Audio-Language Models
(ALMs) are pre-trained on audio-text pairs that
may contain information about audio quality,
the presence of artifacts or noise. Given an au-
dio input and a text prompt related to quality, an
ALM can be used to calculate a similarity score
between the two. Here, we exploit this capabil-
ity and introduce PAM, a no-reference metric
for assessing audio quality for different audio
processing tasks. Contrary to other “reference-
free”” metrics, PAM does not require computing
embeddings on a reference dataset nor train-
ing a task-specific model on a costly set of hu-
man listening scores. We extensively evaluate
the reliability of PAM against established met-
rics and human listening scores on four tasks:
text-to-audio (TTA), text-to-music generation
(TTM), text-to-speech (TTS), and deep noise
suppression (DNS). We perform multiple abla-
tion studies with controlled distortions, in-the-
wild setups, and prompt choices. Our evalua-
tion shows that PAM correlates well with exist-
ing metrics and human listening scores. These
results demonstrate the potential of ALMs for
computing a general-purpose audio quality met-
ric.

1 Introduction

Audio Quality Assessment (AQA) refers to the sub-
jective assessment of the perceived overall quality
of a signal (Torcoli et al., 2021). The gold standard
of AQA consists of assessment by humans, which
is a challenging task that requires many listening
tests in controlled setups. Moreover, these experi-
ments are time-intensive and costly, and hence can-
not be carried out multiple times for every setup
or result. Hence, measurements that can closely
estimate human assessment of audio quality are
essential for the development and evaluation of
models that perform audio generation tasks.
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Figure 1: Search result of "Artifacts" on FreeSound.org.
These audio-text pairs are included in ALM training.

Audio generation tasks entail sounds, music,
and speech. All tasks employed different audio
quality metrics, including some that aim to resem-
ble human assesments. TTA uses metrics like FD
and Fréchet Audio Distance (FAD) (Kilgour et al.,
2018), IS, KL, and subjective metrics like Over-
all Quality (OVL) and Relation of audio to text
caption (REL) (Kreuk et al., 2022). TTM uses
FAD and subjective metrics like MCC (Copet et al.,
2023). TTS uses metrics like WER, SpeechLM-
Score (Maiti et al., 2023), and perceptual metrics
like MOSNet (Lo et al., 2019), FSD (Le et al.,
2023), and MCC. However, several aspects of au-
dio quality are shared across tasks, such as the
presence of artifacts. Ideally, one metric should
measure quality regardless of the task hence, ad-
dressing the challenges of task-specific metrics.

Current metrics provide a reliable evaluation but
pose different challenges. Reference-based metrics
require ground truth for computation. To assess
the quality of a recording, the generated audio is
compared against a desired recording to measure
how much the quality degraded. Reference-free
metrics do not require a desired recording, but usu-
ally require a pretrained model to compute em-
beddings on a reference dataset. The selection of
the model and the dataset would highly affect the
score (Gui et al., 2023). Other metrics like DPAM
(Manocha et al., 2020), MOSNet (Lo et al., 2019),
and DNSMOS (Reddy et al., 2021b) train a model
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Figure 2: Two prompt strategies leveraging ALM to perform AQA. The figure on the left shows a naive approach
that takes as input one prompt about quality and the audio intended for assessment. The output is the cosine
similarity between the audio and text embeddings, which determines the correspondence between them. The figure
on the right shows PAM computation, which uses two “opposing" prompts to derive a score.

using human evaluation and at inference use the
model predictions as a proxy for human evaluation.
This requires the curation of human evaluation and
model training for each audio task.

Instead, we propose a no-reference metric that
leverages learning perceptual audio quality from
human assessments in text descriptions. ALM have
learned from millions of audio-text pairs sourced
from the Internet. Some of the audio has a cor-
responding natural language description of qual-
ity (See Fig. 1). For example, audio-text models
(Elizalde et al., 2023; Wu et al., 2022; Deshmukh
et al., 2023) trained on FreeSound data, have seen
text descriptions like “Pad sound, with a lo-fi, high
compression type feel to it. The noise floor, with a
low pass filter set around S0Hz and several octaves
of pitch bend". Although the ALM is not explic-
itly trained for audio quality assessment, it has in-
gested hundreds of human annotations describing
their perception of the audio. Because ALM can be
used out of the box in a Zero-Shot fashion, they can
compare text prompts about quality against audio
without requiring a reference.

In this work, we propose a metric called PAM
that: (1) measures audio quality in terms of arti-
facts and distortions, making it suitable for multiple
audio generation tasks. (2) correlates with human
perception and assessment of audio quality (3) it is
truly reference-free and can be used off-the-shelf
because it does not require additional computation
of embeddings on a reference dataset. To support
our contributions, we extensively tested PAM on
four audio tasks: TTA, TTM, TTS, and DNS. For
each task, we compared against established metrics
and human listening scores. Some of the human
listening scores were collected by us and would
be made public to the community. Moreover, we
performed multiple ablation studies with controlled
distortions, in-the-wild setups, and prompt choices.

2 PAM

Our proposed metric PAM can perform audio qual-
ity assessment by exploiting the joint multimodal
space learned by an ALM. The learned space can
be used to quantify the correspondence between
quality-related text prompts and audio recordings.

2.1 Audio Quality Assessment

Audio quality. The term implies a variety of prop-
erties in various contexts. For this work, we con-
sider audio to be high quality when the presence of
artifacts and noise is imperceptible. For example,
white noise, clipping, and other distortions. We did
not consider non-speech audio as noise, such as
sound events, music, reverb, echo, and in general
all naturally occurring sounds.

Learning quality from audio-text pairs. ALM
are pretrained with millions of audio and their cor-
responding natural language descriptions. The text
is usually metadata created by the user who up-
loads the audio file to a web archive and some pairs
describe the quality and the presence of artifacts
and noise in a given audio. Therefore, as a first step,
this work focuses on specific prompting strategies
to show the potential of audio-text learning for au-
dio quality assessment.

