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Abstract
While audio quality is a key performance met-001
ric for various audio processing tasks, including002
generative modeling, its objective measurement003
remains a challenge. Audio-Language Models004
(ALMs) are pre-trained on audio-text pairs that005
may contain information about audio quality,006
the presence of artifacts or noise. Given an au-007
dio input and a text prompt related to quality, an008
ALM can be used to calculate a similarity score009
between the two. Here, we exploit this capabil-010
ity and introduce PAM, a no-reference metric011
for assessing audio quality for different audio012
processing tasks. Contrary to other “reference-013
free” metrics, PAM does not require computing014
embeddings on a reference dataset nor train-015
ing a task-specific model on a costly set of hu-016
man listening scores. We extensively evaluate017
the reliability of PAM against established met-018
rics and human listening scores on four tasks:019
text-to-audio (TTA), text-to-music generation020
(TTM), text-to-speech (TTS), and deep noise021
suppression (DNS). We perform multiple abla-022
tion studies with controlled distortions, in-the-023
wild setups, and prompt choices. Our evalua-024
tion shows that PAM correlates well with exist-025
ing metrics and human listening scores. These026
results demonstrate the potential of ALMs for027
computing a general-purpose audio quality met-028
ric.029

1 Introduction030

Audio Quality Assessment (AQA) refers to the sub-031

jective assessment of the perceived overall quality032

of a signal (Torcoli et al., 2021). The gold standard033

of AQA consists of assessment by humans, which034

is a challenging task that requires many listening035

tests in controlled setups. Moreover, these experi-036

ments are time-intensive and costly, and hence can-037

not be carried out multiple times for every setup038

or result. Hence, measurements that can closely039

estimate human assessment of audio quality are040

essential for the development and evaluation of041

models that perform audio generation tasks.042

Figure 1: Search result of "Artifacts" on FreeSound.org.
These audio-text pairs are included in ALM training.

Audio generation tasks entail sounds, music, 043

and speech. All tasks employed different audio 044

quality metrics, including some that aim to resem- 045

ble human assesments. TTA uses metrics like FD 046

and Fréchet Audio Distance (FAD) (Kilgour et al., 047

2018), IS, KL, and subjective metrics like Over- 048

all Quality (OVL) and Relation of audio to text 049

caption (REL) (Kreuk et al., 2022). TTM uses 050

FAD and subjective metrics like MCC (Copet et al., 051

2023). TTS uses metrics like WER, SpeechLM- 052

Score (Maiti et al., 2023), and perceptual metrics 053

like MOSNet (Lo et al., 2019), FSD (Le et al., 054

2023), and MCC. However, several aspects of au- 055

dio quality are shared across tasks, such as the 056

presence of artifacts. Ideally, one metric should 057

measure quality regardless of the task hence, ad- 058

dressing the challenges of task-specific metrics. 059

Current metrics provide a reliable evaluation but 060

pose different challenges. Reference-based metrics 061

require ground truth for computation. To assess 062

the quality of a recording, the generated audio is 063

compared against a desired recording to measure 064

how much the quality degraded. Reference-free 065

metrics do not require a desired recording, but usu- 066

ally require a pretrained model to compute em- 067

beddings on a reference dataset. The selection of 068

the model and the dataset would highly affect the 069

score (Gui et al., 2023). Other metrics like DPAM 070

(Manocha et al., 2020), MOSNet (Lo et al., 2019), 071

and DNSMOS (Reddy et al., 2021b) train a model 072
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Figure 2: Two prompt strategies leveraging ALM to perform AQA. The figure on the left shows a naive approach
that takes as input one prompt about quality and the audio intended for assessment. The output is the cosine
similarity between the audio and text embeddings, which determines the correspondence between them. The figure
on the right shows PAM computation, which uses two “opposing" prompts to derive a score.

using human evaluation and at inference use the073

model predictions as a proxy for human evaluation.074

This requires the curation of human evaluation and075

model training for each audio task.076

Instead, we propose a no-reference metric that077

leverages learning perceptual audio quality from078

human assessments in text descriptions. ALM have079

learned from millions of audio-text pairs sourced080

from the Internet. Some of the audio has a cor-081

responding natural language description of qual-082

ity (See Fig. 1). For example, audio-text models083

(Elizalde et al., 2023; Wu et al., 2022; Deshmukh084

et al., 2023) trained on FreeSound data, have seen085

text descriptions like “Pad sound, with a lo-fi, high086

compression type feel to it. The noise floor, with a087

low pass filter set around 50Hz and several octaves088

of pitch bend". Although the ALM is not explic-089

itly trained for audio quality assessment, it has in-090

gested hundreds of human annotations describing091

their perception of the audio. Because ALM can be092

used out of the box in a Zero-Shot fashion, they can093

compare text prompts about quality against audio094

without requiring a reference.095

In this work, we propose a metric called PAM096

that: (1) measures audio quality in terms of arti-097

facts and distortions, making it suitable for multiple098

audio generation tasks. (2) correlates with human099

perception and assessment of audio quality (3) it is100

truly reference-free and can be used off-the-shelf101

because it does not require additional computation102

of embeddings on a reference dataset. To support103

our contributions, we extensively tested PAM on104

four audio tasks: TTA, TTM, TTS, and DNS. For105

each task, we compared against established metrics106

and human listening scores. Some of the human107

listening scores were collected by us and would108

be made public to the community. Moreover, we109

performed multiple ablation studies with controlled110

distortions, in-the-wild setups, and prompt choices.111

2 PAM 112

Our proposed metric PAM can perform audio qual- 113

ity assessment by exploiting the joint multimodal 114

space learned by an ALM. The learned space can 115

be used to quantify the correspondence between 116

quality-related text prompts and audio recordings. 117

2.1 Audio Quality Assessment 118

Audio quality. The term implies a variety of prop- 119

erties in various contexts. For this work, we con- 120

sider audio to be high quality when the presence of 121

artifacts and noise is imperceptible. For example, 122

white noise, clipping, and other distortions. We did 123

not consider non-speech audio as noise, such as 124

sound events, music, reverb, echo, and in general 125

all naturally occurring sounds. 126

Learning quality from audio-text pairs. ALM 127

are pretrained with millions of audio and their cor- 128

responding natural language descriptions. The text 129

is usually metadata created by the user who up- 130

loads the audio file to a web archive and some pairs 131

describe the quality and the presence of artifacts 132

and noise in a given audio. Therefore, as a first step, 133

this work focuses on specific prompting strategies 134

to show the potential of audio-text learning for au- 135

dio quality assessment. 136

Audio-Language Model. In this work, we used the 137

ALM called CLAP (Elizalde et al., 2023) trained 138

on 4.6M pairs. The pairs are sourced from different 139

publicly available datasets including web archives, 140

such as FreeSound and FindSound which have de- 141

scriptions about audio quality (See Fig. 1). CLAP 142

consists of audio and text encoders pretrained us- 143

ing Contrastive Learning and it can be used for 144

Zero-Shot inference. That is, at inference time, 145

the user provides an audio file for assessment and 146

text prompts about the quality (e.g. “the sound is 147

clear and clean"). The model embeds the audio and 148

text in a multimodal space using the respective en- 149
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coders, computes the cosine similarity between the150

