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Abstract

Learning new skills through previous experience is common in human life, which
is the core idea of Transfer Reinforcement Learning (TRL). This requires the agent
to learn when and which source policy is the best to reuse as the target task’s
policy, and how to reuse the source policy. Most TRL methods learn, transfer,
and reuse black-box policies, which is hard to explain 1) when to reuse, 2) which
source policy is effective, and 3) reduces transfer efficiency. In this paper, we
propose a novel TRL method called ProgrAm guiDeD poLicy rEuse (PADDLE)
that can measure the logic similarities between tasks and transfer knowledge with
interpretable cause-effect logic to the target task. To achieve this, we first propose
a hybrid decision model that synthesizes high-level logic programs and learns
low-level DRL policy to learn multiple source tasks. Second, we estimate the logic
similarity between the target task and the source tasks and combine it with the low-
level policy similarity to select the appropriate source policy as the guiding policy
for the target task. Experimental results show that our method can effectively select
the appropriate source tasks to guide learning on the target task, outperforming
black-box TRL methods.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved success in various domains, including robotics
control [29, 1], video games [27, 4], and autonomous driving [31, 23]. However, DRL can suffer
from sample inefficiency, making learning from scratch difficult [40, 8]. Transfer Learning (TL) has
shown great potential to accelerate DRL by leveraging prior knowledge from past learned tasks [18],
i.e., policy reuse in DRL [12, 42, 45].

One important open question in this area is: How can one efficiently reuse source policies to speed up
target policy learning? A large number of works have studied the problem, including: (1) Measure the
similarity between two tasks by mapping the state space between them [6]; or calculate the similarity
of two Markov Decision Processes (MDPs), then transfer value functions directly according to their
similarities [34]. However, it is infeasible to extend these methods to complex domains due to the high
computational costs. (2) Transfer the source value function to the target task, such as advantage-based
experience selection [37, 45]. However, relying too heavily on value functions will result in large
value estimation errors when faced with sparse or delayed reward situations [38, 16]. Furthermore,
when one source policy is only partially useful for the target task, a single policy measure of similarity
is difficult to integrate knowledge from different source tasks, leading to poor transfer. (3) Some
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works identify a part of useful knowledge from each source policy by adopting a hierarchical high-
level policy [25, 42]. However, training additional components will cause additional computational
costs, weakening the effectiveness of the transfer. In addition, most existing transfer learning methods
mentioned above focus on learning, extracting, and reusing black-box knowledge, which makes it
difficult to reveal internal connections between source tasks and target tasks at appropriate granularity.
Thus, learning when and which knowledge is effective requires significant learning costs, limits the
effectiveness of transfer, and even fails in situations where only slight logical changes occur between
different tasks.

This situation can be improved if the transferred knowledge has interpretable cause-effect logic, such
as using clearer policy representation to measure semantic correlations between tasks, to easily detect
the slight changes in the logic level, and select the appropriate source policies to guide the target task
learning. Researchers have used neural-symbolic learning, such as Inductive Logic Programming
(ILP) [28], to automatically generate logic programs as the policy for performing logic-driven and
interpretable behaviors [11, 22, 7, 17]. Although these methods demonstrate sufficient advantages in
logical reasoning, relying on human experts’ definitions makes them difficult to apply to complex
tasks and limits them to discrete action spaces. To this end, this paper proposes the ProgrAm guiDeD
poLicy rEuse (PADDLE) algorithm to address the above challenges. PADDLE incorporates a hybrid
decision model to learn the policy, which is a two-level model combining the advantages of DRL and
program synthesis, where the higher level uses program synthesis to generate logic programs, and the
low level adopts arbitrary DRL methods to learn primitive policies. Then PADDLE estimates the
logic similarity between each source task and the target task and combines it with the low-level policy
similarity to determine which source policy should be reused at different stages (subtask/subgoal). In
this way, PADDLE abstracts and aligns the target task’s state space and the source tasks’ state space
at a more granular representation, thus selecting the appropriate source policy in a more effective
way. Furthermore, the similarity measurement proposed in this paper is easily computed and relies
less on the value function than these advantage-based methods, avoiding the negative influence of
value estimation errors. Our contributions can be summarized as follows:

• A hybrid decision model is proposed that demonstrates excellent performance and logical
reasoning ability;

• A logic program-based transfer method is proposed that enables efficient knowledge transfer
when learning the target task;

• Experimental results that show PADDLE outperforms state-of-the-art transfer baselines on
multiple complex tasks in both discrete and continuous domains, exhibiting the advantages
of knowledge with interpretable cause-effect logic in TRL.

