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ABSTRACT

In this paper, we propose a novel domain adaptation method for the source-free
setting. In this setting, we cannot access source data during adaptation, while
unlabeled target data and a model pretrained with source data are given. Due
to lack of source data, we cannot directly match the data distributions between
domains unlike typical domain adaptation algorithms. To cope with this problem,
we propose utilizing batch normalization statistics stored in the pretrained model
to approximate the distribution of unobserved source data. Specifically, we fix
the classifier part of the model during adaptation and only fine-tune the remaining
feature encoder part so that batch normalization statistics of the features extracted
by the encoder match those stored in the fixed classifier. Additionally, we also
maximize the mutual information between the features and the classifier’s outputs
to further boost the classification performance. Experimental results with several
benchmark datasets show that our method achieves competitive performance with
state-of-the-art domain adaptation methods even though it does not require access
to source data.

1 INTRODUCTION

In typical statistical machine learning algorithms, test data are assumed to stem from the same
distribution as training data (Hastie et al., 2009). However, this assumption is often violated in
practical situations, and the trained model results in unexpectedly poor performance (Quionero-
Candela et al., 2009). This situation is called domain shift, and many researchers have intensely
worked on domain adaptation (Csurka, 2017; Wilson & Cook, 2020) to overcome it. A common
approach for domain adaptation is to jointly minimize a distributional discrepancy between domains
in a feature space as well as the prediction error of the model (Wilson & Cook, 2020), as shown
in Fig. 1(a). Deep neural networks (DNNs) are particularly popular for this joint training, and
recent methods using DNNs have demonstrated excellent performance under domain shift (Wilson
& Cook, 2020).

Many domain adaptation algorithms assume that they can access labeled source data as well as
target data during adaptation. This assumption is essentially required to evaluate the distributional
discrepancy between domains as well as the accuracy of the model’s prediction. However, it can be
unreasonable in some cases, for example, due to data privacy issues or too large-scale source datasets
to be handled at the environment where the adaptation is conducted. To tackle this problem, a few
recent studies (Kundu et al., 2020; Li et al., 2020; Liang et al., 2020) have proposed source-free
domain adaptation methods in which they do not need to access the source data.

In source-free domain adaptation, the model trained with source data is given instead of source data
themselves, and it is fine-tuned through adaptation with unlabeled target data so that the fine-tuned
model works well in the target domain. Since it seems quite hard to evaluate the distributional dis-
crepancy between unobservable source data and given target data, previous studies mainly focused
on how to minimize the prediction error of the model with unlabeled target data, for example, by
using pseudo-labeling (Liang et al., 2020) or a conditional generative model (Li et al., 2020). How-
ever, due to lack of the distributional alignment, those methods heavily depend on noisy target labels
obtained through the adaptation, which can result in unstable performance.
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(b) Our setup for source-free domain adaptation.

Figure 1: Comparison between typical domain adaptation methods and our method. A rectangle
with solid lines represents a trainable component, while that with dotted lines represent a fixed
component during adaptation.

In this paper, we propose a novel method for source-free domain adaptation. Figure 1(b) shows
our setup in comparison with that of typical domain adaptation methods shown in Fig. 1(a). In our
method, we explicitly minimize the distributional discrepancy between domains by utilizing batch
normalization (BN) statistics stored in the pretrained model. Since we fix the pretrained classifier
during adaptation, the BN statistics stored in the classifier can be regarded as representing the dis-
tribution of source features extracted by the pretrained encoder. Based on this idea, to minimize
the discrepancy, we train the target-specific encoder so that the BN statistics of the target features
extracted by the encoder match with those stored in the classifier. We also adopt information max-
imization as in Liang et al. (2020) to further boost the classification performance of the classifier
in the target domain. Our method is apparently simple but effective; indeed, we will validate its
advantage through extensive experiments on several benchmark datasets.

2 RELATED WORK

In this section, we introduce existing works on domain adaptation that are related to ours and also
present a formulation of batch normalization.

2.1 DOMAIN ADAPTATION

Given source and target data, the goal of domain adaptation is to obtain a good prediction model that
performs well in the target domain (Csurka, 2017; Wilson & Cook, 2020). Importantly, the data dis-
tributions are significantly different between the domains, which means that we cannot simply train
the model with source data to maximize the performance of the model for target data. Therefore,
in addition to minimizing the prediction error using labeled source data, many domain adaptation
algorithms try to align the data distributions between domains by adversarial training (Ganin et al.,
2016; Tzeng et al., 2017; Deng et al., 2019; Xu et al., 2019) or explicitly minimizing a distributional-
discrepancy measure (Long et al., 2015; Bousmalis et al., 2016; Long et al., 2017). This approach
has empirically shown excellent performance and is also closely connected to theoretical analysis
(Ben-David et al., 2010). However, since this distribution alignment requires access to source data,
these methods cannot be directly applied to the source-free domain adaptation setting.