Audio-Language Model. In this work, we used the
ALM called CLAP (Elizalde et al., 2023) trained
on 4.6M pairs. The pairs are sourced from different
publicly available datasets including web archives,
such as FreeSound and FindSound which have de-
scriptions about audio quality (See Fig. 1). CLAP
consists of audio and text encoders pretrained us-
ing Contrastive Learning and it can be used for
Zero-Shot inference. That is, at inference time,
the user provides an audio file for assessment and
text prompts about the quality (e.g. “the sound is
clear and clean"). The model embeds the audio and
text in a multimodal space using the respective en-



coders, computes the cosine similarity between the
embeddings and produces a correspondence score.
Determining the prompting strategy and setup to
use CLAP for audio quality assessment is still an
open question.

2.2 Prompting setup

The user can provide an audio file and text class
of "the sound is clear and clean" and determine
the audio-text similarly using the model. The sim-
ilarity can be squashed between 0 and 1 and used
as a score. Though this method is valid and used
for multiple tasks (Liu et al., 2023a; Kreuk et al.,
2022), we see prompting with just one class of "the
sound is clear and clean" leads to a poor correla-
tion with human perception and distortions across
various tasks and distributions. One of the reasons
this strategy does not work is due to linguistic am-
biguity. Particularly, if the prompt is “the sound
is clear and clean”, then depending on the context,
the model can infer: (1) The sound is easy to un-
derstand, see, or hear, without any distortion, noise,
or interference. (2) The sound is pure, crisp, and
pleasant, without any harshness, dullness, or mud-
diness. This meaning is based on the definition of
‘clean’ as ‘having a pure, fresh, or smooth quality.’,
or (3) The sound is honest, accurate, and truthful,
without any deception, manipulation, or bias. This
meaning is based on the definition of ‘clean’ as
‘free from dishonesty or corruption’.

To address this problem, we prompting a strategy
that will minimize ambiguity in the latent space.
This is achieved by using multiple prompts that
force the model to make similarity calculations
along the latent subspace of audio quality (e.g.,
“the sound is clear and clean” and “the sound is
noisy and with artifacts”). This not only reduces
the ambiguity but allows us to audio quality mea-
surement as a binary classification problem, where
the final score is between O to 1 and regarded as
a relative similarity. The PAM computation is ex-
plained in Section 2.4

2.3 Choice of quality prompts

The choice of text prompts has an impact on the
similarity and if not optimal leads to spurious cor-
relates being measured rather than audio quality.
The PAM score uses ‘opposite" text prompts of
“the sound is clear and clean” and “the sound is
noisy and with artifacts”. These prompts are cho-
sen based on analysis of CLAP’s (Elizalde et al.,
2023) training data and tested across various setups,

tasks, and distributions. In the rest of the paper,
PAM implies the usage of the above prompts.

However, to get more insight into the type of ar-
tifacts and noise, the prompts can be changed. That
is the prompts can be designed for specific tasks
and setups in mind. For example, in the definition
of audio quality 2.1, reverb and echo are not consid-
ered as noise and PAM score does not degrade with
Reverb addition 3. Therefore, our general PAM
score cannot be used as a metric for the specific
task of Acoustic Echo Cancellation (AEC) to mea-
sure echo suppression. Therefore, we can design
attribute-specific prompts for audio quality outside
of our definition.

2.4 Computing PAM

The PAM computation is shown in Fig 2, right
section. The user provides an audio file which
is converted into a mel-spectrogram (z € RT*F)
and passed to CLAP’s audio encoder to produce
an audio embedding v € R'*?. In parallel, the
two “opposing" prompts about quality (“the sound
is clear and clean” and “the sound is noisy and
with artifacts”) are tokenized and embedded us-
ing the text encoder to produce text embeddings
u € RN After projection into the multimodal
space, the dot product is computed between the two

embeddings, followed by softmax: py, = %,
j=1
where h is the index of the prompt related tjo high
quality, z; = u; - v, (-) denotes the dot product,
and p € R'*2. The value of py, € [0, 1] is the PAM

score and informs about the quality of the audio.

3 Experiments

The experimental setup is designed to provide a
comprehensive evaluation of PAM across different
distortions, prompting strategies, and datasets from
different audio generation tasks. All experiments
are run using a single 16GB V100 GPU.
Distortions. We systematically add various types
of distortions: Gaussian Noise, Gaussian Noise
with Signal-to-Noise Ratio (SNR), Tanh distortion,
Mu-Law compression, and Reverb across various
source distributions and check its effect on the
PAM. The results are in Section 4.1.

Prompting strategy. PAM uses a two opposite
prompt strategy with the text of “the sound is clear
and clean" and “the sound is noisy and with arti-
facts”. In section 4.3, we compare it against the
naive single-prompt strategy. We also compare it
against human evaluation.

Audio tasks. In Section 5, we consider different
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Figure 3: Effects of PAM when adding different distortions: (a) Gaussian Noise (b) Gaussian Noise with SNR (c¢)
Tanh distortion (d) Mu-Law compression () Reverb. The dataset is a professionally recorded dataset containing
sounds. PAM decreases as the distortion of the signal increases.

generation tasks like Text-to-Audio, Text-to-Music
and Text-to-Speech Generation. For each task, we
use multiple models, perform human listening tests,
and compare PAM against established metrics.

4 Results

4.1 Effect of distortions

An audio quality metric should degrade with the
presence of distortions and artifacts in the audio. To
verify this, we add common simulated distortions
to audio sourced from a professionally recorded
sound effect pack. The four types of distortions
used are (1) Gaussian Noise with increasing stan-
dard deviation (2) Gaussian Noise addition with
particular SNR (3) Tanh distortion (4) Mu Law
compression. Lastly, we add Reverb, which by
the definition in Section 2.1 is not considered an
artifact or distortion. Figure 3 shows the effect of
distortions on PAM score when tested on a pro-
fessionally recorded sound effect pack. The PAM
score degrades as the noise is added except for Re-
verb. For Reverb, the PAM score is fairly constant,
i.e., changes from 0.76 to 0.81. While for others
we see considerable degradation in PAM score. To
check robustness across source distribution, we
change the dataset from professionally recorded to
AudioCaps (audio from YouTube videos contain-
ing sound events), MusiCaps (music tracks from
YouTube), and LibriTTS (speech, audioboks). We
see similar trends of PAM score degrading with the
addition of distortions and consistent scores across
Reverb. The details can be found in Appendix 9.