2 Preliminary

This paper focuses on standard Reinforcement Learning (RL) tasks, where the agents interacting with
the environment can be modeled in MDPs. MDPs contain a 5-tuple ⟨S, A, P , R, γ⟩, with state space
S, action space A, transition function P : S × A→ S, reward function R : S × A→ R, discount
factor γ ∈ [0, 1][36]. The goal of RL is to find the optimal policy π∗ that is with a state as input and
outputs a probability distribution over actions at each time step t so that maximizes the cumulative
discounted return: π∗ = argmaxπ Ea∼π[

∑
t≥0 λ

trt].

ILP refers to the task of learning a logic program (set of clauses) that extracts a given set of positive
examples and does not extract a given set of negative examples [15]. A definite clause can be
expressed as: H :− B1 ∧ B2... ∧ Bn, with head atom H and body atoms Bi, :− denotes logical
entailment: H is true if B1 ∧ B2... ∧ Bn is true (especially, logical connectives include negation
¬, disjunction ∨, etc). An atom is predicate followed by a tuple p(t1, ..., tn), where p is a n-ary
predicate and ti, i ∈ [1, n] are terms, either variables or constants. An atom whose all arguments are
constants is called a ground atom and all the concerning ground atoms are called a Herbrand base.
A predicate defined based on ground atoms without deductions is called an extensional predicate.
Otherwise, it is called an intensional predicate. In ILP tasks, given some initial input predicates
(e.g., has_key(X), is_agent(X)) and some target predicates (e.g., gt_key(), gt_door), then
combined them into a complete set of clauses according to the pre-defined template, the goal is to
find a logic program C that satisfies the pre-defined specification and C = argmaxC E, where E
is the cumulative discounted return. During each deduction step, C is recursively updated with the
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forward chaining mechanism from all positive and negative samples. The attempts that combine ILP
with differentiable programming are presented in [30, 11, 22], which our work is based on.

(a) Overview of PADDLE
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Figure 1: (a) The overview of PADDLE; πg represents the guidance policy selected from the policy
library, and Λ represents the dual similarity measurement. (b) The hybrid decision-model learning
process. (c) The dual similarity and guidance policy selection.

3 Methodology

The PADDLE algorithm is illustrated in Figure 1(a). Initially, a set of source policies are learned
using the hybrid decision model, and a target policy is randomly initialized. The goal is to estimate
the similarity between each source policy and the target policy to quickly find the appropriate source
policies to guide target policy learning. PADDLE comprises two key components: (1) A hybrid
decision model, where high-level reasoning can be performed on complex temporal logic problems
while using neural networks for low-level exploration; and (2) A transfer algorithm based on the
dual similarity measurement Λ, which directly optimizes the target policy by alternatively using
knowledge from both the environment and from appropriate source policies. We will provide a
detailed introduction to each component of PADDLE in the following sections.

3.1 Hybrid Decision Model

To efficiently synthesize high-level logic programs and corresponding primitive policy, we propose
the Hybrid Decision Model (HDM). HDM uses a special hierarchical structure where the high-level
policy uses the program synthesis method [47, 22, 30] to synthesize logic programs, while the
low-level policy uses a DRL algorithm to learn the primitive policy. The specific learning process is
shown in Figure 1(b), where HDM interacts with the environment on different levels of tasks and
collects samples to update the corresponding policies. The HDM leverages the ability of program
synthesis to reveal the causal logic for a given task and different from the given sequence plan in [21]
which has limited generalizability and needs more prior knowledge [17], while also releasing expert
knowledge on low-level exploration tasks by lower-cost DRL methods.

