
Under review as a conference paper at ICLR 2021

CROSS-NODE FEDERATED GRAPH NEURAL NETWORK
FOR SPATIO-TEMPORAL DATA MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Vast amount of data generated from networks of sensors, wearables, and the In-
ternet of Things (IoT) devices underscores the need for advanced modeling tech-
niques that leverage the spatio-temporal structure of decentralized data due to the
need for edge computation and licensing (data access) issues. While federated
learning (FL) has emerged as a framework for model training without requir-
ing direct data sharing and exchange, effectively modeling the complex spatio-
temporal dependencies to improve forecasting capabilities still remains an open
problem. On the other hand, state-of-the-art spatio-temporal forecasting mod-
els assume unfettered access to the data, neglecting constraints on data sharing.
To bridge this gap, we propose a federated spatio-temporal model – Cross-Node
Federated Graph Neural Network (CNFGNN) – which explicitly encodes the un-
derlying graph structure using graph neural network (GNN)-based architecture
under the constraint of cross-node federated learning, which requires that data in
a network of nodes is generated locally on each node and remains decentralized.
CNFGNN operates by disentangling the temporal dynamics modeling on devices
and spatial dynamics on the server, utilizing alternating optimization to reduce the
communication cost, facilitating computations on the edge devices. Experiments
on the traffic flow forecasting task show that CNFGNN achieves the best forecast-
ing performance in both transductive and inductive learning settings with no extra
computation cost on edge devices, while incurring modest communication cost.

1 INTRODUCTION

Modeling the dynamics of spatio-temporal data generated from networks of edge devices or nodes
(e.g. sensors, wearable devices and the Internet of Things (IoT) devices) is critical for various appli-
cations including traffic flow prediction (Li et al., 2018; Yu et al., 2018), forecasting (Seo et al., 2019;
Azencot et al., 2020), and user activity detection (Yan et al., 2018; Liu et al., 2020). While existing
works on spatio-temporal dynamics modeling (Battaglia et al., 2016; Kipf et al., 2018; Battaglia
et al., 2018) assume that the model is trained with centralized data gathered from all devices, the
volume of data generated at these edge devices precludes the use of such centralized data processing,
and calls for decentralized processing where computations on the edge can lead to significant gains
in improving the latency. In addition, in case of spatio-temporal forecasting, the edge devices need
to leverage the complex inter-dependencies to improve the prediction performance. Moreover, with
increasing concerns about data privacy and its access restrictions due to existing licensing agree-
ments, it is critical for spatio-temporal modeling to utilize decentralized data, yet leveraging the
underlying relationships for improved performance.

Although recent works in federated learning (FL) (Kairouz et al., 2019) provides a solution for
training a model with decentralized data on multiple devices, these works either do not consider
the inherent spatio-temporal dependencies (McMahan et al., 2017; Li et al., 2020b; Karimireddy
et al., 2020) or only model it implicitly by imposing the graph structure in the regularization on
model weights (Smith et al., 2017), the latter of which suffers from the limitation of regularization
based methods due to the assumption that graphs only encode similarity of nodes (Kipf & Welling,
2017), and cannot operate in settings where only a fraction of devices are observed during training
(inductive learning setting). As a result, there is a need for an architecture for spatio-temporal data
modeling which enables reliable computation on the edge, while maintaining the data decentralized.

1

Under review as a conference paper at ICLR 2021

To this end, leveraging recent works on federated learning (Kairouz et al., 2019), we introduce the
cross-node federated learning requirement to ensure that data generated locally at a node remains
decentralized. Specifically, our architecture – Cross-Node Federated Graph Neural Network (CN-
FGNN), aims to effectively model the complex spatio-temporal dependencies under the cross-node
federated learning constraint. For this, CNFGNN decomposes the modeling of temporal and spa-
tial dependencies using an encoder-decoder model on each device to extract the temporal features
with local data, and a Graph Neural Network (GNN) based model on the server to capture spatial
dependencies among devices.

As compared to existing federated learning techniques that rely on regularization to incorporate
spatial relationships, CNFGNN leverages an explicit graph structure using a graph neural network-
based (GNNs) architecture, which leads to performance gains. However, the federated learning (data
sharing) constraint means that the GNN cannot be trained in a centralized manner, since each node
can only access the data stored on itself. To address this, CNFGNN employs Split Learning (Singh
et al., 2019) to train the spatial and temporal modules. Further, to alleviate the associated high com-
munication cost incurred by Split Learning, we propose an alternating optimization-based training
procedure of these modules, which incurs only half the communication overhead as compared to a
comparable Split Learning architecture. Here, we also use Federated Averaging (FedAvg) (McMa-
han et al., 2017) to train a shared temporal feature extractor for all nodes, which leads to improved
empirical performance.

Our main contributions are as follows :

1. We propose Cross-Node Federated Graph Neural Network (CNFGNN), a GNN-based fed-
erated learning architecture that captures complex spatio-temporal relationships among
multiple nodes while ensuring that the data generated locally remains decentralized at no
extra computation cost at the edge devices.

2. Our modeling and training procedure enables GNN-based architectures to be used in fed-
erated learning settings. We achieve this by disentangling the modeling of local temporal
dynamics on edge devices and spatial dynamics on the central server, and leverage an alter-
nating optimization-based procedure for updating the spatial and temporal modules using
Split Learning and Federated Averaging to enable effective GNN-based federated learning.

3. We demonstrate that CNFGNN achieves the best prediction performance (both in trans-
ductive and inductive settings) at no extra computation cost on edge devices with modest
communication cost, as compared to the related techniques on a traffic flow prediction task.

2 RELATED WORK

Our method derives elements from graph neural networks, federated learning and privacy-preserving
graph learning, we now discuss related works in these areas in relation to our work.

Graph Neural Networks (GNNs). GNNs have shown their superior performance on various
learning tasks with graph-structured data, including graph embedding (Hamilton et al., 2017), node
classification (Kipf & Welling, 2017), spatio-temporal data modeling (Yan et al., 2018; Li et al.,
2018; Yu et al., 2018) and multi-agent trajectory prediction (Battaglia et al., 2016; Kipf et al., 2018;
Li et al., 2020a). Recent GNN models (Hamilton et al., 2017; Ying et al., 2018; You et al., 2019;
Huang et al., 2018) also have sampling strategies and are able to scale on large graphs. While
GNNs enjoy the benefit from strong inductive bias (Battaglia et al., 2018; Xu et al., 2019), most
works require centralized data during the training and the inference processes.