embeddings and produces a correspondence score.151

Determining the prompting strategy and setup to152

use CLAP for audio quality assessment is still an153

open question.154

2.2 Prompting setup155

The user can provide an audio file and text class156

of "the sound is clear and clean" and determine157

the audio-text similarly using the model. The sim-158

ilarity can be squashed between 0 and 1 and used159

as a score. Though this method is valid and used160

for multiple tasks (Liu et al., 2023a; Kreuk et al.,161

2022), we see prompting with just one class of "the162

sound is clear and clean" leads to a poor correla-163

tion with human perception and distortions across164

various tasks and distributions. One of the reasons165

this strategy does not work is due to linguistic am-166

biguity. Particularly, if the prompt is “the sound167

is clear and clean”, then depending on the context,168

the model can infer: (1) The sound is easy to un-169

derstand, see, or hear, without any distortion, noise,170

or interference. (2) The sound is pure, crisp, and171

pleasant, without any harshness, dullness, or mud-172

diness. This meaning is based on the definition of173

‘clean’ as ‘having a pure, fresh, or smooth quality.’,174

or (3) The sound is honest, accurate, and truthful,175

without any deception, manipulation, or bias. This176

meaning is based on the definition of ‘clean’ as177

‘free from dishonesty or corruption’.178

To address this problem, we prompting a strategy179

that will minimize ambiguity in the latent space.180

This is achieved by using multiple prompts that181

force the model to make similarity calculations182

along the latent subspace of audio quality (e.g.,183

“the sound is clear and clean” and “the sound is184

noisy and with artifacts”). This not only reduces185

the ambiguity but allows us to audio quality mea-186

surement as a binary classification problem, where187

the final score is between 0 to 1 and regarded as188

a relative similarity. The PAM computation is ex-189

plained in Section 2.4190

2.3 Choice of quality prompts191

The choice of text prompts has an impact on the192

similarity and if not optimal leads to spurious cor-193

relates being measured rather than audio quality.194

The PAM score uses ‘opposite" text prompts of195

“the sound is clear and clean” and “the sound is196

noisy and with artifacts”. These prompts are cho-197

sen based on analysis of CLAP’s (Elizalde et al.,198

2023) training data and tested across various setups,199

tasks, and distributions. In the rest of the paper, 200

PAM implies the usage of the above prompts. 201

However, to get more insight into the type of ar- 202

tifacts and noise, the prompts can be changed. That 203

is the prompts can be designed for specific tasks 204

and setups in mind. For example, in the definition 205

of audio quality 2.1, reverb and echo are not consid- 206

ered as noise and PAM score does not degrade with 207

Reverb addition 3. Therefore, our general PAM 208

score cannot be used as a metric for the specific 209

task of Acoustic Echo Cancellation (AEC) to mea- 210

sure echo suppression. Therefore, we can design 211

attribute-specific prompts for audio quality outside 212

of our definition. 213

2.4 Computing PAM 214

The PAM computation is shown in Fig 2, right 215

section. The user provides an audio file which 216

is converted into a mel-spectrogram (x ∈ RT×F ) 217

and passed to CLAP’s audio encoder to produce 218

an audio embedding v ∈ R1×d. In parallel, the 219

two “opposing" prompts about quality (“the sound 220

is clear and clean” and “the sound is noisy and 221

with artifacts”) are tokenized and embedded us- 222

ing the text encoder to produce text embeddings 223

u ∈ Rd×N . After projection into the multimodal 224

space, the dot product is computed between the two 225

embeddings, followed by softmax: ph = ezh∑2
j=1 e

zj
, 226

where h is the index of the prompt related to high 227

quality, zj = uj · v, (·) denotes the dot product, 228

and p ∈ R1×2. The value of ph ∈ [0, 1] is the PAM 229

score and informs about the quality of the audio. 230

3 Experiments 231

The experimental setup is designed to provide a 232

comprehensive evaluation of PAM across different 233

distortions, prompting strategies, and datasets from 234

different audio generation tasks. All experiments 235

are run using a single 16GB V100 GPU. 236

Distortions. We systematically add various types 237

of distortions: Gaussian Noise, Gaussian Noise 238

with Signal-to-Noise Ratio (SNR), Tanh distortion, 239

Mu-Law compression, and Reverb across various 240

source distributions and check its effect on the 241

PAM. The results are in Section 4.1. 242

Prompting strategy. PAM uses a two opposite 243

prompt strategy with the text of “the sound is clear 244

and clean" and “the sound is noisy and with arti- 245

facts”. In section 4.3, we compare it against the 246

naive single-prompt strategy. We also compare it 247

against human evaluation. 248

Audio tasks. In Section 5, we consider different 249
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Figure 3: Effects of PAM when adding different distortions: (a) Gaussian Noise (b) Gaussian Noise with SNR (c)
Tanh distortion (d) Mu-Law compression (e) Reverb. The dataset is a professionally recorded dataset containing
sounds. PAM decreases as the distortion of the signal increases.