In source-free domain adaptation, we can only access target data but not source data, and the model
pretrained with the source data is given instead of the source data. This challenging problem has
been tackled in recent studies. Li et al. (2020) proposed joint training of the target model and the
conditional GAN (Generative Adversarial Network) (Mirza & Osindero, 2014) that is to generate
annotated target data. Liang et al. (2020) explicitly divided the pretrained model into two modules,
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called a feature encoder and a classifier, and trained the target-specific feature encoder while fixing
the classifier. To make the classifier work well with the target features, this training jointly conducts
both information maximization and self-supervised pseudo-labeling with the fixed classifier. Kundu
et al. (2020) adopted a similar architecture but it has three modules: a backbone model, a feature
extractor, and a classifier. In the adaptation phase, only the feature extractor is tuned for the target
domain by minimizing the entropy of the classifier’s output. Since the methods shown above do
not try to align data distributions between domains, they cannot essentially avoid confirmation bias
of the model and also cannot benefit from well-exploited theories in the studies on typical domain
adaptation problems (Ben-David et al., 2010).

2.2 BATCH NORMALIZATION

Batch normalization (BN) (Ioffe & Szegedy, 2015) has been widely used in modern architectures
of deep neural networks to make their training faster as well as being stable. It normalizes each
input feature within a mini-batch in a channel-wise manner so that the output has zero-mean and
unit-variance. Let B and {zi}Bi=1 denote the mini-batch size and the input features to the batch
normalization, respectively. Here, we assume that the input features consist of C channels as zi =
[z

(1)
i , ..., z

(C)
i ] and each channel contains nc features. BN first computes the means {µc}Cc=1 and

variances {σ2
c}Cc=1 of the features for each channel within the mini-batch:

µc =
1

ncB

B∑
i

nc∑
j

z
(c)
i [j], σ2

c =
1

ncB

B∑
i

nc∑
j

(z
(c)
i [j]− µc)2, (1)

where z(c)i [j] is the j-th feature in z(c)i . Then, it normalizes the input features by using the computed
BN statistics:

z̃
(c)
i =

z
(c)
i − µc√
σ2
c + ε

, (2)

where ε is a small positive constant for numerical stability. In the inference phase, BN cannot always
compute those statistics, because the input data do not necessarily compose a mini-batch. Instead,
BN stores the exponentially weighted averages of the BN statistics in the training phase and uses
them in the inference phase to compute z̃ in Eq. (2) (Ioffe & Szegedy, 2015).

Since BN renormalizes features to have zero-mean and unit-variance, several methods (Li et al.,
2018; Chang et al., 2019; Wang et al., 2019) adopted domain-specific BN to explicitly align both
the distribution of source features and that of target features into a common distribution. Since the
domain-specific BN methods are jointly trained during adaptation, we cannot use these methods in
the source-free setting.

3 PROPOSED METHOD

Figure 2 shows an overview of our method. We assume that the model pretrained with source data
is given, and it conducts BN at least once somewhere inside the model. Before conducting domain
adaptation, we divide the model in two sub-models: a feature encoder and a classifier, so that BN
comes at the very beginning of the classifier. Then, for domain adaptation, we fine-tune the encoder
with unlabeled target data with the classifier fixed. After adaptation, we use the fine-tuned encoder
and the fixed classifier to predict the class of test data in the target domain.

To make the fixed classifier work well in the target domain after domain adaptation, we aim to obtain
a fine-tuned encoder that satisfies the following two properties:

• The distribution of target features extracted by the fine-tuned encoder is well aligned to that
of source features extracted by the pretrained encoder.

• The features extracted by the fine-tuned encoder are sufficiently discriminative for the fixed
classifier to accurately predict the class of input target data.

To this end, we jointly minimize both the BN-statistics matching loss and information maximization
loss to fine-tune the encoder. In the former loss, we approximate the distribution of unobservable
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Figure 2: An overview of the proposed method.

source features by using the BN statistics stored in the first BN layer of the classifier, and the loss
explicitly evaluates the discrepancy between source and target feature distributions based on those
statistics. Therefore, minimizing this loss leads to satisfying the first property shown above. On the
other hand, the latter loss is to make the predictions by the fixed classifier certain for every target
sample as well as diverse within all target data, and minimizing this loss leads to fulfilling the second
property. Below, we describe the details of these losses.