We define a symbolic MDP ⟨B,H, S, Ph, Rh, γh⟩ for the high-level module and a goal-conditioned
MDP ⟨S,A,H, Pl, Rl, γl⟩ for the low-level module. B and H are a set of pre-defined ground atoms,
which describe the environment state (with body atoms) and abstract operators/subgoals (with head
atoms), respectively. Ph and Pl represent the transition function, Rh and Rl represent the reward
function2, S andA represent original state space and action space, γh and γl represent discount factors
for the high-level and low-level modules, respectively. At the beginning of training, the high-level
module combines body atoms and head atoms to form a complete set of clauses following a specific
template (i.e., H :− B1 ∧B2... ∧Bn) and attaches weights (initialized to a normal distribution) to
each clause to make it differentiable [30]. When interacting with the environment, the high-level
module maintains a pre-defined encoder E(·) to map the environment state s to a set of body atoms
(B1 ∧ B2... ∧ Bn), which is used to perform the deduction and activate possible clauses to obtain
the probability of subgoal ([0, 1]|H|) (The specific process is not the focus and will not be described
[22, 7]). The subgoal selected by the high-level module will not directly affect the environment but

2Specifically, Rh is the cumulative external discount reward, Rl is the positive internal reward given after
completing the subgoal and the negative internal reward given for not completing the goal.
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Algorithm 1 Logic Similarity Function Ψ

1: for clause in Dt ∈ {DS1
, ..., DSN

, DT } do
2: if body atom of clause never appeared then
3: new c

len(ct)+1
t add clause

4: else
5: ckt add clause (ckt contains clause corresponding body atoms)
6: end if
7: end for
8: for ciT in cT do
9: for t in [S1, ...,SN , T ] do

10: max_similarity, set_c = 0, [ ]
11: for cjt in ct do
12: ψ(ciT , c

j
t ) = γhead ∗ ∩head(ciT ),head(cjt)

+ γbody ∗ ∩body(ciT ),body(cjt)

13: if ψ(ciT , c
j
t ) > max_similarity then

14: max_similarity, set_c = ψ(ciT , c
j
t ), [c

j
t ]

15: end if
16: if ψ(ciT , c

j
t ) = max_similarity then

17: set_c add cjt
18: end if
19: end for
20: Ψ(ciT ) add (t, max_similarity, set_c)
21: end for
22: end for
23: Return: Ψ (Input: a target task scene cjT ; Output: the most similar scenes and corresponding

ψ for each source policy)

will serve as a basis for judging whether the low-level module has reached it or the maximum time
step. If the corresponding goal is completed, an internal reward rintr (defined in Rl) will be given to
the low-level agent. The high-level module records the accumulated real rewards Rextr (defined in
Rh) during the exploration process.

For policy updates, after each episode, the high-level module collects samples {B,H, Rextr} and up-
dates to help maximize the discounted extrinsic rewardRextr by training weights of the corresponding
clauses with Monte Carlo policy gradient updates [41]:

θ′ = θ + α∇θ log π
h
θQπh

θ
+ γh∇θH

(
πh
θ

)
(1)

πh
θ is high-level policy (learnable parameters θ) and H

(
πh
θ

)
is the entropy regularization to improve

exploration. Then, according to the trained weights, it synthesizes programs that match the task
logic from a complete set of clauses. The low-level module collects samples {s, a, s′,H, rintr} (the
subgoal H maps to the state), and updates to maximize the discounted intrinsic reward rintr through
the underlying algorithm (DRL method).

3.2 Dual Similarity Measurement

Previous black-box knowledge transfer algorithms lack the ability to detect the similarity behind the
task logic, making it difficult to be applied to more complicated domains. Furthermore, measuring
the logic similarity among tasks can help explain why and how the transferred knowledge is useful.
To achieve this, we propose a dual similarity based on the hybrid decision model.

