
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEMYSTIFYING LATENT FORGETTING IN FEDERATED
LEARNING

ABSTRACT

Federated Learning (FL) enables collaborative model training across decentralized,
isolated clients in a privacy-preserving manner, but at the cost of limited control
over the data and the training procedure. One of the key challenges in FL is the
spatial data heterogeneity, which is due to the stratified nature of the underlying
data distributions between clients. In addition, FL systems also undergo periods
of time in which certain features disappear from the training data pool, resulting
in the less studied but critical problem of temporal-spatial data heterogeneity.
Such non-uniformity in training data across time introduces a new feature-level
latent forgetting that is fundamentally different from the well-studied task-level
catastrophic forgetting in continual learning. This latent forgetting, if not detected
and mitigated timely, can result in poor model performance, especially for certain
learning features. The privacy requirements and temporal-spatial data heterogeneity
of FL make the detection and mitigation of latent forgetting challenging. In this
paper, we analyze latent forgetting and propose FedMemo, a privacy-preserving
FL framework to control its impact. FedMemo employs an automated detection
mechanism to detect latent forgetting in real time with preserved privacy. FedMemo
further introduces a proxy-based 2-step aggregation approach to mitigate the impact
of latent forgetting. We evaluate FedMemo in a diverse set of vision and language
classification tasks in various FL settings, and show that it outperforms state-of-the-
art methods by up to 20.06% in CIFAR-10 and SVHN, and up to 25.69% in GLUE,
effectively mitigating the challenges posed by temporal-spatial data heterogeneity.

1 INTRODUCTION

Federated learning (FL) McMahan et al. (2017) enables collaborative model training across distributed
devices while preserving the privacy of local data, which makes it attractive in edge computing Voigt
& Von dem Bussche (2017). In a classic learning process of FL, clients perform local training and
send model updates to a central server. The server aggregates the updates and broadcasts the updated
global model to clients. This process maintains data privacy as the server never accesses clients’
raw data, labels, or distribution details. There is no direct information exchange among clients
either. Although FL addresses the privacy issue, it introduces several practical training challenges.
One well-known major problem is spatial data heterogeneity Kairouz et al. (2021) Li et al. (2020),
where client data is not independent and identically distributed (non-IID) due to variations in feature
distributions, label proportions, or local environments resulting in divergent local updates that impairs
global model convergence McMahan et al. (2017); Shoham et al. (2019); Xu et al. (2022); Kairouz
et al. (2021); Li et al. (2020).

In the real-world FL systems, the training process may encounter dynamic and unpredictable envi-
ronments due to intermittent client connectivity, shifting data availability, and dynamic data content.
These changes could result in a shift in the trainable features available at different training periods.
For example, weather sensors can go months without observing snowfall, smartphones may run
out of power or go out of network. Such non-stationarity feature availability leads to instability in
optimization, due to the stochastic gradients computed on different clients become biased estimators
of the global gradient, resulting in model drift, slower convergence, and degraded generalization per-
formance Xu et al. (2022); Capanema et al. (2025). Such trainable feature shift essentially introduces
another dimension of heterogeneity, which we name temporal data heterogeneity. With temporal
data heterogeneity, the model must adapt to the current available feature, while also maintaining its
performance on the temporally or permanently unavailable features to avoid forgetting the already
learned features Kirkpatrick et al. (2017); McCloskey & Cohen (1989). Combined with spatial data
heterogeneity, we call the heterogeneity that exists in both a particular training round and across
training rounds temporal-spatial data heterogeneity. Such non-uniformity in training data across

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

clients and training rounds introduces a new feature-level forgetting, which can result in poor model
performance if not detected and mitigated timely.

It is important to point out that in traditional centralized learning systems, the challenges in training
due to data shift have been extensively studied in the field of continual learning (CL) Li & Hoiem
(2017); Li et al. (2025) (also referred to as lifelong learning or incremental learning Aljundi et al.
(2017); Castro et al. (2018)). Specifically, such a loss in learned features is called catastrophic
forgetting, which occurs when models overwrite previously acquired knowledge after training on new
task McCloskey & Cohen (1989); Kirkpatrick et al. (2017). However, in regular FL training, the task
is the same, the temporally or permanently unavailable features during training is usually unexpected
and uncontrollable. In addition, methods focusing on centralized training such as Aljahdali et al.
(2024); Bhope et al. (2025); Li et al. (2025) often assume access to task boundaries, sequential task
ordering, task-specific metadata, assumptions that rarely hold in FL environment.

To clearly distinguish from the catastrophic forgetting studied in the traditional continual learning
systems, we denote the forgetting in FL system latent forgetting, which occurs due to the temporal-
spatial data heterogeneity we discussed earlier. We further categorize latent forgetting into two types:
short-term latent forgetting, where feature segments are missing temporarily (e.g., due to seasonal
trends), and long-term latent forgetting, where some features never show up in the rest of training.
Unlike the catastrophic forgetting, which is relatively easy to detect as it usually happens during task
switching. The latent forgetting in FL is hard to detect due to the privacy requirement that prevents
measuring the changes in data or feature distribution across training.

In this paper, we introduce a FL framework FedMemo for effectively detecting and mitigating latent
forgetting in FL without violating privacy. We first introduce a privacy-preserving metric for detecting
latent forgetting in Federated Learning (FL), which only uses global model weight updates without
requiring access to private client information. We then leverage synthetic proxy data generated via
a server-side GAN, or optionally via a generative model on clients, to preserve previously learned
knowledge. We further design a novel two-step aggregation method to effectively incorporate proxy
gradients to mitigate latent forgetting. We formulate temporal-spatial data heterogeneity and conduct
theoretical analysis to show how latent forgetting would result in poor performance and how our
2-step aggregation with synthetic proxy data can mitigate such impact.

Through extensive evaluations, we demonstrate that on CIFAR-10 and SVHN, FedMemo outperforms
a strong baseline method that we adapted from state-of-the-art Federated Class Incremental Learning
(FCL) by up to 20.06%. On GLUE benchmarks, FedMemo achieves a 25.69% better average
accuracy compared to the best existing FL aggregation methods, while still maintaining the same
communication overhead and incurring minimal additional computation cost.

2 RELATED WORKS

General methods for catastrophic forgetting - Many studies have tackled catastrophic forgetting
in neural networks, such as EWC Kirkpatrick et al. (2017), which emphasizes important weights
for previous tasks but assumes well-defined task-level data distributions. Memory-based methods
Aljundi et al. (2017) also show success in preserving knowledge across tasks, but they require storing
raw or replay data, raising privacy concerns in FL. In FL, studies like Shoham et al. (2019); Xu et al.
(2022) partition clients based on classes but limit participation to a few consecutive rounds, which do
not address the dynamic and periodic participation typical of real-world FL.

