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Abstract

Energy-based models (EBMs) provide an elegant framework for density estimation,
but they are notoriously difficult to train. Recent work has established links to
generative adversarial networks, where the EBM is trained through a minimax
game with a variational value function. We propose a bidirectional bound on
the EBM log-likelihood, such that we maximize a lower bound and minimize an
upper bound when solving the minimax game. We link one bound to a gradient
penalty that stabilize training, thereby provide grounding for best engineering
practice. To evaluate the bounds we develop a new and efficient estimator of the
Jacobi-determinant of the EBM generator. We demonstrate that these developments
stabilize training and yield high-quality density estimation and sample generation.

1 Energy-based models

Energy-based models (EBMs) are probabilistic models that draw inspiration from physics and have a
long history in machine learning (Hopfield, 1982; Hinton and Sejnowski, 1983; Smolensky, 1986).
An EBM is specified in terms of an energy function Eθ : X → R that is parameterized by θ and
defines a probability distribution over X from the Gibbs density:

pθ(x) =
exp(−Eθ(x))

Zθ
, Zθ =

∫
exp(−Eθ(x))dx, (1)

where Zθ is the normalization constant or partition function. In principle, any density can be described
this way for a suitable choice ofEθ. EBMs are typically learned using maximum likelihood estimation
(MLE), where we wish to find a value of θ that minimized the negative data log-likelihood:

L(θ) := −Ex∼pdata(x) [log pθ(x)] = Ex∼pdata [Eθ(x)] + logZθ, (2)

where pdata is the data generating distribution.

The fundamental challenge with EBMs for non-standard energy functions is the lack of a closed-form
expression for the normalization constant, Zθ, which hinders exact pointwise density evaluation,
sampling and learning. Therefore, these tasks are traditionally performed using approximate methods
such as Markov chain Monte Carlo (MCMC, Metropolis et al., 1953; Neal et al., 2011). Similar to
the Boltzmann learning rule (Hinton and Sejnowski, 1983; Osogami, 2017), gradient-based learning
for MLE involves evaluating the gradient ∇θL(θ) = Ex∼pdata [∇θEθ(x)]− Ex∼pθ [∇θEθ(x)], where
the expectation in the last term necessitates MCMC approximation. Recently, a series of papers (Kim
and Bengio, 2016; Kumar et al., 2019; Abbasnejad et al., 2020; Che et al., 2020) have established
links between EBMs and Wasserstein GANs (WGANs, Arjovsky et al., 2017), such that EBMs can be
approximately learned through a minimax game. Xie et al. (2017, 2018c) and Wu et al. (2018) also
employed the adversarial game of EBM. This allows for significant improvements in EBM learning
over MCMC based methods (Grathwohl et al., 2021).
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In this paper, we remark that variational bounds on the value function of the minimax game can be
problematic as this is both maximized and minimized. We propose to both upper and lower bound
the negative log-likelihood, and alternate between their respective minimization and maximization
to alleviate this concern. Evaluation of the bounds requires evaluating the entropy of the generator,
and we provide a new efficient estimator. We link the upper bound to the use of gradient penalties
which are known to stabilize training. Experimentally, we demonstrate that our approach matches or
surpasses state-of-the-art on diverse tasks at negligible performance increase.

1.1 Background: Variational bounds and minimax games

Following Grathwohl et al. (2021), we can lower bound the log normalization constant using a
proposal (variational) distribution pg(x) and Jensen’s inequality:

logZθ = logEx∼pg

[
exp(−Eθ(x))

pg(x)

]
≥ Ex∼pg

[
log

exp(−Eθ(x))
pg(x)

]
= −Ex∼pg [Eθ(x)] +H[pg]

(3)
where H[pg] = −Epg [log pg] is the (differential) entropy of the proposal distribution. This means
that we also obtain a lower bound on the negative log likelihood function given by

L(θ) := Ex∼pdata(x)[Eθ(x)]− Ex∼pg(x)[Eθ(x)] +H[pg] ≤ L(θ). (4)

We note that this bound is tight when pg = pθ, since the bound on the log normalization constant (3)
can be equivalently expressed as logZθ ≥ logZθ − KL (pg‖pθ). To tighten the bound, we seek a
proposal distribution pg that maximises L(θ), while for MLE we want to find a θ that minimizes
L(θ). Accordingly, MLE can be formulated as a minimax game:

min
Eθ

max
pg
{L(θ)} = min

Eθ
max
pg

{
Ex∼pdata(x)[Eθ(x)]− Ex∼pg(x)[Eθ(x)] +H[pg]

}
. (5)

This gives a tractable and MCMC-free approach to EBM learning, assuming we can evaluate the
entropy (Grathwohl et al., 2021).