3.1 DISTRIBUTION ALIGNMENT BY MATCHING BATCH NORMALIZATION STATISTICS

Since the whole model is pretrained with source data and we fix the classifier while finetuning the
encoder, the BN statistics stored in the first BN in the classifier can be seen as the statistics of the
source features extracted by the pretrained encoder. We approximate the source-feature distribution
by using these statistics. Specifically, we simply use a Gaussian distribution for each channel de-
noted by N (µ̂c, σ̂

2
c ) where µ̂c and σ̂2

c are the mean and variance of the Gaussian distribution which
are the stored BN statistics corresponding to the c-th channel.

To match the feature distributions between domains, we define the BN-statistics matching loss,
which evaluates the averaged Kullback-Leibler (KL) divergence from the target-feature distribution
to the approximated source-feature distribution:

LBNM({xi}Bi=1, θ) =
1

C

C∑
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2
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=
1

2C
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c

σ̂2
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+
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c + (µ̂c − µc)2

σ2
c

− 1

)
, (3)

where {xi}Bi=1 is a mini-batch from the target data, θ is a set of trainable parameters of the encoder,
and µc and σc are the BN statistics of the c-th channel computed from the target mini-batch. Note
that, since µc and σc are calculated from the features extracted by the encoder, they depend on θ.
Here, we also approximate the target-feature distribution with another Gaussian distribution so that
the KL divergence can be efficiently computed in a parametric manner. By minimizing this loss, we
can explicitly reduce the discrepancy between the distribution of unobservable source features and
that of target features.

In Eq. (3), we chose the KL divergence to measure the distributional discrepancy between domains.
There are two reasons for this choice. First, the KL divergence between two Gaussian distributions
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is easy to compute with the BN statistics as shown in Eq. (3). Moreover, since these statistics are
naturally computed in the BN layer, calculating this divergence only requires tiny calculation costs.
Secondly, it would be a theoretically-inspired design from the perspective of risk minimization in the
target domain. When we consider a binary classification task, the expected risk of any hypothesis h
in the target domain can be upper-bounded under some mild assumptions as the following inequality
(Ben-David et al., 2010):

rT(h) ≤ rS(h) + d1(pS, pT) + β, (4)

where rS(h) and rT(h) denote the expected risk of h under the source-data distribution pS and
target-data distribution pT, respectively, d1(p, q) represents the total variation distance between p
and q, and β is a constant value that is expected to be sufficiently small. This inequality roughly
gives a theoretical justification to recent domain adaptation algorithms, that is, joint minimization of
both the distributional discrepancy between domains (corresponding to the second term of the bound
in Eq. (4)) and the prediction error of the model (corresponding to the first term of the bound in Eq.
(4)). Here, the total variation distance can be related to the KL divergence by Pinsker’s inequality
(Csiszar & Körner, 2011):

d1(p, q) ≤
√

1

2
KL(p||q). (5)

Consequently, we can guarantee that minimizing the KL divergence between domains minimizes
the bound of the target risk.

3.2 DOMAIN ADAPTATION WITHOUT ACCESS TO THE SOURCE DATA

Only aligning the marginal feature-distributions between domains does not guarantee that the fixed
classifier works well in the target domain, because the features extracted by the encoder are not
necessarily discriminative. If the features are sufficiently discriminative for the classifier, we can
expect that the output of the classifier is almost always a one-hot vector but is diverse within the
target data. Therefore, following the approach presented in Liang et al. (2020), we also adopt the
information maximization loss to make the classifier work accurately.

LIM({xi}Bi=1, θ) = −H

(
1

B

B∑
i

fθ(xi)

)
+

1

B

B∑
i

H (fθ(xi)) , (6)

where H(p(y)) = −
∑
y′ p(y

′) log p(y′) is the entropy function, and fθ(x) denotes the output of
the classifier. The first term in the right-hand side of Eq. (6) is the negative entropy of the averaged
output of the classifier, and minimizing it leads to large diversity of the output within the mini-
batch. The second term is the averaged entropy of the classifier’s output, and minimizing it makes
the outputs close to one-hot vectors. Therefore, the features extracted by the target encoder are
induced to be discriminative by minimizing the information maximization loss.