4.2 Assessing quality across distributions

An audio quality metric should give high scores
to audio that is free from distortions. For ex-
ample, professionally recorded and edited audio
should achieve a higher PAM score compared to
audio sourced from YouTube, which is generally
recorded with handheld devices and may contain
noise or distortions. To confirm this hypothesis
we carried on the following setup. We compare
PAM among three sets in Table 1. (1) AudioCaps

dataset sourced from YouTube containing sound
events (clapping, alarms, dog barking, etc). (2)
MusicCaps data sourced from YouTube with addi-
tional filtering to retain high-quality and remove
low-quality music recordings. (3) Professionally
recorded audio containing sound events.

Dataset Source PAM 1
AudioCaps (test set) YouTube 0.6772
MusicCaps (test set) YouTube-filtered 0.7718
Professionally recorded Studio 0.8684

Table 1: PAM score is higher for professionally recorded audio
than for audio from YouTube videos.

4.3 Prompting strategy

Figure 2 shows two different prompting strategies
that can be used to get a quality-related score. The
figure on the left shows naive prompting and the
figure on the right shows the opposite prompting
strategy of PAM. The advantages of the opposite
prompting setup and the limitations of the naive
prompt are explained in Section 2.2. In this section,
we perform experiments to compare two setups
with human listening scores.

We use the NISQA (Non-Intrusive Speech Qual-
ity and TTS Naturalness Assessment) (Mittag et al.,
2021) dataset to check the correlation between
PAM, the single prompt strategy, and human per-
ceptual evaluation. The NISQA Corpus includes
more than 14,000 speech samples with simulated
(e.g. codecs, packet-loss, background noise) and
live (e.g. mobile phone, Zoom, Skype, WhatsApp)
conditions. Each file is labeled with subjective
ratings of the overall quality. We use simulated
and live talk corpus from NISQA. The simulated
corpus contains simulated distortions with speech
samples from four different datasets and the live
talk corpus contains recordings of real phone and
VoIP calls. Unlike PAM, NISQA considers sounds
events as noise, so human raters labelled the record-
ings as low quality. Therefore, we created a filtered
NISQA set and applied four distortions: (1) white
noise addition with a particular SNR (2) live talk on
a laptop or smartphone (3) low bandpass filter (4)
high bandpass filter. We check the correlation of
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Figure 4: (PCC) Correlation plots between MOS (human
distortions applied to the NISQA dataset. The top row

subjective evaluations) and two prompt strategies for four
refers to using the naive single-prompt strategy and the

second row shows PAM (two opposite prompt strategy). Both described in Fig. 3. Using one prompt for AQA does
not correlate with MOS, but using two prompts (PAM) does.

the single prompt strategy and the opposite prompt
strategy against the Mean Opinion Score (MOS)
from human listeners. MOS is a numerical mea-
sure of the human-judged overall quality and it is
the arithmetic mean of the ratings given by sub-
jects on a predefined scale. We used the existing
MOS numbers from NISQA. The Pearson Correla-
tion Coefficient (PCC) measures linear correlation
between two sets of data (Pearson, 1920) and it
is shown in Figure 4. PCC ranges from -1 to 1,
where -1 indicates a perfect negative correlation, 0
indicates no correlation, and 1 indicates a perfect
positive correlation. We see that the single-prompt
strategy does not correlate with MOS, the human
perceptual evaluation. While PAM not only cor-
relates, but achieves a PCC greater than 0.7 on
(1) white noise distortion and (2) real-world talk
recorded from laptops and smartphones.

5 PAM for audio tasks

In this section, we use PAM to evaluate models for
generation tasks. For each task, we compare PAM
against task-specific metrics and human evaluation
to show its reliability as an AQA metric.

5.1 Text-to-Audio generation

TTA generation models synthesize non-speech non-
music audio (sounds) from text descriptions. Al-
though there are established metrics available, eval-
uating the generation quality of these models is still
an open research question.

Table 2 shows the evaluation of TTA with ob-
jective metrics from in literature (Liu et al., 2023a;
Kreuk et al., 2022). These metrics do not con-
sider any type of perceptual aspect and consist of a
distance between the generated audio and a distri-
bution from a reference set. The objective metrics
for all the systems are in Appendix 10. We use pub-
licly available variants of AudioLDM (Liu et al.,
2023a), AudioLDM?2 (Liu et al., 2023b), Audio-
Gen (Kreuk et al., 2022) and MelDiffusion (See
Appendix for details 10). We choose the variant
of the model corresponding to the largest parame-
ter count, because it usually correlates better with
higher performance. The captions from the Audio-
Caps test set (747 captions) are used to generate
audio from the above 4 models and their variants.
Captions are textual descriptions of the sounds, i.e.
“A drone is whirring followed by a crashing sound".

We carry out a human listening experiment to
compute the correlation between metrics and hu-
man perception. We randomly picked 100 captions
and their corresponding generated audio from the
test set. During the experiment, each participant
was asked to rate each audio in terms of Overall
Quality - OVL and Relation of audio to text cap-
tion - REL on a five-point Likert scale. The order
of audios was fully randomized and each audio
was rated by 10 participants. Raters were recruited
using the Amazon Mechanical Turk platform. To
ensure quality in the annotations, participants who
consistently provided identical scores in every HIIT



Model Dur. (h) Param FD| FAD| ISt KLsigl KLsoft] PAMT
AudioLDM-1 (Liu et al., 2023a) 9031 975M 4383  6.229  5.067 7.422 2.723 0.2417
AudioLDM2-I (Liu et al., 2023b) 29510 1.5B  50.07 3.477 5.195 6.379 2.200 0.4267
MelDiffusion (Appendix 10.1) 145 383M 2027 3296  8.460 3.579 1.390 0.5412
AudioGen-m (Kreuk et al., 2022) 6824 1.5B  18.67 2.850 9.202 3.391 1.797 0.4683
AudioCaps (Kim et al., 2019) - - 00.00  0.000  9.488 0.000 0.000 0.6772

Table 2: Evaluation of Text-to-Audio generation models from the literature. Established metrics and PAM show similar trends.
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Figure 5: The absolute value of (PCC) correlation between OVL, REL and different TTA generation models. The
input text captions come from the AudioCaps dataset. PAM, as a single-metric, is capable of correlating well with
both, overall quality (OVL) and relevance to the input caption (REL).

