
Published as a conference paper at ICLR 2024

IN-CONTEXT LEARNING THROUGH THE BAYESIAN
PRISM

Madhur Panwar∗♡ Kabir Ahuja∗†♢ Navin Goyal♡
♡ Microsoft Research India
{t-mpanwar, navingo}@microsoft.com
♢ University of Washington
kahuja@cs.washington.edu

ABSTRACT

In-context learning (ICL) is one of the surprising and useful features of large lan-
guage models and subject of intense research. Recently, stylized meta-learning-
like ICL setups have been devised that train transformers on sequences of input-
output pairs (x, f(x)). The function f comes from a function class and generaliza-
tion is checked by evaluating on sequences generated from unseen functions from
the same class. One of the main discoveries in this line of research has been that
for several function classes, such as linear regression, transformers successfully
generalize to new functions in the class. However, the inductive biases of these
models resulting in this behavior are not clearly understood. A model with un-
limited training data and compute is a Bayesian predictor: it learns the pretraining
distribution. In this paper we empirically examine how far this Bayesian perspec-
tive can help us understand ICL. To this end, we generalize the previous meta-ICL
setup to hierarchical meta-ICL setup which involve unions of multiple task fami-
lies. We instantiate this setup on a diverse range of linear and nonlinear function
families and find that transformers can do ICL in this setting as well. Where
Bayesian inference is tractable, we find evidence that high-capacity transformers
mimic the Bayesian predictor. The Bayesian perspective provides insights into the
inductive bias of ICL and how transformers perform a particular task when they
are trained on multiple tasks. We also find that transformers can learn to gener-
alize to new function classes that were not seen during pretraining. This involves
deviation from the Bayesian predictor. We examine these deviations in more depth
offering new insights and hypotheses1.

1 INTRODUCTION

In-context learning (ICL) is one of the major ingredients behind the astounding performance of
large language models (LLMs) (Brown et al., 2020). Unlike traditional supervised learning, ICL is
the ability to learn new functions f without weight updates from input-output examples (x, f(x))
provided as input at test time. For instance, given the prompt up -> down, low -> high,
small ->, a pretrained LLM will likely produce output big: it apparently infers that the function
in the two examples is the antonym of the input and applies it on the new input. This behavior often
extends to more sophisticated and novel functions unlikely to have been seen during training and
has been the subject of intense study, e.g., Min et al. (2022b); Webson & Pavlick (2022); Min et al.
(2022a); Liu et al. (2023); Dong et al. (2023). More broadly than its applications in NLP, ICL can
also be viewed as providing a method for meta-learning (Hospedales et al., 2022) where the model
learns to learn a class of functions.

Theoretical understanding of ICL is an active area of research. Since the real-world datasets used
for LLM training are difficult to model theoretically and are very large, ICL has also been studied
in stylized setups, e.g., Xie et al. (2022); Chan et al. (2022b); Garg et al. (2022); Wang et al. (2023);

∗Equal Contribution
†A part of this work was done while Kabir was a Research Fellow at Microsoft Research India.
1We release our code at https://github.com/mdrpanwar/icl-bayesian-prism

1

https://github.com/mdrpanwar/icl-bayesian-prism

Published as a conference paper at ICLR 2024

Hahn & Goyal (2023). These setups study different facets of ICL. In this paper, we focus on the
meta-learning-like framework of Garg et al. (2022). Unlike in NLP where training is done on doc-
uments for the next-token prediction task, here the training and test data look similar in the sense
that the training data consists of input of the form ((x 1, f(x 1)), . . . , (xk, f(xk)),xk+1) and output
is f(xk+1), where x i ∈ Rd and are chosen i.i.d. from a distribution, and f : Rd → R is a func-
tion from a family of functions, for example, linear functions or shallow neural networks. We call
this setup MICL. A striking discovery in Garg et al. (2022) was that for several function families,
transformer-based language models during pretraining learn to implicitly implement well-known al-
gorithms for learning those functions in context. For example, when shown 20 examples of the form
(x ,wTx), where x ,w ∈ R20, the model correctly outputs wT

testx on test input x test. Apart from
linear regression, they show that for sparse linear regression and shallow neural networks the trained
model appears to implement well-known algorithms; and for decision trees, the trained model does
better than baselines. Two follow-up works Akyürek et al. (2022) and von Oswald et al. (2022)
largely focused on the case of linear regression. Among other things, they showed that transformers
with one attention layer learn to implement one step of gradient descent on the linear regression
objective with further characterization of the higher number of layers.

Bayesian predictor. An ideal language model (LM) with unlimited training data and compute would
learn the pretraining distribution as that results in the smallest loss. Such an LM produces the output
by simply sampling from the pretraining distribution conditioned on the input prompt. Such an ideal
model is often called Bayesian predictor. Many works make the assumption that trained LMs are
Bayesian predictors, e.g. Saunshi et al. (2021); Xie et al. (2022); Wang et al. (2023). Most relevant
to the present paper, Akyürek et al. (2022) show that in the MICL setup for linear regression, in the
underdetermined setting, namely when the number of examples is smaller than the dimension of the
input, the model learns to output the least L2-norm solution which is the Bayes-optimal prediction.
In this paper we empirically examine how general this behavior is across choices of tasks.

Prior work has investigated related questions but we are not aware of any extensive empirical verifi-
cation. E.g., Xie et al. (2022) study a synthetic setup where the pretraining distribution is given by
a mixture of hidden Markov models and show that the prediction error of ICL approaches Bayes-
optimality as the number of in-context examples approach infinity. In contrast, we test the Bayesian
hypothesis for ICL over a wide class of function families and show evidence for equivalence with
Bayesian predictor at all prompt lengths. Also closely related, Müller et al. (2022); Hollmann et al.
(2023) train transformer models by sampling data from a prior distribution (Prior Fitted Networks),
so it could approximate the posterior predictive distribution at inference time. While these works
focus on training models to approximate posterior distributions for solving practical tasks (tabular
data), our objective is to understand how in-context learning works in transformers and to what
extent we can explain it as performing Bayesian Inference on the pre-training distribution.

Simplicity bias. Simplicity bias, the tendency of machine learning algorithms to prefer simpler
hypotheses among those consistent with the data, has been suggested as the basis of the success of
neural networks. There are many notions of simplicity (Mingard et al., 2023; Goldblum et al., 2023).
Does in-context learning also enjoy a simplicity bias like pretraining?

Our contributions. In brief, our contributions are

1. A setup for studying ICL for multiple function families: First, we extend the MICL setup from
Garg et al. (2022) to include multiple families of functions. For example, the prompts could be
generated from a mixture of tasks where the function f is chosen to be either a linear function or a
decision tree with equal probability. We call this extended setup HMICL. We experimentally study
HMICL and find that high-capacity transformer models can learn in context when given such task
mixtures. (We use the term “high-capacity” informally; more precisely, it means that for the task at
hand there is a sufficiently large model with the desired property.)

2. High-capacity transformers perform Bayesian inference during ICL: To understand how this abil-
ity arises we investigate in depth whether high-capacity transformers simulate the Bayesian predic-
tor. This motivates us to choose a diverse set of linear and nonlinear function families as well as prior
distributions in HMICL and MICL setups. Function families we consider were chosen because ei-
ther they permit efficient and explicit Bayesian inference or have strong baselines. We provide direct
and indirect evidence that indeed high-capacity transformers often mimic the Bayesian predictor.

2

Published as a conference paper at ICLR 2024

The ability to solve task mixtures arises naturally as a consequence of Bayesian prediction. In con-
current work, Bai et al. (2023) also study the multiple function classes setup for ICL like us, showing
that transformers can in-context learn individual function classes from the mixture. However, there
are three main differences between our works. Bai et al. (2023) interpret the multi-task ICL case as
algorithm selection, where transformer based on the in-context examples selects the appropriate al-
gorithm for the prompt and then executes it. We provide an alternate explanation that there is no need
for algorithm selection and it follows naturally from the Bayesian perspective. Further, while they
show that their constructions approach bayes-optimality at large prompt lengths, we show through
experiments that this actually holds true for all prompt lengths. Finally, we test this phenomenon
on a much larger set of mixtures. For Gaussian Mixture Models, we also compare the performance
with the exact Bayesian predictor and such a comparison is missing in Bai et al. (2023).

3. Link between ICL inductive bias with the pretraining data distribution: We also investigate the
inductive bias in a simple setting for learning functions given by Fourier series. If ICL is biased
towards fitting functions of lower maximum frequency, this would suggest that it has a bias for
lower frequencies like the spectral bias for pretraining. We find that the model mimics the Bayesian
predictor; the ICL inductive bias of the model is determined by the pretraining data distribution:
if during pretraining all frequencies are equally represented, then during ICL the LM shows no
preference for any frequency. On the other hand, if lower frequencies are predominantly present
in the pretraining data distribution then during ICL the LM prefers lower frequencies. Chan et al.
(2022a;b) studies the inductive biases of transformers for ICL and the effect of pretraining data
distribution on them. However, the problem setting in these papers is very different from ours and
they do not consider simplicity bias.

4. Generalization to new tasks not seen during training in HMICL: In HMICL setup, we study
generalization to new tasks that were not seen during pretraining. We find that when there’s sufficient
diversity of tasks in pretraining, transformers generalize to new tasks. Similar study was made in
the concurrent work of Raventós et al. (2023) for the noisy linear regression problem within MICL.

5. Study of deviations from Bayesian prediction: Finally, we study deviations from the Bayesian
predictor. These can arise either in multitask generalization problems or when the transformer is
not of sufficiently high capacity for the problem at hand. For the former, we study the pretraining
inductive bias and find surprising behavior of transformers where they prefer to generalize to a
large set of tasks early in the pretraining which then they forget. For the latter, drawing on recent
work connecting Bayesian inference with gradient-based optimization, we hypothesize that in fact
transformers may be attempting to do Bayesian inference.

2 BACKGROUND

We first discuss the in-context learning setup for learning function classes as introduced in Garg
et al. (2022), which we call Meta-ICL or MICL. Let DX be a probability distribution on Rd. Let F
be a family of functions f : Rd → R and let DF be a distribution on F . For simplicity, we often use
f ∼ F to mean f ∼ DF . We overload the term function class to encompass both function definition
as well as priors on its parameters. Hence, linear regression with a standard gaussian prior and a
sparse prior will be considered different function classes based on our notation.

To construct a prompt P =
(
x 1, f(x i), · · · ,x p, f(x p),x p+1

)
of length p, we sample f ∼ F

and inputs x i ∼ DX i.i.d. for i ∈ {1, · · · p}. A transformer-based language model Mθ is trained
to predict f(x p+1) given P , using the objective: minθ Ef,x1:p

[
1

p+1

∑p
i=0 ℓ

(
Mθ(P

i), f(x i+1)
)]
,

where P i denotes the sub-prompt containing the first i input-output examples as well as the (i+ 1)-
th input, i.e.

(
x 1, f(x 1), · · · ,x i, f(x i),x i+1

)
and x 1:p = (x 1, . . . ,x p). While other choices of

the loss function ℓ
(
·, ·
)

are possible, since we study regression problems we use the squared-error
loss (i.e., ℓ(y, y′) = (y − y′)2) in accordance with Garg et al. (2022).

At test time, we present the model with prompts Ptest that were unseen during training with
high probability and compute the error when provided k in-context examples: loss@k =
Ef,Ptest

[
ℓ
(
Mθ(P

k), f(xk+1)
)]

, for k ∈ {1, · · · , p}.

PME. Our work uses basic Bayesian probability as described, e.g., in Murphy (2022). We mentioned
earlier that an ideal model would learn the pretraining distribution. This happens when using the
cross-entropy loss. Since we use the square loss in the objective definition, the predictions of this

3

Published as a conference paper at ICLR 2024

ideal model can be computed using the posterior mean estimator (PME) from Bayesian statistics.
For each prompt length i, and any prompt Q =

(
x 1, g(x 1), · · · ,x p, g(x p),x p+1

)
where g is a

function in the support of DF , we can compute the PME by taking the corresponding summand
in objective definition above, which will be given by Mθ(Q

i) = Ef

[
f(x i+1) |P i = Qi

]
for all

i ≤ p. This is the optimal solution for prompt Q, which we refer to as PME. Please refer to §A.1 for
technical details behind this computation.

2.1 HIERARCHICAL META-ICL
We generalize the MICL setup, where instead of training transformers from functions sampled from
a single function class, we sample them from a mixture of function classes. Formally, we define
a mixture of function classes using a set of m function classes F = {F1, · · · ,Fm} and sampling
probabilities α = [α1, · · ·αm]T with

∑m
i=1 αi = 1. We use α to sample a function class for

constructing the training prompt P . We assume the input distribution DX to be same for each class
FTi . More concretely, the sampling process for P is defined as: i) Fi ∼ F s.t. P(F = Fi) = αi; ii)
f ∼ Fi; iii) x j ∼ DX ,∀j ∈ {1, · · · , p}; and finally, iv) P =

(
x 1, f(x 1), · · ·x p, f(x p),x p+1

)
.

We call this setup Hierarchical Meta-ICL or HMICL, as there is an additional first step for sam-
pling the function class in the sampling procedure. Note that the MICL setup can be viewed as
a special case of HMICL where m = 1. The HMICL setting presents a more advanced scenario
to validate whether the Bayesian inference can be used to explain the behavior of in-context learn-
ing in transformers. Further, our HMICL setup is also arguably closer to the in-context learning in
practical LLMs which can realize different classes of tasks (sentiment analysis, QA, summarization
etc.) depending upon the inputs provided. (For additional discussion on HMICL and MICL, refer to
Appendix §C.1.) The PME for the hierarchical case is given by:

Mθ,F (P) = β1Mθ,F1(P) + . . .+ βmMθ,Fm(P), (1)

where βi = αipi(P)/pF (P) for i ≤ m. Probability density pi(·) is induced by the function class
Fi on the prompts in a natural way, and pF (P) = αipi(P) + · · ·+ αmpm(P). Please refer to §A.1
in the Appendix for the derivation. The models are trained with the squared error loss mentioned
above and at test time we evaluate loss@k for each task individually.

2.2 MODEL AND TRAINING DETAILS

We use the decoder-only transformer architecture Vaswani et al. (2017) as used in the GPT models
Radford et al. (2019). Unless specified otherwise, we use 12 layers, 8 heads, and a hidden size
(dh) of 256 in the architecture for all of our experiments. We use a batch size of 64 and train the
model for 500k steps. For encoding the inputs x i’s and f(x i)’s, we use the same scheme as Garg
et al. (2022) which uses a linear map E ∈ Rdh×d to embed the inputs x i’s as Ex i and f(x i)’s
as Efpad(x i), where fpad(x i) = [f(x i),0d−1]

T ∈ Rd. In all of our experiments except the ones
concerning the Fourier series, we choose DX as the standard normal distribution i.e. N (0, 1), unless
specified otherwise. To accelerate training, we also use curriculum learning like Garg et al. (2022)
for all our experiments where we start with simpler function distributions (lower values of d and p)
at the beginning of training and increase the complexity as we train the model.

3 TRANSFORMERS CAN IN-CONTEXT LEARN TASK MIXTURES

In this section, we provide evidence that transformers’ ability to solve mixture of tasks arises nat-
urally from the Bayesian perspective. We start with a Gaussian Mixture Models (GMMs) example
where the exact Bayesian solution is tractable and later discuss results for more complex mixtures.

3.1 GAUSSIAN MIXTURE MODELS (GMMS)
We define a mixture of dense-linear regression classes FGMM = {FDR1

, · · · ,FDRm
}, where FDRi

={
f : x 7→ wT

i x |w i ∈ Rd
}

and w i ∼ Nd(µi,Σi). In other words, each function class in the
mixture corresponds to dense regression with Gaussian prior on weights (but different means or
covariance matrices). We report experiments with m = 2 here, and the mean vectors are given
by µ1 = (3, 0, .., 0) and µ2 = (−3, 0, ..., 0) for the two classes. The covariance matrices are equal
(Σ1 = Σ2 = Σ∗), where Σ∗ is the identity matrix Id with the top-left entry replaced by 0. Note that
we can equivalently view this setup by considering the prior on weights as a mixture of Gaussians
i.e. pM (w) = α1Nd(µ1,Σ1) + α2Nd(µ2,Σ2). For brevity, we call the two function classes T1
and T2. We train the transformer on a uniform mixture i.e. α1, α2 are 1

2 . We use d = 10 and the
prompt length p ∈ {10, 20}.

4

Published as a conference paper at ICLR 2024

0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

Transformer (GMM)

PME (T1)

PME (T2)

PME (GMM)

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

(wprobe, w)

(wprobe, PME (GMM))

(wprobe, PME (T1))

(wprobe, PME (T2))

Figure 1: Transformers simulate PME when trained on dense regression task-mixture with weights
having a mixture of Gaussian prior (GMM). (left): Comparing the performance of the Transformer
with PME of individual Gaussian components (PME (T1) and PME (T2)) and of the mixture PME
(GMM). (right): MSE between the probed weights of the Transformer and PMEs.

Recovering implied weights. To provide a stronger evidence for the Bayesian hypothesis, apart
from the loss curves, we also extract the weights implied by transformers for solving the regression
task in-context. Following Akyürek et al. (2022), we do this by generating model’s predictions {y′i}
on the test inputs {x ′

i}2di=1 ∼ DX and then solving the system of equations to recover wprobe. We
then compare the implied weights wprobe with the ground truth weights w as well as the weights
extracted from different baselines by computing the their MSE.