Finally, our source-free domain adaptation method is formulated as joint minimization of both the
BN-statistics matching loss in Eq. (3) and the information maximization loss in Eq. (6):

min
θ

E{xi}Bi=1∼Dt

[
LIM({xi}Bi=1, θ) + λLBNM({xi}Bi=1, θ)

]
, (7)

where Dt is the target dataset from which the mini-batch is sampled, and a hyper-parameter λ
controls the balance between the two terms. Note that this optimization can be conducted without
the source data, which means that we do not need to access to the source data during adaptation.

4 EXPERIMENTS

We conducted experiments with several datasets that are commonly used in existing works on do-
main adaptation. Specifically, we used digit recognition datasets (MNIST (LeCun et al., 1998),
USPS (LeCun et al., 1990), and SVHN (Netzer et al., 2011)) and an object recognition dataset
(Office-31 dataset (Saenko et al., 2010)). In the experiment, we first pretrained the model with the
source training data. Following the setup in Liang et al. (2020), we used standard cross-entropy
loss with label smoothing for this pretraining. Then, we apply our source-free domain adaptation
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Table 1: Experimental results with Office-31 dataset. The bold number represents the highest test
accuracy among the source-free domain adaptation methods, and the underline represents the second
highest one.

Method A→D A→W D→A D→W W→A W→D
SHOT

(Liang et al., 2020) 94.0 90.1 74.7 98.4 74.3 99.9

Model adaptation
(Li et al., 2020) 92.7±0.4 93.7±0.2 75.3±0.5 98.5±0.1 77.8±0.1 99.8±0.2

Our method 89.0±0.2 91.7±1.0 78.5±0.2 98.9±0.1 76.6±0.7 100.0±0.0
ADDA

(Tzeng et al., 2017) 77.8±0.3 86.2±0.5 69.5±0.4 96.2±0.3 68.9±0.5 98.4±0.3

rRevGrad+CAT
(Deng et al., 2019) 90.8±1.8 94.4±0.1 72.2±0.6 98.0±0.1 70.2±0.1 100.0±0.0

d-SNE
(Xu et al., 2019) 94.7±0.4 96.6±0.1 75.5±0.4 99.1±0.2 74.2±0.2 100.0±0.0

method to fine-tune the pretrained model with the target training data. We used Adam optimizer for
both pretraining and adaptation. The number of iterations in the optimization was set to 30,000, and
the batch size was set to 64. The hyper-parameter λ in Eq. (7) is set to 10 in all experiments except
for those in section 4.3. The performance of the domain adaptation is evaluated by test accuracy of
the fine-tuned model on the target test data. We report the averaged accuracy as well as the standard
deviation over five runs with random initialization of the model at the pretraining phase.

We compared the performance of our method with those of the state-of-the-art methods for source-
free domain adaptation (Li et al., 2020; Liang et al., 2020), which are most related to our work. We
did not include the work by Kundu et al. (2020) in this comparison, because it is designed for more
difficult setting, called universal domain adaptation. For reference, we also show the performance
of the recent methods for typical domain adaptation (Tzeng et al., 2017; Deng et al., 2019; Xu et al.,
2019), though they require access to the source data during adaptation.

4.1 OBJECT RECOGNITION DATASET

The Office-31 dataset comprises three domains: Amazon (A), DSLR (D), and Webcam (W). We
examined all possible combinations for the adaptation, which results in six scenarios. Following the
setup of Ganin et al. (2016); Liang et al. (2020), we used ResNet-50 pretrained with the ImageNet
classification dataset as a backbone model. We removed the original FC layer from the pretrained
ResNet-50 and added a bottleneck FC layer (256 units) and a classification FC layer (31 units).
A BN layer is put before and after the bottleneck layer, and we used the last one to calculate our
BN-statistics matching loss. Note that the backbone part is fixed in our experiments.

Table 1 shows the test accuracy of the adapted models at the target data. The results shown above
the double line are those of the source-free domain adaptation methods, while the remaining ones
are those of the other typical domain adaptation methods. Our method achieved the best accuracy at
three out of six scenarios, and, surprisingly, its performance reached or exceeded the performance
of the state-of-the-art typical domain adaptation methods in those cases. Moreover, our method also
shows competitive performance in the other scenarios except for A→ D. Since SHOT (Liang et al.,
2020) also adopts the information maximization loss, these results indicate that our BN-statistics
matching loss substantially improves the performance of the adaptation by successfully reducing
the distributional discrepancy between domains. The model adaptation (Li et al., 2020) also works
well through the all scenarios. However, considering that it requires training of a conditional GAN
while adaptation, our method is quite appealing due to simplicity of its training procedure as well as
its high performance.