Distillation-based methods for mitigating forgetting - Paper Lee et al. (2022) addresses forgetting
by distilling global knowledge from client models regarding "not-true" classes, but introduces a
hyperparameter to balance new knowledge acquisition with preserving previous knowledge, without
considering the risk of overfitting in high heterogeneity levels. Dong et al. (2023) proposes LGA,
which balances local class imbalances using gradient-adaptive compensation and semantic distillation
losses, while employing a proxy server to collect perturbed images from clients in FCL. However,
synthetic data in such methods poses privacy risks as received from clients. Lin et al. (2020); Sattler
et al. (2021); Seo et al. (2022) use unlabeled proxy data to aggregate models from local clients
with different architectures, which differs from our approach. Recent paper Aljahdali et al. (2024)
addresses forgetting by having each local client distill knowledge from the previous global model, but
it only considers spatial data heterogeneity and does not account for data shifts caused by temporal-
spatial heterogeneity. The state-of-the-art methods for FCL, Babakniya et al. (2023), proposes MFCL

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which uses data-free knowledge distillation Haroush et al. (2020), but it assumes predefined task-level
uniform data distributions, and fixed task transitions, which are not realistic for FL settings. It is
also based on accuracy decay, which can be influenced by various factors like overfitting or tuning
and is only explored on vision tasks. We compare FedMemo against MFCL customized for FL, and
demonstrate that our approach consistently outperforms it.

GAN-based methods for mitigating forgetting - Methods like FeGAN Guerraoui et al. (2020),
FedGAN Rasouli et al. (2020), and MD-GAN Hardy et al. (2019) leverage GANs to address spatial
data heterogeneity and reduce well-known catastrophic forgetting in federated learning. however,
they push significant computational or communication burdens on clients. CAP Zhang et al. (2023)
introduces device-to-edge communication, requiring additional infrastructure and protocol complexity
beyond the standard FL setup. Some works Li et al. (2022) rely on clients uploading locally generated
synthetic data to form a shared global dataset, but this approach scales poorly and incurs high resource
and communication costs. Despite these efforts, existing methods largely ignore latent forgetting in
FL caused by temporal-spatial heterogeneity—a critical gap we aim to address.

All the existing works only focus on conventional spatial heterogeneity while overlooking the
temporal-spatial heterogeneity impact in practice. We address this issue by introducing a temporal-
spatial heterogeneity aware approach.

3 FL LATENT FORGETTING DETECTION AND MITIGATION

3.1 PROBLEM FORMULATION AND NOTATIONS

We consider a standard FL setup with K clients. Each client i has a private data distribution P
(t)
i (x, y)

at round t, where x ∈ X denotes an input from the feature space X and y ∈ Y = {1, . . . , C}
denotes the corresponding class label. The model is represented by a function fw : X → S
parameterized by w, where S = {(s1, . . . , sC) ∈ RC | sj ≥ 0,

∑C
j=1 sj = 1} is the probability

simplex over the C classes. For an input x, the model outputs a vector of class probabilities
in S. The loss function of client i Karimireddy et al. (2020); Zhao et al. (2018) is defined as:
L(t)
i (w) = E

(x,y)∼P
(t)
i

[
ℓ(fw(x;w), y)

]
where ℓ(., .) is the per-sample loss function (e.g. cross

entropy loss). The server aggregates local updates from the participating clients Kt ⊆ {1, . . . ,K}
in round t using weighted averaging: wt+1 =

∑
i∈Kt

wt+1
i · Ni∑

j∈Kt
Nj

where Ni is the number of

samples held by client i, and wt+1
i denotes its updated local model parameters McMahan et al. (2017).

We next define following heterogeneities.

Spatial data heterogeneity arises when different clients have non-identical distributions: P t
i (x, y) ̸=

P t
j (x, y), for some clients i ̸= j, Note that unlike most federated continual learning studies where

spatial heterogeneity is considered only as the conditional feature distributions P t
i (x | y) ̸= P t

j (x | y)
(such as Huang et al. (2022)), FL also consists of labels skew Pi(y)

t ̸= P t
j (y)

Temporal data heterogeneity occurs when the distribution of a single client evolves over rounds,
causing seasonal shifts, feature disappearance, or gradual drifts, where P

(t)
i (x, y) ̸= P

(t−1)
i (x, y).

Temporal-spatial heterogeneity derives from both spatial and temporal heterogeneities where
P

(t)
i (x, y) ̸= P

(t′)
j (x, y), (i, t) ̸= (j, t′). The above heterogeneities impact how the global model

is trained. Spatial heterogeneity implies that some clients may never observe parts of the data. By
temporal heterogeneity, some samples or features may disappear within the same client over rounds.
Together, temporal-spatial heterogeneity causes under-representation in the aggregated updates,
leading to the global model’s gradual loss of sensitivity to infrequent features, even without abrupt
task transitions, which is essentially latent forgetting.

Latent forgetting differs from catastrophic forgetting in CL Shoham et al. (2019); Xu et al. (2022);
Durmus et al. (2021); Babakniya et al. (2023), where tasks are predefined and old classes are replaced
by new ones at known boundaries. In FL, latent forgetting emerges gradually due to uneven, client-
dependent data availability over time, which biases local gradients away from under-represented
regions of data distribution and causes the global model to drift without the introduction of entirely
new tasks or classes. Latent forgetting can be of two types: short-term, caused by temporary drops
in data, and long-term, where under-representation persists over many rounds leading to lasting
performance degradation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 FEDMEMO

Aggregate

Synthetic proxy

Global updates

Step 2 aggregation

GAN Aggregate

Client 1

Client 2

Client k

...

Global updates

Synthetic proxy Step 2 aggregation

Global
 model Generator

Client side FedMemoServer side FedMemo

Figure 1: Overview of FedMemo with server-side approach and client-side approach.
We now present an overview of our proposed framework, FedMemo, a proxy-based 2-step aggregation
method to mitigate latent forgetting in FL, applicable on both server and client sides (Figure 1).
Each round begins with standard FL training and aggregation, which we call step-1. The server then
computes weight update variance (from the aggregated updates) to monitor latent forgetting. If a
decreasing trend is detected, either server-side or client-side FedMemo is triggered (see details in
Section 4.1 and Appendix B). In server-side mode, the server trains the global model on synthetic
proxy data (generated via GAN) and combines the resulting update with step-1 weights through
another aggregation step, which we refer to as step-2 aggregation. The final model after this step is
shared with clients. In client-side mode, the server sends a generator to clients, to generate synthetic
data and train it. Clients return updates, which the server again integrates via step-2 aggregation. The
reasoning behind this 2-step process is that at step-1 aggregation, the global model is specialized
in the real data and does not learn the decision boundary for the missing data. In order to prevent
the model reducing ability to generalize representations for the missing data, the server applies the
step-2 aggregation to trade off between learning the remaining and missing data. The final weights is
formulated as:

wt+1
2step =

∑
i∈Kt

Niw
t+1
i +Npw

t+1
p∑

i∈Kt
Ni+Np

, wt+1
p = wt+1 − ηGp(w

t+1), (1)

where Gp(w
t+1) := E(x,y)∼Pp

[∇wℓ(f(x;w
t+1, y)], Pp is the distribution, Np is the proxy data size.

Prior work on synthetic data in FCL Arjovsky et al. (2017); Rasouli et al. (2020); Babakniya et al.
(2023) blindly mixes generated and real data at the client side without adapting to distribution shifts
or knowing when to generate and use proxy data. In contrast, FedMemo separates proxy training
into a second step which offers two key advantages: (1) it allows the model to revisit forgotten
knowledge without interfering with ongoing local learning, reducing conflicting gradient directions
and improving training stability; and (2) it enables proxy training on the server side, reducing client
resource constraints. Proxy data in FedMemo is not blindly used, clients receive the generative model
only when the server detects distribution shifts, as described in Section 3.4. We discuss the limitations
of our framework in Appendix H.