Results. In Figure 1 (left), we note that Transformer’s errors almost exactly align with those of
the PME of the mixture, PME (GMM), when prompts come from either T1 or T2. (For details on
computation of PME, please refer to §C.2 in Appendix). For each plot, let Tprompt and Tother denote
the component from which prompts are provided and the other component respectively. When
d = 10 examples from Tprompt have been provided, the Transformer, PME (Tprompt), and PME
(GMM) all converge to the same minimum error of 0. This shows that Transformer is simulating
PME (GMM), which converges to PME (Tprompt) at k = d. PME (Tother)’s errors keep increasing
as more examples are provided. These observations are in line with Eq. 3: As more examples
from the prompt are observed, the weights of individual PMEs used to compute the PME (GMM)
(i.e., the β’s) evolve such that the contribution of Tprompt increases in the mixture with k (Fig. 22
in the Appendix). In Figure 1 (right), MSE between weights from different predictors are plotted.
Transformer’s implied weights are almost exactly identical to PME (GMM) for all k. Please refer to
§C.2 for additional details and results.

More complex mixtures. We test the generality of the phenomenon discussed above for more
complex mixtures, involving mixtures of two or three different linear inverse problems (e.g. dense
regression, sparse regression, sign vector regression) as well as some mixtures involving non-linear
function classes like neural networks and decision trees. In all of these cases we observe that trans-
formers trained on the mixtures are able to generalize on the new functions from the mixture of
function classes and match the the performance of single-function class transformer models depend-
ing upon the distribution of input prompt. Please refer to §C.3 for details.

Implications. Our GMM experiments challenge the existing explanations for the multi-task case,
e.g. the models first recognizes the task and then solves it. When viewed through the Bayesian
lens, transformers do not need to recognize the task separately and recognition and solution are
intertwined as we show in Equation 1.

4 SIMPLICITY BIAS IN ICL?

In this section, we explore if transformers exhibit simplicity bias in ICL. In other words, when given
a prompt containing input output examples, do they prefer to fit simpler functions among those that
fit the prompt? To study this behavior we consider the Fourier Series function class, where the output
is a linear function of sine and cosine functions of different frequencies. By training transformers
on this class, during ICL we can study if transformers prefer fitting lower-frequency functions to the
prompt over higher frequencies, which can help us study the presence of a simplicity bias.

More formally, we can define Fourier series by the following expansion: f(x) = a0 +∑N
n=1 an cos (nπx/L) +

∑N
n=1 bn sin (nπx/L) where, x ∈ [−L,L], and a0, an’s and bn’s are

known as Fourier coefficients and cosnπ/L and sinnπ/L define the frequency n components.

5

Published as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 21

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 21

Inductive Biases M = 4

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 21

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 21

Inductive Biases M = 4
Fourier Series MICL

M = 4

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 20

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 10, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

a
2 n

+
b2 n

M = 10, k = 20
Transformer Inductive Biases

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 20

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 10, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

a
2 n

+
b2 n

M = 10, k = 20
Transformer Inductive Biases

Fourier Series HMICL
M = 4

Figure 2: Measuring the frequencies of the simulated function during ICL by transformer.

MICL Setup. In the MICL setup we train transformer on a single function class de-
fined as F fourier

ΦN
=

{
f(·; ΦN)|f(x ; Φ) = wTΦN (x),w ∈ Rd

}
with standard gaussian prior

on weights w . Note that here ΦN as the Fourier feature map i.e. ΦN (x) =
[1, cos (πx/L), · · · , cos (Nπx/L), sin (πx/L), · · · , sin (Nπx/L)]T . For training transformers to
in-context-learn F fourier

ΦN
, we fix a value of N and sample functions f ∈ F fourier

ΦN
. We consider the

inputs to be scalars, i.e. xi ∈ [−L,L] and we sample them i.i.d. from the uniform distribution on
the domain: xi ∼ U(−L,L). In all of our experiments, we consider N = 10 and L = 5. At test
time we evaluate on F fourier

ΦM
for M ∈ [1, 10], i.e. during evaluation we also prompt the model with

functions with different maximum frequency as seen during training.

HMICL Setup. We also consider a mixture of Fourier series function classes with different max-
imum frequencies, i.e. F fourier

Φ1:N
= {F fourier

Φ1
, · · · ,F fourier

ΦN
}. We consider N = 10 in our experiments

and train the models using a uniform mixture with normalization. During evaluation, we test indi-
vidually on each F fourier

ΦM
, where M ∈ [1, N].

Measuring inductive biases. To study simplicity bias during ICL, we propose a method to re-
cover implied frequency from the transformer model. We start by sampling in-context examples
(x1, f(x1), · · ·xk, f(xk)), and given the context obtain the model’s predictions on a set ofm test in-
puts {x′i}mi=1, i.e. y′i = Mθ

((
x1, f(x1), · · ·xk, f(xk), x′i

))
. We can then perform Discrete Fourier

Transform (DFT) on {y′1, · · · , y′m} to obtain the Fourier coefficients of the function output by M ,
which we can analyze to understand the dominant frequencies.

Results. In both MICL and HMICL setups discussed above we observe that transformers are able
to in-context learn these function classes and match the performance of the Bayesian predictor or
strong baselines. Since, in this section we are primarily interested in studying the simplicity bias,
here we only report the plots for frequencies recovered from transformers at different prompt lengths
in Figure 2 (more details in Figures 12 and 32 of Appendix). As can be seen in Figure 2 (left), in the
single function class case, transformers exhibit no bias towards any particular frequency. For small
prompt lengths (k = 2), all N frequencies receive similar absolute value of coefficients as implied
by the transformer. As more examples are provided (k = 21), transformer is able to recognize the
gold maximum frequency (M = 4) from the in-context examples, and hence coefficients are near
zero for n > M , but as such there is no bias towards any particular frequencies. However, when
we consider the mixture case in Figure 2 (right), the situation is different. We see a clear bias for
lower frequencies at small prompt lengths; however, when given sufficiently many examples they
are able to recover the gold frequencies. This simplicity bias can be traced to the training dataset
for the mixture since lower frequencies are present in most of the functions of the mixture while
higher frequencies will be more rare: Frequency 1 will be present in all the function classes whereas
frequencyN will be present only in F fourier

ΦN
. We perform additional experiments biasing pre-training

distribution to high frequencies and observe complexity bias during ICL (Appendix §C.4.1).

Implications. These results suggest that the simplicity bias (or lack thereof) during ICL can be
attributed to the pre-training distribution which follows naturally from the Bayesian perspective i.e.
the biases in the prior are reflected in the posterior. Transformers do not add any extra inductive bias
of their own as they emulate the Bayesian predictor.

5 MULTI-TASK GENERALIZATION

In this section we test the HMICL problems on out-of-distribution (OOD) function classes to check
generalization. We work with the degree-2 monomials regression problem, Fmon(2)

S which is given
by a function class where the basis is formed by a feature set S, a subset of degree-2 monomials

6

Published as a conference paper at ICLR 2024

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 100, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 100, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

Figure 3: Multi-task generalization results for Monomials problem. ID and OOD evaluation for
K = 10, 100 is presented. As task diversity (K) increases, the model starts behaving like LassoΦM

and BPproxy and its ID and OOD losses become almost identical, i.e. it generalizes to OOD.

S ⊂ M = {(i, j)| 1 ≤ i, j ≤ d}. We can then define the feature map ΦS(x) = (xixj)(i,j)∈S and
f(x) = wTΦS(x) is a function of this class, where w ∼ N|S|(0 , I). We compare the performance
of TFs on this class with OLS performed on the feature set S (OLSS) which is the Bayesian predictor
in this case. We find that the error curves of the TF trained and evaluated on this class follow OLSS
baseline closely for all prompt lengths, on both in- and out-of-distribution evaluation. (Refer to
§B.2.3 for a detailed description of setup and results.)

Extending to HMICL setting. For HMICL, we use multiple feature sets Sk’s to define the mixture.
Each Sk defines a function class Fmon(2)

Sk
. The pretraining distribution is induced by the uniform

distribution U(F) over a collection of such function classes, F = {Fmon(2)
S1

, · · · ,Fmon(2)
SK

}, where
Sk ⊂M . K feature sets Sk’s, each of sizeD, are chosen at the start of the training and remain fixed.
K is the task diversity of the pretraining distribution. To sample a training function for the TF, we
first sample a function class Fmon(2)

Sk
with replacement from U(F) and then sample a function from

the chosen class; f(x) = wTSk(x), where w ∼ ND(0 , I). Our aim is to check if TF trained on
U(F) can generalize to the full distribution of all function classes (for feature sets of size D) by
evaluating its performance on function classes corresponding to feature sets S ′ /∈ {S1, · · · ,SK}.

Experimental Setup. We choose D = d = 10, p = 124. There is no curriculum learning –
d and p remain fixed throughout training. Note that the total number of degree-2 monomials =
Mtot =

(
d
2

)
+

(
d
1

)
= 45 + 10 = 55; and the total number of distinct feature sets Sk’s (and hence

function classes) =
(
Mtot

D

)
=

(
55
10

)
≈ 310. We train various models for different task diversities;

K ∈ {10, 20, 40, 100, 500, 1000, 5000}. We evaluate on a batch of B = 1280 functions in two
settings: (a) In-Distribution (ID) – test functions formed using randomly chosen function classes
from the pretraining distribution; (b) Out-of-Distribution (OOD) – Test functions formed using
randomly chosen function classes not in the pretraining distribution.

Baselines. We compare the performance of multi-task transformer models with the following base-
lines: 1. OLSS : Here, we perform OLS on the basis formed by the gold feature set S, which was
used to define the function in the prompt that we wish to evaluate. This will correspond to an upper
bound on the performance as at test time the transformer model has no information about the correct
basis. 2. OLSΦM

: Here, OLS is performed on the basis formed by all degree-2 monomials ΦM (x)
for an input x . Hence, this baseline can generalize to any of the feature set S. However, since
all degree-2 monomial features are considered by this baseline, it would require a higher number
of input-output examples (equal to Mtot) for the problem to be fully determined. 3. LassoΦM

:
Similar to OLSΦM

, we operate on all degree-2 monomial features, but instead of OLS we perform
Lasso with α = 0.1. It should also generalize to arbitrary feature sets S, however, Lasso can take
advantage of the fact that |S| = D ≪Mtot; hence should be more efficient than OLSΦM

.

Results. As a proxy for the Bayesian predictor (BPproxy), we use the transformer trained on the full
distribution of function families, since the computation of the exact predictor is expensive. From
the plots in Figure 3, we observe that while for small values of K, the OOD generalization is poor
but as we move to higher values of K, the models start to approach the performance of OLSΦM

and
eventually LassoΦM

on unseen S ′s. Further, they also start behaving like BPproxy. However, this im-
provement in OOD performance comes at the cost of ID performance as task diversity (K) increases.
Eventually, at larger K, both ID and OOD performances are identical. These observation are par-
ticularly interesting since the models learn to generalize to function classes out of the pre-training
distribution and hence deviate from the Bayesian behavior which would lack such generalization

7

Published as a conference paper at ICLR 2024

22 24 26 28 210 212

Pretraining Tasks

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

/d

OOD Evaluation
MICL TF
Ridge
dMMSE

Figure 4: Left: Evolution of ID (solid lines) and OOD (dashed lines) losses during pretraining
for representative task diversities. Task diversities {27 · · · 211} represent the Gaussian forgetting
region. The moving average (over 10 training steps) of the losses is plotted for smoothing. Right:
OOD loss given the full prompt length of 15 for the final checkpoint of models trained on various
task diversities. Task diversities {27 · · · 211} represent the transition region.

and fit the pre-training distribution instead. We observe similar results for another family of func-
tion classes coming from Fourier series (details of these in Appendix §D.2).

In a concurrent work Raventós et al. (2023) also present a multi-task setting within MICL where a
set of weight vectors define the pretraining distribution for the Noisy Linear Regression problem.
Since we work with HMICL, our setting is more general; moreover, generalization to new function
classes in our setting happens in a similar way as generalization to new tasks in Raventós et al.
(2023). They emphasized deviation from the Bayesian predictor. What leads to these deviations?
To understand this, in the next section we study pretraining inductive bias of transformers.

6 DEVIATIONS FROM BAYESIAN INFERENCE?
In the previous section we observed deviations from the Bayesian predictor in multitask generaliza-
tion. To investigate this we study the pretraining dynamics of transformers in the first subsection.
Another set of apparent deviations from Bayesian prediction is observed in literature when the prob-
lem is too hard or the transformer has limited capacity. We discuss these in the second subsection.

6.1 ICL TRANSFORMER FIRST GENERALIZES THEN MEMORIZES DURING PRETRAINING

We observe a very interesting phenomenon (which we term ”forgetting”) from multi-task experi-
ments: For certain task diversities, during pretraining, HMICL Transformer first generalizes (fits
the full distribution) and later forgets it and memorizes (fits the pretraining distribution).

The ‘forgetting’ phenomenon is general and occurs in our HMICL experiments in §5. However, here
we focus on the the Noisy Linear Regression problem from Raventós et al. (2023) since forgetting
is the cleanest in this setting. We briefly mention the problem setup and display the evidence for
forgetting during pretraining, followed by its relation to the agreement of HMICL Transformer with
the Bayesian predictors on the pretraining and full distributions.

Problem Setup. We follow the Noisy Linear Regression (NLR) setup from Raventós et al. (2023):
d = 8, p = 15. (For details, see §D.3.) The pretraining distribution (PTdist.) is induced by the
uniform distribution on a fixed set of tasks (weight vectors). Several models are trained, one per task
diversity K ∈ {21, 22, · · · 220}. The full distribution of weight vectors is standard normal. (Hence
we use the term “Gaussian distribution” to refer to the full distribution (FGdist.).) To form a function
f for training, we randomly choose a weight vector w from the pretraining distribution and define
f(x) = wTx + ϵ, where ϵ ∼ Nd(0, σ

2 = 0.25).

Evidence of forgetting and agreement with Bayesian predictors. As we did in §5, we evaluate
TF on tasks from both in- and out-of-pretraining distribution, where the tasks used to construct the
test function come from pretraining distribution or the standard Gaussian distribution respectively;
corresponding losses are called ID (Pretrain test) loss and OOD (Gaussian) loss. We also plot the
Bayesian predictors for both pretraining (dMMSE) and full (Gaussian) distribution (Ridge regres-

8

Published as a conference paper at ICLR 2024

sion) as defined in Raventós et al. (2023). In Figure 4 (left) we plot the evolution during pretraining
of ID and OOD losses for representative task diversities (more details in §D.3) ID loss ≈ 0 for all
task diversities. We group them into the following 4 categories based on OOD loss and describe
the most interesting one in detail (full classification in §D.3): (1) 21 to 23: no generalization; no
forgetting; (2) 24 to 26: some generalization; no forgetting; (3) 27 to 211: full generalization and
forgetting – OOD loss improves, reaches a minima tmin, at which it is same as ID loss, then it
worsens. At tmin, OOD loss agrees with Ridge, then gradually deviates from it and at tend (end
of pretraining), it is in between dMMSE and Ridge. We refer to this group of task diversities as
the “Gaussian forgetting region” since the model generalizes to the full (Gaussian) distribution over
tasks at tmin but forgets it by tend; (4) 212 to 220: full generalization; no forgetting.

The agreement of TF in OOD evaluation with Ridge or dMMSE as mentioned above is shown in
§D.3. Figure 4 (right) plots the OOD loss given the full prompt length of 15 for the final checkpoint
of models trained for various task diversities. As can be seen, smaller task diversities (up to 26)
agree with dMMSE (Bayesian predictor on PTdist.), and larger task diversities (from 212 onwards)
agree with Ridge regression (Bayesian predictor on FGdist.). (This observation was originally made
by Raventós et al. (2023) and we present it for completeness.) Intermediate task diversities (27 to
211) agree with neither of the two and we term them collectively as the transition region. We note
that both the Gaussian forgetting region and the transition region consist of the same set of
task diversities viz. {27, · · · 211}. The phenomenon of forgetting provides an interesting contrast
to grokking literature (e.g. Nanda et al. (2023)) and can possibly be explained via the perspective
of simplicity bias. The extent of forgetting is directly proportional to the input dimension (d) and is
robust to changes in hyperparameters (details, in section §D.3).

6.2 GRADIENT DESCENT AS A TRACTABLE APPROXIMATION OF BAYESIAN INFERENCE

Some recent results in the literature within MICL suggest that transformers compute their answer by
gradient descent on in-context examples. Could this be related to Bayesian inference? We provide
preliminary evidence for this in Appendix §E.

7 SUMMARY OF FURTHER RESULTS

In this section we summarize further results from the Appendix that verify the generality of Bayesian
hypothesis. We test the hypothesis on a variety of linear and non-linear inverse problems in both
MICL and HMICL setups and find that transformers are able to in-context learn and generalize to
unseen functions from these function classes. In the cases where PME computation is tractable, we
compare transformers with the exact Bayesian predictor (PME) and establish the agreement between
the two. Where PME is intractable, we compare transformers with numerical solutions obtained
using a Markov Chain Monte Carlo (MCMC) sampling algorithm Homan & Gelman (2014) (Figure
10 in Appendix). When even sampling based solutions do not converge, we compare with strong
baselines that are known to be near optimal from prior work. For linear problems, we test on
Dense, Sparse, Sign Vector, Low Rank and Skewed Covariance Regression. For these problems,
we show that not only do transformers’ errors agree with the Bayesian predictor (or the strong
baselines), but also the weights of the function implied by the transformer. For the non-linear case,
we explore regression problems for Fourier Series, Degree-2 Monomials, Random Fourier Features,
and Haar Wavelets. For Bayesian inference the order of demonstrations does not matter for the
class of problems used in our setup. Figure 11 experimentally verifies it for Dense Regression,
where transformer’s performance is independent of the permutation of in-context examples across
different prompt lengths. Further, we note that in the HMICL setup, generalization to functions from
the mixture might depend on different factors such as normalizing the outputs from each function
class. We provide complete details for each of these function families and corresponding results in
Appendix §B and §C.