4.2 DIGIT RECOGNITION DATASETS

We examined USPS ↔ MNIST and SVHN → MNIST scenarios. Following the previous studies
(Long et al., 2018; Liang et al., 2020), we used the classical LeNet-5 network for the former scenario,
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Table 2: Experimental results with digit recognition datasets. The bold number represents the high-
est test accuracy among the source-free domain adaptation methods, and the underline represents
the second highest one.

Method USPS→MNIST MNIST→USPS SVHN→MNIST
SHOT (Liang et al., 2020) 98.4±0.6 98.0±0.2 98.9±0.0

Model adaptation (Li et al., 2020) 99.3±0.1 97.3±0.2 99.4±0.1
Our method 99.1±0.0 97.7±0.2 99.1±0.0

ADDA (Tzeng et al., 2017) 90.1±0.8 89.4±0.2 76.0±1.8
rRevGrad+CAT (Deng et al., 2019) 96.0±0.9 94.0±0.7 98.8±0.0

d-SNE (Xu et al., 2019) 98.5±0.4 99.0±0.1 96.5±0.2
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while a variant of LeNet, called DTN, is used for the latter one. For both models, we used the last
BN layer in the model to calculate the BN statistics matching loss in our method.

Table 2 shows the experimental results with the digit recognition datasets. Although our method
did not achieve the best performance among the source-free methods, it stably achieved the second
highest accuracy in all scenarios. Similarly in the results with Office-31 dataset, our method exceeds
the performance of the typical domain adaptation methods in two scenarios, namely USPS→MNIST
and SVHN→MNIST.

4.3 PERFORMANCE SENSITIVITY TO THE HYPER-PARAMETER AND DATASET SIZE

We investigated the performance sensitivity of our method to the hyper-parameter setting and that
to the size of the target dataset. The experimental settings are same with those in the previous
experiment unless otherwise noted.

Our method introduces single hyper-parameter, which is λ in Eq. (7). We first investigated the
performance sensitivity to the value of λ. Since we can only access the unlabeled target data during
adaptation, it is essentially hard to appropriately tune the hyper parameter. Therefore, high stability
of the performance under a suboptimal setting of the hyper-parameter is required in the source-free
domain adaptation. In the experiment, we varied the value of λ from 0.01 to 100 and used it in our
method to conduct the adaptation with the digit recognition datasets. Figure 3 shows how the test
accuracy of the adapted model changes according to the value of λ. In all adaptation scenarios, the
performance of our method is quite stable against the change of the value of λ. It keeps almost same
within the wide range of the value of λ, specifically 0.2 ≤ λ ≤ 50.

We also investigated the performance of our method in case of small-scale target data. This in-
vestigation is crucial, because, considering the motivation of domain adaptation, we cannot always
expect sufficiently large amount of the target data. Since MNIST is the largest target dataset used
in our experiments, we conducted this investigation with SVHN→MNIST adaptation. To make
the small-scale target data, we randomly selected a subset of the original target training data while
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Figure 5: Test accuracy curves during adaptation in our method.

keeping the class prior same with that in the original dataset. Figure 4 shows how the test accuracy
after the adaptation changes according to the size of the target dataset. As decreasing the number
of the target data, the performance of our method becomes deteriorated to some extent. However,
even when there are only 600 samples in the target dataset, our method still achieved 98.0%, which
is comparable performance with those of the typical domain adaptation methods using full target
dataset as well as source dataset.

Figure 5 shows how the test accuracy by the model changes during adaptation. The accuracy is
stably and monotonically improved even when the number of the target data is small. It means that
our method can effectively avoid overfitting to the small-scale target dataset.

5 CONCLUSION

We proposed a novel domain adaptation method for source-free setting. To match the distribu-
tions between unobservable source data and given target data, we utilize the BN statistics stored
in the pretrained model to explicitly estimate and minimize the distributional discrepancy between
domains. This approach is quite efficient in terms of the computational cost and can be justified
from the perspective of risk minimization in the target domain. Experimental results with several
benchmark datasets have shown that our method performs well even though it does not require the
access to the source data. Moreover, its performance was empirically quite stable against suboptimal
hyper-parameter setting or limited size of the target dataset. In conclusion, we argue that our method
is quite promising to tackle many real-world problems that are hard to solve with existing domain
adaptation methods.
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