Federated Learning (FL). Federated learning is a machine learning setting where multiple clients
train a model in collaboration with decentralized training data (Kairouz et al., 2019). It requires that
the raw data of each client is stored locally without any exchange or transfer. However, the decen-
tralized training data comes at the cost of less utilization due to the heterogeneous distributions of
data on clients and the lack of information exchange among clients. Various optimization algorithms
have been developed for federated learning on non-IID and unbalanced data (McMahan et al., 2017;
Li et al., 2020b; Karimireddy et al., 2020). Smith et al. (2017) propose a multi-task learning frame-
work that captures relationships amongst data. While the above works mitigate the caveat of missing

2

Under review as a conference paper at ICLR 2021

neighbors’ information to some extent, they are not as effective as GNN models and still suffer from
the absence of feature exchange and aggregation.

Alternating Optimization. Alternating optimization is a popular choice in non-convex optimiza-
tion (Agarwal et al., 2014; Arora et al., 2014; 2015; Jain & Kar, 2017). In the context of Federated
Learning, Liang et al. (2020) uses alternating optimization for learning a simple global model and
reduces the number of communicated parameters, and He et al. (2020) uses alternating optimization
for knowledge distillation from server models to edge models. In our work, we utilize alternating
optimization to effectively train on-device modules and the server module jointly, which captures
temporal and spatial relationships respectively.

Privacy-Preserving Graph Learning. Suzumura et al. (2019) and Mei et al. (2019) use statis-
tics of graph structures instead of node information exchange and aggregation to avoid the leakage
of node information. Recent works have also incorporated graph learning models with privacy-
preserving techniques such as Differential Privacy (DP), Secure Multi-Party Computation (MPC)
and Homomorphic Encryption (HE). Zhou et al. (2020) utilize MPC and HE when learning a GNN
model for node classification with vertically split data to preserve silo-level privacy instead of node-
level privacy. Sajadmanesh & Gatica-Perez (2020) preprocesses the input raw data with DP before
feeding it into a GNN model. Composing privacy-preserving techniques for graph learning can
help build federated learning systems following the privacy-in-depth principle, wherein the privacy
properties degrade as gracefully as possible if one technique fails (Kairouz et al., 2019).

3 CROSS-NODE FEDERATED GRAPH NEURAL NETWORK

3.1 PROBLEM FORMULATION

Given a dataset with a graph G = (V, E), a feature tensor X ∈ R|V|×... and a label tensor Y ∈
R|V|×..., we consider learning a model under the cross-node federated learning constraint: node
feature xi = Xi,..., node label yi = Yi,..., and model output ŷi are only visible to the node i.

One typical task that requires the cross-node federated learning constraint is the prediction of spatio-
temporal data generated by a network of sensors. In such a scenario, V is the set of sensors and E
describes relations among sensors (e.g. eij ∈ E if and only if the distance between vi and vj is
below some threshold). The feature tensor xi ∈ Rm×D represents the i-th sensor’s records in the
D-dim space during the past m time steps, and the label yi ∈ Rn×D represents the i-th sensor’s
records in the future n time steps. Since records collected on different sensors owned by different
users/organizations may not be allowed to be shared due to the need for edge computation or li-
censing issues on data access, it is necessary to design an algorithm modeling the spatio-temporal
relation without any direct exchange of node-level data.

3.2 PROPOSED METHOD

We now introduce our proposed Cross-Node Federated Graph Neural Network (CNFGNN) model.
Here, we begin by disentangling the modeling of node-level temporal dynamics and server-level spa-
tial dynamics as follows: (i) (Figure 1c) on each node, an encoder-decoder model extracts temporal
features from data on the node and makes predictions; (ii) (Figure 1b) on the central server, a Graph
Network (GN) (Battaglia et al., 2018) propagates extracted node temporal features and outputs node
embeddings, which incorporate the relationship information amongst nodes. (i) has access to the not
shareable node data and is executed on each node locally. (ii) only involves the upload and download
of smashed features and gradients instead of the raw data on nodes. This decomposition enables the
exchange and aggregation of node information under the cross-node federated learning constraint.

3.2.1 MODELING OF NODE-LEVEL TEMPORAL DYNAMICS

We modify the Gated Recurrent Unit (GRU) based encoder-decoder architecture in (Cho et al.,
2014) for the modeling of node-level temporal dynamics on each node. Given an input sequence
xi ∈ Rm×D on the i-th node, an encoder sequentially reads the whole sequence and outputs the

3

Under review as a conference paper at ICLR 2021

Server

Node ...(1)

(1) (2) (3) (4)

Node

(a) Overview of the training procedure.

GN GN

FedAvg:

(1)(2) (3)

(4)

(b) Server-side Graph Network (GN).

...

...

...

...

(1)

(2) (3)

(4)

(c) Encoder-decoder on the i-th node.

Figure 1: Cross-Node Federated Graph Neural Network. (a) In each round of training, we alternately
train models on nodes and the model on the server. More specifically, we sequentially execute: (1)
Federated learning of on-node models. (2) Temporal encoding update. (3) Split Learning of GN.
(4) On-node graph embedding update. (b) Detailed view of the server-side GN model for modeling
spatial dependencies in data. (c) Detailed view of the encoder-decoder model on the i-th node.

hidden state hc,i as the summary of the input sequence according to Equation 1.

hc,i = Encoderi(xi,h
(0)
c,i), (1)

where h(0)
c,i is a zero-valued initial hidden state vector.

To incorporate the spatial dynamics into the prediction model of each node, we concatenate hc,i with
the node embedding hG,c,i generated from the procedure described in 3.2.2, which contains spatial
information, as the initial state vector of the decoder. The decoder generates the prediction ŷi in an
auto-regressive way starting from the last frame of the input sequence xi,m with the concatenated
hidden state vector.

ŷi = Decoderi(xi,m, [hc,i;hG,c,i]). (2)
We choose the mean squared error (MSE) between the prediction and the ground truth values as the
loss function, which is evaluated on each node locally.

3.2.2 MODELING OF SPATIAL DYNAMICS

To capture the complex spatial dynamics, we adopt Graph Networks (GNs) proposed in (Battaglia
et al., 2018) to generate node embeddings containing the relational information of all nodes. The
central server collects the hidden state from all nodes {hc,i | i ∈ V} as the input to the GN. Each
layer of GN updates the input features as follows:

e′k = φe (ek,vrk ,vsk ,u) e′i = ρe→v (E′i)
v′i = φv (e′i,vi,u) e′ = ρe→u (E′)
u′ = φu (e′,v′,u) v′ = ρv→u (V ′)

, (3)

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Training algorithm of CNFGNN on the server side.

Server executes:
1: Initialize server-side GN weights
θ
(0)
GN , client model weights θ̄

(0)
c =

{θ̄(0),encc , θ̄
(0),dec
c }.

2: for each node i ∈ V in parallel do
3: Initialize client model θ(0)c,i = θ̄

(0)
c .

4: Initialize graph encoding on node
hG,c,i = h

(0)
G,c,i.