generation tasks like Text-to-Audio, Text-to-Music250

and Text-to-Speech Generation. For each task, we251

use multiple models, perform human listening tests,252

and compare PAM against established metrics.253

4 Results254

4.1 Effect of distortions255

An audio quality metric should degrade with the256

presence of distortions and artifacts in the audio. To257

verify this, we add common simulated distortions258

to audio sourced from a professionally recorded259

sound effect pack. The four types of distortions260

used are (1) Gaussian Noise with increasing stan-261

dard deviation (2) Gaussian Noise addition with262

particular SNR (3) Tanh distortion (4) Mu Law263

compression. Lastly, we add Reverb, which by264

the definition in Section 2.1 is not considered an265

artifact or distortion. Figure 3 shows the effect of266

distortions on PAM score when tested on a pro-267

fessionally recorded sound effect pack. The PAM268

score degrades as the noise is added except for Re-269

verb. For Reverb, the PAM score is fairly constant,270

i.e., changes from 0.76 to 0.81. While for others271

we see considerable degradation in PAM score. To272

check robustness across source distribution, we273

change the dataset from professionally recorded to274

AudioCaps (audio from YouTube videos contain-275

ing sound events), MusiCaps (music tracks from276

YouTube), and LibriTTS (speech, audioboks). We277

see similar trends of PAM score degrading with the278

addition of distortions and consistent scores across279

Reverb. The details can be found in Appendix 9.280

4.2 Assessing quality across distributions281

An audio quality metric should give high scores282

to audio that is free from distortions. For ex-283

ample, professionally recorded and edited audio284

should achieve a higher PAM score compared to285

audio sourced from YouTube, which is generally286

recorded with handheld devices and may contain287

noise or distortions. To confirm this hypothesis288

we carried on the following setup. We compare289

PAM among three sets in Table 1. (1) AudioCaps290

dataset sourced from YouTube containing sound 291

events (clapping, alarms, dog barking, etc). (2) 292

MusicCaps data sourced from YouTube with addi- 293

tional filtering to retain high-quality and remove 294

low-quality music recordings. (3) Professionally 295

recorded audio containing sound events. 296

Dataset Source PAM ↑
AudioCaps (test set) YouTube 0.6772
MusicCaps (test set) YouTube-filtered 0.7718
Professionally recorded Studio 0.8684

Table 1: PAM score is higher for professionally recorded audio
than for audio from YouTube videos.

4.3 Prompting strategy 297

Figure 2 shows two different prompting strategies 298

that can be used to get a quality-related score. The 299

figure on the left shows naive prompting and the 300

figure on the right shows the opposite prompting 301

strategy of PAM. The advantages of the opposite 302

prompting setup and the limitations of the naive 303

prompt are explained in Section 2.2. In this section, 304

we perform experiments to compare two setups 305

with human listening scores. 306

We use the NISQA (Non-Intrusive Speech Qual- 307

ity and TTS Naturalness Assessment) (Mittag et al., 308

2021) dataset to check the correlation between 309

PAM, the single prompt strategy, and human per- 310

ceptual evaluation. The NISQA Corpus includes 311

more than 14,000 speech samples with simulated 312

(e.g. codecs, packet-loss, background noise) and 313

live (e.g. mobile phone, Zoom, Skype, WhatsApp) 314

conditions. Each file is labeled with subjective 315

ratings of the overall quality. We use simulated 316

and live talk corpus from NISQA. The simulated 317

corpus contains simulated distortions with speech 318

samples from four different datasets and the live 319

talk corpus contains recordings of real phone and 320

VoIP calls. Unlike PAM, NISQA considers sounds 321

events as noise, so human raters labelled the record- 322

ings as low quality. Therefore, we created a filtered 323

NISQA set and applied four distortions: (1) white 324

noise addition with a particular SNR (2) live talk on 325

a laptop or smartphone (3) low bandpass filter (4) 326

high bandpass filter. We check the correlation of 327
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Figure 4: (PCC) Correlation plots between MOS (human subjective evaluations) and two prompt strategies for four
distortions applied to the NISQA dataset. The top row refers to using the naive single-prompt strategy and the
second row shows PAM (two opposite prompt strategy). Both described in Fig. 3. Using one prompt for AQA does
not correlate with MOS, but using two prompts (PAM) does.

the single prompt strategy and the opposite prompt328

strategy against the Mean Opinion Score (MOS)329

from human listeners. MOS is a numerical mea-330

sure of the human-judged overall quality and it is331

the arithmetic mean of the ratings given by sub-332

jects on a predefined scale. We used the existing333

MOS numbers from NISQA. The Pearson Correla-334

tion Coefficient (PCC) measures linear correlation335

between two sets of data (Pearson, 1920) and it336

is shown in Figure 4. PCC ranges from -1 to 1,337

where -1 indicates a perfect negative correlation, 0338

indicates no correlation, and 1 indicates a perfect339

positive correlation. We see that the single-prompt340

strategy does not correlate with MOS, the human341

perceptual evaluation. While PAM not only cor-342

relates, but achieves a PCC greater than 0.7 on343

(1) white noise distortion and (2) real-world talk344

recorded from laptops and smartphones.345

5 PAM for audio tasks346

In this section, we use PAM to evaluate models for347

generation tasks. For each task, we compare PAM348

against task-specific metrics and human evaluation349

to show its reliability as an AQA metric.350

5.1 Text-to-Audio generation351

TTA generation models synthesize non-speech non-352

music audio (sounds) from text descriptions. Al-353

though there are established metrics available, eval-354

uating the generation quality of these models is still355

an open research question.356

Table 2 shows the evaluation of TTA with ob- 357

jective metrics from in literature (Liu et al., 2023a; 358

Kreuk et al., 2022). These metrics do not con- 359

sider any type of perceptual aspect and consist of a 360

distance between the generated audio and a distri- 361

bution from a reference set. The objective metrics 362

for all the systems are in Appendix 10. We use pub- 363

licly available variants of AudioLDM (Liu et al., 364

2023a), AudioLDM2 (Liu et al., 2023b), Audio- 365

Gen (Kreuk et al., 2022) and MelDiffusion (See 366

Appendix for details 10). We choose the variant 367

of the model corresponding to the largest parame- 368

ter count, because it usually correlates better with 369

higher performance. The captions from the Audio- 370

Caps test set (747 captions) are used to generate 371

audio from the above 4 models and their variants. 372

Captions are textual descriptions of the sounds, i.e. 373

“A drone is whirring followed by a crashing sound". 374

We carry out a human listening experiment to 375

compute the correlation between metrics and hu- 376

man perception. We randomly picked 100 captions 377

and their corresponding generated audio from the 378

test set. During the experiment, each participant 379

was asked to rate each audio in terms of Overall 380

Quality - OVL and Relation of audio to text cap- 381

tion - REL on a five-point Likert scale. The order 382

of audios was fully randomized and each audio 383

was rated by 10 participants. Raters were recruited 384

using the Amazon Mechanical Turk platform. To 385

ensure quality in the annotations, participants who 386

consistently provided identical scores in every HIIT 387
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Model Dur. (h) Param FD ↓ FAD ↓ IS ↑ KL sig ↓ KL soft ↓ PAM ↑
AudioLDM-l (Liu et al., 2023a) 9031 975M 43.83 6.229 5.067 7.422 2.723 0.2417
AudioLDM2-l (Liu et al., 2023b) 29510 1.5B 50.07 3.477 5.195 6.379 2.200 0.4267
MelDiffusion (Appendix 10.1) 145 383M 20.27 3.296 8.460 3.579 1.390 0.5412
AudioGen-m (Kreuk et al., 2022) 6824 1.5B 18.67 2.850 9.202 3.391 1.797 0.4683
AudioCaps (Kim et al., 2019) - - 00.00 0.000 9.488 0.000 0.000 0.6772

Table 2: Evaluation of Text-to-Audio generation models from the literature. Established metrics and PAM show similar trends.