3.3 THEORETICAL ANALYSIS

We first analyze how feature unavailability due to temporal-spatial heterogeneity causes performance
degradation and latent forgetting in FL, and then show how the proposed FedMemo with the 2-step
aggregation mitigates this issue. Consider a reference FL baseline without any heterogeneity. For a set
of clients Kt ⊆ K participating in round t, let Nref

i denote the size of data in client i in the baseline
and N t

i size of it after data encounters non-stationary availability . P ref
i (x, y) and P t

i (x, y) are the

distribution for client i for the baseline and the feature unavailability. We define αref
i =

Nref
i∑

i∈Kt
Nref

i

,

αi =
Nt

i∑
i∈Kt

Nt
i

, and ∆αi = αref
i − αt

i the change in weights due to unavailable features in data

distribution. Let Gref
i (wt) and Gi(w

t) denote local gradients under the reference and unavailable
feature distributions, and let Gref (wt) and G(wt) be the aggregated global gradients. We assume
that round t is the first round where the temporal-spatial heterogeneity bias appears and compare the
reference loss under the reference update wt+1

ref and update wt+1 for unavailable features case.

Proposition 3.1 Let wt+1
ref , w

t+1 denote the reference update and model update with unavailable

feature. where Gref
i (wt), Gi(w), G

ref (wt), G(wt) denote the client and global gradients. Then,

Lref(wt+1)− Lref(wt+1
ref) = η

∑
i∈Kt

αref
i ⟨Gref(wt),∆Gi(w

t)⟩
+η

∑
i∈Kt

∆αi⟨Gref(wt), Gi(w
t)⟩+R(2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where ∆Gi(w
t) := Gref

i (wt)−Gi(w
t),∆αi := αref

i − αi, and R(2) = O(η2)

Detailed proof of Proposition 3.1 can be found in Appendix C.1. The first term represents class
deficit (the effect of under-represented classes), and the second term corresponds to the reweighting
bias arising from shifts in client weights due to changing data quantities, i.e. temporal heterogeneity.
The second-order remainder and can be neglected since the learning rate is usually small and O(η2)
decays fast. We can bound the reweighting bias using the triangle inequality and Cauchy–Schwarz by∥∥Gref(wt)

∥∥ ·∑i∈Kt
|∆αi| · ∥Gi(w

t)∥ . Even if the client weights change only slightly due to feature
unavailability causing temporal-spatial heterogeneity |∆αi| are small, the reweighting bias can be a
small correction term, But the first term is still dominated by class deficits. For under-represented
classes, ∆Gi(w

t) measures the reduction in gradient contribution due to missing data in client i.
Gi(w

t) is smaller than Gref
i (wt) because Gi(w

t) under-represents those class gradients, therefore
∆Gi(w

t) which captures the deficits of those missing gradients aligns positively with Gref and
reinforces the magnitude of the loss gap. However, for the well represented classes, ∆Gi(w

t) is
small as they are close to the reference gradients and even if negative, it’s smaller compared to the
class deficits. So, from proposition 3.1 we have the following remark:

Remark 3.1 The reference loss evaluated at the weights for the model with unavailable features
increases relative to the reference-update weights and causes latent forgetting.

Next we show how 2-step aggregation mitigates this latent forgetting.

Proposition 3.2 let wt+1
2step, Gp(w

t+1) the 2-step updates and updates for the unavailable features

model where Gp(w
t+1) is the proxy gradient and β =

Np∑
i∈Kt

Ni+Np
, Then,

Lref (wt+1
2step)− Lref (wt+1) = −η(1− β)⟨Gref (wt+1), Gp(w

t+1)⟩+R(2) (2)

where R(2) = O(η2(1− β)2).

Detailed proof of Proposition 3.2can be found in Appendix C.2. The first-order term is negative if
Gp(w

t+1) aligns with Gref (wt+1) since −η(1 − β) < 0 and then 2-step aggregation reduces the
reference loss. The remainder O(η2(1 − β)2) is relatively small and negligible. According to the
cosine similarity,

cos(θ) =
⟨Gp(w

t+1), Gref (wt+1)⟩
∥Gp(wt+1)∥ ∥Gref (wt+1)∥

where cos(θ) determines the quality of the proxy data and when cos(θ) > 0, the proxy gradient helps
mitigate forgetting.

3.4 FL LATENT FORGETTING DETECTION

Spatial heterogeneity in FL is typically coarse-grained and static, however, temporal-spatial hetero-
geneity is fine-grained and dynamic, as a result of evolving data distributions—e.g., features or classes
becoming under-represented or unavailable over time. This temporal shift makes it significantly
harder to detect than spatial heterogeneity alone. Most state-of-the-art methods detect only static
spatial heterogeneity, assuming data distributions remain fixed throughout training. For instance,
Yuan et al. (2022) models spatial variation but ignores temporal shifts. While MFCL Babakniya et al.
(2023) and Yu et al. (2025) in FCL considers distributional changes, they assumes synchronized,
fixed shifts across clients at sequential task boundaries. In reality, FL often involves asynchronous,
uncoordinated feature shifts that are overlooked by these assumptions. Therefore, existing methods
for detecting temporal-spatial heterogeneity are inadequate. Next, we propose a novel metric that
identifies latent forgetting resulting from this temporal-spatial heterogeneity.

Weight update variance: Let ∆w(t) = (wt+1)− (wt) = −η∇L(wt) represent the weight update
where ∆w(t) = [∆w

(t)
1 ,∆w

(t)
2 , . . . ,∆w

(t)
d] and d is the total number of parameters, then the weight

update variance is:

WV (t) = 1
d

∑d
j=1(∆w

(t)
j − µ(t))2, µ(t) = 1

d

∑d
j=1 ∆w

(t)
j

When short-term or long-term latent forgetting occurs, clients train on heterogeneous, limited data.
Due to temporal-spatial heterogeneity, gradients from missing classes diminish, causing local updates

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Rounds

0.01

0.02

0.03

0.04

W
V

(a)

0 50 100 150 200
Rounds

0.10

0.12

0.14

0.16

0.18
(b)

0 50 100 150 200
Rounds

0.14

0.16

0.18
(c)

0 50 100 150 200
Rounds

0.10

0.12

0.14

0.16

0.18
(d)

= 0.1
= 0.5
= 1

Figure 2: Weight update variance for (a) full missing data of 5 classes, (b) gradual and partial missing
data for 3 clients, (c)gradual and partial feature unavailability for only 1 client, and (d) gradual and
partial feature unavailability with different Non-IID levels - CIFAR10.

to shrink in those directions. Consequently, global updates focus more on well-represented classes,
steering the model away from unavailable features of under-represented classes and resulting in poor
generalization across the full data distribution.

We illustrate this with empirical observations. Figure 2(a) shows weight update variance on CIFAR-
10 with removing of 5 classes between rounds 100–130 (removing their features entirely from the
training pool). Figures 2(b,c) depict gradual unavailability of 30% to 90% in two classes (1 and 5) on
3 and 1 clients. Figure 2(d) shows how the detection metric behaves under varying Non-IID levels. As
clients train on limited data, their updates align more on the limited features, reducing weight update
variance across rounds. This drop signals latent forgetting, reflecting low update diversity using only
recent server values. Additional analyses of client and proxy gradient variance and cosine similarities
are in Appendix G. As a result, weight update variance captures latent forgetting in FL by reflecting
the gradual loss of under-represented data impact in real time. Our approach is privacy-preserving
and does not require sharing local weights. It also complies with differential privacy constraints, as
detailed later in this Section.