5: end for
6: for global round rg = 1, 2, . . . , Rg do
7: // (1) Federated learning of on-node

models.
8: for each client i ∈ V in parallel do
9: θc,i ← ClientUpdate(i).

10: end for
11: θ̄c ←

∑
i∈V

Ni

N θc,i.
12: for each client i ∈ V in parallel do
13: Initialize client model: θ(0)c,i = θ̄c.
14: end for
15: // (2) Temporal encoding update.
16: for each client i ∈ V in parallel do
17: hc,i ← ClientEncode(i).
18: end for
19: // (3) Split Learning of GN.

20: Initialize θ(rg,0)GN = θ
(rg−1)
GN .

21: for server round rs = 1, 2, . . . , Rs do
22: {hG,c,i|i ∈ V} ← GN({hc,i|i ∈
V};θ(rg,rs−1)GN).

23: for each client i ∈ V in parallel do
24: ∇hG,c,i

`i ← ClientBackward(
i,hG,c,i).

25: ∇
θ
(rg,rs−1)

GN

`i ← hG,c,i.backward(
∇hG,c,i

`i).
26: end for
27: ∇

θ
(rg,rs−1)

GN

` ←
∑
i∈V ∇θ(rg,rs−1)

GN

`i.

28: θ
(rg,rs)
GN ← θ

(rg,rs−1)
GN

- ηs∇θ(rg,rs−1)

GN

`.
29: end for
30: θ

(rg)
GN ← θ

(rg,Rs)
GN .

31: // (4) On-node graph embedding up-
date.

32: {hG,c,i|i ∈ V} ←
GN({hc,i|i ∈ V};θ

(rg)
GN).

33: for each client i ∈ V in parallel do
34: Set graph encoding on client as

hG,c,i.
35: end for
36: end for

Algorithm 2 Training algorithm of CNFGNN on the client side.

ClientUpdate(i):
1: for client round rc = 1, 2, . . . , Rc do
2: h

(rc)
c,i ← Encoderi(xi;θ

(rc−1),enc
c,i).

3: ŷi ← Decoderi(

xi,m, [h
(rc)
c,i ;hG,c,i];θ

(rc−1),dec
c,i).

4: `i ← `(ŷi,y).
5: θ

(rc)
c,i ← θ

(rc−1)
c,i − ηc∇θ(rc−1)

c,i
`i.

6: end for

7: θc,i = θ
(Rc)
c,i .

8: return θc,i to server.
ClientEncode(i):

1: return hc,i = Encoderi(xi;θ
enc
c,i) to

server.
ClientBackward(i, hG,c,i):

1: ŷi ← Decoderi(xi,m, [hc,i;hG,c,i];θ
dec
c,i).

2: `i ← `(ŷi,y).
3: return ∇hG,c,i

`i to server.

where ek,vi,u are edge features, node features and global features respectively. φe, φv, φu are
neural networks. ρe→v, ρe→u, ρv→u are aggregation functions such as summation. As shown in
Figure 1b, we choose a 2-layer GN with residual connections for all experiments. We set vi = hc,i,
ek = Wrk,sk (W is the adjacency matrix) , and assign the empty vector to u as the input of the first
GN layer. The server-side GN outputs embeddings {hG,c,i | i ∈ V} for all nodes, and sends the
embedding of each node correspondingly.

3.2.3 ALTERNATING TRAINING OF NODE-LEVEL AND SPATIAL MODELS

One challenge brought about by the cross-node federated learning requirement and the server-side
GN model is the high communication cost in the training stage. Since we distribute different parts of
the model on different devices, Split Learning proposed by (Singh et al., 2019) is a potential solution

5

Under review as a conference paper at ICLR 2021

Table 1: Statistics of datasets PEMS-BAY and METR-LA.

Dataset # Nodes # Directed Edges # Train Seq # Val Seq # Test Seq

PEMS-BAY 325 2369 36465 5209 10419
METR-LA 207 1515 23974 3425 6850

for training, where hidden vectors and gradients are communicated among devices. However, when
we simply train the model end-to-end via Split Learning, the central server needs to receive hidden
states from all nodes and to send node embeddings to all nodes in the forward propagation, then it
must receive gradients of node embeddings from all nodes and send back gradients of hidden states
to all nodes in the backward propagation. Assume all hidden states and node embeddings have the
same size S, the total amount of data transmitted in each training round of the GN model is 4|V|S.

To alleviate the high communication cost in the training stage, we instead alternately train models
on nodes and the GN model on the server. More specifically, in each round of training, we (1) fix
the node embedding hG,c,i and optimize the encoder-decoder model for Rc rounds, then (2) we
optimize the GN model while fixing all models on nodes. Since models on nodes are fixed, hc,i
stays constant during the training of the GN model, and the server only needs to fetch hc,i from
nodes before the training of GN starts and only to communicate node embeddings and gradients.
Therefore, the average amount of data transmitted in each round forRs rounds of training of the GN
model reduces to 2+2Rs

Rs
|V|S. We provide more details of the training procedure in Algorithm 1 and

Algorithm 2.

To more effectively extract temporal features from each node, we also train the encoder-decoder
models on nodes with the FedAvg algorithm proposed in (McMahan et al., 2017). This enables all
nodes to share the same feature extractor and thus share a joint hidden space of temporal features,
which avoids the potential overfitting of models on nodes and demonstrates faster convergence and
better prediction performance empirically.

4 EXPERIMENTS

We evaluate the performance of CNFGNN and all baseline methods on the traffic forecasting task,
which is an important application for spatio-temporal data modeling. We reuse the following two
real-world large-scale datasets in (Li et al., 2018) and follow the same preprocessing procedures:
(1) PEMS-BAY: This dataset contains the traffic speed readings from 325 sensors in the Bay Area
over 6 months from Jan 1st, 2017 to May 31st, 2017. (2) METR-LA: This dataset contains the
traffic speed readings from 207 loop detectors installed on the highway of Los Angeles County over
4 months from Mar 1st, 2012 to Jun 30th, 2012.

For both datasets, we construct the adjacency matrix of sensors using the Gaussian kernel with a
threshold: Wi,j = di,j if di,j >= κ else 0, where di,j = exp (−dist(vi,vj)

2

σ2), dist(vi, vj) is the road
network distance from sensor vi to sensor vj , σ is the standard deviation of distances and κ is the
threshold. We set κ = 0.1 for both datasets.

We aggregate traffic speed readings in both datasets into 5-minute windows and truncate the whole
sequence to multiple sequences with length 24. The forecasting task is to predict the traffic speed
in the following 12 steps of each sequence given the first 12 steps. We show the statistics of both
datasets in Table 1.