Figure 5: The absolute value of (PCC) correlation between OVL, REL and different TTA generation models. The
input text captions come from the AudioCaps dataset. PAM, as a single-metric, is capable of correlating well with
both, overall quality (OVL) and relevance to the input caption (REL).

(e.g., all 1s) or who completed the task in less than388

10 seconds were excluded.389

% of data GPT-4 inference PAM ↑
39% Low acoustic quality 0.7294
2% Medium acoustic quality 0.8138
1% High acoustic quality 0.8333
58% Unknown acoustic quality 0.7975
9% Low musical quality 0.7222
9% Medium musical quality 0.7770
42% High musical quality 0.7932
41% Unknown musical quality 0.7593

Table 3: Acoustic and musical quality of MusicCaps derived
from text-analysis based GPT-4 labels and audio-based PAM
scores exhibit similar trends.

Figure 5 summarizes the PCC between per-390

model metrics and OVL and REL respectively.391

PAM correlates correlates significantly better with392

human perception of quality (OVL and REL) than393

the task-specific metrics of KL softmax and KL394

sigmoid. The KL metric uses the CNN14 (Kong395

et al., 2020b) model to extract audio embeddings396

for the generated and reference set. The CNN14397

model is trained to classify audio into different398

sound events and hence does well at recognizing399

the presence of sound events rather than overall400

quality. Also, a recent work (Liu et al., 2023b) ob-401

served that reference-free metrics like KL provide402

high scores when the generation model is trained403

on the same distribution data as the KL reference404

set. PAM is a no-reference metric so it does not405

have these drawbacks.406

5.2 Text-to-Music generation407

TTM generation models synthesize music based on408

text descriptions. Although objective performance409

metrics exist, evaluating the subjective quality of410

these models remains an open research question. 411

Subjective performance can be described in 412

terms of Acoustic Quality (AQ), which measures 413

whether the generated sound is free of noise and 414

artifacts, and Musical Quality (MQ), which mea- 415

sures the quality of the musical composition and 416

performance. 417

A commonly used reference set for evaluat- 418

ing TTM models is MusicCaps (Agostinelli et al., 419

2023a), a music subset of AudioSet (Gemmeke 420

et al., 2017) that contains rich text captions pro- 421

vided by musical experts. A recent work (Gui et al., 422

2023) used GPT-4 to derive AQ and MQ ratings 423

for MusicCaps audio samples via text-analysis of 424

the corresponding captions. Each MusicCaps song 425

was assigned one AQ and one MQ label "high", 426

"medium", or "low". If AQ or MQ could not be 427

inferred from the caption text, the label "not men- 428

tioned" was assigned. These text-derived labels 429

were shown to correlate reasonably well with hu- 430

man perception (Gui et al., 2023). We compare 431

these text-based AQ and MQ labels with an audio- 432

only analysis via PAM. The results shown in Table 433

3 indicate similar trends of audio-only PAM and 434

text-based analysis via GPT-4. 435

For a direct comparison with human perception, 436

we calculate PAM on a set of real and generated 437

music recordings. Subjective AQ and MQ labels 438

were collected by authors in (Gui et al., 2023) as 439

MOS scores from several human judges. The real 440

samples were taken from the Free Music Archive 441

(FMA) and MusicCaps. For TTM generation, pub- 442

licly available variants of MusicLM (Agostinelli 443

et al., 2023b) and MusicGen (Copet et al., 2023), 444
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Model Dur. (h) Param FD ↓ FAD ↓ IS ↑ KL sig ↓ KL soft ↓ PAM ↑
AudioLDM2-m (Liu et al., 2023b) - 1.1B 37.54 6.706 1.841 4.456 1.611 0.6157
MusicLDM (Chen* et al., 2023) 466 - 31.05 6.109 1.840 4.333 1.428 0.6887
MusicGen-l (Copet et al., 2023) 20000 1.5B 25.91 4.878 2.101 4.389 1.281 0.8492
MusicGen-mel. (Copet et al., 2023) 20000 1.5B 24.65 3.955 2.242 4.197 1.339 0.7704
MusicCaps - - 00.00 0.000 4.547 0.000 0.000 0.7718

Table 4: Evaluation of Text-to-Music generation models from the literature. Established metrics and PAM show similar trends.

as well as Mubert (Mubert-Inc, 2023) were used.
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Figure 6: PCC between listening test MOS and Fréchet
Audio Distance (FAD) and PAM, for acoustic (AQ, left)
and musical quality (MQ, right).

445
Figure 6 shows PCC between the MOS ratings446

and PAM. For comparison, the (absolute) PCC of447

the Fréchet Audio Distance (FAD) is shown for448

two pretrained models. Recall that FAD requires449

a pretrained model to compute audio embeddings450

on a reference dataset. Here, we used MusCC, a451

set of studio quality music (Gui et al., 2023), as a452

reference for FAD. PAM performs competitively,453

outperforming the commonly used FAD-VGGish454

metric in all comparisons.455

Table 4 shows the evaluation of TTM with ob-456

jective metrics and the proposed PAM. The sam-457

ples are generated using MusicCaps captions as458

prompts. The row in grey shows results for the459

original MusicCaps audio and constitutes an up-460

per performance bound for objective metrics that461

use MusicCaps audio as a reference, including FD,462

FAD, and KL. However, as the quality of Mus-463

icCaps samples varies significantly (cf. Table 3)464

TTM models may outperform MusicCaps in per-465

ceptual quality, as PAM indicates for MusicGen-l.466

We observe similar trends for PCC results (Table467

5) corresponding to Table 4.468

5.3 Speech Synthesis469

Speech Synthesis involves creating artificial speech,470

either by converting text to speech (TTS) or alter-471

ing existing speech to sound like a different speaker472

or style, known as voice conversion. In our study,473

we examine the effectiveness of PAM in the above474

two tasks. For TTS, A recent work (Alharthi et al.,475

Model Subj. KL sof ↓ KL sig ↓ PAM ↑
AudioLDM2 OVL 0.1241 0.0929 0.3295
MusicLDM OVL 0.1291 0.1617 0.4235
MusicGen-l OVL 0.3353 0.3275 0.6018
MusicGen-mel OVL 0.0993 0.1423 0.6908
MusicCaps OVL 0.2314 0.2319 0.5549
AudioLDM2 REL 0.005 0.1416 0.1238
MusicLDM REL 0.0662 0.0398 0.1399
MusicGen-l REL 0.2237 0.2034 0.2309
MusicGen-mel REL 0.1831 0.2562 0.2622
MusicCaps REL 0.1035 0.1566 0.3284

Table 5: PCC between human evaluation MOS and different
metrics for the models in Table. The subjective metric (Subj.)
indicates the metric used for PCC computation. 4

2023) conducted human evaluation studies for dif- 476

ferent TTS systems. The study used StyleTTS 477

(Li et al., 2022), MQTTS (Chen et al., 2023), and 478

YourTTS (Casanova et al., 2022) to generate speech 479

for 100 sentences from the LibriTTS dataset (Zen 480

et al., 2019). Each generated sample was rated 481

by 10 raters. We use this dataset and compare 482

PAM with existing metrics. The absolute results 483

are shown in Table 6 and the PCC correlation with 484

human evaluation in Figure 7. On average, PAM 485

correlates better with human perception of speech 486

quality than existing metrics. 487

Figure 7: Absolute PCC between the human evaluation
and metrics for TTS models. The transcripts are sourced
from the LibriTTS dataset. On average, PAM correlates
better with human perception of speech quality than
existing metrics.

