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Abstract

We present markovml, a Python package for
verifying properties of Markov processes whose
parameters are defined by machine learning (ML)
models. While existing tools support formal veri-
fication of either Markov processes or ML models
individually, none support reasoning about sys-
tems that integrate both. markovml fills this
gap by allowing users to construct Markov pro-
cesses and embed pretrained models from stan-
dard ML libraries, including linear models, de-
cision trees, and neural networks. The package
provides an expressive domain-specific language
to specify constraints and verify common prop-
erties such as reachability, expected hitting time,
and total reward. We illustrate usage through
several examples and release the package with
full documentation and tutorials. Our pack-
age is available at https://github.com/
mmaaz-git/markovml.

1. Introduction

Markov processes are fundamental mathematical models
used across computer science, operations research, engineer-
ing, and healthcare (Stewart, 2021). In computer science,
they capture the behavior of probabilistic systems such as
hardware, communication protocols, or autonomous agents
(Baier & Katoen, 2008). In engineering, they are used
to analyze degradation and failure in complex machinery
(Rausand & Hoyland, 2003). In healthcare, they model
patient transitions between clinical states and underpin cost-
effectiveness analyses of medical interventions (Sonnenberg
& Beck, 1993).

As machine learning (ML) becomes increasingly integrated
into real-world systems, Markov models are evolving to
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incorporate heterogeneous, data-driven parameters. For
instance, ML models can estimate failure rates from sen-
sor data or patient-specific transition probabilities based on
clinical features (Mertens et al., 2022). This gives rise to
Markov processes where parameters are learned functions.

Despite this growing trend, there is limited work on rigor-
ously analyzing such systems. In healthcare, most studies
rely on Monte Carlo simulation (Krijkamp et al., 2018), but
cannot provide formal guarantees. While our primary moti-
vation is healthcare, the approach generalizes to any applica-
tion where learned models feed into Markov processes. This
enables us to rigorously answer questions such as: Given
a bound on the input, what is the worst-case probability of
reaching a failure state? Is the failure rate for machines with
certain properties guaranteed to remain below 0.01%? For
a clinical subgroup, is the expected treatment cost within a
government threshold?

In this paper, we present our open-source software pack-
age, markovml, for the formal verification of Markov
processes with ML-based parameters, available at https:
//github.com/mmaaz—git/markovml. The techni-
cal and mathematical details, as well as our novel algorithm
for solving the resulting problems orders of magnitude faster
than existing solvers, are in a companion paper (Maaz &
Chan, 2025). In this paper, we focus on discussing the
software itself, how users can interact with it, and how it
interfaces with other ML libraries.

Related Software There exist several tools for proba-
bilistic model checking, which verifies properties of sys-
tems modeled by Markov chains (Hansson & Jonsson,
1994; Baier & Katoen, 2008), e.g., PRISM and others
(Kwiatkowska et al., 2002; Katoen et al., 2005; Hermanns
et al., 2000; Sen et al., 2005; Younes, 2005; Lassaigne &
Peyronnet, 2002). Concurrently, there also exist several
tools for verifying machine learning models, which take a
pretrained model and obtain guaranteed bounds on outputs,
e.g., a, B-CROWN (Wang et al., 2021; Zhang et al., 2022b;a;
Kotha et al., 2023), VeriNet (Henriksen & Lomuscio, 2020;
2021), and Marabou (Katz et al., 2019; Wu et al., 2020). In
the healthcare domain, simulation software like TreeAge (?)
allow for heterogeneous parameters of the Markov chain
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drawn from distributions, but currently only supports Monte
Carlo simulation. Our software is thus the first tool that
allows the formal verification of integrated Markov models
and ML models, and, by formulating the problem as an
optimization problem and solving it to global optimality, it
provides robust guarantees that simulation cannot.

2. Mathematical Background

Notation Vectors are lowercase bold, e.g., x, with i-th
entry z;, and matrices by uppercase bold letters, e.g., M
with (7, j)-th entry M;;. The identity matrix is denoted by
I, the vector of all ones by 1, with dimensions inferred from
context. The set of integers from 1 to n is denoted by [n].

Preliminaries A (discrete-time, finite-state) Markov chain
with n states, indexed by [n], is defined by a row-stochastic
transition matrix P € R™*", where P;; is the probability of
transitioning from state ¢ to state j, and a stochastic initial
distribution vector w € R"™, where ; is the probability
of starting in state ¢. Furthermore, if we assign rewards
to each state, we call this a Markov reward process. A
Markov reward process has a reward vector r € R™, where
r; is the reward for being in state 7 for one period. A state
is absorbing if it cannot transition to any other state, and
transient otherwise.

Below, we recount three of the key properties commonly
computed in practice (Puterman, 2014).