(e.g., all 1s) or who completed the task in less than
10 seconds were excluded.

% of data GPT-4 inference PAM 1
39% Low acoustic quality 0.7294
2% Medium acoustic quality ~ 0.8138
1% High acoustic quality 0.8333
58% Unknown acoustic quality  0.7975
9% Low musical quality 0.7222
9% Medium musical quality  0.7770
42% High musical quality 0.7932
41% Unknown musical quality ~ 0.7593

Table 3: Acoustic and musical quality of MusicCaps derived
from text-analysis based GPT-4 labels and audio-based PAM
scores exhibit similar trends.

Figure 5 summarizes the PCC between per-
model metrics and OVL and REL respectively.
PAM correlates correlates significantly better with
human perception of quality (OVL and REL) than
the task-specific metrics of KL softmax and KL
sigmoid. The KL metric uses the CNN14 (Kong
et al., 2020b) model to extract audio embeddings
for the generated and reference set. The CNN14
model is trained to classify audio into different
sound events and hence does well at recognizing
the presence of sound events rather than overall
quality. Also, a recent work (Liu et al., 2023b) ob-
served that reference-free metrics like KL provide
high scores when the generation model is trained
on the same distribution data as the KL reference
set. PAM is a no-reference metric so it does not
have these drawbacks.

5.2 Text-to-Music generation

TTM generation models synthesize music based on
text descriptions. Although objective performance
metrics exist, evaluating the subjective quality of

these models remains an open research question.

Subjective performance can be described in
terms of Acoustic Quality (AQ), which measures
whether the generated sound is free of noise and
artifacts, and Musical Quality (MQ), which mea-
sures the quality of the musical composition and
performance.

A commonly used reference set for evaluat-
ing TTM models is MusicCaps (Agostinelli et al.,
2023a), a music subset of AudioSet (Gemmeke
et al., 2017) that contains rich text captions pro-
vided by musical experts. A recent work (Gui et al.,
2023) used GPT-4 to derive AQ and MQ ratings
for MusicCaps audio samples via text-analysis of
the corresponding captions. Each MusicCaps song
was assigned one AQ and one MQ label "high",
"medium", or "low". If AQ or MQ could not be
inferred from the caption text, the label "not men-
tioned" was assigned. These text-derived labels
were shown to correlate reasonably well with hu-
man perception (Gui et al., 2023). We compare
these text-based AQ and MQ labels with an audio-
only analysis via PAM. The results shown in Table
3 indicate similar trends of audio-only PAM and
text-based analysis via GPT-4.

For a direct comparison with human perception,
we calculate PAM on a set of real and generated
music recordings. Subjective AQ and MQ labels
were collected by authors in (Gui et al., 2023) as
MOS scores from several human judges. The real
samples were taken from the Free Music Archive
(FMA) and MusicCaps. For TTM generation, pub-
licly available variants of MusicLM (Agostinelli
et al., 2023b) and MusicGen (Copet et al., 2023),



Model Dur. (h) Param FD| FAD| ISt KLsigl KLsoft] PAMT
AudioLDM2-m (Liu et al., 2023b) - 1I.IB 3754 6.706 1.841 4.456 1.611 0.6157
MusicLDM (Chen* et al., 2023) 466 - 31.05 6.109 1.840 4.333 1.428 0.6887
MusicGen-1 (Copet et al., 2023) 20000 1.5B 2591 4878 2.101 4.389 1.281 0.8492
MusicGen-mel. (Copet et al., 2023) 20000 1.5B  24.65 3955 2.242 4.197 1.339 0.7704
MusicCaps - - 00.00  0.000  4.547 0.000 0.000 0.7718

Table 4: Evaluation of Text-to-Music generation models from the literature. Established metrics and PAM show similar trends.

as well as Mubert (Mubert-Inc, 2023) were used.
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Figure 6: PCC between listening test MOS and Fréchet
Audio Distance (FAD) and PAM, for acoustic (AQ, left)
and musical quality (MQ, right).

Figure 6 shows PCC between the MOS ratings
and PAM. For comparison, the (absolute) PCC of
the Fréchet Audio Distance (FAD) is shown for
two pretrained models. Recall that FAD requires
a pretrained model to compute audio embeddings
on a reference dataset. Here, we used MusCC, a
set of studio quality music (Gui et al., 2023), as a
reference for FAD. PAM performs competitively,
outperforming the commonly used FAD-VGGish
metric in all comparisons.

Table 4 shows the evaluation of TTM with ob-
jective metrics and the proposed PAM. The sam-
ples are generated using MusicCaps captions as
prompts. The row in grey shows results for the
original MusicCaps audio and constitutes an up-
per performance bound for objective metrics that
use MusicCaps audio as a reference, including FD,
FAD, and KL. However, as the quality of Mus-
icCaps samples varies significantly (cf. Table 3)
TTM models may outperform MusicCaps in per-
ceptual quality, as PAM indicates for MusicGen-1.
We observe similar trends for PCC results (Table
5) corresponding to Table 4.

5.3 Speech Synthesis

Speech Synthesis involves creating artificial speech,
either by converting text to speech (TTS) or alter-
ing existing speech to sound like a different speaker
or style, known as voice conversion. In our study,
we examine the effectiveness of PAM in the above
two tasks. For TTS, A recent work (Alharthi et al.,

Model Subj. KLsof | KLsig) PAMT
AudioLDM2 OVL  0.1241 0.0929  0.3295
MusicLDM OVL  0.1291 0.1617  0.4235
MusicGen-1 OVL  0.3353 0.3275  0.6018
MusicGen-mel OVL  0.0993 0.1423 0.6908
MusicCaps OVL  0.2314 0.2319  0.5549
AudioLDM?2 REL 0.005 0.1416  0.1238
MusicLDM REL 0.0662 0.0398  0.1399
MusicGen-1 REL 0.2237 0.2034  0.2309
MusicGen-mel  REL 0.1831 0.2562  0.2622
MusicCaps REL 0.1035 0.1566  0.3284

Table 5: PCC between human evaluation MOS and different
metrics for the models in Table. The subjective metric (Subj.)
indicates the metric used for PCC computation. 4

2023) conducted human evaluation studies for dif-
ferent TTS systems. The study used StyleTTS
(Li et al., 2022), MQTTS (Chen et al., 2023), and
YourTTS (Casanova et al., 2022) to generate speech
for 100 sentences from the LibriTTS dataset (Zen
et al., 2019). Each generated sample was rated
by 10 raters. We use this dataset and compare
PAM with existing metrics. The absolute results
are shown in Table 6 and the PCC correlation with
human evaluation in Figure 7. On average, PAM
correlates better with human perception of speech
quality than existing metrics.
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Figure 7: Absolute PCC between the human evaluation
and metrics for TTS models. The transcripts are sourced
from the LibriTTS dataset. On average, PAM correlates
better with human perception of speech quality than
existing metrics.