Metric StyleTTS MQTTS YourTTS
WER ↓ 18.7 29.35 22.1
SLMScore ↑ 3.62 4.13 3.96
MOSNet ↑ 4.49 3.57 4.01
DM ↓ 3.30 3.90 4.50
PAM ↑ 0.90 0.87 0.81
MOS-N ↑ 3.68 3.66 3.59

Table 6: Evaluating different TTS models using metrics from
the literature. MOS-N indicates MOS scores for the natural-
ness of generated speech.
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The second speech synthesis task we consider is488

Voice Conversion (VC), where the aim is to con-489

vert audio containing the original speech to audio490

containing the target speaker’s voice. For this, we491

use the VoiceMOS 2022 challenge dataset (Huang492

et al., 2022b), specifically the VCC subset. The493

VCC subset includes 3,002 utterances from 79 sys-494

tems. We test PAM on this dataset and compare it495

with existing metrics of MOSNet (Lo et al., 2019),496

MOS-SSL (Cooper et al., 2022), and SpeechLM-497

Score (Maiti et al., 2023). PAM performs worse498

than other speech-based finetuned metrics.499

Source Model Utterance-level System-level
PCC SRCC PCC SRCC

VCC MOSNet 0.654 0.639 0.817 0.796
VCC MOS-SSL 0.891 0.883 0.983 0.964
VCC SLMS. 0.505 0.501 0.863 0.829
VCC PAM 0.389 0.411 0.563 0.593
OOD MOSNet 0.259 0.153 0.537 0.430
OOD MOS-SSL 0.467 0.459 0.357 0.437
OOD SLMS. 0.138 0.224 0.049 0.199
OOD PAM 0.582 0.585 0.634 0.703

Table 7: Utterance-level and system-level correlation of
different metrics with MOS scores. The dataset used
is VCC subset and OOD subset from VoiceMOS. PAM
correlates better with MOS than other metrics in the
Out-of-Domain setup, suggesting better generalization.

On both the setup of TTS and Voice Conversion,500

the literature metrics like MOSNet, and MOS-SSL501

were trained on the train split of data. Therefore,502

all the evaluation setup is in-distribution for the503

existing metrics. To check out-of-distribution per-504

formance, we consider an out-of-domain (OOD)505

subset of the VoiceMOS challenge. the OOD sub-506

set is sourced from the 2019 Blizzard Challenge507

(Wu et al., 2019), and contains 136 Chinese TTS508

samples. The PCC results of metrics are shown in509

Table 7. In the OOD setup, PAM correlates better510

than existing metrics that are not trained on the511

OOD data. This showcases the ability of PAM to512

be a zero-shot audio quality metric.513

Overall, PAM can detect audio quality and distor-514

tions in generated speech. For speech tasks, it falls515

short of task-specific metric, where the generated516

speech is rated based on intelligibility or speaker517

characteristics. This is explained in the Section 7.518

5.4 Noise suppression519

Noise and artifacts negatively impact perceived520

speech quality, e.g., in voice communication sys-521

tems (Reddy et al., 2021a). Deep Noise Suppres-522

sion (DNS) aims at enhancing speech quality by523

suppressing noise. MOS derived from listeners524

DNS-MOS ↑ PAM ↑ PAMavgsim ↑ PAMavg ↑
SRCC 0.9753 0.8785 0.8962 0.9289

Table 8: SRCC of DNS models participating in the ICASSP
2021 DNS challenge for state-of-the-art DNS MOS estima-
tion model and PAM. PAMavgsim and PAMavg use alternative
prompting strategies (see appendix).

judging the output of a DNS model provides a 525

subjective performance metric to develop or tune 526

the model. Machine-Learning based blind MOS 527

estimators such as DNS-MOS have shown to out- 528

perform existing objective metrics for estimating 529

the speech quality of DNS models (Avila et al., 530

2019; Reddy et al., 2021b). We compute PAM on 531

the output of models participating in the ICASSP 532

2021 DNS challenge (Reddy et al., 2021a) and 533

compare it against a state-of-the-art DNS-MOS es- 534

timator (Reddy et al., 2021b). Unlike generative 535

models, DNS involves removing unwanted signals, 536

hence its perceptual quality is impacted both by the 537

quality of the (desired) speech as well as the quality 538

and suppression of noise. We hypothesise that esti- 539

mating such multifaceted quality may benefit from 540

more comprehensive prompts. As a proof of con- 541

cept, we calculate PAM with two prompt averaging 542

strategies (see appendix for details). Table 8 sum- 543

marizes the results in terms of Spearman’s Rank 544

Correlation Coefficient (SRCC) between the aver- 545

age human-labeled MOS of each tested DNS model 546

and the average DNS-MOS or PAM. The SRCC 547

indicates how well the ranking of the tested DNS 548

models in terms of their subjective quality is pre- 549

served (Reddy et al., 2021b). PAM performs com- 550

petitively compared to the state-of-the-art MOS 551

estimator trained specifically for this task. 552

6 Conclusion 553

This paper proposes PAM, a reference-free met- 554

ric for assessing audio quality for any-to-{audio} 555

generation. The metric is zero-shot and does not 556

require task reference embeddings or task-specific 557

finetuning to predict human scores. We extensively 558

evaluate PAM across various distortions and var- 559

ious tasks like text-to-audio, text-to-music, noise 560

suppression, text-to-speech, and voice-conversion. 561

We conduct human listening experiments for each 562

task and check the correlation of PAM with hu- 563

man perception of audio quality. Against existing 564

metrics, PAM correlates better with human percep- 565

tion for the audio and music tasks and performs 566

comparably for speech tasks. To further advance 567

the exploration of audio quality metrics, we will 568

release audio and human listening scores. 569
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7 Limitations570