8 CONCLUSION

In this paper we provided empirical evidence that the Bayesian perspective could serve as a uni-
fying explanation for ICL. In particular, it can explain how the inductive bias of ICL comes from
the pretraining distribution and how transformers solve mixtures of tasks. We also identified how
transformers generalize to new tasks and this involves apparent deviation from Bayesian inference.
There are many interesting directions for future work which we discuss in Appendix §F.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

K.A. was supported in part by the National Science Foundation under Grant No. IIS2125201. We
would like to thank all the anonymous reviewers for their constructive feedback.

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. CoRR, abs/2211.15661, 2022. doi:
10.48550/arXiv.2211.15661. URL https://doi.org/10.48550/arXiv.2211.15661.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Trans-
formers to Recognize Formal Languages. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 7096–7116, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.576. URL
https://aclanthology.org/2020.emnlp-main.576.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

E.J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information
Theory, 51(12):4203–4215, 2005. doi: 10.1109/TIT.2005.858979.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre
Richemond, James McClelland, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 18878–18891. Curran Associates, Inc., 2022a. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf.

Stephanie C. Y. Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K. Lampinen,
and Felix Hill. Transformers generalize differently from information stored in context vs in
weights. CoRR, abs/2210.05675, 2022b. doi: 10.48550/arXiv.2210.05675. URL https:
//doi.org/10.48550/arXiv.2210.05675.

Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex
geometry of linear inverse problems. Foundations of Computational Mathematics, 12(6):805–
849, oct 2012. doi: 10.1007/s10208-012-9135-7. URL https://doi.org/10.1007%
2Fs10208-012-9135-7.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models, 2022.

10

https://doi.org/10.48550/arXiv.2211.15661
https://aclanthology.org/2020.emnlp-main.576
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2210.05675
https://doi.org/10.48550/arXiv.2210.05675
https://doi.org/10.1007%2Fs10208-012-9135-7
https://doi.org/10.1007%2Fs10208-012-9135-7

Published as a conference paper at ICLR 2024

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 8440–8451, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/
2020.acl-main.747.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
Lei Li, and Zhifang Sui. A survey on in-context learning, 2023.

D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306,
2006. doi: 10.1109/TIT.2006.871582.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 30583–30598. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf.

Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning. CoRR,
abs/2304.05366, 2023. doi: 10.48550/arXiv.2304.05366. URL https://doi.org/10.
48550/arXiv.2304.05366.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. CoRR, abs/2303.07971, 2023. doi: 10.48550/arXiv.2303.07971. URL https://
doi.org/10.48550/arXiv.2303.07971.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pp. 1382–1390, Abu Dhabi, United Arab Emirates, Decem-
ber 2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.findings-emnlp.99.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. 2022.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?
id=cp5PvcI6w8_.

Matthew D. Homan and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths in
hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, jan 2014. ISSN 1532-4435.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(09):5149–5169, sep
2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3079209.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Comput. Surv., 55(9):195:1–195:35, 2023. doi: 10.1145/3560815. URL
https://doi.org/10.1145/3560815.

11

https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2303.07971
https://doi.org/10.48550/arXiv.2303.07971
https://aclanthology.org/2022.findings-emnlp.99
https://aclanthology.org/2022.findings-emnlp.99
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3560815

Published as a conference paper at ICLR 2024

O.L. Mangasarian and Benjamin Recht. Probability of unique integer solution to a system of linear
equations. European Journal of Operational Research, 214(1):27–30, 2011. ISSN 0377-2217.
doi: https://doi.org/10.1016/j.ejor.2011.04.010. URL https://www.sciencedirect.
com/science/article/pii/S0377221711003511.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
in context. In Proceedings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 2791–2809, Seattle,
United States, July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.201. URL https://aclanthology.org/2022.naacl-main.201.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
11048–11064, Abu Dhabi, United Arab Emirates, December 2022b. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2022.emnlp-main.759.

C Mingard, G Valle-Perez, J Skalse, and AA Louis. Is sgd a bayesian sampler? well, almost. Journal
of Machine Learning Research, 22:1–64, 2021.

Chris Mingard, Henry Rees, Guillermo Valle Pérez, and Ard A. Louis. Do deep neural networks
have an inbuilt occam’s razor? CoRR, abs/2304.06670, 2023. doi: 10.48550/arXiv.2304.06670.
URL https://doi.org/10.48550/arXiv.2304.06670.

Aaron Mueller and Tal Linzen. How to plant trees in language models: Data and architectural effects
on the emergence of syntactic inductive biases. 2023.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KSugKcbNf9.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022. URL
probml.ai.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. https://d4mucfpksywv.cloudfront.
net/better-language-models/language-models.pdf, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural In-
formation Processing Systems, volume 20. Curran Associates, Inc., 2007. URL
https://proceedings.neurips.cc/paper_files/paper/2007/file/
013a006f03dbc5392effeb8f18fda755-Paper.pdf.

12

https://www.sciencedirect.com/science/article/pii/S0377221711003511
https://www.sciencedirect.com/science/article/pii/S0377221711003511
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.emnlp-main.759
https://doi.org/10.48550/arXiv.2304.06670
https://openreview.net/forum?id=KSugKcbNf9
probml.ai
https://openreview.net/forum?id=9XFSbDPmdW
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=R8sQPpGCv0
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf

Published as a conference paper at ICLR 2024

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression, 2023.

Yasaman Razeghi, Robert L. Logan IV au2, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot reasoning. 2022.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why lan-
guage models help solve downstream tasks. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=vVjIW3sEc1s.

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates, 2018.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. CoRR, abs/2104.09864, 2021. URL https://arxiv.org/
abs/2104.09864.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Sta-
tistical Society: Series B (Methodological), 58(1):267–288, 1996. doi: https://doi.org/10.1111/
j.2517-6161.1996.tb02080.x. URL https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/j.2517-6161.1996.tb02080.x.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. 2022.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly
topic models: Explaining and finding good demonstrations for in-context learning. CoRR,
abs/2301.11916, 2023. doi: 10.48550/arXiv.2301.11916. URL https://doi.org/10.
48550/arXiv.2301.11916.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 2300–2344, Seattle,
United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.167. URL https://aclanthology.org/2022.naacl-main.167.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=RdJVFCHjUMI.

13

https://openreview.net/forum?id=vVjIW3sEc1s
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/arXiv.2301.11916
https://doi.org/10.48550/arXiv.2301.11916
https://aclanthology.org/2022.naacl-main.167
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=RdJVFCHjUMI

Published as a conference paper at ICLR 2024

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-
context, 2023.

14

Published as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Background 3

2.1 Hierarchical Meta-ICL . 4

2.2 Model and training details . 4

3 Transformers can in-context learn task mixtures 4

3.1 Gaussian Mixture Models (GMMs) . 4

4 Simplicity bias in ICL? 5

5 Multi-task generalization 6

6 Deviations from Bayesian inference? 8

6.1 ICL Transformer first generalizes then memorizes during pretraining 8

6.2 Gradient Descent as a tractable approximation of Bayesian inference 9

7 Summary of further results 9

8 Conclusion 9

A Technical Details 16

A.1 PME Theoretical Details . 16

A.2 The curious case of positional encodings. 17

A.3 Experimental Setup . 17

B Linear and Non-linear inverse problems 18

B.1 Linear inverse problems . 20

B.1.1 Function classes and baselines . 20

B.1.2 Results . 22

B.2 Non-linear functions . 23

B.2.1 Fourier Series . 23

B.2.2 Random Fourier Features . 24

B.2.3 Degree-2 Monomial Basis Regression . 27

B.2.4 Haar Wavelet Basis Regression . 30

C Detailed Experiments for HMICL setup 30

C.1 Why HMICL? . 30

C.2 Gaussian Mixture Models (GMMs) . 32

C.3 More complex mixtures . 37

C.4 Fourier series mixture detailed results . 40

15

Published as a conference paper at ICLR 2024

C.4.1 Complexity Biased Pre-training . 42

C.5 Conditions necessary for multi-task ICL . 44

D Details regarding Multi-task generalization experiments 48

D.1 Monomials Multi-task . 48

D.2 Fourier Series Multi-task . 48

D.3 Details on the phenomenon of forgetting . 49

E Gradient Descent as a tractable approximation of Bayesian inference 55

F Further Concluding Remarks 55

A TECHNICAL DETAILS

A.1 PME THEORETICAL DETAILS

We mentioned earlier that an ideal LM would learn the pretraining distribution. This happens when
using the cross-entropy loss. Since we use the square loss in the ICL training objective, the pre-
dictions of the model can be computed using the posterior mean estimator (PME) from Bayesian
statistics. For each prompt length i we can compute PME by taking the corresponding summand in
the ICL training objective

min
θ

Ef,x1:i ℓ
(
Mθ(P

i), f(x i+1)
)
= min

θ
Ef,P i ℓ

(
Mθ(P

i), f(x i+1)
)

= min
θ

EP i Ef

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
= EP i min

θ
Ef

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
.

The inner minimization is seen to be achieved by Mθ(P
i) = Ef

[
f(x i+1) |P i

]
as we use the

squared-error loss. This is the optimal solution for prompt P i and what we refer to as PME.

PME for a task mixture. We describe the PME for a mixture of function classes. For simplicity
we confine ourselves to mixtures of two function classes; extension to more function classes is
analogous. Let F1 and F2 be two function classes specified by probability distributions DF1

and
DF2 , resp. As in the single function class case, the inputs x are chosen i.i.d. from a common
distribution DX . For α1, α2 ∈ [0, 1] with α1 + α2 = 1, an (α1, α2)-mixture F of F1 and F2 is
the meta-task in which the prompt P =

(
x 1, f(x i), · · · ,x p, f(x p),x p+1

)
is constructed by first

picking task Fi with probability αi for i ∈ {1, 2} and then picking f ∼ DFi
. Thus pF (f) =

α1pF1
(f) +α2pF2

(f), where pF (·) is the probability density under function class F which defines
DF . For conciseness in the following we use p1(·) for pF1

(·) etc. Now recall that PME for function
class F is given by

Mθ,F (P) = Ef∼DF [f(x p+1) |P] =
∫
pF (f |P) f(x) df. (2)

Here df is a volume element in F ; this makes sense as all our function families F are continuously
parametrized. We would like to compute Mθ,F (P) in terms of PMEs for F1 and F2. To this end,
we first compute

pF (f |P) = pF (P |f)pF (f)

pF (P)
=
p(P |f)pF (f)

pF (P)
=
p(P |f)
pF (P)

[
α1p1(f) + α2p2(f)

]
=
α1p1(P)

pF (P)

p(P |f)p1(f)
p1(P)

+
α2p2(P)

pF (P)

p(P |f)p2(f)
p2(P)

=
α1p1(P)

pF (P)
p1(f |P) +

α2p2(P)

pF (P)
p2(f |P)

= β1 p1(f |P) + β2 p2(f |P),

16

Published as a conference paper at ICLR 2024

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

M
ax

T
ra

in
in

g
L

en
gt

h

Dense Regression ICL

With Position Encodings

Without Position Encodings

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

l
o
s
s
@
k

M
ax

T
ra

in
in

g
L

en
gt

h

Sparse Regression ICL

With Position Encodings

Without Position Encodings

Figure 5: Impact of positional encodings on length generalization during in-context learning for
dense and sparse linear regression tasks. For both tasks, the model was trained with p = 40 i.e. the
maximum number of in-context examples provided.

where β1 = α1p1(P)
pF (P) and β2 = α2p2(P)

pF (P) . Plugging this in equation 2 we get

Mθ,F (P) = β1

∫
p1(f |P) f(x) df + β2

∫
p2(f |P) f(x) df = β1Mθ,F1(P) + β2Mθ,F2(P).

(3)

A.2 THE CURIOUS CASE OF POSITIONAL ENCODINGS.

Positional encodings both learnable or sinusoidal in transformer architectures have been shown to
result in poor length generalization Bhattamishra et al. (2020); Press et al. (2022), i.e. when tested
on sequences of lengths greater than those seen during training the performance tends to drop drasti-
cally. In our initial experiments, we observed this issue with length generalization in our in-context-
learning setup as well (Figure 5). While there are now alternatives to the originally proposed posi-
tion encodings like Rotary Embeddings Su et al. (2021) and ALiBi Press et al. (2022) which perform
better on length generalization, we find that something much simpler works surprisingly well in our
setup. We found that removing position encodings significantly improved the length generalization
for both dense and sparse linear regression while maintaining virtually the same performance in the
training regime as can be seen in Figure 5. These observations are in line with Bhattamishra et al.
(2020) which shows that decoder-only transformers without positional encodings fare much better
in recognizing formal languages as well as Haviv et al. (2022) that shows transformers language
models without explicit position encodings can still learn positional information. Both works at-
tribute this phenomenon to the presence of the causal mask in decoder-only models which implicitly
provides positional information to these models. Hence by default in all our experiments, unless
specified, we do not use any positional encodings while training our models.

A.3 EXPERIMENTAL SETUP

We use Adam optimizer Kingma & Ba (2015) to train our models. We train all of our models with
curriculum and observe that curriculum helps in faster convergence, i.e., the same optima can also
be achieved by training the model for more training steps as also noted by Garg et al. (2022). Table 1
states the curriculum used for each experiment, where the syntax followed for each column specify-
ing curriculum is [start, end, increment, interval]. The value of the said attribute
goes from start to end, increasing by increment every interval train steps. Our exper-
iments were conducted on a system comprising 32 NVIDIA V100 16GB GPUs. The cumulative
training time of all models for this project was ∼ 30,000 GPU hours. While reporting the results,
the error is averaged over 1280 prompts and shaded regions denote a 90% confidence interval over
1000 bootstrap trials.

We adapt Garg et al. (2022) code-base for our experiments. We use PytorchPaszke et al. (2019)
and Huggingface TransformersWolf et al. (2020) libraries to implement the model architecture

17

Published as a conference paper at ICLR 2024

Table 1: The values of curriculum attributes used for each experiment. Cd, Cp and Cfreq denote
the curriculum on number of input dimensions (d), number of points (p) and any other experiment-
specific attribute respectively. For Fourier Series Cfreq refers to maximum frequency N)

Experiment Section Cd Cp Cfreq
Dense, Sparse and Sign-Vector Regression §B.1.1 [5, 20, 1, 2000] [10, 40, 2, 2000] n/a
Low-Rank Regression §B.1.1 Fixed (d = 100) Fixed (p = 114) n/a
Fourier Series §B.2.1 Fixed (d = 1) [7, 43, 4, 2000] [1, 10, 1, 2000]
Fourier Series Mixture §4 Fixed (d = 1) Fixed (p = 40) Fixed (N = 10)
GMM Regression (d = 10, p = 10) §3.1, §C.2 [5, 10, 1, 2000] [5, 10, 1, 2000] n/a
GMM Regression (d = 10, p = 20) §3.1, §C.2 [5, 10, 1, 2000] [10, 20, 2, 2000] n/a
Degree-2 Monomial Basis Regression §B.2.3 Fixed (d = 20) Fixed (p = 290) n/a
Haar Wavelet Basis Regression §B.2.4 Fixed (d = 1) Fixed (p = 32) n/a

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k Bound

Dense Regression ICL

Transformer

OLS

Ridge (0.01)

(a)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Dense Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wRidge)

(b)

Figure 6: Results on the Dense Regression tasks mentioned in section §B.1.1.

and training procedure. For the baselines against which we compare transformers, we use
scikit-learn’s2 implementation of OLS, Ridge and Lasso, and for L∞ and L∗ norm mini-
mization given the linear constraints we use CVXPY3.

B LINEAR AND NON-LINEAR INVERSE PROBLEMS

Here, we discuss the results omitted from the §B.1.2 for conciseness. Figure 6 shows the results on
the Dense Regression task and our experiments corroborate the findings of Akyürek et al. (2022),
where transformers not only obtain errors close to OLS and Ridge regression for the dense regression
task (Figure 6a) but the extracted weights also very closely align with weights obtained by the two
algorithms (Figure 6b). This does indicate that the model is able to simulate the PME behavior for
the dense regression class.

For sparse and sign-vector regression, we also visualize the weights recovered from the transformer
for one of the functions for each family. As can be observed in Figure 8, for sparse regression at
sufficiently high prompt lengths (k > 10), the model is able to recognize the sparse structure of the
problem and detect the non-zero elements of the weight vector. Similarly, the recovered weights
for sign-vector regression beyond k > 10, start exhibiting the sign-vector nature of the weights (i.e.
each component either being +1 or -1).

We evaluate transformers on a family of linear and non-linear regression tasks. On the tasks where
it is possible to compute the Bayesian predictor, we study how close the solutions obtained by the
transformer and Bayesian predictor are. In this section, we focus only on single task ICL setting

2https://scikit-learn.org/stable/index.html
3https://www.cvxpy.org/

18

https://www.cvxpy.org/

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
l
o
s
s
@
k

Transformer (FZR) - On FZR Prompts

Transformer (FSVR) - On FSVR Prompts

(a)

0 10 20 30 40
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

Evaluation on Dense Regression Prompts
Transformer (FZR)

Transformer (FSVR)

Transformer (FDR)

OLS

(b)

Figure 7: Evaluating transformer model trained for regression on task FZR with w ∈ {z ; z | z ∈
{−2,−1, 1, 2}10}, not satisfying the convex geometry conditions of Chandrasekaran et al. (2012).
Left: Comparing the performance of this model, i.e. Transformer (FZR), with Transformer (FSVR)
when both are tested on their respective prompts. Right: Comparing the performance of Trans-
former (FZR) with Transformer (FSVR) on Dense Regression (FDR) prompts. Transformer (FZR)
provides better performance than Transformer (FSVR) on in-distribution prompts but on OOD
prompts (from FDR), Transformer (FSVR) performs better.