4.1 SPATIO-TEMPORAL DATA MODELING: TRAFFIC FLOW FORECASTING

Baselines We compare CNFGNN with the following baselines. (1) GRU (centralized): a Gated
Recurrent Unit (GRU) model trained with centralized sensor data. (2) GRU + GN (centralized): a
model directly combining GRU and GN trained with centralized data, whose architecture is similar
to CNFGNN but all GRU modules on nodes always share the same weights. We see its performance
as the upper bound of the performance of CNFGNN. (3) GRU (local): for each node we train a
GRU model with only the local data on it. (4) GRU + FedAvg: a GRU model trained with the
Federated Averaging algorithm (McMahan et al., 2017). (5) GRU + FMTL: for each node we train

6

Under review as a conference paper at ICLR 2021

a GRU model using the federated multi-task learning (FMTL) with cluster regularization (Smith
et al., 2017) given by the adjacency matrix. For each baseline, we have 2 variants of the GRU model
to show the effect of on-device model complexity: one with 63K parameters and the other with
727K parameters. For CNFGNN, the encoder-decoder model on each node has 64K parameters and
the GN model has 1M parameters.

Table 3: Comparison of the computation cost on edge devices and the communication cost. We use
the amount of floating point operations (FLOPS) to measure the computational cost of models on
edge devices. We also show the total size of data/parameters transmitted in the training stage (Train
Comm Cost) until the model reaches its lowest validation error.

Method Comp Cost On
Device (GFLOPS)

PEMS-BAY METR-LA

RMSE Train Comm
Cost (GB) RMSE Train Comm

Cost (GB)

GRU (63K) + FMTL 0.159 3.961 57.823 11.548 99.201
GRU (727K) + FMTL 1.821 3.955 359.292 11.570 722.137
CNFGNN (64K + 1M) 0.162 3.822 237.654 11.487 222.246

Table 2: Comparison of performance on the traffic flow
forecasting task. We use the Rooted Mean Squared Error
(RMSE) to evaluate the forecasting performance.

Method PEMS-BAY METR-LA

GRU (centralized, 63K) 4.124 11.730
GRU (centralized, 727K) 4.128 11.787

GRU + GN
(centralized, 64K + 1M) 3.816 11.471

GRU (local, 63K) 4.010 11.801
GRU (local, 727K) 4.152 12.224

GRU (63K) + FedAvg 4.512 12.132
GRU (727K) + FedAvg 4.432 12.058
GRU (63K) + FMTL 3.961 11.548

GRU (727K) + FMTL 3.955 11.570

CNFGNN (64K + 1M) 3.822 11.487

Discussion Table 2 shows the com-
parison of forecasting performance
and Table 3 shows the comparison of
computation cost on device and com-
munication cost of CNFGNN and
baselines. We make the following ob-
servations. Firstly, when we compare
the best forecasting performance of
each baseline over the 2 GRU vari-
ants, GRU trained with FedAvg per-
forms the worst in terms of forecast-
ing performance compared to GRU
trained with centralized data and
GRU trained with local data (4.432
vs 4.010/4.124 on PEMS-BAY and
12.058 vs 11.730/11.801 on METR-
LA), showing that the data distribu-
tions on different nodes are highly
heterogeneous, and training one sin-
gle model ignoring the heterogeneity
is suboptimal.

Secondly, both the GRU+FMTL baseline and CNFGNN consider the spatial relations among nodes
and show better forecasting performance than baselines without relation information. This shows
that the modeling of spatial dependencies is critical for the forecasting task.

Lastly, CNFGNN achieves the lowest forecasting error on both datasets. The baselines that increases
the complexity of on-device models (GRU (727K) + FMTL) gains slight or even no improvement
at the cost of higher computation cost on edge devices and larger communication cost. However,
due to its effective modeling of spatial dependencies in data, CNFGNN not only has the largest
improvement of forecasting performance, but also keeps the computation cost on devices almost
unchanged and maintains modest communication cost compared to baselines increasing the model
complexity on devices.

4.2 INDUCTIVE LEARNING ON UNSEEN NODES

Set-up Another advantage of CNFGNN is that it can conduct inductive learning and generalize
to larger graphs with nodes unobserved during the training stage. We evaluate the performance of
CNFGNN under the following inductive learning setting: for each dataset, we first sort all sensors
based on longitudes, then use the subgraph on the first η% of sensors to train the model and evaluate

7

Under review as a conference paper at ICLR 2021

Table 4: Inductive learning performance measured with rooted mean squared error (RMSE).

Method PEMS-BAY METR-LA

25% 50% 75% 25% 50% 75%

GRU (63K) + FedAvg 4.863 4.847 4.859 11.993 12.104 12.014
CNFGNN (64K + 1M) 4.541 4.598 4.197 12.013 11.815 11.676

0 10 20 30 40 50 60
Epoch

0.2

0.3

0.4

Va
l L

os
s

Centralized
SL
SL + FedAvg
AT, w/o FedAvg
AT + FedAvg

(a) PEMS-BAY

0 20 40 60 80
Epoch

0.300

0.325

0.350

0.375

0.400

Va
l L

os
s

Centralized
SL
SL + FedAvg
AT, w/o FedAvg
AT + FedAvg

(b) METR-LA

Figure 2: Validation loss during the training stage of different training strategies.

the trained model on the entire graph. For each dataset we select η% = 25%, 50%, 75%. Over
all baselines following the cross-node federated learning constraint, GRU (local) and GRU + FMTL
requires training new models on unseen nodes and only GRU + FedAvg is applicable to the inductive
learning setting.

Discussion Table 4 shows the performance of inductive learning of CNFGNN and GRU + FedAvg
baseline on both datasets. We observe that under most settings, CNFGNN outperforms the GRU +
FedAvg baseline (except on the METR-LA dataset with 25% nodes observed in training, where both
models perform similarly), showing that CNFGNN has the stronger ability of generalization.

4.3 ABLATION STUDY: EFFECT OF ALTERNATING TRAINING AND FEDAVG ON
NODE-LEVEL AND SPATIAL MODELS

Table 5: Comparison of test error (RMSE) and the communication
cost during training of different training strategies of CNFGNN.

Method PEMS-BAY METR-LA

RMSE Train Comm
Cost (GB) RMSE Train Comm

Cost (GB)

Centralized 3.816 - 11.471 -

SL 3.914 350.366 12.186 307.627
SL + FedAvg 4.383 80.200 11.631 343.031

AT, w/o FedAvg 4.003 5221.576 11.912 2434.985
AT + FedAvg 3.822 237.654 11.487 222.246

Baselines We compare
the effect of different
training strategies of CN-
FGNN: (1) Centralized:
CNFGNN trained with
centralized data where all
nodes share one single
encoder-decoder. (2)
Split Learning (SL):
CNFGNN trained with
split learning (Singh et al.,
2019), where models on
nodes and the model on the
server are jointly trained by
exchanging hidden vectors
and gradients. (3) Split
Learning + FedAvg (SL + FedAvg): A variant of SL that synchronizes the weights of encoder-
decoder modules periodically with FedAvg. (4) Alternating training without Federated Averaging
of models on nodes (AT, w/o FedAvg). (5) Alternating training with Federated Averaging on nodes
described in Section 3.2.3 (AT + FedAvg).