Proxy dataset generation: In practical FL scenarios, proxy datasets are commonly used to design
model architectures and tune global hyperparameters. These datasets are typically sourced from
public repositories or collected with user consent, and are often provided by model developers during
the initial setup and configuration phases. But this proxy data are usually small in size, so we use it to
train the GAN in server. Following Zawad et al. (2025) the training data for generator contains 5000
samples and are excluded from the training set for FL. For the client side method, a similar generative
model to the one in the Qi et al. (2023) is used in the server. Note that our client side method is
different than MFCL, as FedMemo does not mix the generated synthetic data to the local real data
and use a 2-step aggregation by training the real and synthetic data separately. For the GLUE dataset,
we use the method from Meng et al. (2022), a zero-shot data generation approach. Additional details
on the data generation process are provided in Appendix D.

Table 1: Summary of experimental baselines and proposed methods
Method Description
No feature unavailability (baseline) No changes in data and no forgetting - FedAvg
No feature unavailability + proxy
(baseline) No changes in data and trained with added proxy data

FL aggregation methods SCAFFOLD, FedProx
SOTA forgetting prevention in FCL MFCL (only applicable for vision datasets)
Client side FedMemo (ours) clients’ generated synthetic data with 2-step aggregation.
Server side FedMemo (ours) GAN-generated data in server with 2-step aggregation.

Privacy: We specially emphasize on not using any private information about the clients including
data distribution, number of data, number of classes, etc at any time during training. To improve
the privacy, FedMemo can be implemented using privacy protection methods such as differential
privacy (DP) Wei et al. (2020) to defend against attacks that attempt to extract private information
about clients. Note that FedMemo is using aggregated weights and can be combined with DP. In
FedMemo first aggregation step, each client uses a local (ϵ, δ)-DP algorithm where ϵ bounds the
influence each client may have on the algorithm’s output and δ defines the probability that this limit is
exceeded. With random client selection (rate q = |kt|

|K|), the privacy of the round would be (O(qϵ), qδ)

as standard FL. In the second step, server updates the model using synthetic proxy data Dp and
is initialized from wt+1. This step is independent of clients data and does not require additional
privacy-preserving technique, since it does not impact the client level privacy (if synthetic data is on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

client side, similar privacy as step 1 is applied). Final model w′
t+1 includes a differentially private

aggregation over clients data and updates from synthetic proxy data and will remain (O(qϵ), qδ)-DP.

4 EVALUATIONS

Datasets, models, and hyperparameters - We evaluate our method on CIFAR-10 Krizhevsky et al.
(2009), SVHN Netzer et al. (2011), and GLUE tasks (CoLA, SST-2, MRPC, QQP, MNLI, QNLI,
RTE) Wang et al. (2018). For CIFAR-10 and SVHN, we use ResNet-18 He et al. (2016) with 50
clients, 5 sampled per round, over 200 rounds. For GLUE, we use T5-large Colin (2020) with
multi-task prefix tuning, training over 50 rounds with 35% of 467 clients sampled per round. We
freeze all model parameters and apply prefix tuning to the final layer and for the detection on GLUE,
we use only the weight gradient variance of the final layer. For proxy data generation in client-side
we use generative model from Qi et al. (2023) and server-side GANs (vision) or zero-shot generation
(GLUE) Meng et al. (2022). Full training and model details are provided in Appendix E.

Data Distribution and latent forgetting setup - Following Reddi et al. (2020), we use Dirichlet
data distributions with α = 0.1, where smaller α values correspond to higher levels of non-IID data.
While we also evaluate more balanced distributions (α = 1), where our method performs similarly
with or slightly better than state-of-the-art approaches, we focus on heterogeneous settings where
data shifts over time leads to more significant forgetting. Results for balanced setting are provided
in Appendix F. To study latent forgetting, we simulate temporal-spatial heterogeneity through data
drop patterns within a standard FL setup. For vision tasks, we gradually remove 30–90% of two
classes (1 and 5) (details in Appendix D) for 3 clients per round, thus removing their features from
the training pool. For GLUE tasks, we remove 30–70% features of 1 class in 40% of the clients. We
examine both long-term (persistent data drops from rounds 100 for vision and 25–50 for GLUE)
and short-term (temporary missing of features between rounds 100–130 for vision and 25–34 for
GLUE) latent forgetting. Latent forgetting is detected based on weight update variance, and our
2-step aggregation is only triggered when such forgetting is detected, minimizing overhead. We also
analyze long-term latent forgetting at different training stages: when the model has mostly converged
(round 100), or during critical learning periods (early rounds such as 6).

To explore how synthetic data generation could help mitigate forgetting in FL, we adapt the state-
of-the-art MFCL, We consider MFCL a representative and stronger baseline in replay for FCL.
MFCL trains a generative model to synthesize data for forgotten tasks and distill knowledge back
to clients. We adapt this approach in standard FL with simulating task shifts by missing features of
some classes (5 for vision and 1 for GLUE) to serve as a naïve synthetic replay baseline for temporal-
spatialheterogeneity (MFCL is only applicable for vision tasks). All baselines are summarized in
Table 1. We use 3 seeds for each experiment (we report the standard deviation across the seeds for
GLUE tasks in the Appendix A due to space limitations)
Table 2: Performance (% accuracy) of different baselines on CIFAR-10 and SVHN datasets under
long-term latent forgetting near convergence and during critical learning period.

Method Near convergence Critical learning period
CIFAR-10 SVHN CIFAR-10 SVHN

(Baseline) No feature un-
availability

74.69± 0.32 90.15± 0.43 74.69± 0.32 90.15± 0.43

(Baseline) No feature un-
availability + proxy

79.54± 0.13 93.28± 0.21 79.54± 0.13 93.28± 0.21

SCAFFOLD 42.41± 0.22 55.03± 0.12 38.22± 0.23 53.91± 0.18
FedProx 42.58± 0.43 52.32± 0.41 37.15± 0.16 54.12± 0.25
MFCL 65.48± 0.14 88.57± 0.11 23.74± 0.24 43.58± 0.31
Client sideFedMemo 72.97 ± 0.15 91.02 ± 0.18 26.7± 0.3 52.19± 0.21
Server-side FedMemo 59.6± 0.22 67.09± 0.25 43.80 ± 0.24 59.55 ± 0.4

4.1 RESULTS
Long-term latent forgetting near convergence - When feature unavailability occurs at near conver-
gence (round 100), results in Table 2 show that SCAFFOLD and FedProx suffer significant latent
forgetting. Although, MFCL mitigates this to some extent, it still underperforms our approach. The
client-side FedMemo achieves the best accuracy, outperforming MFCL by 7.49% on CIFAR-10 and
2.45% on SVHN. The server-side variant also improves over aggregation baselines, but client-side
generation is more effective here, since the well-trained model enables the generator to synthesize
high-quality, feature-representative data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Round

0

5

10

15

20

Fis
he

r I
nf

o

baseline
MFCL
FedMemo

Figure 3: CIFAR10 dataset,
Fisher information trace.