Metric StyleTTS MQTTS  YourTTS
WER | 18.7 29.35 22.1
SLMScore 1 3.62 4.13 3.96
MOSNet 1 4.49 3.57 4.01
DM | 3.30 3.90 4.50
PAM 1 0.90 0.87 0.81
MOS-N 1 3.68 3.66 3.59

Table 6: Evaluating different TTS models using metrics from
the literature. MOS-N indicates MOS scores for the natural-
ness of generated speech.



The second speech synthesis task we consider is
Voice Conversion (VC), where the aim is to con-
vert audio containing the original speech to audio
containing the target speaker’s voice. For this, we
use the VoiceMOS 2022 challenge dataset (Huang
et al., 2022b), specifically the VCC subset. The
VCC subset includes 3,002 utterances from 79 sys-
tems. We test PAM on this dataset and compare it
with existing metrics of MOSNet (Lo et al., 2019),
MOS-SSL (Cooper et al., 2022), and SpeechLLM-
Score (Maiti et al., 2023). PAM performs worse
than other speech-based finetuned metrics.

Source Model Utterance-level System-level
PCC SRCC PCC SRCC
VCC MOSNet  0.654 0.639 0.817 0.796
vCC MOS-SSL  0.891 0.883 0.983 0.964
VCC SLMS. 0.505 0.501 0.863 0.829
VCC PAM 0.389 0411 0.563 0.593
OOD MOSNet 0259 0.153  0.537 0.430
OOD MOS-SSL 0467 0459 0357 0.437
OOD SLMS. 0.138  0.224 0.049 0.199
00D PAM 0.582 0.585 0.634 0.703

Table 7: Utterance-level and system-level correlation of
different metrics with MOS scores. The dataset used
is VCC subset and OOD subset from VoiceMOS. PAM
correlates better with MOS than other metrics in the
Out-of-Domain setup, suggesting better generalization.

On both the setup of TTS and Voice Conversion,
the literature metrics like MOSNet, and MOS-SSL
were trained on the train split of data. Therefore,
all the evaluation setup is in-distribution for the
existing metrics. To check out-of-distribution per-
formance, we consider an out-of-domain (OOD)
subset of the VoiceMOS challenge. the OOD sub-
set is sourced from the 2019 Blizzard Challenge
(Wu et al., 2019), and contains 136 Chinese TTS
samples. The PCC results of metrics are shown in
Table 7. In the OOD setup, PAM correlates better
than existing metrics that are not trained on the
OOD data. This showcases the ability of PAM to
be a zero-shot audio quality metric.

Overall, PAM can detect audio quality and distor-
tions in generated speech. For speech tasks, it falls
short of task-specific metric, where the generated
speech is rated based on intelligibility or speaker
characteristics. This is explained in the Section 7.

5.4 Noise suppression

Noise and artifacts negatively impact perceived
speech quality, e.g., in voice communication sys-
tems (Reddy et al., 2021a). Deep Noise Suppres-
sion (DNS) aims at enhancing speech quality by
suppressing noise. MOS derived from listeners

DNS-MOS 1 PAM 1T PAMavgsim T PAMavg T
0.9753 0.8785 0.8962 0.9289

SRCC

Table 8: SRCC of DNS models participating in the ICASSP
2021 DNS challenge for state-of-the-art DNS MOS estima-
tion model and PAM. PAMaygsim and PAM, . use alternative
prompting strategies (see appendix).

judging the output of a DNS model provides a
subjective performance metric to develop or tune
the model. Machine-Learning based blind MOS
estimators such as DNS-MOS have shown to out-
perform existing objective metrics for estimating
the speech quality of DNS models (Avila et al.,
2019; Reddy et al., 2021b). We compute PAM on
the output of models participating in the ICASSP
2021 DNS challenge (Reddy et al., 2021a) and
compare it against a state-of-the-art DNS-MOS es-
timator (Reddy et al., 2021b). Unlike generative
models, DNS involves removing unwanted signals,
hence its perceptual quality is impacted both by the
quality of the (desired) speech as well as the quality
and suppression of noise. We hypothesise that esti-
mating such multifaceted quality may benefit from
more comprehensive prompts. As a proof of con-
cept, we calculate PAM with two prompt averaging
strategies (see appendix for details). Table 8 sum-
marizes the results in terms of Spearman’s Rank
Correlation Coefficient (SRCC) between the aver-
age human-labeled MOS of each tested DN'S model
and the average DNS-MOS or PAM. The SRCC
indicates how well the ranking of the tested DNS
models in terms of their subjective quality is pre-
served (Reddy et al., 2021b). PAM performs com-
petitively compared to the state-of-the-art MOS
estimator trained specifically for this task.

6 Conclusion

This paper proposes PAM, a reference-free met-
ric for assessing audio quality for any-to-{audio}
generation. The metric is zero-shot and does not
require task reference embeddings or task-specific
finetuning to predict human scores. We extensively
evaluate PAM across various distortions and var-
ious tasks like text-to-audio, text-to-music, noise
suppression, text-to-speech, and voice-conversion.
We conduct human listening experiments for each
task and check the correlation of PAM with hu-
man perception of audio quality. Against existing
metrics, PAM correlates better with human percep-
tion for the audio and music tasks and performs
comparably for speech tasks. To further advance
the exploration of audio quality metrics, we will
release audio and human listening scores.