0 2 4 6 8 10 12 14 16 18
Dim

0
2

4
6

8
10

12
14

16
18

k
(#

in
-c

on
te

xt
ex

am
pl

es
)

wprobe

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a)

0 2 4 6 8 10 12 14 16 18
Dim

0
2

4
6

8
10

12
14

16
18

k
(#

in
-c

on
te

xt
ex

am
pl

es
)

wprobe

−1.0

−0.5

0.0

0.5

1.0

(b)

Figure 8: Visualizing recovered weights for sparse and sign vector regression for one of the examples
in the test set.

19

Published as a conference paper at ICLR 2024

(i.e. the model is trained to predict functions from a single family), while the mixture of tasks is
discussed §3.

B.1 LINEAR INVERSE PROBLEMS

In this section, the class of functions is fixed to the class of linear functions across all problems,
i.e. F =

{
f : x 7→ wTx |w ∈ Rd

}
; what varies across the problems is the distribution of

w . Problems in this section are instances of linear inverse problems. Linear inverse problems are
classic problems arising in diverse applications in engineering, science, and medicine. In these
problems, one wants to estimate model parameters from a few linear measurements. Often these
measurements are expensive and can be fewer in number than the number of parameters (p < d).
Such seemingly ill-posed problems can still be solved if there are structural constraints satisfied by
the parameters. These constraints can take many forms from being sparse to having a low-rank
structure. The sparse case was addressed by a famous convex programming approach Candes &
Tao (2005); Donoho (2006) also known as compressed sensing. This was greatly generalized in
later work to apply to many more types of inverse problems; see Chandrasekaran et al. (2012). In
this section, we will show that transformers can solve many inverse problems in context—in fact all
problems that we tried. The problem-specific structural constraints are encoded in the prior for w .

B.1.1 FUNCTION CLASSES AND BASELINES

Dense Regression (FDR). This represents the simplest case of linear regression as studied in Garg
et al. (2022); Akyürek et al. (2022); von Oswald et al. (2022), where the prior on w is the standard
Gaussian i.e. w ∼ N (0d, I). We are particularly interested in the underdetermined region i.e.
k < d. Gaussian prior enables explicit PME computation: both PME and maximum a posteriori
(MAP) solution agree and are equal to the minimum L2-norm solution of the equations forming
the training examples, i.e. minw ∥w∥2 s.t. wTx i = f(x i),∀i ≤ k. Standard Ordinary Least
Squares (OLS) solvers return the minimum L2-norm solution, and thus PME and MAP too, in the
underdetermined region, i.e. k < d.

Skewed-Covariance Regression (FSkew-DR). This setup is similar to dense-regression, except that
we assume the following prior on weight vector: w ∼ N (0,Σ), where Σ ∈ Rd×d is the covariance
matrix with eigenvalues proportional to 1/i2, where i ∈ [1, d]. For this prior on w , we can use the
same (but more general) argument for dense regression above to obtain the PME and MAP which
will be equal and can be obtained by minimizing wTΣ−1w w.r.t to the constraints wTx i = f(x i).
This setup was motivated by Garg et al. (2022), where it was used to sample x i values for out-of-
distribution (OOD) evaluation, but not as a prior on w .

Sparse Regression (FSR). In sparse regression, we assume w to be an s-sparse vector in Rd

i.e. out of its d components only s are non-zero. Following Garg et al. (2022), to sample w for
constructing prompts P , we first sample w ∼ N (0d, I) and then randomly set its d−s components
as 0. We consider s = 3 throughout our experiments. While computing the PME appears to be
intractable here, the MAP solution can be estimated using Lasso by assuming a Laplacian prior on
w Tibshirani (1996). We tune the Lasso coefficient following Garg et al. (2022), i.e., by using a
separate batch of data (1280 samples) and choose the single value that achieves the smallest loss.

Sign-Vector Regression (FSVR). Here, we assume w to be a sign vector in {−1,+1}d. For con-
structing prompts P , we sample d independent Bernoulli random variables bj with a mean of 0.5
and obtain w = [2b1 − 1, · · · , 2bd − 1]T . While computing the exact PME remains intractable in
this case as well, the optimal solution for k > d/2 can be obtained by minimizing the L∞-norm
∥w∥∞ w.r.t. the constraints specified by the input-output examples (wTx i = f(x i)) Mangasarian
& Recht (2011).

Low-Rank Regression (FLowRank-DR). In this case, w is assumed to be a flattened version of a
matrix W ∈ Rq×q (d = q2) with a rank r, where r ≪ q. A strong baseline, in this case, is to
minimize the nuclear norm L∗ of W , i.e. ∥W ∥∗ subject to constraints wTx i = f(x i). To sample

20

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k

Bound

Skewed-Covariance Regression ICL

Transformer

OLS

Minimize wTΣ−1w

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k

Bound

Sparse Regression ICL

Transformer

OLS

Lasso

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k Bound

Sign-Vector Regression ICL

Transformer

OLS

Minimize L∞

(c)

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

l
o
s
s
@
k

Bound

Low-Rank Regression ICL

Transformer

OLS

Minimize ‖W‖∗

(d)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Skewed-Covariance Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wPME−Skew)

(e)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Sparse Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wLasso)

(f)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Sign-Vector Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wL∞)

(g)

0 20 40 60 80 100
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Low Rank Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wL∗)

(h)

Figure 9: Comparing ICL in transformers for different linear functions with the relevant baselines.
Top: loss@k values for transformers and baselines on skewed covariance, sparse, sign-vector, and
low-rank regression tasks. Bottom: Comparing the errors between the implicit weights recovered
from transformers wprobe with the ground truth weights w and weights computed by different base-
lines. wPME-Skew denotes the weights obtained by minimizing wTΣ−1w for the skewed covariance
regression task.

0 5 10 15 20
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

Low-Rank Regression ICL

Transformer

OLS

NUTS

(a)

0 2 4 6 8
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Sign-Vector Regression ICL

Transformer

OLS

NUTS

(b)

Figure 10: Computing the PME by Markov Chain Monte Carlo sampling method (NUTS) for (a)
Low-Rank Regression, and (b) Sign-Vector Regression. The problem dimension d for Low-Rank
Regression and Sign-Vector Regression is 16 (4× 4 matrix) and 8 respectively. As can be seen, the
Transformer is close to the respective NUTS-approximated PME in both cases.

the rank-r matrix W , we sample A ∼ N (0, 1), s.t. A ∈ Rq×r and independently a matrix B of
the same shape and distribution, and set W = ABT .

An artificial task. Techniques in prior work such as Chandrasekaran et al. (2012) require that
for the exact recovery of a vector w , the set of all these vectors must satisfy specific convexity
conditions. However this requirement seems to be specific to these techniques, and in particular it’s
not clear if a Bayesian approach would need such a condition. To test this we define a task FZR
where the convexity conditions are not met and train transformers for regression on this task. Here,
w ∈ {zz | z ∈ {−2,−1, 1, 2}d/2}, where zz denotes z concatenated to itself. Note that the size of
this set is 2d, the same as the size of {−1, 1}d, and many elements, such as zz with z ∈ {−1, 1}d/2,
lie strictly inside the convex hull.

21

Published as a conference paper at ICLR 2024

Figure 11: Box plot showing the effect of the order of prompts on the Transformer’s ICL perfor-
mance for Dense Regression. On x-axis we plot the number of in-context examples and on y-axis
we have the quartiles for the errors obtained for different permutations of the examples. At each
prompt length we consider 20 permutations. As can be seen, all the boxes are nearly flat, meaning
that the errors have nearly zero variance with the permutations, and hence the model in this case is
robust to the order of prompts.

Recovery bounds. For each function class above, there is a bound on the minimum number of
in-context examples needed for the exact recovery of the solution vector w . The bounds for sparse,
sign-vector and low-rank regression are 2s log(d/s)+5s/4, d/2, and 3r(2q−r) respectively Chan-
drasekaran et al. (2012).

B.1.2 RESULTS

We train transformer-based models on the five tasks following §2.2. Each model is trained with
d = 20 and p = 40, excluding Low-Rank Regression where we train with d = 100, p = 114,
and r = 1. Figures 9b-9d compare the loss@k values on these tasks with different baselines.
Additionally, we also extract the implied weights wprobe from the trained models when given a
prompt P following Akyürek et al. (2022) by generating model’s predictions {y′i} on the test inputs
{x ′

i}2di=1 ∼ DX and then solving the system of equations to recover wprobe. We then compare
the implied weights wprobe with the ground truth weights w as well as the weights extracted from
different baselines to better understand the inductive biases exhibited by these models during in-
context learning (Figures 9f-9h).

Comparison with exact PME. Since results for dense regression have been already covered in
Akyürek et al. (2022), we do not repeat them here, but for completeness provide them in Figure 6.
For skewed-covariance regression, we observe that the transformer follows the PME solution very
closely both in terms of the loss@k values (Figure 9a) as well as the recovered weights for which
the error between wprobe and wPME−Skew (weights obtained by minimizing wTΣ−1w) is close to
zero at all prompt lengths (Figure 9e).

Comparison with numerical solutions. For Low-Rank Regression and Sign-Vector Regression,
we provide comparisons with the numerical PME solutions obtained using No-U-Turn Sampling
(NUTS) in Figure 10 and find that errors by transformers strongly agree with those of the numerical
solution, and in some instances transformers actually perform slightly better (which we attribute to
the numerical solutions also being an approximation).

Comparison with strong baselines from Chandrasekaran et al. (2012) As can be seen in Figure
9, on all the tasks, transformers perform better than OLS and are able to solve the problem with < d
samples i.e. underdetermined region meaning that they are able to understand the structure of the
problem. The error curves of transformers for the tasks align closely with the errors of Lasso (Figure
9b), L∞ minimization (Figure 9c), and L∗ minimization (Figure 9d) baselines for the respective
tasks. Interestingly for low-rank regression transformer actually performs better. Though, due to
the larger problem dimension, (d = 100) in this, it requires a bigger model: 24 layers, 16 heads,
and 512 hidden size. In Figures 9f, 9g, and 9h, we observe that at small prompt lengths wprobe and
wOLS are close. We conjecture that this might be attributed to both wprobe and wOLS being close to 0

22

Published as a conference paper at ICLR 2024

for small prompt lengths (Figure 8). Prior distributions for all three tasks are centrally-symmetric,
hence, at small prompt lengths when the posterior is likely to be close to the prior, the PME is close
to the mean of the prior which is 0. At larger prompt lengths transformers start to agree with wLasso,
wL∞ , and wL∗ . This is consistent with the transformer following PME, assuming wLasso, wL∞ ,
and wL∗ are close to PME—we leave it to future work to determine whether this is true (note that for
sparse regression Lasso approximates the MAP estimate which should approach the PME solution
as more data is observed). The recovered weights wprobe also agree with wLasso, wL∞ , and wL∗

for their respective tasks after sufficient in-context examples are provided.

Finally, refer to Figure 7 for the results on task FZR. We observe that Transformers trained on
this task (FZR) provide better performance than those trained on Sign-Vector Regression (FSVR).
Therefore, we can conclude that Transformers do not require any convexity conditions on weight
vectors.

B.2 NON-LINEAR FUNCTIONS

Moving beyond linear functions, we now study how well transformers can in-context learn func-
tion classes with more complex relationships between the input and output, and if their behavior
resembles the ideal learner i.e. the PME. Particularly, we consider the function classes of the form
FΦ =

{
f(·; Φ)|f(x ; Φ) = wTΦ(x),w ∈ R∆

}
, where Φ : Rd → R∆ maps the input vector x to

an alternate feature representation. This corresponds to learning the mapping Φ(x) and then per-
forming linear regression on top of it. Under the assumption of a standard Gaussian prior on w , the
PME for the dense regression can be easily extended for FΦ: minw ∥w∥2, s.t. wTΦ(x i) = f(x i)
for i ∈ {1, · · · , p}.

B.2.1 FOURIER SERIES

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. One
can represent the Fourier series using the sine-cosine form given by:

f(x) = a0 +

N∑
n=1

an cos (nπx/L) +

N∑
n=1

bn sin (nπx/L)

where, x ∈ [−L,L], and a0, an’s and bn’s are known as Fourier coefficients and
cosnπ/L and sinnπ/L define the frequency n components. We can define the func-
tion class F fourier

ΦN
by considering Φ as the Fourier feature map i.e. ΦN (x) =

[1, cos (πx/L), · · · , cos (Nπx/L), sin (πx/L), · · · , sin (Nπx/L)]T , and w as Fourier coefficients:
w = [a0, a1, · · · , aN , b1, · · · , bN]. Hence, ΦN (x) ∈ Rd and w ∈ Rd, where d = 2N + 1.

For training transformers to in-context-learn F fourier
ΦN

, we fix a value of N and sample functions
f ∈ F fourier

ΦN
by sampling the Fourier coefficients from the standard normal distribution i.e. w ∼

N (0d, I). We consider the inputs to be scalars, i.e. xi ∈ [−L,L] and we sample them i.i.d. from
the uniform distribution on the domain: xi ∼ U(−L,L). In all of our experiments, we consider
N = 10 and L = 5. At test time we evaluate on F fourier

ΦM
for M ∈ [1, 10], i.e. during evaluation we

also prompt the model with functions with different maximum frequency as seen during training.
As a baseline, we use OLS on the Fourier features (denoted as OLS Fourier Basis) which will be
equivalent to the PME.

Measuring inductive biases. Once we train a transformer-based model to in-context learn F fourier
ΦN

,
how can we investigate the inductive biases that the model learns to solve the problem? We
would like to answer questions such as, when prompted with k input-output examples what are
the prominent frequencies in the function simulated by the model, or, how do these exhibited
frequencies change as we change the value of k? We start by sampling in-context examples
(x1, f(x1), · · ·xk, f(xk)), and given the context obtain the model’s predictions on a set ofm test in-
puts {x′i}mi=1, i.e. y′i = Mθ

((
x1, f(x1), · · ·xk, f(xk), x′i

))
. We can then perform Discrete Fourier

Transform (DFT) on {y′1, · · · , y′m} to obtain the Fourier coefficients of the function output by M ,
which we can analyze to understand the dominant frequencies.

Results. The results of our experiments concerning the Fourier series are provided in Figure 12.
Transformers obtain loss@k values close to the OLS Fourier Basis baseline (Figure 12a) indicating

23

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

l
o
s
s
@
k

Fourier ICL
M = 10

Transformer

OLS Fourier Basis

(a)

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 21

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

Function Predicted M = 10 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

(b)

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 21

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 21

Inductive Biases M = 4

(c)

Figure 12: Effectiveness of ICL in transformers for Fourier series family of functions. Top left:
loss@k values for transformer and OLS Fourier Basis baseline. Top Right: Visualizing the func-
tions simulated by the transformer and the OLS Fourier Basis. Bottom: Measuring the frequencies
of the simulated function by the transformer and the baseline.

at least for the smaller prompt lengths the model is able to simulate the behavior of the ideal predictor
(PME). These plots use 12-layer transformers to obtain results, but we also investigate if bigger
models help. Figure 13 plots bigger models with 18 and 21 layers where the agreement with PME
is much better. Further, in Figures 12b and 12c, we could only discuss results for a subset of values
of M and k. The function visualizations for the transformer and Fourier OLS baseline for different
combinations of M and k are provided in Figure 15. We have observations consistent with Figure
12b, where the function outputs of the transformer and the baseline align closely. Similarly, in
Figure 14, we present the distribution of frequencies in the predicted functions for the two methods
and again observe consistent findings.

Since the inputs xi, in this case, are scalars, we can visualize the functions learned in context by
transformers. We show one such example for a randomly selected function f ∼ F fourier

ΦM
for prompt-

ing the model in Figure 12b. As can be observed, the functions predicted by both the transformer and
baseline have a close alignment, and both approach the ground truth function f as more examples
are provided. Finally, we visualize the distribution of the frequencies for the predicted functions in
Figure 12c. For a value of M , we sample 10 different functions and provide k in-context examples
to the model to extract the frequencies of the predicted functions using the DFT method. As can be
observed, when provided with fewer in-context examples (k = 2) both Transformer and the baseline
predict functions with all the 10 frequencies (indicated by the values of a2n + b2n in a similar range
for n ∈ [1, 10]), but as more examples are provided they begin to recognize the gold maximum
frequency (i.e. M = 4). The function visualizations for the transformer and Fourier OLS baseline
for different combinations of M and k are provided in Figure 15. We have observations consistent
with Figure 12b, where the function outputs of the transformer and the baseline align closely. Sim-
ilarly, in Figure 14, we present the distribution of frequencies in the predicted functions for the two
methods and again observe consistent findings. This suggests that the transformers are following the
Bayesian predictor and are not biased towards smaller frequencies.

B.2.2 RANDOM FOURIER FEATURES

Mapping input data to random low-dimensional features has been shown to be effective to approx-
imate large-scale kernels Rahimi & Recht (2007). In this section, we are particularly interested
in Random Fourier Features (RFF) which can be shown to approximate the Radial Basis Function
kernel and are given as:

24

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

l
o
s
s
@
k

Fourier ICL
M = 10

TF (L = 12, E = 256)

TF (L = 18, E = 384)

TF (L = 21, E = 512)

OLS Fourier Basis

Figure 13: Bigger models achieve better results on the Fourier Series task. Plotting the squared
error (averaged over 1280 prompts) for bigger transformer (TF) models trained for 500k steps on the
Fourier Series task. Training setup is the same as used for the model plotted in Figure 12a (Section
B.2.1), which is also plotted here (blue color) for comparison. L and E denote the number of layers
and embedding size for TF models respectively.