CoLA SST MRPC QQP MNLI QNLI RTE Average0

50

100

Ac
cu

ra
cy

 (%
)

No feature unavailability
Feature unavailability

FedMemo - our method
No feature unavailability+proxy

Figure 4: Accuracy of GLUE dataset after seasonal missing
data

Table 3: Performance (% accuracy) of different baselines for CIFAR-10 and SVHN datasets in
short-term latent forgetting; Columns 2,3: accuracy at the end of temporal missing data, columns 4,5:
final accuracy

Method CIFAR-10
temporal

CIFAR10
final

SVHN
temporal

SVHN
final

(baseline) No feature unavailability 70.36± 0.21 74.69± 0.32 87.80± 0.12 90.15± 0.43
No feature unavailability + proxy 74.31± 0.11 79.54± 0.13 91.02± 0.22 93.28± 0.21

SCAFFOLD 40.99± 0.12 73.52± 0.32 56.65± 0.21 88.34± 0.3
FedProx 39.25± 0.22 71.42± 0.17 55.26± 0.18 88.65± 0.26
MFCL 65.03± 0.22 71.12± 0.23 84.50± 0.2 91.06± 0.23
Client side FedMemo 72.07 ± 0.21 75.54± 0.13 90.96 ± 0.15 91.54 ± 0.21
Server side FedMemo 60.37± 0.12 78.5 ± 0.24 72.27± 0.11 89.87± 0.23

Long-term latent forgetting during critical learning periods - When features become permanently
unavailable early in training, the client-side generator produces noisy synthetic samples, which
degrade performance. This aligns with critical learning period findings Yan et al. (2021), where
unrecovered early missing data leads to permanent accuracy loss. As shown in Table 2, MFCL fails to
prevent latent forgetting and underperforms SCAFFOLD and FedProx, with the lowest accuracy on
both datasets. Its low Fisher information trace (Figure 3) further confirms this. In contrast, server-side
FedMemo achieves the best results. This reinforces that server-side proxy data is more reliable when
latent forgetting occurs early, as client-side proxy data is too poor to prevent it effectively.

Short-term latent forgetting - Table 3 presents results for temporal unavailable features due
to temporal-spatialheterogeneity, where we report both final accuracy and at the end of missing
time. Client-side FedMemo achieves the highest accuracy during the feature unavailability phase,
outperforming MFCL by 7.04% and 6.46% for CIFAR-10 and SVHN. Although server-side 2-step
achieves higher final accuracy, it is less effective than the client-side approach during the dropped
data interval, however, still outperforms state-of-the-art aggregation methods overall.
Table 4: GLUE dataset; task-wise and average % accuracy in multi-task learning, including gradual
feature unavailability scenario

Method CoLA SST2 MRPC QQP MNLI QNLI RTE Avg.
(baseline) No feature unavailability 44.67 55.96 76.96 88.45 85.21 88.35 35.01 67.80
No feature unavailability + proxy 58.77 52.41 77.71 86.84 83.51 92.05 70.39 74.52
FedProx 30.87 49.08 31.61 63.08 58.90 49.36 52.70 47.94
Server side FedMemo 57.71 52.40 77.69 86.17 82.96 91.30 67.14 73.63

Gradual feature unavailability
FedProx 64.62 50.34 38.72 88.29 25.34 10.01 37.18 44.92
Server side FedMemo 52.92 52.06 77.45 86.26 83.45 91.21 70.75 73.44

Table 5: Gradual feature unavailability

Method CIFAR-10
short-term

CIFAR10
long-term

SVHN
short-term

SVHN
long-term

(baseline) No feature unavailability 74.69± 0.32 74.69± 0.32 90.15± 0.43 90.15± 0.43
SCAFFOLD 69.43± 0.22 68.44± 0.17 84.57± 0.22 81.25± 0.24
FedProx 68.83± 0.32 67.23± 0.31 84.81± 0.24 80.93± 0.27
Client side 2-step FedMemo 74.51 ± 0.15 74.07 ± 0.12 90.96 ± 0.2 90.72 ± 0.19
Server side 2-step FedMemo 74.13± 0.18 72.2± 0.14 89.42± 0.21 88.41± 0.2

Gradual feature unavailability - Table 5 is the comparison of our method with state-of-the-art ag-
gregation methods and shows that our method prevents the short-term and long-term latent forgetting
in a normal FL with partial gradual data shifts causing temporal-spatialheterogeneity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Rounds

0.1831

0.1832

0.1833

0.1834

W
V

(a)

0 50 100 150 200
Rounds

0.1831

0.1832

0.1833
(b)

0 50 100 150 200
Rounds

7

8

9

10
(c)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(d)

FedProx
FedMemo
FedMemo-late

Figure 5: Robustness of FedMemo detection method (a) varying optimizer, (b) varying learning rate
decay, (c) Detection using only last 5 layers weight updates, (d) FedMemo accuracy on CIFAR10 in
standard FL gradual missing with a 8 rounds delay in applying FedMemo .

Language classification tasks - For GLUE, MFCL is not applicable, so we compare FedMemo
against the strongest baseline aggregation methods (Appendix A contains full long-term latent
forgetting results). Table 4 show results for temporal feature unavailability in multi-task prefix tuning.
FedMemo improves over FedProx by 25.69% in the temporal feature unavailability period while
maintaining performance close to the baseline with proxy data (Figure 4). Notably, CoLA and
RTE converge early due to their small size, but training continued for fairness across tasks. To our
knowledge, this is the first work to address latent forgetting in multi-task prefix tuning for LLMs.

Language classification tasks (gradual data loss) - The results, summarized in Table 4, show that
FedMemo significantly mitigates latent forgetting under this realistic data unavailability. Notably,
it achieves a 16.4% higher average accuracy during the missing-data period compared to the best
baseline (FedProx), while maintaining performance close to the ideal baseline with proxy data. This
demonstrates FedMemo’s robustness in maintaining performance under cross-client label imbalance.

FedMemo Robustness - We evaluate the robustness of our detection method under optimizer and
learning rate changes. As shown in Figure 5(a,b), switching from SGD to Adam or applying
accelerated learning rate decay (after round 100) causes only short-term WV spikes, whereas latent
forgetting results in a sustained downward trend—allowing clear distinction between transient noise
and true forgetting (CIFAR-10). We also test delayed detection: even when triggered 8 rounds late
(at round 108), FedMemo still mitigates forgetting (Fig. 5(d)). Additionally, Figure 5(c) shows that
computing WV over only the last 5 layers is sufficient for accurate detection, making it a fast and
reliable metric to use in large models.

Table 6: Varying proxy data quantity
FedMemo CIFAR-10 (%)
Server side (100%) 59.6
Server side (60%) 57.94
Server side (20%) 55

Table 7: Varying proxy data quality
FedMemo CIFAR-10 (%)
Server side (100 rounds) 59.6
Server side (70 rounds) 57.35
Server side (50 rounds) 54.93
Server side (20% noise) 58.14

Sensitivity Analysis - We evaluate the impact of proxy data quality and quantity on performance. As
shown in Table 6, using over 60% of the full proxy data results in only a 1.66% drop in accuracy, and
even with 20% samples, the drop remains moderate at 4.6%. This demonstrates that FedMemo is
robust even with limited proxy data, as the step-2 aggregation corrects for missing class representa-
tions. To assess quality, we vary the number of generator training rounds (50 and 70) and inject 20%
label noise (Table 7). Performance remains stable despite the degraded proxy quality, showing the
method’s robustness. In practice, since the server has sufficient resources to produce high-quality
synthetic data, our approach effectively boosts the global model via 2-step aggregation.