Given a set of pre-trained source policies, PADDLE compares the set of clauses DSi
from the logic

program synthesized on each source policy with a complete set of clauses DT from the randomly
initialized target policy. In reality, each source policy may only be partially useful for the target task,
so it is more practical to measure similarity at the subtask level for reuse. Therefore, for each set
of clauses: Dt ∈ {DS1 , ..., DSN

, DT }, classify these clauses with the same body atoms into dif-
ferent kinds of scenes {cit} (e.g., [gt_key(), gt_door...]:- ¬has_key(X), is_agent(X),
has_key(Y), is_env(Y), where cit represents the i-th scene of t task) (Algorithm 1, lines 1–7).
For a scene, body atoms and head atoms have different semantic information, and we calculate the
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semantic coincidence degree between the head atoms and the body atoms for different tasks as the
logic similarity. Obviously, body atoms reflect more environmental context at the subtask level, thus
body atoms will be assigned a higher importance weight than head atoms (γbody > γhead; detailed
analysis in the experiments). For each cjT (j ∈ [1, nT ]), we get the cj

′

Si
(i ∈ [1, N ], j′ ∈ [1, nSi ]) (nt

represents the number of scenes for task t), calculate ψ(cjT , c
j′

Si
) (Algorithm 1, lines 12), then use

the cmax
Si

of maximum ψ(cjT , c
j′

Si
) from each source policy to update the logic similarity function Ψ

(Algorithm 1, lines 9–21). Therefore, Ψ records the most similar scene and value of each source
task for each target task scene. Specifically, Ψ takes as input a target task scene cjT and outputs the
maximum ψ and corresponding cmax

Si
from the i-th source task (i ∈ [1, N ]). Note that for the i-th

source task, there may be multiple cj
′

Si
that are equally similar to the current cjT and each cjT with its

own ψ(cjT , c
j
T ) =Maxi∈[1,N ]ψ(c

j
T , c

max
Si

).

By calculating Ψ, we map each cjT to cmax
Si

in each source task, but this mapping relationship still has
defects. When some scenes of the target task do not exist in the source task, or when the embedded
logic is opposite, this requires relearning on the target task. And the corresponding scene of the source
tasks cannot be reused through the semantic overlap. For instance, when the source task doesn’t
necessitate a key for door access while the target task does, The environmental description will
remain consistent (door_closed, is_env, no_key, is_agent), but the source policy will not
work. And here we will explain why ψ(cjT , c

j
T ) is calculated, it allows the agent by fine-tuning the

similarity weight to relearn the skills instead of reusing the source policies when all source policies
are ineffective. Specifically, we introduce a performance function Φ(cit, c

j
T ) to record the average

cumulative discounted extrinsic return G (Algorithm 2, lines 16–19) for the execution of the selected
guidance scene cit on the corresponding scene of the target task to fine-tune the similarity. Moreover,
we add entropy H(cit) as a dynamic balance between exploration and exploitation to Φ, and ϵ is a
hyper-parameter controlling the weight of H(cit), which is expected to focus on exploitation when
the corresponding policy achieves better performance, and on the contrary, focus on exploration. The
Φ is calculated as follows:

Φ(cit, c
j
T ) = G(cit, c

j
T ) + min(0, clip(−G(cit), ϵ)) ∗H(πcit),

t ∈ [S1, ...,SN , T ], i ∈ [1, nt], j ∈ [1 : nT ].
(2)

πcit represents the probability distribution of the clauses contained in cit. Combining ψ and Φ
(normalized to between [0, 1]), the dual similarity measurement Λ can be calculated as follows:

Λ(cit, c
j
T ) = ψ(cit, c

j
T ) + Φ(cit, c

j
T ), t ∈ [S1, ...,SN , T ], i ∈ [1, nt], j ∈ [1 : nT ] (3)

3.3 PADDLE

In this section, we propose the overall framework of PADDLE, and the specific process is shown in
Algorithm.2. PADDLE refines policy reuse at the subtask level, that is, when upper level modules
make decisions, they select a guiding policy from the policy library Π = {π1, . . . , πN , πT } based
on dual similarity measurement. Specifically, in each iteration, when the high-level modules make
a decision, the hybrid decision model will choose to activate a clause, and PADDLE finds the
corresponding scene cjT according to the activated clause. Then, PADDLE inputs cjT into Ψ to
obtain the cmax

Si
and ψ(cjT , c

max
Si

) for each task. Finally, input cjT and cmax
Si

into Λ to obtain the dual
similarity measurement as weight, and select the policy with maximum weight as the guiding policy
πg. Note that when the measurement of the target policy is the same as that of the source policy,
select the source policy. After selecting the πg, we replace the corresponding module in the target
policy with the cmax

g and its corresponding low-level policy to interact with the environment and use
the obtained samples to train the target policy. When selecting the source task, if there are multiple
similar scenes, randomly select one of them to execute. After each iteration, update the cumulative
reward for πg in each corresponding cjT , and the specific process is also shown in Figure 1(c).