Our key issue is that both minimizing and maximizing a lower bound is potentially unstable. By
minimizing a lower bound, we run the risk of finding an optimum, where the bound is loosest, rather
than where it is informative about the optima of the true objective. In particular, a minima of the
lower bound may be −∞, which is rather unhelpful. Good results have been reported from using a
lower bound in the minimax game (Dai et al., 2017; Kumar et al., 2019; Grathwohl et al., 2021), but
the conceptual issue remains.

The WGAN loss function is, as noted by Arjovsky et al. (2017), very similar to the lower boundL(θ),

LWGAN = Ex∼pdata [Eθ(x)]− Ex∼pg [Eθ(x)] , (6)

with the missing entropy term being the only difference. Lessons from the WGAN can, thus,
be expected to apply to the EBM setting as well. For example, the success of gradient clipping
(Arjovsky et al., 2017) and gradient penalties (Gulrajani et al., 2017) in WGAN training, inspired
Grathwohl et al. (2021) to heuristically use gradient penalties in variational inference to stabilize
training. Our work will provide justification to such heuristics.

2 Approximate minimax games through bidirectional bounds

Figure 1: The bidirectional
bounds ‘sandwich’ the neg-
ative data log-likelihood.

Instead of solving a minimax game with a lower bounded value func-
tion (5), we propose to bound L(θ) from both above and below:

bL(θ)c ≤ L(θ) ≤ dL(θ)e. (7)

With this, we can now follow an optimization strategy of alternating

1. minimize dL(θ)e with respect to Eθ.

2. maximize bL(θ)c with respect to pg .

This avoids the potential pitfalls of minimizing a lower bound.
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2.1 A lower bound for maximizing pg

We already have a lower bound L(θ) on L(θ) in Equation (4). The first two terms of the bound can
readily be evaluated by sampling from pdata and pg, respectively. The entropy of pg is less straight-
forward. Following standard practice in GANs, we define pg through a base variable z ∼ N (0, I),
which is passed through a ‘generator’ network G : Rd → RD, i.e. x = G(z) ∼ pg . This constructs a
density over a d-dimensional manifold2 in RD, which by standard change-of-variables is

log pg(G(z)) = log p0(z)−
1

2
log det(Jᵀ

zJz), (8)

where Jz ∈ RD×d is the Jacobian ofG at z. This assume that the Jacobian exist, i.e. that the generator
G has at least one derivative. The entropy of pg is then

H[pg] = −Ex∼pg [log pg(x)] = H[p0] + Ez∼p0

[
1

2
log det(Jᵀ

zJz)

]
. (9)

The entropy of p0 trivially evaluates to H[p0] = d/2(1 + log(2π)). To avoid an expensive evaluation
of the log-determinant-term, we note that it is easily bounded from below:

1

2
log det(Jᵀ

zJz) =
1

2

d∑
i=1

log s2i ≥ d log s1, (10)

where sd ≥ . . . ≥ s1 are the singular values of the Jacobian Jz. Note that in general, this bound is
not tight. With this, we have our final lower bound:

L(θ) ≥ bL(θ)c = Ex∼pdata(x)[Eθ(x)]− Ex∼pg(x)[Eθ(x)] +H[p0] + Ez∼p0 [d log s1(z)] . (11)

2.2 An upper bound for minimizing Eθ

There are many ways to arrive at an upper bound for the log-likelihood. Due to the strong ties between
the lower bound (4) and the WGAN objective, we take inspiration from how WGANs are optimized.
The original WGAN paper (Arjovsky et al., 2017) noted optimization instabilities unless gradient
clipping was applied. Gulrajani et al. (2017) noted that this clipping could be avoided by adding a
gradient penalty, such that the loss become

LWGAN-GP = LWGAN + λEx̂∼g(x)
[
(‖∇x̂Eθ(x̂)‖2 − 1)2

]
, (12)

where x̂ is a uniform interpolation between real data and generated samples. This is generally
acknowledged as a good way to train a WGAN (Gulrajani et al., 2017). We observe that this loss
is similar to our lower bound, but the gradient penalty adds a positive term, such that one could
speculate that we might have an upper bound. With this intuition in hand, we prove the following
statement in the supplementary material.

Theorem 1 Suppose f : X → R is L-Lipschitz continuous, g(x) is a probability density function
with finite support, then there exists constants M,m ≥ 0 and p ≥ 1 such that:

logEx∼g(x) [f(x)]− Ex∼g(x) [log f(x)] ≤M(Ex∼g(x) [|∇x log f(x)|p] +m)
1/p. (13)

Note that if Ex∼g(x) [|∇x log f(x)|p] +m ≥ 1, the bound in Equation (13) can be simplified by
dropping the power 1/p,

log
[
Ex∼g(x) [f(x)]

]
− Ex∼g(x) [log f(x)] ≤MEx∼g(x) [|∇x log f(x)|p] +Mm. (14)

For our model, we set f(x) = exp(−Eθ(x))
pg(x)

and g(x) = pg(x). Empirically, we observe the bound
simplification in Equation (14) holds through-out most of the training, and use the following upper
bound:

dL(θ)e = L(θ) +MEx∼pg(x) [|∇xEθ(x) +∇x log pg(x)|p] +Mm. (15)
For a given choice of f(x), we can view m as a constant and the term Mm can be ignored during
optimization. This upper bound can directly be interpreted as the lower bound (4) plus a gradient
penalty, albeit one of a different form than the traditional WGAN penalty, which is derived purely
from a regularization perspective. Our upper bound can, thus, be seen as a justification of the
regularization from a maximum likelihood perspective.