5 CONCLUSION

We propose FedMemo, a privacy-preserving FL method to address latent forgetting caused by long-
term or temporal feature unavailability. It detects latent forgetting from global model updates and
uses proxy data—generated via a server-side GAN or client-side generator to preserve the learned
features. A novel 2-step aggregation integrates proxy knowledge into global model training. We
formulate temporal-spatial heterogeneity and perform a theoretical analysis of FedMemo and through
extensive experiments demonstrate that it improves accuracy by up to 20.06% during critical learning
periods, and 7.49%/7.04% in long-term/short-term latent forgetting on CIFAR-10 and SVHN and
outperforming state-of-the-art in FL methods by 25.69% on the GLUE benchmark.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mohammed Aljahdali, Ahmed M Abdelmoniem, Marco Canini, and Samuel Horváth. Flashback:
Understanding and mitigating forgetting in federated learning. arXiv preprint arXiv:2402.05558,
2024.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3366–3375, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Sara Babakniya, Zalan Fabian, Chaoyang He, Mahdi Soltanolkotabi, and Salman Avestimehr. A
data-free approach to mitigate catastrophic forgetting in federated class incremental learning for
vision tasks. Advances in Neural Information Processing Systems, 36:66408–66425, 2023.

Rahul Atul Bhope, KR Jayaram, Praveen Venkateswaran, and Nalini Venkatasubramanian. Shift
happens: Mixture of experts based continual adaptation in federated learning. arXiv preprint
arXiv:2506.18789, 2025.

Cláudio GS Capanema, Fabrício A Silva, Leandro A Villas, and Antonio AF Loureiro. Data shift
under delayed labeling in multi-model federated learning. In 2025 21st International Conference
on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), pp. 570–577.
IEEE, 2025.

Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 233–248, 2018.

Raffel Colin. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res., 21, 2020.

Jiahua Dong, Hongliu Li, Yang Cong, Gan Sun, Yulun Zhang, and Luc Van Gool. No one left behind:
Real-world federated class-incremental learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(4):2054–2070, 2023.

Alp Emre Durmus, Zhao Yue, Matas Ramon, Mattina Matthew, Whatmough Paul, and Saligrama
Venkatesh. Federated learning based on dynamic regularization. In International conference on
learning representations, 2021.

Rachid Guerraoui, Arsany Guirguis, Anne-Marie Kermarrec, and Erwan Le Merrer. Fegan: Scaling
distributed gans. In Proceedings of the 21st International Middleware Conference, pp. 193–206,
2020.

Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. Md-gan: Multi-discriminator generative
adversarial networks for distributed datasets. In 2019 IEEE international parallel and distributed
processing symposium (IPDPS), pp. 866–877. IEEE, 2019.

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods for
data-free model compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8494–8502, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10143–10153, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. Preservation of the
global knowledge by not-true distillation in federated learning. Advances in Neural Information
Processing Systems, 35:38461–38474, 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin
Yang, Rui Zhang, Shui Yu, et al. Unleashing the power of continual learning on non-centralized
devices: A survey. IEEE Communications Surveys & Tutorials, 2025.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Zijian Li, Jiawei Shao, Yuyi Mao, Jessie Hui Wang, and Jun Zhang. Federated learning with gan-based
data synthesis for non-iid clients. In International workshop on trustworthy federated learning, pp.
17–32. Springer, 2022.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in neural information processing systems, 33:2351–2363,
2020.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. Generating training data with language models:
Towards zero-shot language understanding. Advances in Neural Information Processing Systems,
35:462–477, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning.
arXiv preprint arXiv:2302.13001, 2023.

Mohammad Rasouli, Tao Sun, and Ram Rajagopal. Fedgan: Federated generative adversarial
networks for distributed data. arXiv preprint arXiv:2006.07228, 2020.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. Fedaux: Leveraging unlabeled
auxiliary data in federated learning. IEEE Transactions on Neural Networks and Learning Systems,
34(9):5531–5543, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hyowoon Seo, Jihong Park, Seungeun Oh, Mehdi Bennis, and Seong-Lyun Kim. 16 federated
knowledge distillation. Machine Learning and Wireless Communications, 457, 2022.

Neta Shoham, Tomer Avidor, Aviv Keren, Nadav Israel, Daniel Benditkis, Liron Mor-Yosef,
and Itai Zeitak. Overcoming forgetting in federated learning on non-iid data. arXiv preprint
arXiv:1910.07796, 2019.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for
anomaly detection in multivariate time series data. arXiv preprint arXiv:2201.07284, 2022.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A practical
guide, 1st ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE transactions on information forensics and security, 15:3454–3469, 2020.

Chencheng Xu, Zhiwei Hong, Minlie Huang, and Tao Jiang. Acceleration of federated learning with
alleviated forgetting in local training. arXiv preprint arXiv:2203.02645, 2022.

Gang Yan, Hao Wang, and Jian Li. Critical learning periods in federated learning. arXiv preprint
arXiv:2109.05613, 2021.

Hao Yu, Xin Yang, Le Zhang, Hanlin Gu, Tianrui Li, Lixin Fan, and Qiang Yang. Handling spatial-
temporal data heterogeneity for federated continual learning via tail anchor. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 4874–4883, 2025.

Haolin Yuan, Bo Hui, Yuchen Yang, Philippe Burlina, Neil Zhenqiang Gong, and Yinzhi Cao.
Addressing heterogeneity in federated learning via distributional transformation. In European
Conference on Computer Vision, pp. 179–195. Springer, 2022.

Syed Zawad, Xiaolong Ma, Jun Yi, Cheng Li, Minjia Zhang, Lei Yang, Feng Yan, and Yuxiong He.
Fedcust: Offloading hyperparameter customization for federated learning. Performance Evaluation,
167:102450, 2025.

Jiaxin Zhang, Liang Zhao, Keping Yu, Geyong Min, Ahmed Y Al-Dubai, and Albert Y Zomaya.
A novel federated learning scheme for generative adversarial networks. IEEE Transactions on
Mobile Computing, 23(5):3633–3649, 2023.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LONG-TERM LATENT FORGETTING ON LANGUAGE MODELS

Table 8 includes the results for long-term latent forgetting on GLUE dataset, FedMemo significantly
decreases latent forgetting.
Table 8: Performance of GLUE dataset; task-wise and average accuracy in multi-task learning (split
for readability)

Method CoLA SST2 MRPC Avg.
(baseline) No missing data 44.67± 0.91 55.96± 0.6 76.96± 1.2 67.80
FedProx 30.87± 1.3 47.23± 0.3 29.31± 1.2 44.32
Server side FedMemo 48.89± 1.2 51.35± 0.7 76.45± 0.6 72.6

Method QQP MNLI QNLI RTE
(baseline) No missing data 88.45± 1.1 85.21± 0.72 88.35± 0.4 35.01± 1.4
FedProx 63.08± 1.4 53.44± 1.8 45.38± 2.1 46.47± 1.1
Server side FedMemo 86.03± 0.2 83.17± 0.2 90.67± 0.4 71.64± 0.3