4 Experiments

In this section, we evaluate PADDLE on two domains, MiniGrid [10] and Maze2D [13], and construct
tasks that require the agent to learn a series of skills. To better reflect real-world, we select some
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Algorithm 2 PADDLE
Require: Source policies Π = {π1, . . . , πn}, hyper-parameters γhead, γbody and ϵ, target policy πT
and performance function Φ (initialize with a constant)

1: Get Logic Similarity Function Ψ by Alg. 1
2: while episode_step < max_episode_step do
3: while not done do
4: while select goal from high-level module do
5: Obtain the cjT according to the clause activated
6: (id, max_similarity, set_c) = Ψ(cjT )
7: for i = 1 to N do
8: Get cmax

Si
by id=i from set_c

9: W(πi) = Λ(cmax
Si

, cjT )
10: end for
11: W(πT ) = Λ(cjT , c

j
T )

12: πg = argmaxπ∈Π∪πT W(π)
13: Use the cg corresponding to πg to select the appropriate subgoal
14: Replace the low-level policy with πg .
15: Collect samples Sl = (s, a, s′,H, rintr) and Sh = (B,H, Rextr) using πg
16: for H in Sh do
17: Get πg corresponding cg , time step tH and corresponding cT of the target task
18: G(cg, cT ) = average(

∑|Sh|
t=tH

γtRt
extr)

19: end for
20: end while
21: end while
22: Update πT using Sl and Sh

23: end while

simple tasks as source tasks (in Appendix) and some complex tasks as target tasks in Figure 2.
On the left of Figure 2 is the MiniGrid: In the above picture, the agent is tasked with moving the
yellow ball, then opening the box to retrieve the key to open the door, before finally placing the key
down and picking up the green ball (BlockedBoxUnlockPickup); In the following picture, unlike
BlockedBoxUnlockPickup, the agent needs to pick up the yellow ball, move it to the yellow square,
and in the last step move the green ball to the red square (BlockedBoxPlaceGoal). On the right of
Figure 2 is the Maze2D: The agent needs to go to [6,2] to get coffee and send it to [7,4], then go to
[4,7] to get the email and send it to [7,6], and finally go to the red ball. There is some logical overlap
between the source and target tasks, which is an appropriate benchmark for policy reuse.

We compare various baseline algorithms, including TL methods CUP and PTF, hierarchical algorithms
[24], the original underlying algorithm, and the proposed hybrid decision-making model. This hybrid
decision model is applicable to all program synthesis methods and RL algorithms, and in this work,
we use GALOIS [7], PPO [32] and TD3 [14]: GALOIS-PPO and GALOIS-TD3. Moreover, the
hybrid decision model can address tasks in continuous action spaces and more complex tasks. To
ensure fairness, we use the same training settings for all methods. More implementation details are in
the appendix.

4.1 Analysis of Transfer Performance

[6, 2]

[7, 4] [7, 6]

[4, 7]

(a) BlockedBoxUnlockPickup

(b) BlockedBoxPlaceGoal
(c) OfficeMaze

Figure 2: Experimental environments.

For better evaluation of PADDLE, we selected four
transfer scenarios and two complex target tasks in the
MiniGrid, and each scenario consists of two source
tasks: (A) BlockedDoor and GapBall, (B) Blocked-
Door and DoorBall, (C) BlockedDoor and BoxDoor,
(D) BlockedDoor and OpenGoal. For BlockedBox-
UnlockPickup, the source tasks in the first scenario
include all the skills required, to test whether the algo-
rithm can quickly recombine past skills. The source
tasks in the second and third scenarios only include
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some of the skills required for BlockedBoxUnlockPickup, but the missing skills are in different
positions in the complete skill chain, which requires the agent to recombine past skills and quickly
learn new ones. The source tasks in the fourth scenario include the opposite logic of BlockedBoxUn-
lockPickup, requiring the agent to select useful skills and learn new ones. For BlockedBoxPlaceGoal,
all four scenarios only include some of the skills required for the complete target task, but with
different numbers of missing skills, to test the algorithm’s ability to solve more complex problems.
In the Maze2D, we considered one transfer scenario: CoffeeMaze and MailMaze, where the source
tasks include all the skills required to solve the target task. We only verified the algorithm’s ability in
the continuous domain, as its ability to recombine past knowledge and quickly learn new knowledge
has been thoroughly validated in the MiniGrid environment, and we can easily believe that PADDLE
has good transfer performance in similar sequential logic tasks.
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Figure 3: Results of transfer experiments
in Maze2D.