PAM show correlation with human perception of571

audio quality. For the task of Text-to-Audio genera-572

tion and Text-to-Music generation, PAM has better573

PCC with human perception than existing metrics.574

However, PAM has limitations.575

Speech generation. For speech generation tasks576

like Text-to-Speech and Voice conversion, the PCC577

is lower than existing objective perceptual metrics578

trained for the specific task. One reason for the low579

correlation is that the base model CLAP (Elizalde580

et al., 2023) is not explicitly trained on speech-text581

pairs, let alone multilingual speech. This limits582

the capability of PAM for speech generation tasks.583

But it shows an opportunity area for further adding584

such training pairs to CLAP or other ALM.585

Fine-grained qualities This work focuses on an-586

alyzing a specific prompt (“the sound is clear and587

clean", “the sound is noisy and contains artifacts")588

and contrastive prompting setup for audio quality589

score across audio tasks. However, for specific au-590

dio tasks, changing the prompt might lead to better591

performance. For example, in the TTM task, spe-592

cific prompts about melody, genre, and tune can593

provide information about specific qualities other594

than artifacts.595
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The appendix is organized as follows: Section847

8 covers related work and Section 9 explores ef-848

fect of distortions, Section 10 provides details of849

TTA generation models and listening experiment850

for the task, Section 11 covers TTM generation851

models and listening experiment for the task, Sec-852

tion 12 explains noise suppression task and prompt853

averaging strategy.854

8 Related work855

Speech quality. The early attempts at speech qual-856

ity metrics (eg. PESQ (Beerends et al., 2013a),857

POLQA (Beerends et al., 2013b), ViSQOL (Hines858

et al., 2015)) were developed based on human859

studies. However, the methods were found to be860

sensitive to distortions (Hines et al., 2013; Man-861

junath, 2009). Some of the later works tried to862

improve PESQ and STOI using expensive gradi-863

ent updates (Zhang et al., 2018; Fu et al., 2019).864

DPAM (Manocha et al., 2020) learns a perceptual865

metric by learning a model from crowdsourced hu-866

man judgments asked to answer whether the two867

recordings are identical. They show their metric868

better correlates with MOS tests compared to PESQ869

(Beerends et al., 2013a). However, the metric re-870

quires a large set of human judgments and can871

still generalize poorly to new speakers and con-872

tent. CDPAM (Manocha et al., 2021) aims to use a873

combination of contrastive and multi-dimensional874

representation learning to separately model two875

similarities- content and acoustic. Concurrently,876

SESQA (Serrà et al., 2021) uses 5 complementary877

tasks to improve performance.878

The above speech quality metrics can be used for879

both speech enhancement and TTS. However, for880

TTS, metrics like WER, SpeechLMScore (Maiti881

et al., 2023), MOSNet (Lo et al., 2019) are promi-882

nently used. Voicebox (Le et al., 2023) intro-883

duces Fréchet Speech Distance (FSD) by adapting884

Fréchet distance using self-supervised wav2vec 2.0885

features. (Alharthi et al., 2023) propose an evalu-886

ation technique involving the training of an ASR887

model on synthetic speech and assessing its perfor-888

mance on real speech. The gold standard evaluation889

is subjective metrics based on MOS along the di-890

rection of naturalness and intelligibility.891

Sound quality. TTA generation focuses on syn-892

thesizing general audio based on text descriptions.893

The metrics used for objective evaluation include894

Frechet distance (FD), Frechet Audio Distance895

(FAD), Inception Score (IS), and Kullback–Leibler896

(KL) divergence. All the above metrics require 897

the computation of audio embedding, specifically 898

VGGish (Hershey et al., 2017) for FAD and PANN 899

(Kong et al., 2020b) for others. For subjective eval- 900

uation, two aspects are evaluated. The users are 901

asked to rate the generated samples for their (a) 902

Overall quality (OVL) and (b) relevance to input 903

(REL) on a scale of 1 to 100 or 1 to 5. 904

Music quality. TTM generation focuses on syn- 905

thesizing music based on text descriptions. The 906

objective and subjective metrics used are the same 907

as TTA generation. MusicLM (Agostinelli et al., 908

2023b) also uses MuLan (Huang et al., 2022a) to 909

compute the file-wise similarity between text and 910

audio embeddings. For subjective evaluation, Mu- 911

sicLM uses an A-vs-B human rating task, to check 912

the adherence of generated samples to the text de- 913

scriptions. The users are required to choose be- 914

tween two samples by selecting one of the five 915

answers: strong or weak preference for A or B, and 916

no preference. 917

Audio-Text metrics The existing audio-text met- 918

ric in literature, CLAP score (Liu et al., 2023a), 919

measures the similarity between the caption and 920

the generated audio. The metric measures the rele- 921

vance between audio and text. 922

9 Effect of distortions 923

This section 4.1 shows results on a professionally 924

recorded audio pack. In this section, we vary 925

the source data and check degradation in PAM 926

score. The source data considered is Profession- 927

ally recorded audio, AudioCaps (Sound events, 928

YouTube sourced), MusiCaps (Music, YouTube 929

sourced), and LibriTTS (speech, audiobooks). The 930

four types of distortions used are (1) Gaussian noise 931

with increasing standard deviation (2) Gaussian 932

Noise addition with particular SNR (3) Tanh distor- 933

tion (4) Mu Law compression (5) Reverb. Lastly, 934

we also add Reverb, which by the definition in Sec- 935

tion 2.1 is not considered as an artifact or distortion. 936

Figure 8 shows the effect of distortions on PAM 937

score across different source distributions. We see 938

the PAM score degrading with the addition of noise 939

except for Reverb where it remains constant. 940

10 Text-to-Audio generation 941

10.1 Text-to-Audio models 942

For TTA generation, we use publicly available 943

variants of AudioLDM (Liu et al., 2023a), Audi- 944

oLDM2 (Liu et al., 2023b), AudioGen (Kreuk et al., 945
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Figure 8: Effect of (a) Gaussian Noise (b) Gaussian Noise with SNR (c) Tanh distortion (d) Mu-Law compression
(e) Reverb. on PAM value. The first row uses AudioCaps sourced from YouTube, the second row uses MusicCaps
sourced from YouTube, and the third row uses LibriTTS clean set. The Figure 3 shows effect of distortion for
professionally recorded audio