The standard deviations for GLUE, table 4 are listed below:
Table 9: GLUE dataset; task-wise and average accuracy in multi-task learning, including gradual data
missing scenario (split for readability)

Method CoLA SST2 MRPC QQP Avg.
No missing data 44.67± 0.91 55.96± 0.6 76.96± 1.2 88.45± 1.1 67.80
No missing data + proxy 58.77± 0.8 52.4± 0.6 77.7± 0.7 86.84± 0.9 74.52
FedProx 30.87± 1.2 49.08± 0.2 31.61± 0.9 63.08± 1.6 47.94
Server side FedMemo 57.71± 0.4 52.40± 0.4 77.69± 0.3 86.17± 0.8 73.63

Gradual data missing
FedProx 64.62± 0.8 50.34± 0.4 38.72± 1.1 88.29± 0.6 44.92
Server side FedMemo 52.92± 0.2 52.06± 0.4 77.45± 0.3 86.26± 0.5 73.44

Method MNLI QNLI RTE Avg.
No missing data 85.21± 0.7 88.35± 0.43 35.01± 1.4 67.80
No missing data + proxy 83.51± 0.64 92.05± 1.4 70.39± 0.8 74.52
FedProx 58.90± 2.1 49.36± 1.2 52.70± 0.8 47.94
Server side FedMemo 82.96± 0.7 91.30± 0.2 67.14± 0.4 73.63

Gradual data missing
FedProx 25.34± 2.1 10.01± 2.4 37.18± 0.7 44.92
Server side FedMemo 83.45± 0.4 91.21± 0.2 70.75± 0.7 73.44

B ANOMALY DETECTION

Statistical methods We can use statistical anomaly detection methods to identify anomalies that
significantly deviate from this expected pattern. One common statistical approach is moving average
with threshold. This method detects anomaly points by comparing each datapoint to the average of a
recent reference window. Once an anomaly is detected, we keep the reference window frozen until
data returns to normal levels to prevent. In our experiments, we could detect all anomaly points using
this method. Following figure shows anomalies detected by this method for CIFAR-10 dataset on
temporal latent forgetting in rounds 100-130. We found the WV-based detector is robust to threshold
choice across drop ratios from 0.3 to 0.7, precision, recall, and F1-score remain 0.96.

0 50 100 150 200
Rounds

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

W
ei

gh
ts

 u
pd

at
e

va
ri

an
ce

Data
Anomalies

Figure 6: Anomalies for weight update variance for CIFAR-10
Machine learning based methods However, statistical methods were effective in our experiments,
more sophisticated approaches may be better suited for real-time anomaly detection. To this end, we

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

employed the method proposed inTuli et al. (2022) on weight update variance for CIFAR-10 dataset
achieving a high F1-score of 98.2%, in detecting anomaly points.

C.1 PROOF OF PROPOSITION 3.1

wt+1
ref = wt − ηGref (wt), wt+1 = wt − ηG(wt), are the reference model and model trained under

missing data updates, P ref
i (x, y) = P ref

i (y = c)P t,ref
i (x|y = c), and and P t

i (x, y) = P t
i (y =

c)P t
i (x|y = c) are the distribution for client i at round t for the baseline and the missing case.

The local gradients are as following:
Gref

i (wt) := ∇Lref
i (wt) =

∑C
c=1 P

ref
i (c)Ex∼P ref

i (X|Y=c) [∇wℓ(f(x;w
t), c)] ,

Gi(w
t) = ∇Li(w

t) =
∑C

c=1 P
t
i (c)Ex∼P t

i (X|Y=c) [∇wℓ(f(x;w
t), c)]

where
Lref
i (wt) =

∑C
c=1 P

t
i (c)Ex∼P ref

i (X|Y=c)

[
ℓ(f(x;wt), c)

]
,

Li(w
t) =

∑C
c=1 P

t
i (c)Ex∼P t

i (X|Y=c)

[
ℓ(f(x;wt), c)

]
Then the global gradients and global loss are as following:

Gref(wt) :=
∑

i∈Kt
αref
i Gref

i (wt); Lref(wt) =
∑

i∈Kt
αref
i Lref

i (wt),

G(wt) :=
∑

i∈Kt
αiGi(w

t); L(wt) =
∑

i∈Kt
αiLi(w

t)

proof. The Taylor expansion of Lref (wt+1) and Lref (wt+1) at wt is as following:
Lref (wt+1

ref) = Lref (wt) + ⟨∇Lref (wt), wt+1
ref − wt⟩+ 1

2 (w
t+1
ref − wt)⊤∇2Lref (ζa)(w

t+1
ref − wt+)

= Lref (wt) + ⟨Gref (wt),−ηGref (wt)⟩+ 1
2 (w

t+1
ref − wt)⊤∇2Lref (ζa)(w

t+1
ref − wt+)

= Lref (wt)− η
∥∥Gref

∥∥2 + 1
2 (w

t+1
ref − wt)⊤∇2Lref (ζa)(w

t+1
ref − wt)

Lref (wt+1) = Lref (wt) + ⟨∇Lref (wt), wt+1 − wt⟩+ 1
2 (w

t+1 − wt)⊤∇2Lref (ζb)(w
t+1 − wt)

= Lref (wt) + ⟨Gref (wt),−ηG(wt)⟩+ 1
2 (w

t+1 − wt)⊤∇2Lref (ζb)(w
t+1 − wt)

= Lref (wt)− η⟨Gref , G(wt)⟩+ 1
2 (w

t+1 − wt)⊤∇2Lref (ζb)(w
t+1 − wt)

Then:
Lref (wt+1)− Lref (wt+1

ref) = η(
∥∥Gref (wt)

∥∥2 − ⟨Gref (wt), G(wt)⟩) +R2

= η⟨Gref (wt), Gref (wt)−G(wt)⟩+R2

1
= η

∑
i∈Kt

αref
i ⟨Gref(wt),∆Gi(w

t)⟩+ η
∑

i∈Kt
∆αi⟨Gref(wt), Gi(w

t)⟩+R2

Where

R2 =
1

2
(wt+1 − wt+1

ref)
⊤∇2Lref (ζ1)(w

t+1 − wt+1
ref) = O(η2)

for some ζ1 on the line segment between wt+1
ref and wt+1 and equity 1 holds because:

Gref (wt)−G(wt) =
∑

i∈Kt
αref
i Gref

i (wt)−
∑

i∈Kt
αiGi(w

t)

=
∑

i∈Kt
αref
i (Gref

i (wt)−Gi(w
t)) +

∑
i∈Kt

(αref
i − αi)Gi(w

t)

=
∑

i∈Kt
αref
i (∆Gi(w

t)) +
∑

i∈Kt
∆αiGi(w

t)

C.2 PROOF OF PROPOSITION 3.2

proof. Let wt+1
2step = βwt+1 + (1 − β)wt+1

p , wt+1
p = wt+1 − ηGp(w

t+1) Gp(w
t+1) :=

E(x,y)∼Pp
[∇wℓ(f(x;w

t+1, y)], and Dp is the proxy data. where Pp is the distribution induced
by proxy data Dp. Then the second-order Taylor expansion of Lref (wt+1

2step) at wt+1 is:

Lref (wt+1) = Lref (wt+1) + ⟨∇Lref (wt+1), wt+1
2step − wt+1⟩+R2

= Lref (wt+1) + ⟨Gref (wt+1), (1− β)(wt+1
p − wt+1)⟩+R2

= Lref (wt+1) + (1− β)⟨Gref (wt+1), (wt+1 − ηGp(w
t+1)− wt + ηG(wt))⟩+R2

= Lref (wt+1) + (1− β)⟨Gref (wt+1), (wt+1 − ηGp(w
t+1)− wt + ηG(wt))⟩+R2

= Lref (wt+1) + (1− β)⟨Gref (wt+1), (−ηG(wt)− ηGp(w
t+1) + ηG(wt))⟩+R2

= Lref (wt+1)− η(1− β)⟨Gref (wt+1), Gp(w
t+1)⟩+R2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where

R2 =
1

2
η2(1− β)2Gp(w

t+1)T∇2Lref (ζ2)Gp(w
t+1) = O(η2(1− β)2)

for some ζ2 on the line segment between wt+1
2step and wt+1.