We compared PADDLE with several baseline algorithms,
and all the results were averaged over six random seeds.
As shown in Figure 4 and Figure 3, the baseline algorithms
have difficulty achieving good learning performance in all
transfer scenarios, which is due to the use of black-box
policies for transfer learning. The agent cannot effectively
understand which source policies may be effective in the
target task, requiring additional learning costs that limit
the algorithm’s further performance. In contrast, the white-
box knowledge with cause-effect logic can quickly enable
the agent to learn which source policy may be effective at
each stage, greatly reducing learning costs and improving
transfer efficiency. From the experimental results, for
the first transfer scenario on BlockedBoxUnlockPickup,
PADDLE has good jump-start performance, mainly due to the function of the logic similarity, which
indicates the ability of our method to quickly recombine past knowledge, and also proves that white-
box knowledge is a better policy representation. In other transfer scenarios, PADDLE has greatly
improved performance compared to the hybrid decision model learned from scratch, proving our
method’s ability to reuse, recombine, and re-learn knowledge.

(a): (BlockedDoor, GapBall) → "!Ta
rg

et
 ta

sk
: B

lo
ck

ed
Bo

xU
nl

oc
kP

ic
ku

p
Ta

rg
et

 ta
sk

: B
lo

ck
ed

Bo
xP

la
ce

G
oa

l

Hybrid Model (Ours) PADDLE (Ours) GALOIS CUP PTF HRL

(e): (BlockedDoor, GapBall) → ""

(b): (BlockedDoor, DoorBall) → "! (c): (BlockedDoor, BoxDoor) → "! (d): (BlockedDoor, OpenGoal) → "!
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Figure 4: Results of transfer experiments in MiniGird; Within each sub-graph, the x-axis represents
the number of training episodes, and the y-axis represents the normalized discounted reward converted
according to the step size of the completed task.

4.2 Analysis of Reusing, Recomposing, and Re-learning Knowledge

This section provides a visualization of the source policy selection during the transfer process. The
left of Figure 5 shows the weight changes of different policies selected for BlockedBoxUnlockPickup,
and the two graphs above and the two graphs below are the weight changes of choosing different
policies during the training process (left) and after convergence (right) under the (A) and the (C)
transfer scenarios, respectively. For the upper left graph, the source policies carry more weight at
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Figure 5: The interpretation of the agent’s behaviors learned by PADDLE. (a)-(d) show the variations
of the (unnormalized) similarity weights for each source and target policies. (e) shows a visualization
of the transfer process, the green numbers is the execution probability of clause in the source task.

various stages compared to the target policy. This emphasizes that utilizing the source policy yields
greater benefits, aligning well with the practical dynamics of the training process. For the upper
right graph, the weight of the target policy used reaches the optimal value. This indicates that with
the advancement of training, the target policy effectively acquires all the knowledge encompassed
within the source task. The difference between the two graphs below is that the end of the curve is
always the target policy with more weight. This is because through the dual similarity, when the skills
required for the target task do not exist in the source policy, the weights will be quickly adjusted,
and the target policy will be used for re-learning. To better explain the transfer process, taking the
(A) transfer scenario as an example, we explain the process of policy switching during transfer. At
the beginning of the task, the agent needs to remove the yellow ball. The body atoms returned will
describe the information of related objects in the environment, and then query the high-level logic
program of the source policies to see if there is the most similar fragment. The source policy (1-1)
clause (describe door blockage) is the most similar and will be reused in this part. Especially, the
complete visualization results are on the right of Figure 5.