2022) and MelDiffusion.946

AudioLDM. The model (Liu et al., 2023a) is based947

on latent diffusion models (LDMs) (Rombach et al.,948

2022). The latent space is obtained by apply-949

ing a variational autoencoder (VAE) to the mel-950

spectrograms of audio clips. The LDMs use UNet951

conditioned on CLAP text embeddings. During952

training, the LDMs learn to reconstruct the au-953

dio embeddings from Gaussian noise, while being954

guided by the text embeddings. During sampling,955

the LDMs generate audio embeddings from the text956

embeddings and then decode them into waveforms957

using the VAE followed by a HiFi-GAN (Kong958

et al., 2020a) vocoder. Our experiments use the959

model versions hosted on huggingface with 100960

denoising steps to generate audio.961

AudioLDM2. The model consists of three main962

components: a text encoder, a GPT-2 decoder, and963

a latent diffusion model. The text encoder uses two964

pre-trained models, CLAP and Flan-T5, to obtain965

text embeddings that capture both the alignment966

and the semantics of the text. Then GPT-2 gener-967

ates a sequence of new embedding vectors, called968

the language of audio (LOA), based on the text em-969

beddings. The latent diffusion model de-noises a970

random latent vector into an audio waveform, con-971

ditioned on the LOA and the Flan-T5 text embed-972

dings. The model is trained with self-supervised973

pre-training and fine-tuning on different audio do-974

mains. Our experiments use the model versions975

hosted on huggingface with 100 denoising steps to 976

generate audio. 977

AudioGen. The model is a Transformer decoder 978

operating over a residual vector quantized repre- 979

sentation (RVQ) of the audio signal. The model 980

generates audio from text by using textual features 981

as conditioning signal. Our experiments use the 982

model versions hosted on huggingface (Kreuk et al., 983

2022). The model uses Encodec (Défossez et al., 984

2022) to obtain the RVQ from audio, T5 (Raf- 985

fel et al., 2020a) to obtain textual features and is 986

trained using the delay-pattern technique (Copet 987

et al., 2023) to model the RVQ. 988

MelDiffusion. The model is based on using the 989

diffusion model on spectrograms instead of latent 990

space. The text encoder used is T5-large (Raffel 991

et al., 2020b) and the diffusion model is DDIM 992

based on progressive distillation (Salimans and Ho, 993

2022). The base UNet is inserted with additional 994

self-attention layers to produce coherent 30-second 995

or more audio while training on only 5-second au- 996

dio. For inference, we use 100 denoising steps to 997

generate audio. 998

10.2 Human Listening experiment 999

We evaluated text-to-audio generation using Ama- 1000

zon Mechanical Turk (MTurk). In this evaluation, 1001

participants were asked to rate the quality of the 1002

audio and its relevance to the provided description. 1003

The ratings were given on a Likert scale from 1 1004

13



(poor quality or minimal relevance) to 5 (excel-1005

lent quality or perfect match with the description).1006

Detailed instructions given to participants are out-1007

lined in Table 9, and the specific questions posed,1008

along with their response options, are listed in Ta-1009

ble 10. For this test, we chose 100 random samples1010

from the AudioCaps dataset. We then generated1011

audio for these samples using four different models:1012

MelDiffusion, AudioLDM2-l, AudioLDM-l, and1013

AudioGen-m. resulting in 500 samples. Each of1014

these samples was rated by 10 different participants,1015

all of whom were located in the United States, re-1016

sulting in a total of 8,000 scores evaluating both the1017

quality and relevance of the audio. To ensure the1018

quality and reliability of the data, we applied a rig-1019

orous filtering process to the responses. If a partici-1020

pant’s scores showed a standard deviation of zero1021

for more than five samples, their responses were1022

excluded from the analysis. Also, any responses1023

from participants who took less than 10 seconds to1024

complete their ratings were also excluded. Further-1025

more, we will release the collected data, both raw1026

and filtered.1027

11 Text-to-Music generation1028

11.1 Text-to-Music models1029

For TTM generation, we use AudioLDM2-m1030

(Liu et al., 2023b), MusicLDM (Agostinelli et al.,1031

2023b), and MusicGen (Copet et al., 2023).1032

AudioLDM2-m. The architecture is from Audi-1033

oLDM2 (Section 10.1) but trained on music.1034

MusicLDM. The model adapts Stable Diffusion1035

and AudioLDM architectures to the music domain.1036

For this, the CLAP and vocoder components1037

are retrained along with the introduction of a1038

beat-tracking model and different mixup strategies.1039

The mixup strategies encourage the model to1040

generate music that is diverse yet grounded in the1041

requested style.1042

MusicGen. The model is similar in architecture1043

and training objective as AudioGen, described1044

in 10.1, but trained on music rather than audio1045

events. Our experiments use the model versions1046

hosted on huggingface using the default provided1047

configuration. Namely, each model generates1048

music with a 32kHz sampling rate, discretized1049

using an Encodec tokenizer with 4 codebooks1050

where each token is sampled at 50 Hz. The token1051

generation uses top-k sampling where k = 250.1052

1053

Table 9: Guidelines Given to Amazon Mechanical Turk
Participants for TTA task.

Task Instructions
Your task is to evaluate the quality and text rele-
vance of audio clips. These clips include various
sounds and speech such as dog barking and rain.
You will first rate the sound quality, and then assess
its relevance to the text description.

Definition of quality in this test:
In this evaluation, ’quality’ refers to the fidelity of
the generated audio in replicating real-life sounds.
Our focus is on assessing a text-to-audio generation
system, which converts textual descriptions into
corresponding audio outputs. The audio output
may include real-world noises, such as ambulance
sirens, dog barking, and screaming. The primary
goal is to assess the realism of these sounds in the
audio.

Important Note:
Please be aware that during this audio quality
test, you may encounter segments where speech
is present. It’s normal and expected that the speech
might not be intelligible. This is not a concern for
this specific test. Your main focus should be on
evaluating the overall audio quality, not the intelli-
gibility of the words spoken.

Warning:
Please be advised that during this audio test, some
segments may feature very loud sounds. We rec-
ommend adjusting your volume to a comfortable
level before beginning the test and being prepared
to adjust it as needed during the test. Your safety
and comfort are important to us. If at any point you
find the audio uncomfortably loud, please feel free
to lower the volume or pause the test to readjust
your settings.

11.2 Human Listening experiment 1054

To evaluate the effectiveness of PAM in TTM gener- 1055

ation, we conducted a human evaluation test using 1056

MTurk. In this test, participants were asked to rate 1057

the quality of music generated and its relevance to 1058

a given description. These ratings were based on 1059

a Likert scale ranging from 1 (poor quality or min- 1060

imal relevance) to 5 (excellent quality or perfect 1061
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Table 10: Questions and Response Options Presented to
MTurk Participants for TTA task.

Please listen carefully to the following audio then
answer the two questions below.

How good does the audio sound to you in terms
of quality and realism?