2Note that Eq. 8 is only the density on the spanned manifold, and that the density is zero off the manifold.
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Bound tightness When pθ = pg, we have that |∇xEθ(x) +∇x log pg(x)|p = 0. In Theo-
rem 1, m is a constant related to the Lipschitz constant of log f(x) satisfying |∇x log f(x)|p ≤
|∇y log f(y)|p+m for all x,y (see proof for details). When pθ = pg we also have |∇x log f(x)|p =
0, such that m = 0. Our upper bound is then dL(θ)e = L(θ) = L(θ), and hence it is tight.

3 Numerical evaluation of the bounds

Evaluating the lower bound To evaluate the lower bound in Equation (11), we need the smallest
singular value of the Jacobian J = ∂zG(z). Recall that this singular value satisfy s1 = ‖Jvmin‖2 =

minv 6=0
‖Jv‖2
‖v‖2 . We can then evaluate the singular value by finding vmin with an iterative optimization

algorithm, where we opt to use the celebrated single-vector LOBPCG algorithm (Knyazev, 1998).
This method performs an iterative minimization of the generalized Rayleigh quotient,

ρ(v) :=
vᵀJᵀJv

vᵀv
, (16)

which converges to vmin. The gradient of ρ(v) is proportional to r = JᵀJv − ρ(v)v. To avoid
computing the Jacobian J, we use Jacobian-vector products, which can be efficiently evaluated using
automatic differentiation. To compute JᵀJv, we use the following trick (in pytorch-notation):

JᵀJv = ((Jv)ᵀJ)
ᵀ
= ∇z ((Jv)

ᵀ.detach() ·G(z))ᵀ . (17)

The optimal learning rate for this iterative scheme can be found by maximizing the Rayleigh
quotient (16). Finally, we follow the suggestions of Knyazev (2001) to improve numerical stability
and accelerate convergence, which we omit here for brevity.

Evaluating the upper bound There are two challenges when evaluating Equation (15). The
first is to compute ∇x log pg(x), where we empirically found that existing methods (Shi
et al., 2018; Li and Turner, 2018) were too inefficient for our needs. To evaluate the term
Ex∼pg(x) [|∇xEθ(x) +∇x log pg(x)|p], we further loosen the bound

|∇G(z)Eθ(G(z)) +∇G(z) log pg(G(z))|p ≤
|∇G(z)Eθ(G(z))Jz +∇G(z) log pg(G(z))Jz|p

sp1

≤
|∇G(z)Eθ(G(z))Jz +∇z log pg(G(z))|p

sp1
.

(18)
where s1 is the smallest singular value of Jz. Detailed derivations are in the supplementary material.
If we choose p = 2, then we can use Hutchinson’s estimator (1989):

|∇xEθ(x)Jz +∇z log pg(G(z))|2 = Ev

[
(∇xEθ(x)Jzv +∇z log pg(G(z))v)

2
]
, (19)

where v ∼ N (0, Id). This is easily evaluated using automatic differentiation.

The second challenge is to evaluate log pg(x) which needs the Jacobian of the generator G(z) as
dictated by Equation (8). Here, we opt to use our entropy estimator as described above. We could
alternatively use Hutchinson’s estimator as proposed by Kumar et al. (2020). Experimentally we do
not observe much difference between these two estimators.

4 Related work

In machine learning, there has been a long-standing interest in EBMs dating back to Hopfield
networks (Hopfield, 1982), Boltzmann machines (Hinton and Sejnowski, 1983; Ackley et al., 1985)
and restricted Boltzmann machines (Smolensky, 1986; Hinton, 2002), see e.g. reviews in the works by
LeCun et al. (2006) and Scellier (2020). Learning and evaluation of these models are difficult since the
normalization constant cannot be efficiently evaluated. MLE-based learning, such as the Boltzmann
learning rule, relies on expensive MCMC sampling to estimate the gradient, and more advanced
MCMC methods are used to reliably estimate the normalization constant (see e.g. Salakhutdinov and
Murray, 2008; Grosse et al., 2013; Burda et al., 2015; Frellsen et al., 2016). For images, MCMC-
based learning has been used to learn non-deep EBMs of both textures (Zhu et al., 1998; Zhu and
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Mumford, 1998) and natural images (Xie et al., 2015, 2016). Learning algorithms that avoid the
costly MCMC approximation have been heavily investigated. For instance, Hinton (2002) proposed
k-step Contrastive Divergence (CD-k) to approximate the negative phase log-likelihood gradient,
and Hyvärinen (2005) proposed an alternative method to train non-normalized graphical models
using score matching. Deep versions of EBMs have subsequently been proposed, such as deep belief
networks (Hinton et al., 2006) and deep Boltzmann machines (Salakhutdinov and Hinton, 2009).