4.3 Analysis of Quantity and Quality of Source Policies

Is it more difficult to discover useful knowledge during transfer as the number of source policies
grows or random policies are added to the source policy pool? This further affects the difficulty of
source policy library construction and limits the scenarios for transfer. Evaluate our approach on a
larger set of source policies. This section evaluates the sensitivity of PADDLE to the quantity and
quality of source policies, and furthermore, we also evaluate the robustness of PADDLE in handling
random source policies that cannot provide meaningful candidate actions for solving the target task.
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Figure 6: Analysis of quantity and quality of source policies.

Firstly, we choose three cases to test
on BlockedBoxUnlockPickup. In
these three cases, the number of
source policies increases and the num-
ber of skills possessed also increases
(1) DoorBall and OpenGoal, (2) Door-
Ball, OpenGoal, and BlockedDoor,
(3) DoorBall, OpenGoal, Blocked-
Door and BoxDoor. Meanwhile, we
compare with GALOIS fine-tuning ex-
periments [17] on the best source task
(DoorBall). The results are shown in Figure 6(a). With the further improvement of the quantity
and quality of the source policies, PADDLE can effectively select the appropriate source policies to
guide the learning of new tasks and improve transfer efficiency. Furthermore, we add all the source
policies used and the policy learned from BlockedBoxUnlockPickup to the policy library to solve
BlockedBoxPlaceGoal. Note that we use all the task policies prepared on the MiniGrid environment
to test whether our approach can add policies obtained from similar tasks to the policy library, so as

8



to quickly solve downstream tasks and replace policies other than BlockedDoor and GapBall with
random policies and add them to the source policy set, and test them in the above transfer scenario.
As shown in Figure 6(b), it shows that even if there are some source policies that do not make sense,
our method can still effectively select and learn appropriate guidance policies.

5 Related Work

Policy Reuse: Policy reuse [12] is a TL approach. By using the internal connection among tasks, the
knowledge from previously learned policies can be used to accelerate the learning of the target task
[2, 19, 9, 43]. One class of methods introduces additional components into the underlying algorithm
[25, 42]. For example, PTF [42] proposes a hierarchical policy and models multi-policy transfer as the
option learning problem, but training these components induces either optimization non-stationarity
or heavy sampling cost, significantly impairing the effectiveness of transfer. Another main class of
methods is the value-based policy or advantage-based selection method [26, 9, 37, 45]. For example,
CUP [45] chooses the source policy that has the largest one-step performance improvement over the
current target policy utilizing the critic, which avoids training any extra components and efficiently
reuses source policies. However relying too heavily on the value function has limitations, including
sensitivity to sparse or delayed rewards and value estimation errors. All previous works learn deep
neural network policies/Q-tables, which are hard to reveal the logic behind. Our proposed method
uses a hybrid decision model to synthesize high-level logic programs learn low-level DRL policy,
and propose the logic similarity to select the appropriate source policy as the guiding policy, making
it easy to detect small changes in logic levels and improving transfer efficiency.

Program Synthesis in RL: Integrating human knowledge into reinforcement learning systems is a
hot topic, especially leveraging program synthesis for reinforcement learning, this type of research
advocates taking a set of program specifications (e.g., natural language instructions and policy
sketches, etc.) to induce an explicit program that satisfies the given specification [33, 22, 3, 20].
These methods directly synthesize a white-box logic program [44, 7] as the DRL policy and have
been demonstrated to improve performance and interpretability significantly. Especially, program-
guided RL breaks down complex tasks into subtasks and learns sub-policies for them. This class of
methods guides agents to complete tasks with programs that explicitly specify the flow of subtasks
under given environmental conditions, improving downstream generalization by expressing policies
as explicit function programs. where command programs are used as a new implementation of
hierarchical reinforcement learning, where the agent’s policy is guided by a higher-level program
[35, 46, 5, 39, 44]. Although these methods have demonstrated good generalization in simple cross-
task transfer scenarios, they are limited to one-to-one transfer scenarios and target tasks with few
logical changes, in addition, they only work in discrete domains. The hybrid decision model and
transfer algorithm proposed in this article will effectively solve this problem.