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 1

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

0.15

0.20

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 3

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 4

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 5

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 6

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 7

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 8

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 9

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

0.15

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 10

Figure 14: Measuring the frequencies of the simulated function by the transformer and the baseline
for different values of M (maximum frequency) and k (number of in-context examples)

25

Published as a conference paper at ICLR 2024

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 1.0

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 2

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 6

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 10

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 14

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 18

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 22

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 26

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 30

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 34

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 38

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 40

M = 1 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 2 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 1.0

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 2

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 6

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 10

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 14

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 18

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 22

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 26

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 30

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 34

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 38

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 40

M = 3 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 1.0

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 2

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 6

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 10

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 14

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 18

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 22

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 26

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 30

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 34

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 38

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 40

M = 4 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 5 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 6 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 1.0

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 2

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 6

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 10

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 14

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 18

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 22

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 26

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 30

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 34

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 38

−5 0 5
x

−0.5

0.0

0.5

f
(x

)
k = 40

M = 7 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 8 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 34

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 38

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

M = 9 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 34

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 38

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

M = 10 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

Figure 15: Visualizing the functions simulated by the transformer and the OLS Fourier Basis, for
different values of M (maximum frequency) and k (number of in-context examples)

26

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

l
o
s
s
@
k Bound

d = 1; D = 10

Transformer

RFF-OLS

(a)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 4; D = 4

Transformer

RFF-OLS

(b)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 4; D = 10

Transformer

RFF-OLS

(c)

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 4; D = 100

Transformer

RFF-OLS

(d)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 10; D = 4

Transformer

RFF-OLS

(e)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 10; D = 10

Transformer

RFF-OLS

(f)

Figure 16: Comparing transformers performance on RFF function family (FRFF
ΦD

) with the RFF-OLS
baseline for different values of d and D.

ΦD(x) =

√
2

D
[cos (ωT

1 x + δ1), · · · , cos (ωT
Dx + δD)]T

where ωi ∈ Rd and δi ∈ R ∀i ∈ [1, D], such that ΦD : Rd → RD. Both ωi and δ are sampled
randomly, such that ωi ∈ N (0 , I d) and δi ∈ (0, 2π). We can then define the function family FRFF

ΦD

as linear functions over the random fourier features i.e. f = wTΦD(x) such that f ∼ FRFF
ΦD

. While
training the transformer on this function class, we sample ωi’s and δi’s once and keep them fixed
throughout the training. As a baseline, we use OLS over (ΦD(x), y) pairs which will give the PME
for the problem (denote this as RFF-OLS).

Results. For this particular family, we observed mixed results for transformers, i.e. they fail to
generalize to functions of the family when the complexity of the problem is high. The complexity of
this function class is dictated by the length of the ωi vectors (and the inputs x) i.e. d and the number
of random features D. We plot the loss@k values for transformer models trained on FRFF

ΦD
for

different values of d and D in Figure 16. As can be observed, the complexity of the problem for the
transformers is primarily governed by d, where they are able to solve the tasks for even large values
of D, however, while they perform well for smaller values of d (d = 1 and d = 4), for d = 10, they
perform much worse compared to the RFF-OLS baseline and the loss@k doesn’t improve much
once ∼ 15 in-context examples are provided.

B.2.3 DEGREE-2 MONOMIAL BASIS REGRESSION

As stated in §B.2.1, the Fourier Series function class can be viewed as linear regression over the
Fourier basis consisting of sinusoidal functions. Similarly, we define a function class Fmon(2)

ΦM
with

the basis formed by degree-2 monomials for any d-dimensional input vector x .

Using the notation introduced in B.1.1 the basis for Fmon(2)
ΦM

is defined as ΦM (x) = {xixj | 1 ≤
i, j ≤ d}. Each function f ∈ Fmon(2)

ΦM
is a linear combination of basis and w i.e. f(x) = wTΦM (x),

where w is a |ΦM |-dimensional vector sampled from standard normal distribution.

For experimentation, we define a sub-family Fmon(2)
S under Fmon(2)

ΦM
by choosing a proper subset

S ⊂ ΦM and linearly combining the terms in S to form f . This is equivalent to explicitly setting
coefficients wi of terms in ΦM − S to 0. We experiment with d = 20, with the prompt length

27

Published as a conference paper at ICLR 2024

p = 290 and |S| = 20. We do not use curriculum (d, p, |S| are fixed for the entire duration of the
training run).

Baselines. We use OLS fitted to the following bases as baselines: S basis (OLSS), all degree-
2 monomials i.e., ΦM basis (OLSΦM

), and to a basis of all polynomial features up to degree-2
(OLSpoly.(2)). We also compare Lasso (α = 0.01) fitted to all degree-2 monomials i.e., ΦM basis
(LassoΦM

) as a baseline.

0 50 100 150 200 250 300
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Transformer

OLSΦM

OLSS
OLSpoly.(2)

LassoΦM

Figure 17: In-Distribution evaluation results on Fmon(2)
S sub-family of degree-2 monomial basis

regression. Evaluation of transformer on prompts generated using the same S used during training.

Results. In Figure 17, we show the In-Distribution (ID) evaluation results for the Fmon(2)
S experi-

ments. Here, the test prompts contain functions formed by S (the same basis used during training).
We observe that Transformers closely follow OLSS . The increasing order of performance (decreas-
ing loss@k for k ≥ |S|) of different solvers is: OLSpoly.(2) ≤ OLSΦM

< LassoΦM
< Transformers

< OLSS . Transformer’s squared error takes a little longer than OLSS to converge. LassoΦM
is

able to take the advantage of sparsity of the problem and is hence better than both OLSΦM
and

OLSpoly.(2), which respectively converge at k = 210 and k = 2314. We also conduct an Out-of-
Distribution (OOD) evaluation for Fmon(2)

S , whose results are shown in Figure 18. Here, we generate
prompts from a basis S ′ ⊂ ΦM of the same size as S but differing from S in n degree-2 terms, i.e.
|S ′ − S| = n. We show the results for different values of n. Figure 18a shows the OLSS undergoes
a steep rise in errors momentarily at k = |S| (double descent). Figure 18b zooms into the lower
error region of Figure 18a where we notice that Transformer mimics OLSS , while OLSS′ is the
best-performing baseline (since it fits to the S ′ basis used to construct the prompts). Transformer
does not undergo double descent (for n = 1) and is hence momentarily better than OLSS at k = |S|.
Similar plots are shown for n ∈ {2, 3, 4, 5, 10, 15, 20}. As n increases, the height of OLSS peak
increases and the Transformer also starts to have a rise in errors at k = |S|. For n = 20, S ′ and
S have nothing in common, and Transformer still follows OLSS (OLS fitted to the training basis
S). As mentioned under §B.2, when the prior on weights w is Gaussian, the PME is the minimum
L2-norm solution. For Fmon(2)

S , that solution is given by OLSS . Therefore, the results suggest that
the transformer is computing PME. In summary, transformers closely follow OLSS in this set-up,
and more so on the OOD data, where they even surpass OLSS ’s performance when it experiences
double descent.

4210 and 231 are the sizes of the bases to which OLSΦM and OLSpoly.(2) are fitted. Hence, they converge
right when the problem becomes determined in their respective bases.

28

Published as a conference paper at ICLR 2024

0 50 100 150 200 250 300
k

(# in-context examples)

0

50

100

150

200

250

300

l
o
s
s
@
k

|S ′ − S| = 1

Transformer

OLSS
OLSS ′

(a)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 1

Transformer

OLSS
OLSS ′

(b)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 2

Transformer

OLSS
OLSS ′

(c)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 3

Transformer

OLSS
OLSS ′

(d)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 4

Transformer

OLSS
OLSS ′

(e)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 5

Transformer

OLSS
OLSS ′

(f)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

l
o
s
s
@
k

|S ′ − S| = 10

Transformer

OLSS
OLSS ′

(g)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

l
o
s
s
@
k

|S ′ − S| = 15

Transformer

OLSS
OLSS ′

(h)

0 50 100 150 200 250 300
k

(# in-context examples)

0

1

2

3

4

l
o
s
s
@
k

|S ′ − S| = 20 = |S| = |S ′|
Transformer

OLSS
OLSS ′

(i)

Figure 18: Out-of-Distribution evaluation results on Fmon(2)
S sub-family of degree-2 monomial

basis regression. Evaluation of transformer trained on prompts generated using S ′, where S ′ con-
tains n degree-2 monomials not present in S that was used during training. We show results for
different values of n.

0 5 10 15 20 25 30
k

(# in-context examples)

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Transformer

OLSH

Figure 19: Evaluating Transformer trained on Haar Wavelet Basis Regression task (FHaar
ΦH

).

29

Published as a conference paper at ICLR 2024

B.2.4 HAAR WAVELET BASIS REGRESSION

Similar to Fourier Series and Degree-2 Monomial Basis Regression, we also define another non-
linear regression function family (FHaar

ΦH
) using a different basis, ΦH , called the Haar wavelet basis.

ΦH is defined on the interval [0, 1] and is given by:

ΦH(x) = {x ∈ [0, 1] 7→ ψn,k(x) : n ∈ N ∪ {0}, 0 ≤ k < 2n} ∪ {1},
ψn,k(x) = 2n/2ψ(2nx− k), x ∈ [0, 1],

ψ(x) =

1 0 ≤ x < 1

2 ,

−1 1
2 ≤ x < 1,

0 otherwise,

where 1 is the constant function which is 1 everywhere on [0, 1]. To define f , we sample w from
N (0, 1) and compute its dot product with the basis, i.e. wTΦH(·). We construct the prompt P by
evaluating f at different values of x ∼ U(0, 1). The Transformer model is then trained on these
prompts P .

We use d = 1 and p = 32, both of which are fixed throughout the training run, i.e. we do not
use curriculum. We only consider the basis terms corresponding to n ∈ {0, 1, 2, 3}. The baseline
used is OLS on Haar Wavelet Basis features (OLSH). Note that for the model used throughout the
paper (§2.2), at k = 32 the loss@k value is 0.18, while for a bigger model and OLSH it is 0.07.
Therefore, for this task we report the results for the bigger model which has 24 layers, 16 heads and
512 hidden size.

Results. In Figure 19, we observe that Transformer very closely mimics the errors of OLSH (i.e.
OLS fitted to the Haar Wavelet Basis) and converged to OLSH at k = 32. Since the prior on the
weights w is Gaussian, OLSH is the PME. Hence, Transformer’s performance on this task also
suggests that it is simulating PME.

C DETAILED EXPERIMENTS FOR HMICL SETUP

C.1 WHY HMICL?

The distinction between MICL and HMICL is reminiscent of the distinction between the usual
supervised learning and meta-learning. Consider linear regression as an example of the MICL setup,
where all tasks are instances of linear regression and each weight vector defines a task. Further,
consider a mixture of two “meta-tasks” or ”function classes”, say linear regression and decision
trees. It is true that in an abstract sense, one could potentially consider each task to be defined by its
parameters and thus ignore which type of “meta-task” it instantiates (linear regression or decision
tree). Therefore, under this interpretation, MICL is equivalent to HMICL.

However, this view is too coarse-grained for our purposes. What is of interest, both from the appli-
cation and theory perspectives, is a more fine-grained view about whether and how models learn to
perform these different “meta-tasks”. The hierarchical structure is central to this discussion. Previ-
ous work, e.g. Garg et al. (2022); Zhang et al. (2023), considers MICL with only a single “meta-
task” and is thus not suitable for the type of analyses we perform. Compared to MICL, HMICL
is arguably closer to the ICL for LLMs which can perform a vast variety of “meta-tasks.” Is the
training data of real-world LLMs hierarchical? Due to the complex nature of real-world training
data distributions, it is hard to find concrete evidence of them being hierarchical, but we believe
multi-task training in LMs like T5 Raffel et al. (2023) and FLAN-T5 Chung et al. (2022) (with a
caveat for the latter being true for fine-tuning and not pre-training) or training of multilingual models
Conneau et al. (2020) which involve pre-training corpora in different languages are some examples
of the hierarchical nature of the training distribution in real-world LMs. To sum up, HMICL allows
for a better terminology for investigating our models, with a potential for being related to real-world
LLMs more closely than the vanilla MICL setting. Hence, we make the distinction between the two
and treat them as separate settings in our work.

30

Published as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0.022 0.024 0.031 0.026 0.026 0.032 0.033 0.024 0.028 0.032

3 0.38 1.1 0.039 1.9 1.3 0.62 3 2.6 0.094

3 2.9 1.9 0.86 3 2.6 3 3 2.9 2.9

3 2.6 2.9 1.2 2.9 2.8 3 3 3 3.1

3 2.5 2.9 1.1 3 2.9 3 3 3.1 3.1

3 3 3 0.52 3 3.1 3.1 3 3.1 3.1

3.1 3.1 3 -0.23 3.1 3 3 3 3 3.1

3 3 3.1 3 3.1 3 3.1 3.1 3 3.1

3.1 3.1 3 3 3.1 3.1 3.1 3.1 3 3

3.1 3.1 3.1 3 3.1 3.1 3 3.2 3.2 3.1

3.1 3.2 3 3 3.1 3 3 3.1 3.1 3.1

1st dim. of wprobe - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0.019 0.018 0.011 0.047 0.023 0.027 0.035 0.035 0.046 0.044

-3 -0.34 2.1 0.025 -0.78 1.8 -2.6 -3 -2.4 0.08

-3 -2.6 1.6 -0.98 -3 2.8 -3 -2.9 -2.8 0.67

-3 -3 -3 -0.98 -3 -0.12 -3 -2.9 -3 -2.9

-3 -3 -2.9 -0.28 -3 -0.86 -3 -3 -3 -2.9

-3 -3 -3 -1.9 -3 -2.9 -2.9 -3 -3 -3.1

-3 -3 -3.1 -1.6 -3 -2.9 -2.9 -3 -3 -3

-3 -3 -3 -3 -3 -3 -2.9 -3 -2.8 -3

-3 -3 -3 -3 -3 -2.9 -2.9 -3 -3.1 -3

-3.1 -3 -3 -3.1 -3.1 -3 -3 -3 -3.1 -3.1

-3.1 -2.9 -3 -3 -3 -3 -2.9 -3 -3 -3.1

1st dim. of wprobe - On T2 prompts

−3

−2

−1

0

1

2

3

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0.025 0.029 0.025 0.025 0.036 0.031 0.035 0.002 0.019 0.034

-0.17 0.053 -0.017 0.14 -0.15 -0.12 0.064 0.035 0.17 0.22

0.17 0.25 -0.041 0.1 -0.19 -0.18 0.041 -0.032 0.047 0.053

0.16 0.33 -0.036 0.11 -0.18 0.026 0.14 0.14 0.074 -0.06

0.52 0.55 0.084 0.15 -0.037 -0.068 0.053 0.077 0.074 -0.099

0.28 0.64 0.075 0.14 -0.039 0.096 0.24 0.048 -0.14 0.013

0.34 0.67 0.17 0.12 -0.089 0.2 0.3 0.011 -0.13 0.46

-0.24 0.66 0.1 0.12 -0.22 -0.04 0.13 0.49 -0.21 0.48

-0.064 0.75 0.22 0.067 0.05 0.18 0.14 0.51 -0.076 0.77

-0.31 0.55 0.28 -0.19 -0.058 0.41 0.11 0.38 -0.17 0.56

-0.29 0.75 0.24 -0.32 -0.005 0.3 0.02 0.2 -0.17 0.46

1st dim. of wprobe - special prompt

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1st dim. of PME (GMM) - special prompt

−3

−2

−1

0

1

2

3

Figure 20: Transformers simulate PME when trained on dense regression task-mixture (d =
10, p = 10, α1 = α2 = 1

2) with weights having a mixture of Gaussian prior (GMM). (top): 1st

dimension of Transformer’s probed weights across the prompt length. (bottom): 1st dimension of
Transformer’s probed weights and PME (GMM) across the prompt length for a specially constructed
prompt.

31

Published as a conference paper at ICLR 2024

0 5 10 15 20
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 5 10 15 20
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

Transformer (GMM)

PME (T1)

PME (T2)

PME (GMM)

OLS

Figure 21: Transformers simulate PME when trained on dense regression task-mixture (d =
10, p = 10, α1 = α2 = 1

2) with weights having a mixture of Gaussian prior (GMM). Comparing
the performance of the Transformer, PMEs, and OLS in under- and over-determined regions. For all
context lengths, the transformer follows PME(GMM) and is far from OLS in the under-determined
region.

C.2 GAUSSIAN MIXTURE MODELS (GMMS)

Here we discuss some details regarding §3.1 and more results on GMMs. We start with a description
of how we calculate PMEs for this setup.

Computation of PMEs. As mentioned in §A.1 and §B.2, we can compute the individual PMEs
for components T1 and T2 by minimizing the L2 distance between the hyperplane induced by the
prompt constraints and the mean of the Gaussian distribution. In particular, to compute PME for
each Gaussian component of the prior, we solve a system of linear equations defined by the prompt
constraints (wT

i xi = yi,∀i ∈ {1, 2, .., p}) in conjunction with an additional constraint for the first
coordinate, i.e. (w)1 = +3 (for Nd(µ1,Σ1) or w1 = −3 (for Nd(µ2,Σ2)). Given these individual
PMEs, we calculate the PME of the mixture using Eq. 3.

Now we discuss more results for GMMs. First, we see the evolution of β’s (from Eq. 3), PME
(GMM), and Transformer’s probed weights across the prompt length (Figures 22 and 23). Next, we
see the results for the Transformer models trained on the mixture with unequal weights, i.e. α1 ̸= α2

(Figure 24) and for the p = 20 model (Figure 25).