In recent years, there have been renewed interest in deep generative EBMs, particularly for image
generation. Grathwohl et al. (2021) gave an excellent overview of the current developments and
distinct drawbacks of three classes of learning methods, which we summarize here: (1) MLE
methods with MCMC sampling are slow and unstable, and while (2) score matching based methods
are comparable faster, they are also unstable and do not work with discontinuous nonlinearities.
(3) Noise-contrastive estimation (Gutmann and Hyvärinen, 2010) do not have these drawback, but it
does not scale well with the data dimensionality.

Our proposed method belongs to a fourth class of algorithms that sidestep the costly MCMC sampling
by using a simultaneously learned generator or variational distribution. Kim and Bengio (2016)
proposed using a generator function and an adversarial-like training strategy similar to ours. They
update the generator using the same lower bound as us, but their entropy approximation is quite
different. Furthermore, their method does not have a gradient penalty like our upper bound when
optimizing the energy function. Consequently, the energy function needs to be explicitly designed to
prevent it from growing to infinity, limiting its potential.

The method proposed by Zhai et al. (2016) plays a min-max game to jointly optimize the energy
function and generator using the same lower bound as us. However, their method relies on a
specific designed bounded multi-modal energy function, which limits its potential. Furthermore, their
approximation of the generator entropy comes with no theoretical guarantees, and their regularisation
of the energy function does not constitute an upper bound.

Dai et al. (2017) proposed an adversarial learning framework for jointly learning the energy function
and a generator. They considered two approaches to maximising the generator entropy: One, which
maximizes the entropy by minimizing the conditional entropy using a variational upper bound, and
another, which makes isotropic Gaussian assumptions for the data, which is not suitable for high-
dimensional data. Kumar et al. (2019) and Abbasnejad et al. (2019) also consider adversarial learning
but different approaches to estimating the entropy of the generator. Kumar et al. (2019) estimated the
entropy through its connection to mutual information, but they need an additional network to measure
the entropy term. Abbasnejad et al. (2019) maximized the entropy by approximating the generator
function’s Jacobian log-determinant. However, their method is impractical in high dimensions as the
Jacobian is computationally expensive. Han et al. (2019) use an adversarial learning strategy in their
divergence triangle loss, but their training mechanism is radically different from ours, and they rely
on an extra encoder for learning the generator.

Xie et al. (2018a,b, 2021a,b) proposed cooperative learning of the energy function and a generator.
However, the cooperative learning approach relies on MCMC or Langevin dynamics to draw samples
from the EBM, which is expensive and difficult to tune. Like our work, VERA by Grathwohl et al.
(2021) avoids the use of MCMC. VERA plays a min-max game and uses variational inference to
approximate the gradient of the entropy term, which is different from ours. Furthermore, VERA
uses a gradient penalty as a regularizer for the energy function, which is a heuristic unlike our upper
bound, and their method is memory-consuming, and the hyperparameters are difficult to adjust.

5 Experiments

To demonstrate the efficiency of our energy-based model with bidirectional bounds (EBM-BB) we
compare against a range of methods that represent state-of-the-art. As representatives of the GAN
literature, we consider deep convolutional GANs (DCGANs) by Radford et al. (2016), spectrally
normalized GANS (SNGANs) by Miyato et al. (2018) and the WGAN with zero-centered gradient
penalty (WGAN-0GP) by Thanh-Tung et al. (2019). As representatives of EBMs, we consider the
maximum entropy generators (MEG) by Kumar et al. (2019) and the variational entropy regularized
approximate maximum likelihood (VERA) estimator (Grathwohl et al., 2021). As representatives
of CoopNets, we consider two similar methods (Xie et al., 2018a, 2021a) and EBM-VAE (Xie
et al., 2021b). We also consider NCSN by Song and Ermon (2019) and DDPM by Ho et al. (2020)
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(a) Data (b) WGAN-0GP (c) MEG (d) VERA (e) EBM-0GP (ours) (f) EBM-BB (ours)

Figure 2: Density estimation on the 25-Gaussians and swiss-roll datasets.

as representatives of a score matching model and a diffusion model respectively. To investigate
the influence of our derived upper bound, we introduce another baseline in which we replace our
upper bound with a zero-centered gradient penalty. We denote the resulting model EBM-0GP. Our
implementation is available at https://github.com/gengcong940126/EBM-BB.