7 Limitations

PAM show correlation with human perception of
audio quality. For the task of Text-to-Audio genera-
tion and Text-to-Music generation, PAM has better
PCC with human perception than existing metrics.
However, PAM has limitations.

Speech generation. For speech generation tasks
like Text-to-Speech and Voice conversion, the PCC
is lower than existing objective perceptual metrics
trained for the specific task. One reason for the low
correlation is that the base model CLAP (Elizalde
et al., 2023) is not explicitly trained on speech-text
pairs, let alone multilingual speech. This limits
the capability of PAM for speech generation tasks.
But it shows an opportunity area for further adding
such training pairs to CLAP or other ALM.
Fine-grained qualities This work focuses on an-
alyzing a specific prompt (“the sound is clear and
clean", “the sound is noisy and contains artifacts")
and contrastive prompting setup for audio quality
score across audio tasks. However, for specific au-
dio tasks, changing the prompt might lead to better
performance. For example, in the TTM task, spe-
cific prompts about melody, genre, and tune can
provide information about specific qualities other
than artifacts.
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The appendix is organized as follows: Section
8 covers related work and Section 9 explores ef-
fect of distortions, Section 10 provides details of
TTA generation models and listening experiment
for the task, Section 11 covers TTM generation
models and listening experiment for the task, Sec-
tion 12 explains noise suppression task and prompt
averaging strategy.

8 Related work

Speech quality. The early attempts at speech qual-
ity metrics (eg. PESQ (Beerends et al., 2013a),
POLQA (Beerends et al., 2013b), ViSQOL (Hines
et al., 2015)) were developed based on human
studies. However, the methods were found to be
sensitive to distortions (Hines et al., 2013; Man-
junath, 2009). Some of the later works tried to
improve PESQ and STOI using expensive gradi-
ent updates (Zhang et al., 2018; Fu et al., 2019).
DPAM (Manocha et al., 2020) learns a perceptual
metric by learning a model from crowdsourced hu-
man judgments asked to answer whether the two
recordings are identical. They show their metric
better correlates with MOS tests compared to PESQ
(Beerends et al., 2013a). However, the metric re-
quires a large set of human judgments and can
still generalize poorly to new speakers and con-
tent. CDPAM (Manocha et al., 2021) aims to use a
combination of contrastive and multi-dimensional
representation learning to separately model two
similarities- content and acoustic. Concurrently,
SESQA (Serra et al., 2021) uses 5 complementary
tasks to improve performance.

The above speech quality metrics can be used for
both speech enhancement and TTS. However, for
TTS, metrics like WER, SpeechLMScore (Maiti
et al., 2023), MOSNet (Lo et al., 2019) are promi-
nently used. Voicebox (Le et al., 2023) intro-
duces Fréchet Speech Distance (FSD) by adapting
Fréchet distance using self-supervised wav2vec 2.0
features. (Alharthi et al., 2023) propose an evalu-
ation technique involving the training of an ASR
model on synthetic speech and assessing its perfor-
mance on real speech. The gold standard evaluation
is subjective metrics based on MOS along the di-
rection of naturalness and intelligibility.

Sound quality. TTA generation focuses on syn-
thesizing general audio based on text descriptions.
The metrics used for objective evaluation include
Frechet distance (FD), Frechet Audio Distance
(FAD), Inception Score (IS), and Kullback—Leibler
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(KL) divergence. All the above metrics require
the computation of audio embedding, specifically
VGGish (Hershey et al., 2017) for FAD and PANN
(Kong et al., 2020b) for others. For subjective eval-
uation, two aspects are evaluated. The users are
asked to rate the generated samples for their (a)
Overall quality (OVL) and (b) relevance to input
(REL) on a scale of 1 to 100 or 1 to 5.

Music quality. TTM generation focuses on syn-
thesizing music based on text descriptions. The
objective and subjective metrics used are the same
as TTA generation. MusicLM (Agostinelli et al.,
2023b) also uses MuLan (Huang et al., 2022a) to
compute the file-wise similarity between text and
audio embeddings. For subjective evaluation, Mu-
sicLM uses an A-vs-B human rating task, to check
the adherence of generated samples to the text de-
scriptions. The users are required to choose be-
tween two samples by selecting one of the five
answers: strong or weak preference for A or B, and
no preference.

Audio-Text metrics The existing audio-text met-
ric in literature, CLAP score (Liu et al., 2023a),
measures the similarity between the caption and
the generated audio. The metric measures the rele-
vance between audio and text.

9 Effect of distortions

This section 4.1 shows results on a professionally
recorded audio pack. In this section, we vary
the source data and check degradation in PAM
score. The source data considered is Profession-
ally recorded audio, AudioCaps (Sound events,
YouTube sourced), MusiCaps (Music, YouTube
sourced), and LibriTTS (speech, audiobooks). The
four types of distortions used are (1) Gaussian noise
with increasing standard deviation (2) Gaussian
Noise addition with particular SNR (3) Tanh distor-
tion (4) Mu Law compression (5) Reverb. Lastly,
we also add Reverb, which by the definition in Sec-
tion 2.1 is not considered as an artifact or distortion.
Figure 8 shows the effect of distortions on PAM
score across different source distributions. We see
the PAM score degrading with the addition of noise
except for Reverb where it remains constant.

10 Text-to-Audio generation

10.1 Text-to-Audio models

For TTA generation, we use publicly available
variants of AudioLDM (Liu et al., 2023a), Audi-
oLDM2 (Liu et al., 2023b), AudioGen (Kreuk et al.,



Figure 8: Effect of (a) Gaussian Noise (b) Gaussian Noise with SNR (c¢) Tanh distortion (d) Mu-Law compression
(e) Reverb. on PAM value. The first row uses AudioCaps sourced from YouTube, the second row uses MusicCaps
sourced from YouTube, and the third row uses LibriTTS clean set. The Figure 3 shows effect of distortion for

professionally recorded audio

2022) and MelDiffusion.