Discussion Figure 2 shows the validation loss during training of different training strategies on
PEMS-BAY and METR-LA datasets, and Table 5 shows their prediction performance and the com-

8

Under review as a conference paper at ICLR 2021

munication cost in training. We notice that (1) SL suffers from suboptimal prediction performance
and high communication costs on both datasets; SL + FedAvg does not have consistent results on
both datasets and its performance is always inferior to AT + FedAvg. AT + FedAvg consistently
outperforms other baselines on both datasets, including its variant without FedAvg. (2) AT + Fe-
dAvg has the lowest communication cost on METR-LA and the 2nd lowest communication cost on
PEMS-BAY, on which the baseline with the lowest communication cost (SL + FedAvg) has a much
higher prediction error (4.383 vs 3.822). Both illustrate that our proposed training strategy, SL +
FedAvg, achieves the best prediction performance as well as low communication cost compared to
other baseline strategies.

4.4 ABLATION STUDY: EFFECT OF CLIENT ROUNDS AND SERVER ROUNDS

Set-up We further investigate the effect of different compositions of the number of client rounds
(Rs) in Algorithm 2 and the number of server rounds (Rc) in Algorithm 1. To this end, we vary both
Rc and Rs over [1,10,20].

11.50 11.55 11.60 11.65 11.70 11.75
Forecasting RMSE

0

200

400

600

Co
m

m
 C

os
t (

GB
)

(1, 1)

(1, 10)

(1, 20)

(10, 1)

(10, 10)
(10, 20)

(20, 1)
(20, 10)

(20, 20)

0.5 Rc/Rs 2
Rc/Rs < 0.5
Rc/Rs > 2

Figure 3: Effect of client rounds and server rounds (Rc, Rs)
on forecasting performance and communication cost.

Discussion Figure 3 shows the
forecasting performance (measured
with RMSE) and the total commu-
nication cost in the training of CN-
FGNN under all compositions of (Rc,
Rs) on the METR-LA dataset. We
observe that: (1) Models with lower
Rc/Rs ratios (Rc/Rs < 0.5) tend
to have lower forecasting errors while
models with higher Rc/Rs ratios
(Rc/Rs > 2) have lower communi-
cation cost in training. This is be-
cause the lower ratio of Rc/Rs en-
courages more frequent exchange of
node information at the expense of
higher communication cost, while the
higher ratio of Rc/Rs acts in the op-
posite way. (2) Models with similar
Rc/Rs ratios have similar communi-
cation costs, while those with lower
Rc values perform better, corroborating our observation in (1) that frequent node information ex-
change improves the forecasting performance.

5 CONCLUSION

We propose Cross-Node Federated Graph Neural Network (CNFGNN), which bridges the gap be-
tween modeling complex spatio-temporal data and decentralized data processing by enabling the
use of graph neural networks (GNNs) in the federated learning setting. We accomplish this by de-
coupling the learning of local temporal models and the server-side spatial model using alternating
optimization of spatial and temporal modules based on split learning and federated averaging. Our
experimental results on traffic flow prediction on two real-world datasets show superior performance
as compared to competing techniques. Our future work includes applying existing GNN models
with sampling strategies and integrating them into CNFGNN for large-scale graphs, extending CN-
FGNN to a fully decentralized framework, and incorporating existing privacy-preserving methods
for graph learning to CNFGNN, to enhance federated learning of spatio-temporal dynamics.

REFERENCES

Alekh Agarwal, Animashree Anandkumar, Prateek Jain, Praneeth Netrapalli, and Rashish Tandon.
Learning sparsely used overcomplete dictionaries. In Conference on Learning Theory, pp. 123–
137, 2014.

9

Under review as a conference paper at ICLR 2021

Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcom-
plete dictionaries. In Conference on Learning Theory, pp. 779–806, 2014.

Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms
for sparse coding. 2015.

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael W Mahoney. Forecasting sequential
data using consistent koopman autoencoders. In ICML, 2020.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1724–1734, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Chaoyang He, Salman Avestimehr, and Murali Annavaram. Group knowledge transfer: Collabora-
tive training of large cnns on the edge. arXiv preprint arXiv:2007.14513, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in neural information processing systems, pp. 4558–4567,
2018.

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. Foundations
and Trends R© in Machine Learning, 10(3-4):142–363, 2017. ISSN 1935-8237. doi: 10.1561/
2200000058. URL http://dx.doi.org/10.1561/2200000058.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
Proceedings of the 37th International Conference on Machine Learning, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Thomas N Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard S Zemel. Neural
relational inference for interacting systems. In ICML, 2018.

Max Guangyu Li, Bo Jiang, Hao Zhu, Zhengping Che, and Yan Liu. Generative attention networks
for multi-agent behavioral modeling. In AAAI, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of the 3rd MLSys Conference,
2020b.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations
(ICLR ’18), 2018.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think
locally, act globally: Federated learning with local and global representations. arXiv preprint
arXiv:2001.01523, 2020.

10

http://dx.doi.org/10.1561/2200000058

Under review as a conference paper at ICLR 2021

Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang. Disentangling
and unifying graph convolutions for skeleton-based action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–152, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Guangxu Mei, Ziyu Guo, Shijun Liu, and Li Pan. Sgnn: A graph neural network based federated
learning approach by hiding structure. In 2019 IEEE International Conference on Big Data (Big
Data), pp. 2560–2568. IEEE, 2019.

Sina Sajadmanesh and Daniel Gatica-Perez. When differential privacy meets graph neural networks.
arXiv preprint arXiv:2006.05535, 2020.

Sungyong Seo, Chuizheng Meng, and Yan Liu. Physics-aware difference graph networks for
sparsely-observed dynamics. In International Conference on Learning Representations, 2019.

Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. Detailed compar-
ison of communication efficiency of split learning and federated learning. arXiv preprint
arXiv:1909.09145, 2019.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, pp. 4424–4434, 2017.

Toyotaro Suzumura, Yi Zhou, Natahalie Barcardo, Guangnan Ye, Keith Houck, Ryo Kawahara, Ali
Anwar, Lucia Larise Stavarache, Daniel Klyashtorny, Heiko Ludwig, et al. Towards federated
graph learning for collaborative financial crimes detection. arXiv preprint arXiv:1909.12946,
2019.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representa-
tions (ICLR), 2019.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In AAAI, 2018.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Proceedings
of the 36th International Conference on Machine Learning, 2019.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2018.