5.1 Training details

On toy data and MNIST, all models are realized with multi-layer perceptrons (MLPs), while for natural
images, we use the convolutional architecture from StudioGAN (Kang and Park, 2020). Details of
the network architecture are given in the supplementary material. All experiments are conducted on a
single 12GB NVIDIA Titan GPU using a pytorch (Paszke et al., 2017) implementation. To improve
training, we use a positive margin for our energy function to balance the bounds. Specifically, we let

dL(θ)e = bL(θ)c+
[
MEx∼pg(x) [|∇xEθ(x) +∇x log pg(x)|p]− ζ

]
+
, (20)

where [·]+ = max(0, ·) is the usual hinge. In most experiments, ζ = 1 as this allows us to apply the
simplified bound in Equation (15). But in general we recommend starting with ζ = 0 and trying
successively larger values to stabilize training.

5.2 Toy data

Table 1: Number of captured modes and KL diver-
gence between the real and generated distributions.

Model Modes↑ KL↓
DCGAN 392 ± 7.4 8.012 ± 0.056
SNGAN 441 ± 39.0 2.755 ± 0.033

WGAN-0GP 1000 ± 0.0 0.048 ± 0.003
MEG 1000 ± 0.0 0.042 ± 0.004
VERA 989 ± 9.0 0.152 ± 0.037

EBM-0GP(ours) 1000 ± 0.0 0.039 ± 0.003
EBM-BB (ours) 1000 ± 0.0 0.045 ± 0.003

Figure 2 shows estimated densities on the
25-Gaussians and swiss-roll datasets using both
our methods, WGAN-0GP and two baselines.
We observe that WGAN’s discriminator is not
suitable as a density estimator. This is unsur-
prising as WGAN is not supposed to provide
a density estimate. MEG and EBM-0GP can
have inaccurate density information in some
edge and peripheral areas. This may be due
to insufficient or excessive maximization of
entropy since the zero-centered gradient penalty
is not a principled objective for maximum
likelihood. VERA and our EBM-BB can learn a sharp distribution, but our method is more stable
in some inner regions of the 25-Gaussians and edge regions of the swiss-roll.

5.3 MNIST

Mode counting Mode collapse is a frequently occurring phenomenon in which the generator
function maps all latent input to a small number of points in the observation space. In particular,
GANs are plagued by this problem. Since the generator is trained to maximize the entropy of the
generated distribution, several EBM-based models have been shown to capture all the modes of
the data distribution. To empirically verify that our model also captures a variety of modes in the
data distribution, we follow the test procedure of Kumar et al. (2019). We train our generative
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model on the StackedMNIST dataset, a synthetic dataset created by stacking MNIST on different
channels. The true total number of modes is 1,000, and they are counted using a pretrained MNIST
classifier. The KL divergence is calculated empirically between the generated mode distribution and
the data distribution. The results appear in Table 1. As expected, GAN-based methods suffer from
mode collapse except for WGAN-0GP. All the EBM-based methods capture all or nearly all the
modes of the data distribution. Our model EBM-0GP captures all modes and report the smallest KL
measures. It worth mentioned that WGAN-0GP obtains comparable results, which was also observed
by Grathwohl et al. (2021).

Figure 3: Entropy estimators.

Entropy Estimation In Figure 3, we explore the quality of our
entropy estimator measured on MNIST (LeCun, 1998). We use
networks with fully connected layers as the Jacobian is then easily
derived in closed-form, giving us a ground truth for the entropy.
We compare our estimator (red) with the ground truth (black) and
Hutchinson’s estimator (blue), as was proposed by Kumar et al.
(2020). Finally, as we only run our iterative estimator for a few
steps, we also compare with an estimator that uses the smallest
singular value computed with high precision (green). We observe
that Hutchinson’s estimator is reasonable close to the ground truth
but provides an upper bound, making it inapplicable for our lower
bound. We further observe a noticeable gap between our estimator and the high precision singular
value estimator. Finally, we see that all estimators follow roughly the same trend, which suggests that
our estimator provides a suitable target for optimization.

5.4 Natural Images

Image generation The data studied thus far are simple and perhaps do not challenge our upper
bound and entropy estimator. We, therefore, train our model on the standard benchmark 32 × 32
CIFAR-10 (Krizhevsky et al., 2009) dataset and the 64× 64 cropped ANIMEFACE3 dataset, which
both represent a significant increase in complexity. Similar to recent work on GANs (Miyato et al.,
2018), we report Inception Score (IS), Fréchet Inception Distance (FID) scores and two Fβ scores
(Sajjadi et al., 2018). We compare with competitive GANs, EBM baselines, CoopNets, NCSN and
DDPM (Table 3). All GANs and EBMs are reproduced using the same network architecture (see
supplements for details) except DCGAN and IGEBM, where we respectively borrow the results
from StudioGAN (Kang and Park, 2020) and the original implementation (Du and Mordatch, 2019).
We use the DCGAN (Radford et al., 2016) network architecture for CIFAR-10 and a Resnet archi-
tecture (Kang and Park, 2020) for ANEMIFACE. Parameters are chosen as in the original papers.
For VERA (Grathwohl et al., 2021), we were unable to reproduce the reported performance, so we
choose hyper-parameters according to an extensive grid search. Like the original paper, we choose
the entropy weight to be 0.0001. For CoopNets and NCSN, we report the results from the original
papers. For DDPM, we used a public available implementation.4