Agreement of weights between Transformer and PME(GMM). Figure 20 (top) shows the evo-
lution of the first dimension of the Transformer weights, i.e. (wprobe)1, with prompt length k. We
see that Transformer is simulating PME (GMM), which approaches PME (Tprompt) with increasing
prompt length (k). Note that regardless of k, the first dimension of PME (Ti) is (µi)1, the first
dimension of the mean of the prior distribution Ti since the Gaussian has a fixed value in the first
dimension. Note that PME (GMM) approaches PME (Tprompt) with increasing k (Eq. 3). Also
note that in our setting, regardless of k the first dimension of PME (Ti) is (µi)1, the first dimension
of the mean of the prior distribution Ti, since Ti has a fixed value (i.e. zero variance) in the first
dimension. Hence, if Transformer is simulating PME (GMM), the first dimension of Transformer’s
weights (wprobe)1 must approach (µ1)1 (when Tprompt = T1) and (µ2)1 (when Tprompt = T2).
This is exactly what we observe as (wprobe)1 approaches +3 and −3 on T1 and T2 prompts respec-
tively. At prompt length 0, in the absence of any information about the prompt, (wprobe)1 ≈ 0. This
agrees with Eq. 3 since 0 = (µ1)1.β1+(µ2)1.β2, where (µ1)1 = +3, (µ2)1 = −3, β1 = α1 = 0.5
and β2 = α2 = 0.5 when prompt P is empty. The figure shows that with the increasing evidence
from the prompt, the transformer shifts its weights to Tprompt’s weights as evidenced by the first
coordinate changing from 0 to +3 or −3 based on the prompt. In Figure 20 (bottom), we check the
behavior of Transformer and PME (GMM) on specially constructed prompts P where (x i)1 = 0

32

Published as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.56 0.7 0.5 0.81 0.67 0.53 1 0.9 0.47

1 0.97 0.82 0.63 1 0.91 1 1 0.96 0.97

1 0.94 1 0.69 1 0.96 1 1 1 1

1 0.92 1 0.68 1 0.96 1 1 1 1

1 1 1 0.66 1 1 1 1 1 1

1 1 1 0.52 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

β1 - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0 0.44 0.85 0.5 0.37 0.74 0.072 0.004 0.11 0.54

0 0.073 0.82 0.31 0 0.94 0 0.006 0.041 0.62

0 0 0.001 0.31 0 0.33 0 0.004 0 0

0 0 0.001 0.4 0 0.18 0 0 0 0

0 0 0 0.13 0 0.008 0 0 0 0

0 0 0 0.17 0 0.002 0 0 0 0

0 0 0 0.002 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

β1 - On T2 prompts

0.0

0.2

0.4

0.6

0.8

1.0

(a)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0 0.44 0.3 0.5 0.19 0.33 0.47 0 0.098 0.53

0 0.032 0.18 0.37 0 0.086 0 0 0.037 0.029

0 0.065 0.001 0.31 0 0.04 0 0 0.001 0

0 0.076 0 0.32 0 0.04 0 0 0.001 0

0.001 0 0 0.34 0 0 0 0 0 0

0 0 0 0.48 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

β2 - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.56 0.15 0.5 0.63 0.26 0.93 1 0.89 0.46

1 0.93 0.18 0.69 1 0.061 1 0.99 0.96 0.38

1 1 1 0.69 1 0.67 1 1 1 1

1 1 1 0.6 1 0.82 1 1 1 1

1 1 1 0.87 1 0.99 1 1 1 1

1 1 1 0.83 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

β2 - On T2 prompts

0.0

0.2

0.4

0.6

0.8

1.0

(b)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0 0 0 0 0 0 0 0 0 0

3 0.34 1.2 0.002 1.8 1 0.21 3 2.4 -0.21

3 2.8 1.9 0.78 3 2.5 3 3 2.8 2.8

3 2.6 3 1.1 3 2.8 3 3 3 3

3 2.5 3 1.1 3 2.8 3 3 3 3

3 3 3 0.97 3 3 3 3 3 3

3 3 3 0.13 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

1st dim. of PME (GMM) - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0 0 0 0 0 0 0 0 0 0

-3 -0.37 2.1 0.006 -0.8 1.4 -2.6 -3 -2.3 0.22

-3 -2.6 1.9 -1.2 -3 2.6 -3 -3 -2.8 0.73

-3 -3 -3 -1.1 -3 -1 -3 -3 -3 -3

-3 -3 -3 -0.58 -3 -1.9 -3 -3 -3 -3

-3 -3 -3 -2.2 -3 -3 -3 -3 -3 -3

-3 -3 -3 -2 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

1st dim. of PME (GMM) - On T2 prompts

−3

−2

−1

0

1

2

3

(c)

Figure 22: Evolution (as heatmaps) with prompt length (k) of β’s and PME (GMM) appearing in
Eq. 3 for the model trained with d = 10, p = 10, α1 = α2 = 1

2 . We show 10 different samples of
w for each plot.

33

Published as a conference paper at ICLR 2024

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

B
et

as

On T1 prompts

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

B
et

as

On T2 prompts

β1

β2

(a)

0 2 4 6 8 10
k

(# in-context examples)

−3

−2

−1

0

1

2

3

1st
di

m
.

of
w

ei
gh

t
ve

ct
or

s

On T1 prompts

0 2 4 6 8 10
k

(# in-context examples)

−3

−2

−1

0

1

2

3

1st
di

m
.

of
w

ei
gh

t
ve

ct
or

s

On T2 prompts

wprobe

PME (GMM)

(b)

Figure 23: Evolution (as line plots) with prompt length (k) of β’s, PME (GMM), and wprobe for
the model trained with d = 10, p = 10, α1 = α2 = 1

2 . We show the values averaged over 1280
samples.

34

Published as a conference paper at ICLR 2024

0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

Transformer (GMM)

PME (T1)

PME (T2)

PME (GMM)

(a)

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

(wprobe, w)

(wprobe, PME (GMM))

(wprobe, PME (T1))

(wprobe, PME (T2))

(b)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

1 1 0.97 1 1 0.98 1 0.99 1 0.96

2.9 1.2 1.9 0.96 2.5 1.8 1 2.9 2.6 0.93

2.9 2.9 2.4 1.5 3 2.7 3 3 2.8 2.9

2.9 2.7 3.1 2.1 3 2.8 2.9 2.9 3 3

3 2.6 3.1 2.1 2.9 2.8 3 2.9 2.9 3

2.9 3 3 1.9 2.9 3 3 3 3 3

3 3 2.9 1.2 2.9 3 3 2.9 3 3

2.9 2.9 2.9 3 3 3 3 3 3 3

3 3 3 3.1 2.9 3 3 2.9 2.9 3.1

3.1 2.9 3 3.1 3 3 3 3 3.1 3.1

3.1 2.9 3 3.1 3.1 3 3 2.9 3 3

1st dim. of wprobe - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

1 1 0.97 1 0.98 0.98 0.98 1 1 0.97

-2.8 0.55 2.5 0.95 -0.081 2.2 -2.3 -2.8 -1.9 1.1

-2.9 -2.4 2.4 -0.24 -2.9 2.7 -2.9 -2.9 -2.6 1.5

-3 -3 -2.9 -0.17 -3 -1.1 -3 -2.9 -3 -2.9

-2.9 -2.9 -2.9 0.75 -2.9 -1.5 -2.9 -3 -3 -2.8

-3 -3 -2.9 -1.3 -2.7 -2.7 -2.9 -2.9 -3 -3

-3 -3 -2.9 -1.2 -2.9 -2.8 -3 -3 -2.9 -2.9

-2.9 -3 -3.2 -2.8 -2.9 -2.8 -3 -3 -3 -3

-3 -3 -3 -2.9 -3 -2.9 -2.9 -3 -3 -2.9

-3 -3.1 -3.2 -2.9 -2.9 -3 -3 -3 -3 -3

-3 -3.1 -3 -2.9 -2.9 -2.9 -3.2 -3 -3.1 -2.9

1st dim. of wprobe - On T2 prompts

−3

−2

−1

0

1

2

3

(c)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

1 0.98 0.99 0.98 1 0.97 1 0.98 1 0.99

1.1 0.94 0.9 0.97 1 0.94 0.96 0.89 1.2 1

0.58 0.88 1.1 1.3 0.89 0.99 0.93 0.84 1.2 1.2

0.71 0.89 1.2 1.7 0.89 1 1 0.87 1.1 1.2

0.54 0.85 1 1.5 0.98 1.2 0.89 0.89 0.94 1.1

0.63 0.68 1 1.5 1.3 1 0.98 0.91 1 0.61

0.83 0.64 1.1 1.9 1.1 1.1 0.72 1.3 0.95 0.53

0.52 0.5 1 1.7 1.1 1.1 1.4 1.1 0.95 0.74

0.19 1.4 1.4 2 1.1 0.94 1.5 0.86 0.79 0.42

0.093 1.5 1.4 2.2 1.8 0.95 1.5 0.68 1.4 -0.039

0.15 1.5 1.3 2 1.8 1.2 1.1 0.68 1.7 0.2

1st dim. of wprobe - special prompt

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1st dim. of PME (GMM) - special prompt

−3

−2

−1

0

1

2

3

(d)

Figure 24: Transformers simulate PME when trained on dense regression task-mixture (d =
10, p = 10, α1 = 2

3 , α2 = 1
3) with weights having a mixture of Gaussian prior (GMM). (a):

Comparing the performance of the Transformer with Posterior Mean Estimator (PME) of individual
Gaussian components (PME (T1) and PME (T2)) and of the mixture PME (GMM). (b): MSE be-
tween the probed weights of the Transformer and PMEs. (c): 1st dimension of Transformer’s probed
weights across the prompt length. (d): 1st dimension of Transformer’s probed weights and PME
(GMM) across the prompt length for a specially constructed prompt.

0 5 10 15 20
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 5 10 15 20
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

Transformer (GMM)

PME (T1)

PME (T2)

PME (GMM)

(a)

0 5 10 15 20
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 5 10 15 20
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

(wprobe, w)

(wprobe, PME (GMM))

(wprobe, PME (T1))

(wprobe, PME (T2))

(b)

Figure 25: Transformers simulate PME when trained on dense regression task-mixture (d =
10, p = 20, α1 = α2 = 1

2) with weights having a mixture of Gaussian prior (GMM). Left:
Comparing the performance of the Transformer with Posterior Mean Estimator (PME) of individual
Gaussian components (PME (T1) and PME (T2)) and of the mixture PME (GMM). Right: MSE
between the probed weights of the Transformer and PMEs.

35

Published as a conference paper at ICLR 2024

and (x i)2:d ∼ N (0, 1),∀i ∈ {1, · · · , p}. For our setup, choosing such x i’s guarantees that no in-
formation about the distribution of w becomes known by observing P (since the only distinguishing
dimension between T1 and T2 is the 1st dimension and that does not influence the prompt in this
case as (x i)1 = 0). We note that Transformer’s weights are all ≈ 0 regardless of the prompt length,
agreeing with the PME (GMM). Observing more examples from the prompt does not reveal any
information about the underlying distribution of w in this case. Moreover, in Figure 21 we plot
the errors for the Transformer model, PMEs, and OLS for the over-determined region. In the over-
determined case (d > 10), the solution is unique, hence all the predictors including Transformer
give the same solution and have errors ≈ 0. Also, as shown, Transformer’s errors are smaller than
OLS errors and agree with the PME (GMM) errors for all context lengths. This shows that Trans-
former is indeed simulating the mixture PME and not OLS. All of this evidence strongly supports
our hypothesis that Transformer behaves like the ideal learner and computes the Posterior Mean
Estimate (PME).

Evolution of β’s, PME (GMM), and wprobe. Figure 22 plots the evolution of β’s and 1st dimension
of PME (GMM) for 10 different w ’s. The β’s (Figures 22a and 22b) are 0.5 (equal to α’s) at k = 0
(when no information is observed from the prompt). Gradually, as more examples are observed
from the prompt, βTprompt

approaches 1, while βTother
approaches 0. This is responsible for PME

(GMM) converging to PME (Tprompt) as seen in §3.1. The 1st dimension of PME (GMM) (Figure
22c) starts at 0 and converges to +3 or −3 depending on whether Tprompt is T1 or T2. Figure 23
shows the same evolution in the form of line plots where we see the average across 1280 samples of
w . In Figure 23a, βTprompt

approaches 1, while βTother
approaches 0 as noted earlier. Consequently,

in Figure 23b, 1st dimension of PME (GMM) approaches +3 or −3 based on the prompt. The 1st

dimension of Transformer’s probed weights, i.e. (wprobe)1 almost exactly mimics PME (GMM).

Unequal weight mixture with α1 = 2
3 & α2 = 1

3 . Figure 24 shows the results for another model
where α′s are unequal (d = 10, p = 10, α1 = 2

3 , α2 = 1
3). The observations made for Figure 1

in §3.1 still hold true, with some notable aspects: (1) The difference between prediction errors, i.e.
loss@k (24a), of PME (GMM) and PME (T1) is smaller than that of the uniform mixture (α1 =
α2 = 1

2) case, while the difference between prediction errors and weights of PME (GMM) and
PME (T2) is larger. This is because, at prompt length = 0, PME (GMM) is a weighted combination
of component PMEs with α’s as coefficients (Eq. 3). Since α1 > α2, PME (GMM) starts out
as being closer to T1 than T2. Also, since the Transformer follows PME (GMM) throughout, its
prediction errors also have similar differences (as PME (GMM)’s) with PMEs of both components
T1 and T2. (2) Transformer’s probed weights (wprobe), which used to have the same MSE with
PME (T1) and PME (T2) at k = 0, now give smaller MSE with PME (T1) than PME (T2) on
prompts from both T1 and T2 (Figure 24b). This is a consequence of PME (GMM) starting out as
being closer to T1 than T2 due to unequal mixture weights as discussed above. Since Transformer
is simulating PME (GMM), wprobe is also closer to PME (T1) than PME (T2) at k = 0 regardless
of which component (T1 or T2) the prompts come from. Due to wprobe mimicking T1 more than
T2 we also observe in Figure 24b that wprobe gives smaller MSE with w (ground truth) when
Tprompt = T1 compared to when Tprompt = T2. (3) The 1st dimension of Transformer’s weights
((wprobe)1) and PME (GMM) is 1 instead of 0 when the prompt is either empty (24c) or lacks
information regarding the distribution of w (24d). It happens because (wprobe)1 ≈ 1st dimension
of PME (GMM) = (µ1)1.β1 + (µ2)1.β2 = (+3)(23) + (−3)(13) = 1. Note that β1 = α1 = 2

3 and
β2 = α2 = 1

3 when prompt P is empty at k = 0 (Eq. 3). When P is inconclusive of w , β1 = α1

and β2 = α2 ∀k ∈ {1, 2, · · · , p}.

Transformer model trained with longer prompt length (p = 20). Figure 25 depicts similar
evidence as Figure 1 of Transformer simulating PME (GMM) for a model trained with d = 10, p =
20, α1 = α2 = 1

2 . We see that all the observations discussed in §3.1 also hold true for this model.
Transformer converges to PME (GMM) and PME (Tprompt) w.r.t. both loss@k (Figure 25a) and
weights (Figure 25b) at k = 10 and keeps following them for larger k as well.

In summary, all the evidence strongly suggests that Transformer performs Bayesian Inference and
computes PME corresponding to the task at hand. If the task is a mixture, Transformer simulates the
PME of the task mixture as given by 3.

36

Published as a conference paper at ICLR 2024

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

1.25

Bound

Evaluation on Sparse Regression Prompts

k (# in-context examples)

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

Figure 26: Comparing the performance of a Transformer model trained on dense and sparse re-
gression mixture F{DR, SR} with baselines, as well as single task models, trained on FDR and FSR
individually.

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SR}, w

probe
DR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sparse Regression Prompts

(wprobe
{DR,SR}, w

probe
SR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SR}, w

probe
DR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sparse Regression Prompts

(wprobe
{DR,SR}, w

probe
SR)

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

(b)

Figure 27: Comparing the errors between the weights recovered from the mixture model trained on
F{DR, SR} mixture and different single task models and baselines while evaluating on FDR and FSR
prompts

C.3 MORE COMPLEX MIXTURES

We start by training transformer models on the mixture of dense linear regression (FDR) and sparse
linear regression (FSR) function classes. The function definition remains the same for both these
classes i.e. f : x 7→ wT

i x , but for FDR we consider a standard gaussian prior on w and a sparse
prior for FSR. We use the sparse prior from Garg et al. (2022), where we first sample w ∼ N (0d, I)
and then randomly set its d − s components as 0. We consider s = 3 throughout our experiments.
Unless specified we consider the mixtures to be uniform i.e. αi = 0.5 and use these values to sample
batches during training.

During the evaluation, we test the mixture model (denoted as Transformer F{DR, SR}) on the prompts
sampled from each of the function classes in the mixture. We consider the model to have in-context
learned the mixture of tasks if it obtains similar performance as the single-task models specific to
these function classes. For example, a transformer model trained on the dense and sparse regression
mixture (Transformer F{DR, SR}) should obtain performance similar to the single-task model trained
on dense regression function class (Transformer FDR), when prompted with a function f ∼ FDR
and vice-versa.