AudioLDM. The model (Liu et al., 2023a) is based
on latent diffusion models (LDMs) (Rombach et al.,
2022). The latent space is obtained by apply-
ing a variational autoencoder (VAE) to the mel-
spectrograms of audio clips. The LDMs use UNet
conditioned on CLAP text embeddings. During
training, the LDMs learn to reconstruct the au-
dio embeddings from Gaussian noise, while being
guided by the text embeddings. During sampling,
the LDMs generate audio embeddings from the text
embeddings and then decode them into waveforms
using the VAE followed by a HiFi-GAN (Kong
et al., 2020a) vocoder. Our experiments use the
model versions hosted on huggingface with 100
denoising steps to generate audio.

AudioLDMZ2. The model consists of three main
components: a text encoder, a GPT-2 decoder, and
a latent diffusion model. The text encoder uses two
pre-trained models, CLAP and Flan-T35, to obtain
text embeddings that capture both the alignment
and the semantics of the text. Then GPT-2 gener-
ates a sequence of new embedding vectors, called
the language of audio (LOA), based on the text em-
beddings. The latent diffusion model de-noises a
random latent vector into an audio waveform, con-
ditioned on the LOA and the Flan-T5 text embed-
dings. The model is trained with self-supervised
pre-training and fine-tuning on different audio do-
mains. Our experiments use the model versions
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hosted on huggingface with 100 denoising steps to
generate audio.

AudioGen. The model is a Transformer decoder
operating over a residual vector quantized repre-
sentation (RVQ) of the audio signal. The model
generates audio from text by using textual features
as conditioning signal. Our experiments use the
model versions hosted on huggingface (Kreuk et al.,
2022). The model uses Encodec (Défossez et al.,
2022) to obtain the RVQ from audio, T5 (Raf-
fel et al., 2020a) to obtain textual features and is
trained using the delay-pattern technique (Copet
et al., 2023) to model the RVQ.

MelDiffusion. The model is based on using the
diffusion model on spectrograms instead of latent
space. The text encoder used is T5-large (Raffel
et al., 2020b) and the diffusion model is DDIM
based on progressive distillation (Salimans and Ho,
2022). The base UNet is inserted with additional
self-attention layers to produce coherent 30-second
or more audio while training on only 5-second au-
dio. For inference, we use 100 denoising steps to
generate audio.

10.2 Human Listening experiment

We evaluated text-to-audio generation using Ama-
zon Mechanical Turk (MTurk). In this evaluation,
participants were asked to rate the quality of the
audio and its relevance to the provided description.
The ratings were given on a Likert scale from 1



(poor quality or minimal relevance) to 5 (excel-
lent quality or perfect match with the description).
Detailed instructions given to participants are out-
lined in Table 9, and the specific questions posed,
along with their response options, are listed in Ta-
ble 10. For this test, we chose 100 random samples
from the AudioCaps dataset. We then generated
audio for these samples using four different models:
MelDiffusion, AudioLDM?2-1, AudioLDM-I, and
AudioGen-m. resulting in 500 samples. Each of
these samples was rated by 10 different participants,
all of whom were located in the United States, re-
sulting in a total of 8,000 scores evaluating both the
quality and relevance of the audio. To ensure the
quality and reliability of the data, we applied a rig-
orous filtering process to the responses. If a partici-
pant’s scores showed a standard deviation of zero
for more than five samples, their responses were
excluded from the analysis. Also, any responses
from participants who took less than 10 seconds to
complete their ratings were also excluded. Further-
more, we will release the collected data, both raw
and filtered.

11 Text-to-Music generation

11.1 Text-to-Music models

For TTM generation, we use AudioLDM2-m
(Liu et al., 2023b), MusicLDM (Agostinelli et al.,
2023b), and MusicGen (Copet et al., 2023).
AudioLDM2-m. The architecture is from Audi-
oLLDM2 (Section 10.1) but trained on music.
MusicLDM. The model adapts Stable Diffusion
and AudioLDM architectures to the music domain.
For this, the CLAP and vocoder components
are retrained along with the introduction of a
beat-tracking model and different mixup strategies.
The mixup strategies encourage the model to
generate music that is diverse yet grounded in the
requested style.

MusicGen. The model is similar in architecture
and training objective as AudioGen, described
in 10.1, but trained on music rather than audio
events. Our experiments use the model versions
hosted on huggingface using the default provided
configuration. Namely, each model generates
music with a 32kHz sampling rate, discretized
using an Encodec tokenizer with 4 codebooks
where each token is sampled at 50 Hz. The token
generation uses top-k sampling where k = 250.
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Table 9: Guidelines Given to Amazon Mechanical Turk

Participants for TTA task.

Task Instructions

Your task is to evaluate the quality and text rele-
vance of audio clips. These clips include various
sounds and speech such as dog barking and rain.
You will first rate the sound quality, and then assess
its relevance to the text description.

Definition of quality in this test:

In this evaluation, ’quality’ refers to the fidelity of
the generated audio in replicating real-life sounds.
Our focus is on assessing a text-to-audio generation
system, which converts textual descriptions into
corresponding audio outputs. The audio output
may include real-world noises, such as ambulance
sirens, dog barking, and screaming. The primary
goal is to assess the realism of these sounds in the
audio.

Important Note:

Please be aware that during this audio quality
test, you may encounter segments where speech
is present. It’s normal and expected that the speech
might not be intelligible. This is not a concern for
this specific test. Your main focus should be on
evaluating the overall audio quality, not the intelli-
gibility of the words spoken.

Warning:

Please be advised that during this audio test, some
segments may feature very loud sounds. We rec-
ommend adjusting your volume to a comfortable
level before beginning the test and being prepared
to adjust it as needed during the test. Your safety
and comfort are important to us. If at any point you
find the audio uncomfortably loud, please feel free
to lower the volume or pause the test to readjust
your settings.

11.2 Human Listening experiment

To evaluate the effectiveness of PAM in TTM gener-
ation, we conducted a human evaluation test using
MTurk. In this test, participants were asked to rate
the quality of music generated and its relevance to
a given description. These ratings were based on
a Likert scale ranging from 1 (poor quality or min-
imal relevance) to 5 (excellent quality or perfect



Table 10: Questions and Response Options Presented to
MTurk Participants for TTA task.

Please listen carefully to the following audio then
answer the two questions below.

How good does the audio sound to you in terms
of quality and realism?