Definition 2.1 (Reachability). The probability of eventually
reaching a set of states S C [n], from a set T' C [n] of
transient states equal to the complement of S, assuming
that the chain will reach S from 7" with probability 1, is
given by ' (I— Q) 'R1, where Q is the transition matrix
restricted to 7', R is the transition matrix from 7" to S, and
7r is the initial distribution over 7T'.

Definition 2.2 (Expected hitting time). The expected num-
ber of steps to eventually reach a set of states S C [n],
from a set T' C [n] of transient states equal to the comple-
ment of S, assuming that the chain will reach S from T’
with probability 1, is given by &' (I — Q)~'1, where Q
is the transition matrix restricted to 7', and 7 is the initial
distribution over 7.

Definition 2.3 (Total infinite-horizon discounted reward).
The total infinite-horizon discounted reward, with a dis-
count factor A € (0,1) is given by > 2 Alw P'r =
7T (I-\P) 'r.

We wish to verify these properties, namely finding their
maximum or minimum, which we will do by formulating
and solving an optimization problem.

Embedding ML Models We now consider 7, P, r as
functions of a feature vector x € R™, where m is the

number of features. Given one or more ML models, we can
write elements of 7r, P, r as affine functions of the outputs of
the ML models. We also allow additional linear inequalities
on the elements of 7, P, r. Lastly, x is constrained to lie in
aset X.

Our key assumption is that the ML models are mixed-integer
linear representable (MILP-representable), meaning that the
relationship between the inputs and outputs can be expressed
using linear constraints and binary variables. This is a broad
class of functions that includes, e.g., piecewise linear func-
tions (including simple “if-then” rules), linear and logistic
regression, tree-based models, and neural networks with
ReLU activations (we handle the non-linearity introduced
by softmax or logistic with spatial branch-and-bound). We
also assume that X is a MILP-representable set (Jeroslow
& Lowe, 1984). See Figure 1 for the full pipeline.

Solving the problem As discussed in greater detail in
the companion paper (Maaz & Chan, 2025), under these
assumptions, verifying the three aforementioned properties
can be formulated as a bilinear program, an NP-hard non-
convex quadratic program. We developed a novel decom-
position scheme which significantly speeds up the solution
of the resulting bilinear program. This algorithm is fully
implemented in our software.

3. Overview of markovml

markovml, allows the user to specify Markov chains or re-
ward processes with embedded pretrained machine learning
models. Our domain-specific language lets users: (1) instan-
tiate a Markov process, (2) add pretrained ML models from
sklearn (Pedregosa et al., 2011) and PyTorch (Paszke
et al., 2019), (3) link model outputs to Markov parameters
with affine equalities, (4) include extra linear inequalities,
(5) specify the feature set with MILP constraints, and (6)
optimize reachability, hitting time, or total reward.

Our package is built on the optimization solver Gurobi,
specifically its Python interface, gurobipy (Gurobi Opti-
mization, LLC, 2024). As the user sets up their model, our
software constructs, in the background, the equivalent for-
mulation in Gurobi. We also then directly leverage Gurobi’s
ability to solve bilinear programs to global optimality (our
decomposition scheme also calls out to Gurobi’s solver).

Supported models Our package supports a variety of
regression and classification models, including linear, tree-
based, and neural networks. For some models, the MILP for-
mulation is provided by gurobi-machinelearning
(Gurobi Optimization, 2024), a Python package built on top
of gurobipy which embeds pretrained ML models into a
Gurobi model, while for others, we implemented the MILP
formulation ourselves.
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Figure 1. Example of our pipeline. A feature vector x is passed through different functions, here a linear regression and a neural network,
to obtain the output vector @, which then determines the parameters of the Markov process through affine equalities.

We support the following models from sklearn:

* LinearRegression

e Ridge

* Lasso

* LogisticRegression

* DecisionTreeRegressor
* DecisionTreeClassifier
* RandomForestRegressor
* RandomForestClassifier
e MLPRegressor

e MLPClassifier

From pytorch, we support neural networks built as
nn.Sequential models with ReLu or linear layers, with
possibly a softmax layer at the end for classifiers.

Lastly, we implemented a model called DecisionRules,
which allows the user to specify a series of “if-then” rules
specified in natural language, e.g., “if age > 65 then 0.8”.
This enables encoding tables from the literature, like age-
stratified mortalities, common in healthcare.

4. Using markovml

We walk through how to use markovml. Our software
comes bundled with extensive documentation and tutorials.