Results. The results for the binary mixtures of linear functions are given in Figure 26. As can be ob-
served, the transformer model trained on F{DR, SR} obtains performance close to the OLS baseline as
well as the transformer model specifically trained on the dense regression function class FDR when
evaluated with dense regression prompts. On the other hand, when evaluated with sparse regression
prompts the same model follows Lasso and single-task sparse regression model (Transformer (FSR))
closely. As a check, note that the single-task models when prompted with functions from a family
different from what they were trained on, observe much higher errors, confirming that the transform-
ers learn to solve individual tasks based on the in-context examples provided. Similar to GMMs in
§3.1, here also we compare the implied weights from multi-task models under prompts for both FDR

37

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Transformer (F{DR,SVR})

Transformer (FDR)

Transformer (FSVR)

OLS

Minimize `∞

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SVR}, w

probe
DR)

(wprobe
{DR,SVR}, w

OLS)

(wprobe
{DR,SVR}, w

L∞)

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sign Vector Regression Prompts

(wprobe
{DR,SVR}, w

probe
SVR)

(wprobe
{DR,SVR}, w

OLS)

(wprobe
{DR,SVR}, w

L∞)

(c)

Figure 28: Comparing the performance of a Transformer model trained on dense and sign-vector
regression mixture F{DR, SVR} with baselines, as well as single task models, trained on FDR and
FSVR individually. Top: Comparing loss@k values of the mixture model with single-task models
with different prompt distributions. Bottom: Comparing the errors between the weights recovered
from the mixture model and different single task models and baselines while evaluating on FDR and
FSVR prompts.

38

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.0

0.5

1.0

1.5

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Skewed-Covariance Regression Prompts

Transformer (F{DR,Skew−DR})

Transformer (FDR)

Transformer (FSkew−DR)

OLS

Minimize wTΣ−1w

(a)

0 5 10 15 20 25 30 35 40
k

(# in-context examples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,Skew−DR}, w

probe
DR)

(wprobe
{DR,Skew−DR}, w

OLS)

(wprobe
{DR,Skew−DR}, w

PME−Skew)

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Skewed-Covariance Regression Prompts

(wprobe
{DR,Skew−DR}, w

probe
Skew−DR)

(wprobe
{DR,Skew−DR}, w

OLS)

(wprobe
{DR,Skew−DR}, w

PME−Skew)

(c)

Figure 29: Comparing the performance of a Transformer model trained on dense and skewed-
covariance regression mixture F{DR, Skew-DR} with baselines, as well as single task models, trained on
FDR and FSkew-DR individually. Top: Comparing loss@k values of the mixture model with single-
task models with different prompt distributions. Red (OLS) and orange (Transformer (FDR)) curves
overlap very closely, so are a bit hard to distinguish in the plots. Similarly in the top right plot, pur-
ple (Minimize wTΣ−1w) and green (Transformer FSkew-DR) curves overlap. Bottom: Comparing
the errors between the weights recovered from the mixture model and different single task models
and baselines while evaluating on FDR and FSkew-DR prompts.

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Transformer (F{DR,SR,SVR})

Transformer (FDR)

Transformer (FSR)

Transformer (FSVR)

Figure 30: Comparing the performance of transformer model trained to in-context learn
F{DR, SR, SVR} mixture family with the corresponding single task models.

39

Published as a conference paper at ICLR 2024

and FSR and show that here again they agree with the weights recovered from single-task models
as well as the strong baselines in this case (OLS and Lasso). We provide the plots for the weight
agreement in this case in Figure 27.

Next, we describe the results for other homogeneous mixtures F{DR, SVR}, F{DR, Skew-DR} and
F{DR, SR, SVR}, as well as heterogeneous mixtures F{DR, DT} and F{DT, NN}. As can be seen in Figure
28, the transformer model trained on F{DR, SVR} mixture, behaves close to OLS when prompted with
f ∈ FDR and close to the L∞ minimization baseline when provided sign-vector regression prompts
(f ∈ FSVR). We also have similar observations for the F{DR, Skew-DR} mixture case in Figure 29,
where the multi-task ICL model follows the PME of both tasks when sufficient examples are pro-
vided from the respective task. Similarly, for the model trained on the tertiary mixture F{DR, SR, SVR}
(as can be seen in Figure 30), the multi-task model can simulate the behavior of the three single-
task models depending on the distribution of in-context examples. On FSR and FSVR prompts the
multi-task model performs slightly worse compared to the single-task models trained on FSR and
FSVR respectively, however once sufficient examples are provided (still < 20), they do obtain close
errors. This observation is consistent with the PME hypothesis i.e. once more evidence is observed
the β values PME of the mixture should converge to the PME of the task from which prompt P is
sampled. The results on heterogeneous mixtures we discuss in detail below:

Heterogeneous Mixtures: Up until now, our experiments for the multi-task case have been focused
on task mixtures where all function families have the same parameterized form i.e wTx for linear
mixtures and wTΦ(x) for Fourier mixtures. We now move to more complex mixtures where this no
longer holds true. In particular, we consider dense regression and decision tree mixture F{DR, DT}
and decision tree and neural network mixture F{DT, NN}.

We follow Garg et al. (2022)’s setup for decision trees and neural networks. We consider decision
trees of depth 4 and 20-dimensional input vectors x . A decision tree is sampled by choosing the
split node randomly from the features at each depth, and the output of the function is given by
the values stored in the leaf nodes which are sampled from N (0, 1). For neural networks, we
consider 2-layer (1 hidden + 1 output) multi-layer perceptrons (MLP) with ReLU non-linearity i.e.
f(x) =

∑r
i=1 αiReLU(wT

i x), where α ∈ R and w i ∈ Rd. The network parameters ais and w is
are sampled from N (0, 2/r) and N (0, 1) respectively. The input vectors x is are sampled from
N (0, 1) for both tasks. We consider greedy tree learning and stochastic gradient descent 5 over a
2-layer MLP as our baselines for decision trees and neural networks respectively. The values of
hyperparameters for baselines such as the number of gradient descent steps, initial learning rate for
Adam, etc. are the same as Garg et al. (2022).

The results for the two mixtures are provided in Figure 31. The mixture model Transformer
(F{DR, DT}) follows the single task model Transformer (FDR) when provided in-context examples
from f ∼ FDR and agrees with Transformer (FDT) when prompted with f ∼ FDT (Figure 31a. Sim-
ilarly, we have consistent findings for F{DT, NN} mixture as well, where the model learns to solve
both tasks depending upon the input prompt (Figure 31b).

C.4 FOURIER SERIES MIXTURE DETAILED RESULTS

We consider a mixture of Fourier series function classes with different maximum frequencies, i.e.
F fourier

Φ1:N
= {F fourier

Φ1
, · · · ,F fourier

ΦN
}. We consider N = 10 in our experiments and train the models

using a uniform mixture with normalization. During evaluation, we test individually on each F fourier
ΦM

,
where M ∈ [1, N]. We compare against consider two baselines: i) OLS Fourier Basis F fourier

ΦM
i.e.

performing OLS on the basis corresponding to the number of frequencies M in the ground truth
function, and ii) F fourier

ΦN
which performs OLS on the basis corresponding to the maximum number

of frequencies in the mixture i.e. N .

Figure 32a plots the loss@k metric aggregated over all the M ∈ [1, N] for the model and the
baselines. The performance of the transformer lies somewhere in between the gold-frequency base-
line (OLS Fourier Basis F fourier

ΦM
) and the maximum frequency baseline (F fourier

ΦN
), with the model

performing much better compared to the latter for short prompt lengths (k < 20) while the former
baseline performs better. We also measure the frequencies exhibited by the functions predicted by
the transformer in Figure 32b. We observe that transformers have a bias towards lower frequen-

5In practice, we use Adam just like Garg et al. (2022)

40

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Evaluation on Dense Regression Prompts

Transformer (F{DR,DT})

Transformer (FDR)

OLS

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

Evaluation on Decision Tree Prompts

Transformer (F{DR,DT})

Transformer (FDT)

Greedy Tree Learning

(a)

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

Evaluation on Decision Tree Prompts

Transformer (F{DT,NN})

Transformer (FDT)

Greedy Tree Learning

0 20 40 60 80 100
k

(# in-context examples)

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Evaluation on Neural Network Prompts

Transformer (F{DT,NN})

Transformer (FNN)

2-layer NN, GD

(b)

Figure 31: Multi-task in-context learning for heterogeneous mixtures.

41

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

l
o
s
s
@
k

Fourier Mixture ICL

Transformer

OLS Fourier Basis ΦM

OLS Fourier Basis ΦN

(a)

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 20

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 10, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

a
2 n

+
b2 n

M = 10, k = 20
Transformer Inductive Biases

(b)

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

m0 = 1, M = 2, k = 1

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

m0 = 1, M = 2, k = 11

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

m0 = 1, M = 5, k = 1

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

m0 = 1, M = 5, k = 11

Training on data biased towards high frequencies (n0 = 1, N = 5)

(c)

Figure 32: In-context learning on the Fourier series mixture class. Top Left: Comparing transform-
ers with the baselines. Errors are computed on batches of 128 for M ∈ [1, 10] and aggregated in the
plot. Top Right: Visualizing the frequencies of the simulated function by transformers. Bottom:
Training transformer on high-frequency biased Fourier mixture FΦfourier

1:N,N
and visualizing the simu-

lated frequencies of the trained model.

cies when prompted with a few examples; however, when given sufficiently many examples they
are able to recover the gold frequencies. This simplicity bias can be traced to the training dataset
for the mixture since lower frequencies are present in most of the functions of the mixture while
higher frequencies will be more rare: Frequency 1 will be present in all the function classes whereas
frequency N will be present only in F fourier

ΦN
. Our results indicate that the simplicity bias in these

models during in-context learning arises from the training data distribution. We confirm the above
observations by detailing results for different combinations of M and k in Figure 33.

C.4.1 COMPLEXITY BIASED PRE-TRAINING

To further verify this observation, we also consider the case where the train-
ing data is biased towards high frequencies and check if transformers trained
with such data exhibit bias towards high frequencies (complexity bias). To mo-
tivate such a mixture, we first define an alternate fourier basis: Φn0,N (x) =
[cos (n0π/L), sin (n0π/L), cos ((n0 + 1)π/L), sin ((n0 + 1)π/L), · · · , cos (Nπ/L), sin (Nπ/L)],
where n0 ≥ 0 is the minimum frequency in the basis. Φn0,N defines the function
family F fourier

Φn0,N
and equivalently we can define the mixture of such function classes as

FΦfourier
1:N,N

= {F fourier
Φ1,N

, · · · ,F fourier
ΦN,N

}. One can see such a mixture will be biased towards high
frequency; frequency N is present in each function class of the mixture, while frequency 1 is only
present in F fourier

Φ1,N
. We train a transformer model on such a mixture for N = 5 and at test time, we

evaluate the model on functions f ∼ F fourier
Φm0,M

Figure 32c shows the inductive biases measure from
this trained model and we can clearly observe a case of complexity bias, where at small prompt
lengths, the model exhibited a strong bias towards the higher end of the frequencies that it was
trained on i.e. close to 5.

We also trained models for higher values of the maximum frequency i.e. N = 10 for the high-
frequency bias case, but interestingly observed the model failed to learn this task mixture. Even for
N = 5, we noticed that the convergence was much slower compared to training on the simplicity
bias mixture F fourier

Φ1:N
. This indicates, while in this case, the origin of simplicity bias comes from the

training data, it is harder for the model to learn to capture more complex training distributions, and
simplicity bias in the pre-training data distribution might lead to more efficient training Mueller &
Linzen (2023).

42

Published as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 20

M = 1

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 20

M = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8
a

2 n
+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 20

M = 3

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 20

M = 4

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 20

M = 5

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 20

M = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 20

M = 7

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 20

M = 8

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 20

M = 9

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 20

M = 10

Figure 33: In-context learning of Fourier series mixture class. Measuring the frequencies of the
simulated function by the transformer for different values of M (maximum frequency) and k (num-
ber of in-context examples). Showcases the simplicity bias behavior exhibited by the model at low
frequencies.

43

Published as a conference paper at ICLR 2024

C.5 CONDITIONS NECESSARY FOR MULTI-TASK ICL

We observed that the training setup can also influence the ability of transformers to simulate the
Bayesian predictor during ICL. Particularly, in our initial experiments with F{DR, SR} mixture (§C.3),
transformers failed to learn to solve the individual tasks of the mixture and were following OLS for
both FDR and FSR prompts. To probe this, we first noted that the variance of the function outputs
varied greatly for the two tasks, where for dense regression it equals d and equals the sparsity
parameter s for sparse regression. We hypothesized that the model learning to solve just dense
regression might be attributed to the disproportionately high signal from dense regression compared
to sparse. To resolve this, we experimented with increasing the sampling rate for the FSR task family
during training. Particularly on training the model with αSR = 0.87, we observed that the resulting
model did learn to solve both tasks. Alternatively, normalizing the outputs of the two tasks such that
they have the same variance and using a uniform mixture (αSR = 0.5) also resulted in multi-task in-
context learning capabilities (also the setting of our experiments in Figure 26). Hence, the training
distribution can have a significant role to play in the model acquiring abilities to solve different tasks
as has been also observed in other works on in-context learning in LLMs Razeghi et al. (2022); Chan
et al. (2022a).

We also studied if the curriculum had any role to play in the models acquiring multi-task in-context
learning capabilities. In our initial experiments without normalization and non-uniform mixtures,
we observed that the model only learned to solve both tasks when the curriculum was enabled.
However, training the model without curriculum for a longer duration (≈ more training data), we
did observe it to eventually learn to solve both of the tasks indicated by a sharp dip in the evaluation
loss for the sparse regression task during training. This is also in line with recent works Hoffmann
et al. (2022); Touvron et al. (2023), which show that the capabilities of LLMs can be drastically
improved by scaling up the number of tokens the models are trained on. Detailed results concerning
these findings are in Figure 34 of the Appendix.

Figure 34 compares transformer models trained on F{DR, SR} mixture with different setups i.e. train-
ing without task-normalization and uniform mixture weights αi’s (Figure 34a), training without
task-normalization and non-uniform mixture weights (Figure 34b), and training with task normal-
ization and uniform mixture weights (Figure 34c). As described above, we perform task normal-
ization by ensuring that the outputs f(x) for all the tasks have the same variance, which results in
all the tasks providing a similar training signal to the model. To perform normalization, we simply
divide the weights w sampled for the tasks by a normalization constant, which is decided according
to the nature of the task. With this, we make sure that the output y = wTx has a unit variance. The
normalization constants for different tasks are provided in Table 2.

Table 2: Normalization constants used for different tasks to define normalized mixtures for multi-
task ICL experiments. Here d denotes the size of the weight vectors used in linear-inverse problems
as well as the last layer of the neural network. s refers to the sparsity of sparse regression problems,
r is the hidden size of the neural network andN refers to the maximum frequency for Fourier series.

Function Family Normalization Constant
Dense Regression

√
d

Sparse Regression
√
s

Sign-Vector Regression
√
d

Fourier-Series N

Degree-2 Monomial Basis Regression
√
|S|

Decision Trees 1

Neural Networks
√

dr
2

All the experiments discussed above (like most others in the main paper) were performed using
curriculum learning. As discussed above, we investigated if the curriculum has any effect on multi-
task ICL capabilities. The results for the same are provided in Figure 35.

We also explore the effect of normalization on multi-task ICL in Figure 36 for F{DR, SVR} task.
As can be seen in Figure 36a, for this particular mixture even while training the model without
normalization, the model exhibited multi-task ICL, which can be explained by both tasks having

44

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25
l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.5, αSR = 0.5

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.13, αSR = 0.87

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Normalized Mixture
αDR = 0.5, αSR = 0.5

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(c)

Figure 34: Conditions affecting multi-task ICL in transformers. Top: Evaluating loss@k for trans-
former model trained on F{DR, SR} task family without normalization and considering uniform mix-
tures (i.e. αDR = αSR = 0.5), and comparing with single-task models and baselines. While the
blue curve (Transformer F{DR, SR}) is hard to see here, it is because it overlaps almost perfectly with
the red curve corresponding to OLS in both cases.Center: Similar plots as above but for the model
trained on the mixture F{DR, SR} with non-uniform weights i.e. αDR = 0.13, αSR = 0.87. Bottom:
Training the model with the normalized (and uniform) mixture such that outputs for the two tasks
have the same variance. All the models are trained with the curriculum. The discussion continues
in Figure 35 for the models trained without curriculum.

45

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.13, αSR = 0.87

Training Step: 500k

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.13, αSR = 0.87

Training Step: 800k

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps ×106

0.5

1.0

1.5

2.0

2.5

3.0

3.5

l
o
s
s
@

10

Only solves DR

Solves both DR and SR

T
ra

ns
it

io
n

Training Dynamics
loss@10 for SR prompts

(c)

Figure 35: Evaluating transformer model trained without curriculum on F{DR, SR} task family
without normalization and non-uniform weights i.e. αDR = 0.13, αSR = 0.87 (similar to Figure
34b). Top: Evaluating the checkpoint corresponding to the 500k training step of the aforementioned
model. Again, the blue curve (Transformer F{DR, SR}) is hard to see here, but it is because it overlaps
almost perfectly with the red curve corresponding to OLS in both cases.Center: Evaluating the same
model but a much later checkpoint i.e. at 800k training step. Bottom: Evolution of loss@10 on
FSR prompts while training the above model.