From Table 3, we see that our EBM-BB model is the best performing EBM on CIFAR-10, though
it is surpassed by NCSN and DDPM. This is not surprising as NCSN and DDPM focus on sample
quality rather than optimising a data likelihood. Further note that sampling NCSN and DDPM is
significantly more expensive than our method. On ANIMEFACE our method is highly competitive.
Figures 4 and 5 show samples from different models. For ANIMEFACE, our method generates more
diverse samples in terms of face parts than the baselines. All models predominantly generate female
faces. This suggests that while our approach captures more density modes than the baselines, all
approaches still misses several modes. We further draw attention to several corrupt samples generated
by VERA, despite extensive parameter search. For CIFAR-10, we observe no immediate differences
in the generative capabilities between models.

Capacity usage For the proposal distribution pg to be adaptive, the associated generator network
G(z) should be able to use as much of its available capacity as possible. To compare different
methods, we consider an implicit measure of capacity usage Cz that locally measures the intrinsic
dimensionality of G(z). In particular, we use the anisotropy index (Wang and Ponce, 2021) that, for

3https://www.kaggle.com/splcher/animefacedataset
4https://github.com/rosinality/denoising-diffusion-pytorch
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(a) WGAN-0GP (b) MEG (c) VERA (d) EBM-BB (ours)

Figure 4: Generated samples on CIFAR-10 with our method and various methods.

(a) WGAN-0GP (b) MEG (c) VERA (d) EBM-BB (ours)

Figure 5: Generated samples on ANIMEFACE with our method and other generative models

a given z, measure the standard deviation of the norm of the directional derivative of G(z) along the
input dimensions, i.e.

Cz = std ({‖Jzei‖}i=1...d) , (21)

Table 2: Anisotropy indices (↓).
Model CIFAR-10 ANIMEFACE

WGAN-0GP 1.0823 ± 0.005 2.4366 ± 0.129
MEG 0.9467 ± 0.009 2.3600 ± 0.142

VERA 3.9694 ± 0.055 2.2929 ± 0.2074
EBM-0GP (ours) 1.0688 ± 0.0226 3.4560 ± 0.0521
EBM-BB (ours) 0.9431 ± 0.0191 1.8016 ± 0.1345

where std(·) computes the standard deviation of
the input, and ei denotes the ith standard basis
vector. A small Cz indicates that the different
input dimensions contribute equally to the out-
put of G, which imply good capacity usage. We
measure the mean value of Cz for z ∼ N (0, Id)
and report mean and standard deviation of the
result running for several times in Table 2. We observe that most models, with the exception of
VERA, perform well on CIFAR-10, while on ANIMEFACE there is more diversity. In both cases,
EBM-BB has the best capacity usage. The large difference between EBM-0GP and EBM-BB on
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Table 3: Comparison in terms of FID, Inception Score, F8 score (weights recall higher than precision)
and F1/8 score (weights precision higher than recall).

Model Inception↑ FID↓ F8↑ F1/8 ↑
CIFAR-10

DCGAN 6.64 49.03 0.795 0.83
WGAN-0GP 7.24 ± 0.035 29.31 ± 0.185 0.92 ± 0.010 0.95 ± 0.010

CoopNets (2018a) 6.55 36.4 - -
CoopNets (2021a) - 33.61 - -

EBM-VAE 6.65 36.2 - -
IGEBM 6.78 38.2 - -

MEG 6.62 ± 0.243 34.55 ± 1.145 0.88 ± 0.001 0.92 ± 0.010
VERA 5.06 ± 0.555 66.38 ± 6.635 0.58 ± 0.080 0.79 ± 0.005
NCSN 8.87 ± 0.12 25.32 - -
DDPM 9.03 7.76 0.98 0.99

EBM-0GP (ours) 6.90 ± 0.032 35.42 ± 0.582 0.90 ± 0.004 0.93 ± 0.002
EBM-BB (ours) 7.45 ± 0.014 28.63 ± 0.290 0.93 ± 0.001 0.95 ± 0.008

ANIMEFACE

WGAN-0GP 2.22 ± 0.030 9.76 ± 0.674 0.95 ± 0.005 0.98 ± 0.005
MEG 2.20 ± 0.020 9.31 ± 0.007 0.95 ± 0.005 0.98 ± 0.001

VERA 2.15 ± 0.001 41.00 ± 1.072 0.515 ± 0.078 0.78 ± 0.013
DDPM 2.18 8.81 0.94 0.98

EBM-0GP (ours) 2.26 ± 0.017 20.53 ± 0.524 0.889 ± 0.008 0.909 ± 0.019
EBM-BB (ours) 2.26 ± 0.005 12.75 ± 0.045 0.94 ± 0.001 0.96 ± 0.005

Table 4: AUROC↑, AUPRC↑ and FPR80↓ for OOD detection for ‘train / test’ datasets.