Jun Zhou, Chaochao Chen, Longfei Zheng, Xiaolin Zheng, Bingzhe Wu, Ziqi Liu, and
Li Wang. Privacy-preserving graph neural network for node classification. arXiv preprint
arXiv:2005.11903, 2020.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 DETAILED EXPERIMENT SETTINGS

Unless noted otherwise, all models are optimized using the Adam optimizer with the learning rate
1e-3.

GRU (centralized) : Gated Recurrent Unit (GRU) model trained with centralized sensor data.
The GRU model with 63K parameters is a 1-layer GRU with hidden dimension 100, and the GRU
model with 727K parameters is a 2-layer GRU with hidden dimension 200.

GRU (local) We train one GRU model for each node with the local data only.

GRU + FedAvg We train a single GRU model with Federated Averaging (McMahan et al., 2017).
We select 1 as the number of local epochs.

GRU + FMTL We train one GRU model for each node using the federated multi-task learning
(FMTL) with cluster regularization (Smith et al., 2017) given by the adjacency matrix. More specif-
ically, the cluster regularization (without the L2-norm regularization term) takes the following form:

R(W ,Ω) = λtr(WΩW T). (A1)

Given the constructed adjacency matrixA, Ω = 1
|V| (D−A) = 1

|V|L, whereD is the degree matrix
and L is the Laplacian matrix. Equation A1 can be reformulated as:

R(W ,Ω) = λtr(WΩW T) =
λ

|V|
tr(WLW T)

=
λ

|V|
tr(

∑
i∈V

wi
∑
j 6=i

aijw
T
i −

∑
j 6=i

wiaijw
T
j)

= λ1(
∑
i∈V

∑
j 6=i

αi,j〈wi,wi −wj〉).

(A2)

We implement the cluster regularization via sharing model weights between each pair of nodes
connected by an edge and select λ1 = 0.1.

CNFGNN We use a GRU-based encoder-decoder model as the model on nodes, which has 1 GRU
layer and hidden dimension 64. We use a 2-layer Graph Network (GN) with residual connections as
the Graph Neural Network model on the server side. We use the same network architecture for the
edge/node/global update function in each GN layer: a multi-layer perceptron (MLP) with 3 hidden
layers, whose sizes are [256, 256, 128] respectively. We choose Rc = 1, Rs = 20 for experiments
on PEMS-BAY, and Rc = 1, Rs = 1 for METR-LA.

A.2 CALCULATION OF COMMUNICATION COST

We denote R as the number of communication rounds for one model to reach the lowest validation
error in the training stage.

GRU + FMTL Using Equation A2, in each communication round, each pair of nodes exchange
their model weights, thus the total communicated data amount is calculated as:

R×#nonself directed edges× size of node model weights. (A3)

CNFGNN (AT + FedAvg) In each communication round, the central server fetches and sends back
model weights to each node for Federated Averaging, and transmits hidden vectors and gradients for
Split Learning. The total communicated data amount is calculated as:

R× (#nodes× size of node model weights× 2

+ (1 + 2 ∗ server round + 1)×#nodes× hidden state size).
(A4)

12

Under review as a conference paper at ICLR 2021

CNFGNN (SL) In each communication round, each node sends and fetches hidden vectors and
graidents twice (one for encoder, the other for decoder) and the total communicated data amount is:

R× 2× 2×#nodes× hidden state size. (A5)

CNFGNN (SL + FedAvg) Compared to CNFGNN (SL), the method has extra communcation cost
for FedAvg in each round, thus the total communicated data amount is:

R× (#nodes× size of node model weights× 2 + 2× 2×#nodes× hidden state size).
(A6)

CNFGNN (AT, w/o FedAvg) Compared to CNFGNN (AT + FedAvg), there is no communcation
cost for the FedAvg part, thus the total communcated data amount is:

R× (1 + 2 ∗ server round + 1)×#nodes× hidden state size. (A7)

Table A1: Parameters used for calculating the communication cost of GRU + FMTL.

Method GRU (63K) + FMTL GRU (727K) + FMTL

Node Model Weights Size (GB) 2.347E-4 2.708E-3

PEMS-BAY
#Nonself Directed Edges 2369

R 104 56
Train Comm Cost (GB) 57.823 359.292

METR-LA
#Nonself Directed Edges 1515

R 279 176
Train Comm Cost (GB) 99.201 722.137

Table A2: Parameters used for calculating the communication cost of CNFGNN (AT + FedAvg).

Node Model
Weights Size (GB) 2.384E-4

PEMS-BAY

#Nodes 325
Hidden State Size (GB) 2.173E-3

Server Round 20
R 2

Train Comm Cost (GB) 237.654

METR-LA

#Nodes 207
Hidden State Size (GB) 1.429E-3

Server Round 1
R 46

Train Comm Cost (GB) 222.246

A.3 INDUCTIVE LEARNING

We have added results using 90% and 5% data on both datasets and we show the table of inductive
learning results as Table A6. We observe that: (1) With the portion of visible nodes in the training
stage increasing, the prediction error of CNFGNN decreases drastically. However, the increase
of the portion of visible nodes has negligible contribution to the performance of GRU + FedAvg
after the portion surpasses 25%. Since increasing the ratio of seen nodes in training introduces more
complex relationships among nodes to the training data, the difference of performance illustrates that
CNFGNN has a stronger capability of capturing complex spatial relationships. (2) When the ratio of

13

Under review as a conference paper at ICLR 2021

Table A3: Parameters used for calculating the communication cost of CNFGNN (SL).

PEMS-BAY

#Nodes 325
Hidden State Size (GB) 2.173E-3

R 31
Train Comm Cost (GB) 350.366

METR-LA

#Nodes 207
Hidden State Size (GB) 1.429E-3

R 65
Train Comm Cost (GB) 307.627

Table A4: Parameters used for calculating the communication cost of CNFGNN (SL + FedAvg).

Node Model
Weights Size (GB) 2.384E-4

PEMS-BAY

#Nodes 325
Hidden State Size (GB) 2.173E-3

R 7
Train Comm Cost (GB) 80.200

METR-LA

#Nodes 207
Hidden State Size (GB) 1.429E-3

R 71
Train Comm Cost (GB) 343.031

Table A5: Parameters used for calculating the communication cost of CNFGNN (AT, w/o FedAvg).

PEMS-BAY

#Nodes 325
Hidden State Size (GB) 2.173E-3

Server Round 20
R 44

Train Comm Cost (GB) 5221.576

METR-LA

#Nodes 207
Hidden State Size (GB) 1.429E-3

Server Round 1
R 49

Train Comm Cost (GB) 2434.985

5% 25% 50% 75% 90%

(a) PEMS-BAY

5% 25% 50% 75% 90%

(b) METR-LA

Figure A1: Visualization of subgraphs visible in training under different ratios.