1 (Poor) The audio quality is very low, making it
hard to discern the intended sounds.
2 (Fair) Audio quality is below average, but the
intended sounds are somewhat recognizable.
3 (Good) The audio has decent quality with clear
and recognizable sounds.
4 (Very Good) Audio quality is high, closely re-
sembling real-world audio with minimal distortion.
5 (Excellent) The audio quality is highly realistic
with perfect fidelity.

How well does this audio match with the pro-
vided description?
Description: audio description.

1 (Poor) Audio has minimal or no relevance to the
text.
2 (Fair) Audio shows limited relevance to the text.
3 (Good) Audio is adequately relevant to the text.
4 (Very Good) Audio is highly relevant to the text.
5 (Excellent) Audio perfectly matches the text.

match with the description), as detailed in Table1062

12 and 11. For this purpose, we selected 100 ran-1063

dom samples from MusicCaps dataset. For each1064

sample, we generated music based on a text descrip-1065

tion using four different models: AudioLDM2-m,1066

MusicLDM, MusicGen-l, MusicGen-mel, and the1067

original MusicCaps model resulting in a total of1068

500 audio samples. To ensure a comprehensive1069

evaluation, each sample was rated by 10 different1070

participants, all of whom were located in the United1071

States, culminating in 8,000 individual scores as-1072

sessing both quality and relevance. In order to1073

maintain the integrity of our data, we applied a fil-1074

tering process similar to the one used in our TTA1075

generation test. We excluded any participant whose1076

ratings showed no variation (a standard deviation1077

of zero) for more than five samples, or who com-1078

pleted the rating in less than 10 seconds. We will 1079

release both the raw and filtered datasets for human 1080

evaluation. This will allow for further analysis and 1081

transparency in our findings. 1082

Table 11: Guidelines Given to MTurk Participants for
TTM task.

Task Instructions
Your task is to rate the overall quality of the music
and the relevance of the music with the text descrip-
tion. Listen to each clip and first evaluate its sound
quality. Then, assess how well the music matches
the provided description.
Important Note:
During this music evaluation test, you might find
descriptions mentioning a singer or vocals. How-
ever, please note that the actual audio may consist
only of instrumental music without any singing.
This discrepancy is normal and expected for this
test. Even if the description refers to singing, your
focus should be on assessing the music’s quality
and how well the instrumental audio aligns with
the overall theme of the description, irrespective of
the presence of singing.

12 Noise suppression 1083

12.1 Problem description 1084

DNS aims at enhancing speech for voice communi- 1085

cation by removing unwanted noise from a record- 1086

ing. However, DNS typically introduces its own 1087

processing artifacts and distortions that may de- 1088

grade the desired speech signal or cause unpleasant 1089

artifacts in the background noise that is not sup- 1090

pressed. Therefore, the performance of a DNS 1091

model in terms of perceptual quality depends on 1092

a variety of factors. To measure the quality of 1093

DNS systems, a subjective listening test can be 1094

performed where human judges assign ratings to 1095

the model output, typically from 1 (worst) to 5 1096

(best). The Mean Opinion Score (MOS) for an 1097

output sample is obtained by averaging the human 1098

ratings. As an alternative to costly subjective test- 1099

ing, machine-learning models can be trained on 1100

DNS output samples and their corresponding MOS 1101

labels to perform blind DNS MOS estimation. Var- 1102

ious DNS models or model variations can be com- 1103

pared in terms of their average subjective or es- 1104

timated MOS. In Section 5.4 the performance of 1105

15



Table 12: Questions and Response Options Presented to
MTurk Participants for TTM task.

Please listen carefully to the following audio then
answer the two questions below.

How good is the quality of the music?

1 (Poor) The music quality is very low, with poor
clarity and composition.
2 (Fair) Music quality is below average, with some
elements of composition recognizable.
3 (Good) The music has decent quality with clear
composition and a pleasant listening experience.
4 (Very Good) Music quality is high, offering a
rich and engaging listening experience.
5 (Excellent) The music quality is outstanding with
excellent clarity, composition, and overall appeal.

How well does this music match with the pro-
vided description?
Description: audio description.

1 (Poor) Music has minimal or no relevance to the
description.
2 (Fair) Music shows limited relevance to the de-
scription.
3 (Good) Music is adequately relevant to the de-
scription.
4 (Very Good) Music is highly relevant to the de-
scription.
5 (Excellent) Music perfectly matches the descrip-
tion.

PAM for ranking various DNS models is compared1106

to a state-of-the-art DNS MOS estimation model.1107

The comparison is performed on the blind test set1108

of the ICASSP 2021 DNS challenge processed by1109

over 20 different DNS models. The state-of-the-art1110

DNS-MOS estimator and PAM are compared in1111

terms of the Spearman’s Rank Correlation Coeffi-1112

cient (SRCC) computed using the MOS averaged1113

for each model. The authors of DNS-MOS found1114

this to be a robust metric for evaluating the perfor-1115

mance of a MOS estimator for comparing different1116

DNS models.1117

12.2 Prompt averaging 1118

Given the complex and multifaceted nature of 1119

the perceptual quality of DNS output samples, 1120

we experiment with two simple prompt averaging 1121

schemes that aim at a broader and more robust 1122

quality estimation: PAMavgsim and PAMavg. The 1123

underlying hypothesis is that averaging over multi- 1124

ple quality-related prompts may yield a less noisy 1125

and perceptually broader similarity metric than the 1126

two primary prompts (h1 and b1 below) that focus 1127

specifically on the presence or absence of noise and 1128

artifacts. To this end, we introduce two additional 1129

prompts directly querying sound quality: 1130

• h1: “the sound is clear and clean” 1131

• b1: “the sound is noisy and with artifacts” 1132

• h2: “the sound quality is good” 1133

• b2: “the sound quality is bad” 1134

To compute PAMavgsim, we average the dot prod- 1135

ucts before taking the softmax: 1136

zh,avg =
1

K

K∑
i=1

uhi · v (1) 1137

for K high quality prompts hi. zb,avg is computed 1138

analogously using low quality prompts bi. 1139

PAMavgsim is then given as 1140

ph =
ezh,avg∑2
j=1 e

zj,avg
. (2) 1141

PAMavg is computed as PAM averaged over mul- 1142

tiple prompt pairs: 1143

ph,avg =
1

K

K∑
i=1

phi, (3) 1144

where phi is computed via Eq. 2 using a prompt 1145

pair hi and bi. In our preliminary experiments 1146

we found the most effective prompt pairs to be 1147

[h1, b2] and [h2,b1], though this finding may not 1148

generalize to other tasks or datasets. Note that the 1149

proposed simple averaging schemes generalize to 1150

arbitrary numbers and combinations of prompts. 1151

However, we leave a more thorough investigation 1152

of prompting strategies for future work. 1153
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