D PROXY DATA GENERATION FOR GLUE DATASET

Hyperparameters CIFAR-10 and SVHN use 200 rounds, local 3 epochs, batch size of 64, learning
rate of 0.01, with 5 clients selected per round from 50 total clients. GLUE tasks use batch size 32,
learning rate 0.01, 50 rounds, and 35% of 467 clients selected per round. To construct synthetic
training data, we adopt the SuperGen framework Meng et al. (2022). Following their setup, we use a
large autoregressive language model (CTRL) as the generator to produce class-conditioned samples
via label-descriptive prompts, and a bidirectional model (COCO-LM Large) as the classifier. The
generated outputs are filtered based on likelihood scores, and the retained synthetic examples are then
used to fine-tune the classifier with label smoothing and temporal ensembling, exactly as described
in Meng et al. (2022). For the gradual feature unavailability we remove the data starting at round
100 with 30% feature unavailability and then increases by 2 percentage points in each round, until
reaching 90% by round 130.

E GAN ARCHITECTURE

For the vision tasks on server-side FedMemo, we use following GAN architecture in server:
Generator Discriminator
FC(100, 4×4×256) Conv2d(3, 64, 4, 2, 1)
reshape(-, 256, 4, 4) BatchNorm(64)
BatchNorm(256) LeakyReLU(0.2)
ReLU Conv2d(64, 128, 4, 2, 1)
ConvTranspose2d(256, 128, 4, 2, 1) BatchNorm(128)
BatchNorm(128) LeakyReLU(0.2)
ReLU Conv2d(128, 256, 4, 2, 1)
ConvTranspose2d(128, 64, 4, 2, 1) BatchNorm(256)
BatchNorm(64) LeakyReLU(0.2)
ReLU Conv2d(256, 1, 4, 1, 0)
ConvTranspose2d(64, 3, 4, 2, 1) Sigmoid
Tanh

F FEDMEMO PERFORMANCE ON BALANCED DATA DISTRIBUTION

Table 10 shows that FedMemo achieves performance comparable to MFCL under balanced client-side
data distributions (α = 1). This confirms that while MFCL is effective in settings with minimal spatial
heterogeneity, FedMemo remains competitive—even without fine-tuned client-specific configurations.
However, the goal of this paper is not to optimize performance under ideal conditions, but to
address realistic federated learning challenges where data is often non-IID, imbalanced, or subject to
unpredictable shifts.

Importantly, MFCL relies on custom definitions of when data is missing and lacks a built-in forgetting
detection mechanism, limiting its adaptability in dynamic environments. In contrast, FedMemo incor-
porates an automated latent forgetting detector and flexibly adapts through proxy-based correction,
making it more robust to temporal and spatial heterogeneity.

Furthermore, in resource-constrained settings where client-side retraining is impractical, FedMemo
supports a server-side correction mechanism, which allows adaptation without burdening clients.
Improving this server-side component is left as future work, but even in its current form, FedMemo
offers a practical and generalizable solution for real-world federated learning.

G OTHER METRICS

Gradient variance - To illustrate the gradient variance, we use a synthetic proxy data in server
trained on the global model of clients at each round.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Method CIFAR-10 SVHN
(Baseline) No missing data 85.63± 0.22 94.07± 0.25
Missing data - SCAFFOLD 50.07± 0.15 57.37± 0.32
Missing data - FedProx 51.07± 0.19 56.43± 0.56
Missing data with SOTA forgetting prevention in CL (MFCL) 84.03± 0.17 94.01± 0.09
Client side 2-step FedMemo 84.56± 0.15 94.74± 0.12
Server side 2-step FedMemo 68.25± 0.42 88.63± 0.22

Table 10: Performance of different baselines for CIFAR-10 and SVHN datasets in long-term latent
forgetting- α = 1.

(a) (b)

Figure 7: Synthetic proxy works as indicator of FL forgetting and be used as a support to prevent it
after detection.

Let g(t,l)p,i = ∇L
(T)
p,i

(
θ
(l)
i

)
represent the global (aggregated) gradient at round t on layer l, and

kp ⊂ P is set of participated samples of proxy P at round t. Then, g(t)p = [g
(t,0)
p,i , ..., g

(t,L−1)
p,i]

denotes aggregated gradients at round t over l layers, and gradient variance is as follows:

GV (t) =
1

d

d∑
j=1

(
Gp,j(w

(t))− µ(t)
)2

, where µ(t) =
1

d

d∑
j=1

Gp,j(w
(t)) (3)

where d is the total number of parameters, and Gp,j(w
(t)) is the j-th coordinate of this vector.

Cosine similarity of gradients -

onsider Gp(w
(t)) as the synthetic proxy gradient at the server, and G(w(t)) as the global gradient

aggregated from clients. The cosine similarity is defined as:

Cosine Similarity(G(w(t)), Gp(w
(t))) =

G(w(t)) ·Gp(w
(t))

∥G(w(t))∥ ∥Gp(w(t))∥
. (4)

We analyze two additional signals: clients and proxy data gradients variance in this section. equation
3 (Figure7 (a)). The clients’ reduced gradient variance indicates that local clients gradients are
becoming more homogeneous and previously learned information are forgotten. Note that, here we
don’t use proxy for mitigation and we are only using it as a reference (proxy is trained on server only
and does not contribute to aggregation of local clients with missing data at all). The purpose is to
observer the patterns resulted from missing data. In contrast, the synthetic proxy data preserves a
more balanced view of the full distribution. As the global model forgets earlier patterns, the proxy
gradients begin to diverge from client gradients and highlight the missing patterns. We observe
this through a decline in cosine similarity (Figure7 (b)) between proxy and client gradients, which
provides supporting evidence of the latent forgetting. While cosine similarity is not used as a detection
signal, it helps interpret the shift in learning dynamics.

H LIMITATIONS

For our client-side method, clients receive a shared generative model trained on server. Similar to the
state-of-the-art method MFCL, clients need to generate proxy data which may introduce additional
computation. However, unlike training, the computational overhead introduced by such generation

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

task is usually very small and this model is shared only once the data shifts is detected. In addition,
we also offer a server-side solution that offloads such generation work to the server and thus impose
no additional computation on

17

	Introduction
	Related works
	FL latent forgetting detection and mitigation
	Problem formulation and notations
	FedMemo
	Theoretical analysis
	FL latent forgetting detection

	Evaluations
	Results

	Conclusion