Model CIFAR-10 / SVHN CIFAR-10 / CIFAR-100 ANIMEFACE / Bedroom

AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓
WGAN-0GP 0.8 0.83 0.39 0.54 0.55 0.77 0.51 0.48 0.72

MEG 0.79 0.81 0.42 0.52 0.53 0.8 0.56 0.53 0.77
VERA 0.62 0.64 0.64 0.51 0.51 0.79 0.60 0.525 0.6

EBM-0GP (ours) 0.66 0.69 0.67 0.64 0.63 0.64 0.67 0.63 0.53
EBM-BB (ours) 0.88 0.86 0.1997 0.53 0.52 0.7765 0.53 0.505 0.83

ANIMEFACE suggest that our proposed upper bound helps increase the entropy of the proposal
distribution pg .

Out-of-distribution detection As EBMs are density estimators, they should, in principle, assign
low likelihood to out-of-distribution (OOD) observations. OOD detection performance can then be
seen as a proxy for the quality of the estimated density. To test how well our model fares in this
regard, we follow previous work (Hendrycks and Gimpel, 2017; Hendrycks et al., 2019; Alemi et al.,
2018; Choi et al., 2018; Ren et al., 2019; Havtorn et al., 2021) and report the threshold independent
evaluation metrics of Area Under the Receiver Operator Characteristic (AUROC↑), Area Under
the Precision Recall Curve (AUPRC↑) and False Positive Rate at 80% (FPR80↓), where the arrow
indicates the direction of improvement of the metrics. The results are reported in Table 4. Each
column of the table takes the form ‘In-distribution / Out-of-distribution’ in reference to the training
and test set, respectively. We observe that on CIFAR-10 / SVHN, EBM-BB is the top performer. On
CIFAR-10 / CIFAR-100 the overall performance degraded significantly, EBM-0GP fared noticeable
better than other models. The overall degradation may be caused by the strong similarity between
CIFAR-10 and CIFAR-100. For ANIMEFACE / Bedroom a similar situation occurs, even if these
datasets are highly dissimilar, but we observe EBM-0GP is much better than other models.

No clear winner can be found from this study. We note that our method consistently performs well,
but surprisingly, so does WGAN-0GP even if it is not a density estimator. As OOD detection is a task
that comes with many subtle pitfalls (Havtorn et al., 2021), we suggest that these results should be
taken with a grain of salt even if our model performs well.
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Table 5: Total training time.

Model Iterations Runtime

CIFAR-10

WGAN-0GP 100000 4h
MEG 100000 4.5h
VERA 200000 10h

EBM-0GP 200000 20h
EBM-BB 200000 21h

ANIMEFACE

WGAN-0GP 100000 13h
MEG 100000 20h
VERA 200000 44h

EBM-0GP 100000 38h
EBM-BB 100000 40h

Running time Table 5 gives an overview of the time required to
train the proposed models and the baselines. All models were trained
on a single 12GB Titan GPU. We observe that our model should be
trained with a lower learning rate, and therefore may increase the
total number of epochs.

6 Discussion

The first observation in our work is that current methods for training
energy-based models (EBMs) interchangeably minimize and max-
imize a lower bound. As this may be a potential source of training
instability, we propose to bound the negative log-likelihood from
above and below and switch between bounds when minimizing and
maximizing. The lower bound, bL(θ)c, is similar to existing ones, but we provide a new algorithm
for its realization. Unlike past work, this algorithm does not need additional networks and does not
rely on hard-to-tune parameters; our only parameter controls the number of iterations for the Jacobian
approximation and represents a trade-off between the accuracy of the bound and computational
budget. The upper bound, dL(θ)e, is new to the literature but similar to the common regularization
practice of introducing gradient penalties. To the best of our knowledge, this is the first time that
gradient penalties have been derived from the perspective of bounding the log-likelihood. It is
rewarding that current better engineering practice can be justified from a probabilistic perspective.
Empirically, we find our proposed model generally performs as well or better than some of the current
state-of-the-art on a variety of tasks. The evidence suggests that our bidirectional bounds allow the
generator to increase its entropy and capacity usage. We see this both directly and through improved
sample quality on diverse datasets.