1 (Poor) The audio quality is very low, making it
hard to discern the intended sounds.

2 (Fair) Audio quality is below average, but the
intended sounds are somewhat recognizable.

3 (Good) The audio has decent quality with clear
and recognizable sounds.

4 (Very Good) Audio quality is high, closely re-
sembling real-world audio with minimal distortion.
5 (Excellent) The audio quality is highly realistic
with perfect fidelity.

How well does this audio match with the pro-
vided description?
Description: audio description.

1 (Poor) Audio has minimal or no relevance to the
text.

2 (Fair) Audio shows limited relevance to the text.
3 (Good) Audio is adequately relevant to the text.
4 (Very Good) Audio is highly relevant to the text.
5 (Excellent) Audio perfectly matches the text.

match with the description), as detailed in Table
12 and 11. For this purpose, we selected 100 ran-
dom samples from MusicCaps dataset. For each
sample, we generated music based on a text descrip-
tion using four different models: AudioLDM2-m,
MusicLDM, MusicGen-1, MusicGen-mel, and the
original MusicCaps model resulting in a total of
500 audio samples. To ensure a comprehensive
evaluation, each sample was rated by 10 different
participants, all of whom were located in the United
States, culminating in 8,000 individual scores as-
sessing both quality and relevance. In order to
maintain the integrity of our data, we applied a fil-
tering process similar to the one used in our TTA
generation test. We excluded any participant whose
ratings showed no variation (a standard deviation
of zero) for more than five samples, or who com-
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pleted the rating in less than 10 seconds. We will
release both the raw and filtered datasets for human
evaluation. This will allow for further analysis and
transparency in our findings.

Table 11: Guidelines Given to MTurk Participants for
TTM task.

Task Instructions

Your task is to rate the overall quality of the music
and the relevance of the music with the text descrip-
tion. Listen to each clip and first evaluate its sound
quality. Then, assess how well the music matches
the provided description.

Important Note:

During this music evaluation test, you might find
descriptions mentioning a singer or vocals. How-
ever, please note that the actual audio may consist
only of instrumental music without any singing.
This discrepancy is normal and expected for this
test. Even if the description refers to singing, your
focus should be on assessing the music’s quality
and how well the instrumental audio aligns with
the overall theme of the description, irrespective of
the presence of singing.

12 Noise suppression

12.1 Problem description

DNS aims at enhancing speech for voice communi-
cation by removing unwanted noise from a record-
ing. However, DNS typically introduces its own
processing artifacts and distortions that may de-
grade the desired speech signal or cause unpleasant
artifacts in the background noise that is not sup-
pressed. Therefore, the performance of a DNS
model in terms of perceptual quality depends on
a variety of factors. To measure the quality of
DNS systems, a subjective listening test can be
performed where human judges assign ratings to
the model output, typically from 1 (worst) to 5
(best). The Mean Opinion Score (MOS) for an
output sample is obtained by averaging the human
ratings. As an alternative to costly subjective test-
ing, machine-learning models can be trained on
DNS output samples and their corresponding MOS
labels to perform blind DNS MOS estimation. Var-
ious DNS models or model variations can be com-
pared in terms of their average subjective or es-
timated MOS. In Section 5.4 the performance of



Table 12: Questions and Response Options Presented to
MTurk Participants for TTM task.

Please listen carefully to the following audio then
answer the two questions below.

How good is the quality of the music?

1 (Poor) The music quality is very low, with poor
clarity and composition.

2 (Fair) Music quality is below average, with some
elements of composition recognizable.

3 (Good) The music has decent quality with clear
composition and a pleasant listening experience.
4 (Very Good) Music quality is high, offering a
rich and engaging listening experience.

5 (Excellent) The music quality is outstanding with
excellent clarity, composition, and overall appeal.

How well does this music match with the pro-
vided description?
Description: audio description.

1 (Poor) Music has minimal or no relevance to the
description.

2 (Fair) Music shows limited relevance to the de-
scription.

3 (Good) Music is adequately relevant to the de-
scription.

4 (Very Good) Music is highly relevant to the de-
scription.

5 (Excellent) Music perfectly matches the descrip-
tion.

PAM for ranking various DNS models is compared
to a state-of-the-art DNS MOS estimation model.
The comparison is performed on the blind test set
of the ICASSP 2021 DNS challenge processed by
over 20 different DNS models. The state-of-the-art
DNS-MOS estimator and PAM are compared in
terms of the Spearman’s Rank Correlation Coeffi-
cient (SRCC) computed using the MOS averaged
for each model. The authors of DNS-MOS found
this to be a robust metric for evaluating the perfor-
mance of a MOS estimator for comparing different
DNS models.
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12.2 Prompt averaging

Given the complex and multifaceted nature of
the perceptual quality of DNS output samples,
we experiment with two simple prompt averaging
schemes that aim at a broader and more robust
quality estimation: PAM,ygsim and PAM,,. The
underlying hypothesis is that averaging over multi-
ple quality-related prompts may yield a less noisy
and perceptually broader similarity metric than the
two primary prompts (h1 and b1 below) that focus
specifically on the presence or absence of noise and
artifacts. To this end, we introduce two additional
prompts directly querying sound quality:

e hl: “the sound is clear and clean”

* bl: “the sound is noisy and with artifacts”

* h2: “the sound quality is good”

* b2: “the sound quality is bad”

To compute PAMyg5im, We average the dot prod-
ucts before taking the softmax:

K

1
Zh,avg — ? E U =V
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)

for K high quality prompts hi. 2y, 4y 1S computed
analogously using low quality prompts bz.
PAM,,ygsim 1s then given as

e?h,avg

Pn = D) .
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PAM,, is computed as PAM averaged over mul-
tiple prompt pairs:

1 K
Ph,avg = ? thia
i=1

(@)
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where py; is computed via Eq. 2 using a prompt
pair he and bi. In our preliminary experiments
we found the most effective prompt pairs to be
[h1,b2] and [h2, bl], though this finding may not
generalize to other tasks or datasets. Note that the
proposed simple averaging schemes generalize to
arbitrary numbers and combinations of prompts.
However, we leave a more thorough investigation
of prompting strategies for future work.
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