6 Conclusion

In this paper, we propose a novel transfer framework PADDLE with a hybrid decision model as the
backbone. Unlike most previous transfer methods that assumed, extracted, and used black box policy,
we explore how to effectively measure the logic similarity and transfer explainable knowledge, which
further improves transfer efficiency. PADDLE is simple to implement and easy to combine with
existing DRL algorithms. Experimental results indicate that PADDLE outperforms previous state-
of-the-art transfer methods. As for future work, it is worthwhile extending PADDLE to multiagent
problems to capture the transferable knowledge among multiple agents, even heterogeneous agents.
Another direction is to learn the optimal logic programs from human feedback to further release the
expert knowledge assumption.
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A Appedix

A.1 Environments Details

MiniGrid Environments: The first five environments in Figure 7 show all the MiniGrid environments
used in this paper as source tasks. Below is a detailed list of tasks for each of them. T denotes the
maximum number of steps per episode and T = 320 for all MiniGrid.

• BlockedDoor: The agent picks up the ball in front of the door, drops it somewhere else, and
gets a reward of 0.1. Then pick up the key and open the door to get the final reward.

• GapBall: The agent opens the box, picks up the key, and gets a reward of 0.1 and the gray
gap in the middle will be accessible. then drop the key and pick up the green ball to get the
final reward.

• DoorBall: The agent picks up the key opens the door, and gets a reward of 0.1. then drop
the key and pick up the green ball to get the final reward.

• OpenGoal: The agent opens the door without picking up the key and reaches the green
frame to get the final reward.

• BoxDoor: The agent opens the box, picks up the key, and gets a reward of 0.1. Then open
the door to get the final reward.

In all tasks, the final reward is rt = 1−0.9(t/T ). t denotes the time step to complete the task and this
reward is given only for solving the task. The action space is discrete with seven actions: left, right,
up, down, pick up, drop, and toggle. ‘Toggle’ unlocks a door or opens a box. The grid is procedurally
generated at each episode, and the agent’s initial position is random within a fixed area far from the
goal. This facilitates the agent to better learn the task.

[6, 2]
[7, 4] [7, 6]

[4, 7]

BlockedDoor GapBall DoorBall OpenGoal BoxDoor

CoffeeMaze MailMaze

Figure 7: The first five are source task visualizations of the MiniGrid environment, and the last two
are source task visualizations of the Maze2D environment

Maze2D Environments: The latter two environments in Figure 7 show all the Maze2D environments
used in this paper as source tasks. Below is a detailed list of tasks for each of them and T = 1000 for
all Maze2D.

• CoffeeMaze: The agent goes to [6,2] to get coffee and gets a reward of 10, then sends it
to [7,4] and gets a reward of 10, and finally goes to the red ball to charge and get the final
reward.

• MailMaze: The agent goes to [4,7] to get Mail and gets a reward of 10, then sends it to [7,6]
and gets a reward of 10, and finally goes to the red ball to charge and get the final reward.

In all tasks, the final reward is rt = 100 ∗ (1 − 0.9(t/T )). The action space is continuous and
consistent with [13]. When the agent enters a certain range of the corresponding goal, it means that
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the corresponding operation is completed. The agent successfully completes the task or reaches the
maximum number of steps, and the episode ends

A.2 Baseline Details

Hyper-Parameter Details: All hyper-parameters used in our experiments are listed in Table 1.
We use the same set of hyper-parameters for all tasks. We use a set of hyper-parameters for all
tasks in both discrete and continuous domains. Most hyper-parameters of the baselines are adjusted
appropriately based on their paper.

Table 1: Detailed hyper-parameters setting for PADDLE

Hyper-Parameters Hyper-Parameters Values

Discount Factor(γl/γh) (0.99/0.95)
Optimizer RMSProp

Learning Rate (PPO/TD3/GALOIS) (5e-4/2e-4/0.05)
Clip Value (PPO) 0.2

Entropy Term (PPO) 0.01
Batch Size (TD3) 256

Update Frequency (TD3) 2 env steps
Policy noise (TD3) 0.2

γbody/γhead 0.2/0.8
ϵ 0.05

non-linearity ReLU
actor/critic structure three fully connected layers with 400 units
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