Limitations The current drawbacks of the method are mainly three concerns. First, we find
that a smaller-than-usual learning rate helps our model. While we expect this to be a matter of
implementation rather than a more profound concern, the current implication is that training is
approximately twice that of a EBM baseline. Second, our bounds rely on computing the smallest
singular value of the Jacobian of the generator. We provide an efficient implementation of a method
for this task, but it needs to run for several iterations to guarantee convergence. In practice, we stop
after a fixed, low number of iterations, which we found to work well, but technically this violates
the bound. This seems to be an unavoidable aspect of our approach, but we find that the benefits
significantly compensate for this issue. The availability of a fast (approximate) entropy estimator that
does not require additional networks and parameters is highly valuable when training EBMs. Finally,
for the upper bound, we need an estimate of the volume of support M of the proposal distribution pg .
We do not have a viable method for this, and, in practice, we treat M as a hyper-parameter. We have
not found it difficult to tune this parameter, but it nonetheless constitutes a limitation.

Negative societal impact All high-capacity generative models carry the risk of being used for
misinformation, and our model is no exception. The value of EBMs over GANs is that they come
with a likelihood function, which is more valuable in data analysis, than e.g. for creating deepfakes.
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M. S. M. Sajjadi, O. Bachem, M. Lučić, O. Bousquet, and S. Gelly. Assessing Generative Models via
Precision and Recall. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In D. van Dyk and M. Welling,
editors, Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics,
volume 5 of Proceedings of Machine Learning Research, pages 448–455, Hilton Clearwater Beach
Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In A. McCallum
and S. Roweis, editors, Proceedings of the 25th Annual International Conference on Machine
Learning (ICML 2008), pages 872–879. Omnipress, 2008.

B. Scellier. A deep learning theory for neural networks grounded in physics. PhD thesis, Université
de Montréal, Quebec, Canada, 2020.

J. Shi, S. Sun, and J. Zhu. A spectral approach to gradient estimation for implicit distributions. In
International Conference on Machine Learning, pages 4644–4653. PMLR, 2018.

P. Smolensky. Information Processing in Dynamical Systems: Foundations of Harmony Theory, page
194–281. MIT Press, Cambridge, MA, USA, 1986.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

H. Thanh-Tung, T. Tran, and S. Venkatesh. Improving generalization and stability of generative
adversarial networks. In International Conference on Learning Representations, 2019.

B. Wang and C. R. Ponce. The geometry of deep generative image models and its applications. arXiv
preprint arXiv:2101.06006, 2021.

Y. N. Wu, J. Xie, Y. Lu, and S.-C. Zhu. Sparse and deep generalizations of the frame model. Annals
of Mathematical Sciences and Applications, 3(1):211–254, 2018.

J. Xie, W. Hu, S.-C. Zhu, and Y. N. Wu. Learning sparse FRAME models for natural image patterns.
International Journal of Computer Vision, 114(2):91–112, 2015.

J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu. Inducing wavelets into random fields via generative boosting.
Applied and Computational Harmonic Analysis, 41(1):4–25, 2016.

13



J. Xie, S.-C. Zhu, and Y. Nian Wu. Synthesizing dynamic patterns by spatial-temporal generative
convnet. In Proceedings of the ieee conference on computer vision and pattern recognition, pages
7093–7101, 2017.

J. Xie, Y. Lu, R. Gao, and Y. N. Wu. Cooperative learning of energy-based model and latent variable
model via MCMC teaching. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018a.

J. Xie, Y. Lu, R. Gao, S.-C. Zhu, and Y. N. Wu. Cooperative training of descriptor and generator
networks. IEEE transactions on pattern analysis and machine intelligence, 42(1):27–45, 2018b.

J. Xie, Z. Zheng, R. Gao, W. Wang, S.-C. Zhu, and Y. N. Wu. Learning descriptor networks for
3d shape synthesis and analysis. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8629–8638, 2018c.

J. Xie, Z. Zheng, X. Fang, S.-C. Zhu, and Y. N. Wu. Cooperative training of fast thinking initializer
and slow thinking solver for conditional learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021a.

J. Xie, Z. Zheng, and P. Li. Learning energybased model with variational auto-encoder as amortized
sampler. In The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI), volume 2, 2021b.

S. Zhai, Y. Cheng, R. Feris, and Z. Zhang. Generative adversarial networks as variational training of
energy based models. arXiv preprint arXiv:1611.01799, 2016.

S. C. Zhu and D. Mumford. Grade: Gibbs reaction and diffusion equations. In Sixth International
Conference on Computer Vision (IEEE Cat. No. 98CH36271), pages 847–854. IEEE, 1998.

S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (FRAME): Towards
a unified theory for texture modeling. International Journal of Computer Vision, 27(2):107–126,
1998.

14


	Energy-based models
	Background: Variational bounds and minimax games

	Approximate minimax games through bidirectional bounds
	A lower bound for maximizing pg
	An upper bound for minimizing E

	Numerical evaluation of the bounds
	Related work
	Experiments
	Training details
	Toy data
	MNIST
	Natural Images

	Discussion