14

Under review as a conference paper at ICLR 2021

Table A6: Inductive learning performance measured with rooted mean squared error (RMSE).

Method PEMS-BAY METR-LA

5% 25% 50% 75% 90% 5% 25% 50% 75% 90%

GRU (63K) + FedAvg 5.087 4.863 4.847 4.859 4.866 12.128 11.993 12.104 12.014 12.016
CNFGNN (64K + 1M) 5.869 4.541 4.598 4.197 3.942 13.931 12.013 11.815 11.676 11.629

visible nodes in training is extremely low (5%), there is not enough spatial relationship information
in the training data to train the GN module in CNFGNN, and the performance of CNFGNN may
not be ideal. We visualize the subgraphs visible in training under different ratios in Figure A1.
However, as long as the training data covers a moderate portion of the spatial information of the
whole graph, CNFGNN can still leverage the learned spatial connections among nodes effectively
and outperforms GRU+FedAvg. We empirically show that the necessary ratio can vary for different
datasets (25% for PEMS-BAY and 50% for METR-LA).

A.4 THE HISTOGRAMS OF DATA ON DIFFERENT NODES

We show the histograms of traffic speed on different nodes of PEMS-BAY and METR-LA in Fig-
ure A2. For each dataset, we only show the first 100 nodes ranked by their IDs for simplicity. The
histograms show that the data distribution varies with nodes, thus data on different nodes are not
independent and identically distributed.