Instantiating a Markov process There are three ob-
jects in the markovml package: MarkovReward,
MarkovReach, and MarkovHitting. They corre-
spond to the problem you are trying to solve: verifying
the total reward, reachability, and hitting time, respectively.
They have slightly different interfaces and internal oper-
ations, but there is lots of common functionality, so it is
easy to switch between them (in fact, they all inherit from
the same base class, Abst ractMarkov, which provides
almost all of the functionality). While they have common
setups, there are specific elements to each of them; for ex-
ample, MarkovReward requires the setting of a reward
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vector r while the others do not. Below are some examples
of instantiating each of these objects.

mrp = MarkovReward (n_states=2,
=2)

m_reach = MarkovReach (n_states=2,
n_features=2, n_transient=1,
=1)

n_features

n_targets

MarkovHitting(n_states=2,
n_features=2, n_transient=1)

Adding ML models The next step is to add a ma-
chine learning model to the problem. This is done with
the add-m1l_model function. This function takes a pre-
trained model as input and embeds its MILP formula-
tion in the underlying optimization problem. Suppose we
have pretrained models reward model, trans_model,
reward.model?2, trans_.model?2, where the reward
models are regression models and the transition models are
classification models. We can add them to the underlying
Markov process as:

reward_model)
trans_model)
reward_model?2)
trans_model?2)

mrp.add_ml_model
mrp.add_ml_model

mrp.add_ml_model

We can then access the variables corresponding to
the outputs of each of these models using the
ml_outputs attribute of the Markov object; e.g.,
mrp.ml_outputs[0] [0] is the first output of the first
added model (reward_model).

Setting parameters There are three ways to set the pa-
rameters of the Markov process: (1) pass constants at initial-
ization, (2) use set_to_const or set_to_ml_output,
or (3) use the setting helper functions.

If it is known that an entire vector or matrix is a constant,
then this can be passed at initialization, as below.
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MarkovReward (n_states=2, n_features=2, r

=[1, 0])

The set_to_const or set_to_ml_output functions
can be used to set elements one at a time either to a constant
or to an affine function of one of the ML models’ outputs,
as below.

1)
0)

mrp.set_to_const (mrp.r[0],
mrp.set_to_const (mrp.r[1],

mrp.set_to_ml_output (mrp.r[2],
ml_outputs[0][0])

mrp.set_to_ml_output (mrp.r[3],
ml_outputs[0] [0]-1)

mrp.

2*mrp.

Lastly, each of the classes have setting helper functions
which can be used to set the parameters altogether, as it may
be cumbersome to set one at a time. Depending on the class,
these are: set_pi, set_P, set_Q, set_r, set_R.

mrp.set_pi([mrp.ml_outputs[1l][0]
1 - mrp.ml_outputs[l
0, 0, 01)

1101,

Adding linear constraints on parameters We can add
linear constraints on the parameters quite simply:

mrp.add_constraint (mrp.r[0] >= 1)
Defining the feature space To define A,
we use add_feature_constraint and

add_feature_aux_variable. The first function
allows adding linear inequalities, and the second allows
adding auxiliary continuous or discrete variables. Together,
these can encode any MILP-representable set.

mrp.add_feature_constraint (mrp.features[0]
+ mrp.features[1l] <= 1.5)

mrp.add_feature_constraint (mrp.features[2]
>= mrp.features[3])

6 Mrp

from markovml.markovml import MarkovReward

from sklearn.linear_model import
LogisticRegression

import numpy as np

# Create a Markov reward process
MarkovReward (n_states=2, n_features
=2)

# fix some parameters
mrp.set_r([1, O0])
mrp.set_pi([1l, 0])

# train a classifier

X = np.random.rand (100, 2)
y = np.random.randint (0, 2, 100)
clf = LogisticRegression () .fit (X, vy)

# add classifier
mrp.add_ml_model (clf)

# link to transitions
mrp.set_P([[1l - mrp.ml_outputs[0][0],
ml_outputs([0][0]], [0, 111)

mrp.

3 # define feature space

mrp.add_feature_constraint (mrp.features[0]
>= 65)

25 mrp.add_feature_constraint (mrp.features[1]

)

>= 100)

# optimize!
mrp.optimize (sense="max")

Decision rules The following code demonstrates build-
ing a DecisionRules model, which allows building “if-
then” rules in a natural language syntax.

— ’

dr DecisionRules (features ["age’,
income’ ])

dr.fit (rules = [
"if age > 20 then 2.5",
"if income >= 50000 and age < 30 then
_1.0",
"else 0.0"

1)

Optimizing Once all parameters have been set and the
feature space has been fixed, we can optimize our metric of
interest quite simply.

mrp.optimize (sense="max")

It is possible to pass various solving options here as well as
find a feasible solution instead of optimizing.

Complete example In only a few lines, a user can build a
Markov process, integrate an ML model, and optimize the
reward.

It is then possible to “predict” using such a model on new
data. This can also be added into a Markov object, just as
any other learned model, and we implemented the MILP
formulation through a series of logical constraints.

5. Conclusion

markovml bridges a critical gap in formal verification
tools by enabling the verification of Markov processes
whose parameters are given by ML models. By offering a
simple and expressive syntax, it makes formal verification
accessible for real-world, data-driven applications across
domains like healthcare, reliability, and decision making.
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