46

Published as a conference paper at ICLR 2024

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Unnormalized Mixture (αDR = αSVR = 0.5)
Evaluation on Unnormalized Prompts

Transformer

OLS

Minimize L∞

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Unnormalized Mixture (αDR = αSVR = 0.5)
Evaluation on Normalized Prompts

Transformer

OLS

Minimize L∞

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Normalized Mixture (αDR = αSVR = 0.5)
Evaluation on Unnormalized Prompts

Transformer

OLS

Minimize L∞

(c)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Normalized Mixture (αDR = αSVR = 0.5)
Evaluation on Normalized Prompts

Transformer

OLS

Minimize L∞

(d)

Figure 36: Effect of output normalization on multi-task ICL in transformers. Top Left (a): A
transformer model is trained on a uniform mixture of F{DR, SVR} task family (i.e. αDR = αSVR =
0.5) without normalization. Evaluating loss@k for this model on unnormalized prompts (where
outputs f(x) are not normalized to have unit variance i.e. same as training). Note that for the
F{DR, SVR} task family even without normalization the outputs f(x) have the same mean and vari-
ance (µ = 0, σ2 = 20) for both the tasks. Bottom Left (b): Evaluating loss@k for the model
in (a) on normalized prompts (where outputs f(x) for both tasks are normalized to have unit vari-
ance). Top Right (c): A transformer model is trained on a uniform mixture of F{DR, SVR} task family
(i.e. αDR = αSVR = 0.5) with normalization. Evaluating loss@k for this model on unnormalized
prompts. Bottom Right (d) Evaluating loss@k for the model in (c) on normalized prompts. All
the models are trained with the curriculum.

the same output variance (i.e. d). Interestingly, when we evaluate this model (i.e. the one trained
on unnormalized mixture) on in-context examples which have the outputs f(xi)’s normalized, the
model fails to solve FSVR and follows OLS baseline for both the tasks. We hypothesize that since
this situation represents Out of Distribution (OOD) evaluation and the model might not be robust
towards performing multi-task ICL on prompts that come from a different distribution than those
seen during training. Exploring OOD generalization in the multi-task case is a compelling direction
that we leave for future work.

Table 3: Multi-task generalization results for Monomials problem. The first row is ID evaluation,
second row is OOD evaluation. As task diversity (K) increases, the model starts behaving like
LassoΦM

and BPproxy, and its ID and OOD losses become almost identical, i.e. it generalizes to
OOD.

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 40, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 500, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 5000, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 40, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 500, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 5000, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

47

Published as a conference paper at ICLR 2024

Table 4: Multi-task generalization results for Fourier Series problem. The first row is ID eval-
uation, second row is OOD evaluation. As task diversity (K) increases, the model starts behaving
like LassoΦN

and BPproxy, and its ID and OOD losses become almost identical, i.e. it generalizes to
OOD.

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 10, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 100, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1140, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 10, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 100, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1140, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

D DETAILS REGARDING MULTI-TASK GENERALIZATION EXPERIMENTS

Like section §B.1.1, we tune the Lasso coefficient on a separate batch of data (1280 samples) and
choose the single value that achieves the smallest loss.

D.1 MONOMIALS MULTI-TASK

Plots for various task diversities that we experiment with are shown in Table 3.

D.2 FOURIER SERIES MULTI-TASK

Fourier Series problem – MICL setting. Please refer to the setup defined in §B.2.1, which comes
under the MICL setting as it corresponds to a single function class, F fourier

ΦN
.

Extending Fourier Series problem to HMICL setting. For extension to HMICL, we use multi-
ple subsets of frequencies Sk’s to define the mixture. Each Sk defines a function class F fourier

Sk
. The

pretraining distribution is induced by the uniform distribution U(F) over a collection of such func-
tion classes, F = {F fourier

S1
, · · · ,F fourier

SK
}, where Sk ⊂ ΦN (x), the full basis. For example, Sk could

be [1, cos (2πx/L), cos (6πx/L), cos (9πx/L), sin (2πx/L), sin (6πx/L), sin (9πx/L)]T , consist-
ing of sine and cosine frequencies corresponding to integers 2, 6 and 9. (Note that 1, the intercept
term, is a part of every Sk). K feature sets Sk’s, each of size D, are chosen at the start of the train-
ing and remain fixed. K is the task diversity of the pretraining distribution. To sample a training
function for the TF, we first sample a function class F fourier

Sk
with replacement from U(F) and then

sample a function from the chosen class; f(x) = wTSk(x), where w ∼ ND(0 , I). Similar to the
Monomials problem, our aim is to check if TF trained on U(F) can generalize to the full distribution
of all function classes (for feature sets of size D) by evaluating its performance on function classes
corresponding to feature sets S ′ /∈ {S1, · · · ,SK}.

Training Setup. d = 1, p = 82, N = 20. So, the full basis, ΦN (x), had 20 frequencies. D = 3.
We experiment with K ∈ {1, 10, 100, 200, 400, 800, 1140}.

Evaluation Setup. The baselines we consider are OLSS , OLSΦN
, and LassoΦN

For Lasso, we use
α = 0.1. We again evaluate in two settings: (a) ID: On functions from the pretraining distribution.
(b) OOD: On functions not in the pretraining distribution by sampling from a function family not
corresponding to any of the S ′

ks used to define the pretraining distribution.

Results. Plots for various task diversities that we experiment with are in Table 4. The trend is
the same as it was for Monomials problem, i.e. ID performance degrades and OOD performance

48

Published as a conference paper at ICLR 2024

improves as K increases. As K increases, TF’s performance on ID and OOD becomes identical
(from K = 100 onwards) and similar to the LassoΦN

and BPproxy baselines.

D.3 DETAILS ON THE PHENOMENON OF FORGETTING

Problem Setup. We follow the Noisy Linear Regression (NLR) setup from Raventós et al. (2023):
d = 8, p = 15 (without curriculum learning). The noise variance σ2 = 0.25. For this problem, the
transformer has 8 layers, 128-dimensional embeddings, and 2 attention heads, and is trained with a
batch size of 256 for 500k steps. One-cycle triangle learning rate schedule Smith & Topin (2018)
is used with 50% warmup. Detailed plots for the four groups of task diversities mentioned in §6.1
are in Figure 37. OOD loss curves with Bayesian predictors for various checkpoints for task div 28

are in Figure 38. For other representative task diversities, the OOD loss curves of TF and Bayesian
predictors are in Table 5. Plots showing mean squared errors of implied weights of TF with Bayesian
predictors are in Table 6.

Classification of task diversities. ID loss ≈ 0 for all task diversities during pretraining. We group
them into the following 4 categories based on OOD loss:

1. 21 to 23 (no generalization; no forgetting) – OOD loss never decreases, converges to a value
worse than or same as at the start of the training (t0), agrees with dMMSE at the end of the training
(tend). [Figure 37a]

2. 24 to 26 (some generalization and forgetting) – OOD loss improves, reaches a minima tmin, then
worsens. OOD loss is worse than ID loss throughout pretraining and agrees with dMMSE at tend
(i.e., any generalization to Gaussian distribution is forgotten by tend). [Figure 37b]

3. 27 to 211 (full generalization and forgetting) – OOD loss improves, reaches a minima tmin, at
which it is same as ID loss, then it worsens. At tmin, OOD loss agrees with Ridge (Figure 38a), then
gradually deviates from it and at tend, it is in between dMMSE and Ridge (e.g., Figure 38c). We
refer to this group of task diversities as the “Gaussian forgetting region” since the model generalizes
to the full (Gaussian) distribution over tasks at tmin but forgets it by tend. [Figures 37c, 38]

4. 212 to 220 (full generalization; no forgetting) – Throughout pretraining, OOD and ID losses are
identical and OOD loss agrees with Ridge. [Figure 37d]

Relation to Simplicity bias? The phenomenon of forgetting (displayed by task diversity groups
2 and 3 above) is an interesting contrast to the grokking literature and in particular to Nanda et al.
(2023), where they find that the model first memorizes and then generalizes (which, on the surface, is
the opposite of what we observe). We can explain forgetting from the perspective of simplicity bias.
Since PTdist. is discrete and perhaps contains lots of unnecessary details, the model instead finds it
easier to generalize to the ’simpler’ Gaussian distribution which is continuous and much more nicely
behaved. Hence, we speculate that the simplicity of the PTdist. is inversely proportional to the
number of tasks it contains. Very small task diversities (group 1) are exceptions to this rule since
their PTdist. is arguably much simpler than FGdist.. So, we do not see forgetting in those cases as the
model prefers to only learn PTdist.. Thus, we hypothesize that the simplicities of the distributions
have the following order (Gi denotes group i): PTdist.(G2) ≈ PTdist.(G3) < PTdist.(G4) < FGdist. ≪
PTdist.(G1).

Robustness and effect of the number of dimensions. The phenomenon of forgetting is robust
to model sizes (Figure 39), to changes in learning rate and its schedule (Figure 40), and position
encodings (Monomials and Fourier Series multi-task setups use a 12-layer transformer that does
not have position encodings). We also experimented with NLR problems having dimensions d =
3 and d = 16 (Figure 41) and found that the extent of forgetting (denoted by the disagreement
of TF’s and Ridge’s loss on OOD evaluation) is directly proportional to the input dimension (d).
Note that following Raventós et al. (2023) we keep the signal-to-noise ratio (d/σ2) constant across
these experiments by adjusting the noise scale to ensure that noise has a proportional effect and the
observations are due to change in dimension alone.

49

Published as a conference paper at ICLR 2024

(a) No generalization; no forgetting)

(b) Some generalization and forgetting

(c) Full generalization and forgetting

(d) Full generalization; no forgetting

Figure 37: Evolution of ID and OOD losses during pretraining for different task diversity
groups for the Noisy Linear Regression problem. The forgetting phenomenon is depicted by
groups in Figures (b) and (c). The moving average (over 10 train steps) of ID (*eval) and OOD
(*eval ood) losses are plotted, with the original (non-averaged) curves shown in a lighter shade. A
checkpoint towards the end of the training is highlighted. We see that as we increase task diversity
(i.e. go from group (a) towards (d)), the difference between ID and OOD losses decreases. Groups
(b) and (c) are noteworthy as they display the phenomenon of forgetting, where the models’ OOD
loss at an earlier checkpoint is the same as ID loss, but it increases later.

50

Published as a conference paper at ICLR 2024

Table 5: OOD loss curves of TF and Bayesian predictors for various checkpoints of models cor-
responding to task diversities (K) 23, 25, 28, 216 respectively in rows. Each plot presents the loss
across different prompt lengths. For task diversities 25 and 28, plots in the first column represent the
point of minima (tmin). For task diversities 23 and 216, plots in the first column represent an earlier
checkpoint.

K minima (tmin) or an earlier
checkpoint

checkpoint after 100k train
steps

checkpoint after 500k train
steps

23
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 8; Ckpt: 37000

TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

/d

Num tasks: 8; Ckpt: 100000

TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 8; Ckpt: 500000

TF
Ridge
dMMSE

25
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 32; Ckpt: 23000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 32; Ckpt: 100000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 32; Ckpt: 500000

TF
Ridge
dMMSE

28
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 31000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 100000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 500000
TF
Ridge
dMMSE

216
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 65536; Ckpt: 31000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 65536; Ckpt: 100000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 65536; Ckpt: 500000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 31000
TF
Ridge
dMMSE

(a) after 31k train steps (tmin)

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 100000
TF
Ridge
dMMSE

(b) after 100k train steps

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 500000
TF
Ridge
dMMSE

(c) after 500k train steps

Figure 38: Plotting the OOD loss for various checkpoints during training for task diversity 28, along
with the Bayesian predictors. At tmin, the model agrees with Ridge regression for all prompt lengths
but later deviates and converges to somewhere in the middle of two Bayesian predictors.

51

Published as a conference paper at ICLR 2024

Table 6: Mean squared errors of implied weights of TF with Bayesian predictors during OOD evalu-
ation for various checkpoints of models corresponding to task diversities (K) 23, 25, 28, 216 respec-
tively in rows. Each plot presents the implied difference of weights across different prompt lengths.
For task diversities 25 and 28, plots in the first column represent the point of minima (tmin). For
task diversities 23 and 216, plots in the first column represent an earlier checkpoint.

K minima (tmin) or an earlier
checkpoint

checkpoint after 100k train
steps

checkpoint after 500k train
steps

23
2 4 6 8 10 12 14

in-context examples

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 8; Ckpt = 37000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 8; Ckpt = 100000

(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 8; Ckpt = 500000

(TF, Ridge)
(TF, dMMSE)
(TF, GT)

25
2 4 6 8 10 12 14

in-context examples

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

K = 32; Ckpt = 23000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

K = 32; Ckpt = 100000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 32; Ckpt = 500000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

28
2 4 6 8 10 12 14

in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 256; Ckpt = 31000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 256; Ckpt = 100000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 256; Ckpt = 500000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

216
2 4 6 8 10 12 14

in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 65536; Ckpt = 31000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 65536; Ckpt = 100000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 65536; Ckpt = 500000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

52

Published as a conference paper at ICLR 2024

(a) 24 (b) 25

(c) 26 (d) 27

(e) 28 (f) 29

(g) 210 (h) 211

Figure 39: Effect of model size on forgetting. The moving average (over 10 train steps) of OOD
losses for various models of different sizes trained on pretraining data with task diversities 24 to 211

are plotted. In the legend, L and E denote the number of layers and embedding size of the trained
models respectively. As can be observed, all the models show forgetting across task diversities.
Additionally, for larger task diversities (rows 3, 4), viz. 28 to 211, bigger models exhibit higher
OOD loss over the course of training, i.e. show more forgetting! For smaller task diversities (rows
1, 2), viz. 24 to 27, there is no clear trend in the extent of forgetting across model sizes.

53

Published as a conference paper at ICLR 2024

Figure 40: The moving average (over 10 train steps) of ID (solid lines) and OOD (dashed lines)
losses for task diversity 27 for different learning rates, with & without learning rate schedule are
plotted. While the nature and extent of forgetting changes, the phenomenon itself is robust and is
observed across all settings.

Figure 41: The moving average (over 10 train steps) of ID (solid lines) and OOD (dashed lines)
losses for task diversity 27 for different input dimensions (3 (green), 8 (yellow), 16 (red)) are plotted.
The extent of forgetting is directly proportional to the input dimension (d).

54

Published as a conference paper at ICLR 2024

E GRADIENT DESCENT AS A TRACTABLE APPROXIMATION OF BAYESIAN
INFERENCE

We describe two recent results showing apparent deviation from Bayesian prediction: Garg et al.
(2022) showed that training transformers on functions sampled from the class of 2-layer neural
networks, resulted in transformers performing very close to GD during ICL. For linear regression,
Akyürek et al. (2022) and von Oswald et al. (2022) showed that low-capacity transformers (i.e.,
those with one or few layers) agree with GD on the squared error objective. Why does GD arise in
ICL when Bayesian prediction is the optimal thing to do? Towards answering this, we propose the
following hypothesis: The reason transformers appear to do GD is because GD may be providing
the best approximation to Bayesian inference within the capacity constraints. One line of evidence
for this comes from Mingard et al. (2021) (and the references therein) who showed that for a range
of deep neural network architectures GD solutions correlate remarkably well with the Bayesian
predictor. Further, it’s well known that for convex problems, GD provably reaches the global optima,
hence approaching the Bayes-optimal predictor with increasing number of steps. von Oswald et al.
(2022) shows that multiple layers of transformers can simulate multiple steps of gradient descent
for linear regression and Akyürek et al. (2022) highlights that as the capacity of transformers is
increased they converge towards Bayesian inference.

F FURTHER CONCLUDING REMARKS

Much more remains to be done to determine how extensively transformers mimic the Bayesian
predictor. Relation between the pretraining distribution and ICL inductive bias and its relation to
real-world LLMs needs to be further fleshed out. The intriguing forgetting phenomenon needs to
be better understood. How is it related to pretraining simplicity bias? Further progress on the re-
lation between gradient-based optimization and Bayesian inference would be insightful. The case
of decision trees studied in Garg et al. (2022) is an interesting specific problem where the relation-
ship between Bayesian inference and gradient descent remains unclear. While we studied out-of-
distribution performance on new function families, out-of-distribution performance on new input
distributions is also of interest.

The present work focused on continuous functions setting which is easier to study from the Bayesian
perspective. What happens for the real-world LLMs? How strongly does the Bayesian view hold
there and what kind of deviations exist? The order of demonstrations is known to have significant
influence on the output of the LLMs. Thus more nuance would be necessary for LLMs. Assuming
that the Bayesian view does hold for LLMs in some form a potential practical implication is that it
can help us choose demonstrations in an informed manner to make the conditional distribution con-
verge faster to the intended output. Moreover, it can also potentially help us understand real-world
LLM phenomena like hallucination and jailbreaking assuming the nature of the implied posterior
distribution characterizes them. Finally, we treated transformers as black boxes: opening the box
and uncovering the underlying mechanisms transformers use to do Bayesian prediction would be
very interesting.

55

	Introduction
	Background
	Hierarchical Meta-ICL
	Model and training details

	Transformers can in-context learn task mixtures
	Gaussian Mixture Models (GMMs)

	Simplicity bias in ICL?
	Multi-task generalization
	Deviations from Bayesian inference?
	ICL Transformer first generalizes then memorizes during pretraining
	Gradient Descent as a tractable approximation of Bayesian inference

	Summary of further results
	Conclusion
	Technical Details
	PME Theoretical Details
	The curious case of positional encodings.
	Experimental Setup

	Linear and Non-linear inverse problems
	Linear inverse problems
	Function classes and baselines
	Results

	Non-linear functions
	Fourier Series
	Random Fourier Features
	Degree-2 Monomial Basis Regression
	Haar Wavelet Basis Regression

	Detailed Experiments for HMICL setup
	Why HMICL?
	Gaussian Mixture Models (GMMs)
	More complex mixtures
	Fourier series mixture detailed results
	Complexity Biased Pre-training

	Conditions necessary for multi-task ICL

	Details regarding Multi-task generalization experiments
	Monomials Multi-task
	Fourier Series Multi-task
	Details on the phenomenon of forgetting

	Gradient Descent as a tractable approximation of Bayesian inference
	Further Concluding Remarks