15

Under review as a conference paper at ICLR 2021

0 20 40 60 80

102

103

104

105

Node 0

0 20 40 60 80

102

103

104

105

Node 1

0 20 40 60 80

103

104

105

Node 2

0 20 40 60 80

102

103

104

105

Node 3

0 20 40 60 80

102

103

104

105
Node 4

0 20 40 60 80

103

104

105

Node 5

0 20 40 60 80

102

103

104

105

Node 6

0 20 40 60 80

102

103

104

105

Node 7

0 20 40 60 80

102

103

104

105

Node 8

0 20 40 60 80

103

104

105

Node 9

0 20 40 60 80

102

103

104

105

Node 10

0 20 40 60 80

102

103

104

105

Node 11

0 20 40 60 80

102

103

104

105

Node 12

0 20 40 60 80

102

103

104

105

Node 13

0 20 40 60 80

102

103

104

105

Node 14

0 20 40 60 80

102

103

104

105

Node 15

0 20 40 60 80

102

103

104

105

Node 16

0 20 40 60 80

102

103

104

105
Node 17

0 20 40 60 80

102

103

104

105

Node 18

0 20 40 60 80
102

103

104

105

Node 19

0 20 40 60 80

102

103

104

105

Node 20

0 20 40 60 80

102

103

104

105

Node 21

0 20 40 60 80

102

103

104

105

Node 22

0 20 40 60 80

102

103

104

105
Node 23

0 20 40 60 80

102

103

104

105

Node 24

0 20 40 60 80

102

103

104

105

Node 25

0 20 40 60 80

102

103

104

105
Node 26

0 20 40 60 80

102

103

104

105

Node 27

0 20 40 60 80

102

103

104

105

Node 28

0 20 40 60 80

102

103

104

105

Node 29

0 20 40 60 80

102

103

104

105

Node 30

0 20 40 60 80

103

104

105

Node 31

0 20 40 60 80
102

103

104

105

Node 32

0 20 40 60 80

103

104

105

Node 33

0 20 40 60 80

102

103

104

105

Node 34

0 20 40 60 80

102

103

104

105

Node 35

0 20 40 60 80

102

103

104

105

Node 36

0 20 40 60 80

102

103

104

105

Node 37

0 20 40 60 80

103

104

105

Node 38

0 20 40 60 80

102

103

104

105

Node 39

0 20 40 60 80

102

103

104

105

Node 40

0 20 40 60 80

102

103

104

105

Node 41

0 20 40 60 80

102

103

104

105

Node 42

0 20 40 60 80

102

103

104

105

Node 43

0 20 40 60 80

103

104

105

Node 44

0 20 40 60 80

102

103

104

105

Node 45

0 20 40 60 80

102

103

104

105

Node 46

0 20 40 60 80

102

103

104

105

Node 47

0 20 40 60 80

102

103

104

105

Node 48

0 20 40 60 80

102

103

104

105

Node 49

0 20 40 60 80

102

103

104

105

Node 50

0 20 40 60 80

102

103

104

105

Node 51

0 20 40 60 80

103

104

105

Node 52

0 20 40 60 80

102

103

104

105

Node 53

0 20 40 60 80
102

103

104

105

Node 54

0 20 40 60 80

102

103

104

105

Node 55

0 20 40 60 80
102

103

104

105

Node 56

0 20 40 60 80
102

103

104

105

Node 57

0 20 40 60 80

102

103

104

105

Node 58

0 20 40 60 80

102

103

104

105

Node 59

0 20 40 60 80

102

103

104

105

Node 60

0 20 40 60 80

102

103

104

105

Node 61

0 20 40 60 80

102

103

104

105

Node 62

0 20 40 60 80

102

103

104

105

Node 63

0 20 40 60 80

102

103

104

105

Node 64

0 20 40 60 80

102

103

104

105

Node 65

0 20 40 60 80

103

104

105

Node 66

0 20 40 60 80
102

103

104

105

Node 67

0 20 40 60 80

102

103

104

105

Node 68

0 20 40 60 80

103

104

105

Node 69

0 20 40 60 80

102

103

104

105

Node 70

0 20 40 60 80

102

103

104

105
Node 71

0 20 40 60 80
102

103

104

105

Node 72

0 20 40 60 80

102

103

104

105

Node 73

0 20 40 60 80

102

103

104

105

Node 74

0 20 40 60 80

102

103

104

105

Node 75

0 20 40 60 80

102

103

104

105
Node 76

0 20 40 60 80

102

103

104

105

Node 77

0 20 40 60 80

102

103

104

105

Node 78

0 20 40 60 80

103

104

105

Node 79

0 20 40 60 80

102

103

104

105
Node 80

0 20 40 60 80

102

103

104

105

Node 81

0 20 40 60 80

103

104

105

Node 82

0 20 40 60 80

103

104

105

Node 83

0 20 40 60 80

103

104

105

Node 84

0 20 40 60 80

102

103

104

105

Node 85

0 20 40 60 80

102

103

104

105
Node 86

0 20 40 60 80

102

103

104

105

Node 87

0 20 40 60 80

102

103

104

105

Node 88

0 20 40 60 80
102

103

104

105

Node 89

0 20 40 60 80

103

104

105

Node 90

0 20 40 60 80

102

103

104

105

Node 91

0 20 40 60 80

102

103

104

105

Node 92

0 20 40 60 80

102

103

104

105

Node 93

0 20 40 60 80
102

103

104

105

Node 94

0 20 40 60 80

102

103

104

105

Node 95

0 20 40 60 80
102

103

104

105

Node 96

0 20 40 60 80

102

103

104

105

Node 97

0 20 40 60 80

102

103

104

105

Node 98

0 20 40 60 80
102

103

104

105
Node 99

(a) PEMS-BAY

0 20 40 60 80

102

103

104

105
Node 0

0 20 40 60 80

102

103

104

105
Node 1

0 20 40 60 80

102

103

104

105

Node 2

0 20 40 60 80

103

104

Node 3

0 20 40 60 80

103

104

Node 4

0 20 40 60 80

102

103

104

Node 5

0 20 40 60 80

102

103

104

105
Node 6

0 20 40 60 80

102

103

104

105
Node 7

0 20 40 60 80

102

103

104

105
Node 8

0 20 40 60 80

102

103

104

105
Node 9

0 20 40 60 80

102

103

104

105
Node 10

0 20 40 60 80

102

103

104

105
Node 11

0 20 40 60 80

103

104

105 Node 12

0 20 40 60 80

102

103

104

105
Node 13

0 20 40 60 80

102

103

104

105 Node 14

0 20 40 60 80
102

103

104

Node 15

0 20 40 60 80

102

103

104

105 Node 16

0 20 40 60 80

102

103

104

105
Node 17

0 20 40 60 80

102

103

104

Node 18

0 20 40 60 80

102

103

104

105
Node 19

0 20 40 60 80
102

103

104

105
Node 20

0 20 40 60 80

102

103

104

105
Node 21

0 20 40 60 80

102

103

104

105
Node 22

0 20 40 60 80

103

104

Node 23

0 20 40 60 80

102

103

104

105
Node 24

0 20 40 60 80

102

103

104

105 Node 25

0 20 40 60 80
102

103

104

Node 26

0 20 40 60 80

102

103

104

105
Node 27

0 20 40 60 80
102

103

104

105

Node 28

0 20 40 60 80

102

103

104

105
Node 29

0 20 40 60 80

102

103

104

105 Node 30

0 20 40 60 80

102

103

104

105
Node 31

0 20 40 60 80
102

103

104

105
Node 32

0 20 40 60 80

102

103

104

Node 33

0 20 40 60 80

102

103

104

105
Node 34

0 20 40 60 80

102

103

104

105 Node 35

0 20 40 60 80

102

103

104

105
Node 36

0 20 40 60 80

102

103

104

105
Node 37

0 20 40 60 80

103

104

Node 38

0 20 40 60 80

102

103

104

105
Node 39

0 20 40 60 80

102

103

104

105
Node 40

0 20 40 60 80

103

104

105
Node 41

0 20 40 60 80

102

103

104

105
Node 42

0 20 40 60 80

102

103

104

105
Node 43

0 20 40 60 80

102

103

104

105
Node 44

0 20 40 60 80

102

103

104

105
Node 45

0 20 40 60 80

102

103

104

105
Node 46

0 20 40 60 80
102

103

104

Node 47

0 20 40 60 80
102

103

104

105 Node 48

0 20 40 60 80

102

103

104

105 Node 49

0 20 40 60 80

102

103

104

105 Node 50

0 20 40 60 80

102

103

104

Node 51

0 20 40 60 80

102

103

104

105
Node 52

0 20 40 60 80

102

103

104

Node 53

0 20 40 60 80

102

103

104

105
Node 54

0 20 40 60 80

102

103

104

105
Node 55

0 20 40 60 80

102

103

104

Node 56

0 20 40 60 80

102

103

104

105
Node 57

0 20 40 60 80

102

103

104

105
Node 58

0 20 40 60 80

102

103

104

105
Node 59

0 20 40 60 80

102

103

104

105
Node 60

0 20 40 60 80

102

103

104

Node 61

0 20 40 60 80

103

104

Node 62

0 20 40 60 80

102

103

104

105
Node 63

0 20 40 60 80

102

103

104

105

Node 64

0 20 40 60 80

102

103

104

105
Node 65

0 20 40 60 80

102

103

104

105

Node 66

0 20 40 60 80

102

103

104

105

Node 67

0 20 40 60 80

102

103

104

105
Node 68

0 20 40 60 80
102

103

104

105
Node 69

0 20 40 60 80

102

103

104

105
Node 70

0 20 40 60 80

102

103

104

105
Node 71

0 20 40 60 80

103

104

Node 72

0 20 40 60 80

102

103

104

105
Node 73

0 20 40 60 80

102

103

104

105

Node 74

0 20 40 60 80

102

103

104

105
Node 75

0 20 40 60 80

102

103

104

Node 76

0 20 40 60 80

103

104

105 Node 77

0 20 40 60 80

102

103

104

105
Node 78

0 20 40 60 80

102

103

104

105

Node 79

0 20 40 60 80

102

103

104

105
Node 80

0 20 40 60 80

102

103

104

Node 81

0 20 40 60 80

102

103

104

105 Node 82

0 20 40 60 80

102

103

104

105
Node 83

0 20 40 60 80

102

103

104

105
Node 84

0 20 40 60 80

102

103

104

105

Node 85

0 20 40 60 80

102

103

104

105
Node 86

0 20 40 60 80

102

103

104

105
Node 87

0 20 40 60 80

102

103

104

105
Node 88

0 20 40 60 80

102

103

104

105
Node 89

0 20 40 60 80

102

103

104

105

Node 90

0 20 40 60 80
101

102

103

104

Node 91

0 20 40 60 80

102

103

104

105

Node 92

0 20 40 60 80

102

103

104

105
Node 93

0 20 40 60 80

102

103

104

105
Node 94

0 20 40 60 80

102

103

104

Node 95

0 20 40 60 80
102

103

104

105

Node 96

0 20 40 60 80

102

103

104

105
Node 97

0 20 40 60 80

102

103

104

105
Node 98

0 20 40 60 80

102

103

104

105

Node 99

(b) METR-LA

Figure A2: The histograms of data on the first 100 nodes ranked by ID.

16

	Introduction
	Related Work
	Cross-Node Federated Graph Neural Network
	Problem Formulation
	Proposed Method
	Modeling of Node-Level Temporal Dynamics
	Modeling of Spatial Dynamics
	Alternating Training of Node-Level and Spatial Models

	Experiments
	Spatio-Temporal Data Modeling: Traffic Flow Forecasting
	Inductive Learning on Unseen Nodes
	Ablation Study: Effect of Alternating Training and FedAvg on Node-Level and Spatial Models
	Ablation Study: Effect of Client Rounds and Server Rounds

	Conclusion
	Appendix
	Detailed Experiment Settings
	Calculation of Communication Cost
	Inductive Learning
	The Histograms of Data on Different Nodes

