Geometry Aware Operator Transformer As An
Efficient And Accurate Neural Surrogate For PDEs
On Arbitrary Domains

Shizheng Wen' Arsh Kumbhat! Levi Lingsch'?
Sepehr Mousavi'® Yizhou Zhao* Praveen Chandrashekar’ Siddhartha Mishra'-

! Seminar for Applied Mathematics, ETH Zurich, Switzerland
2 ETH AI Center, Zurich, Switzerland
3 Department of Mechanical and Process Engineering, ETH Zurich, Switzerland
4 School of Computer Science, CMU, USA
5 Centre for Applicable Mathematics, TIFR, India

Abstract

The very challenging task of learning solution operators of PDEs on arbitrary do-
mains accurately and efficiently is of vital importance to engineering and industrial
simulations. Despite the existence of many operator learning algorithms to approx-
imate such PDEs, we find that accurate models are not necessarily computationally
efficient and vice versa. We address this issue by proposing a geometry aware oper-
ator transformer (GAOT) for learning PDEs on arbitrary domains. GAOT combines
novel multiscale attentional graph neural operator encoders and decoders, together
with geometry embeddings and (vision) transformer processors to accurately map
information about the domain and the inputs into a robust approximation of the
PDE solution. Multiple innovations in the implementation of GAOT also ensure
computational efficiency and scalability. We demonstrate this significant gain in
both accuracy and efficiency of GAOT over several baselines on a large number of
learning tasks from a diverse set of PDEs, including achieving state of the art perfor-
mance on three large scale three-dimensional industrial CFD datasets. Our project
page for accessing the source code is available at camlab-ethz.github.io/GAOT.

1 Introduction

Partial Differential Equations (PDEs) are widely used to mathematically model very diverse natural
and engineering systems [15]. Currently, numerical algorithms, such as the finite element and finite
difference methods, are the preferred framework for simulating PDEs [44]. However, these methods
can be computationally very expensive, particularly for the so-called many-query problems such
as uncertainty quantification (UQ), control, and inverse problems. Here, the solver must be called
repeatedly, leading to prohibitive costs and providing the impetus for the design of fast and efficient
surrogates for PDE solvers [36].

To this end, ML/AI based algorithms are increasingly being explored as neural PDE surrogates. In
particular, neural operators [23, 5], including those proposed in [26, 27, 32, 45, 21], which learn
the PDE solution operator from data, are widely used [3]. As many of these neural operators are
restricted to PDEs on Cartesian (regular) grids, they cannot be directly applied to most engineering

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://camlab-ethz.github.io/GAOT

and industrial systems, which are set on domains with complex geometries, imposing a pressing need
for neural operators for learning PDEs on arbitrary domains (point clouds).

In this context, a variety of options have recently been proposed, including domain mask-
ing for FNO and CNO [45], replacing FFT in FNO with direct spectral evaluations [30],
augmenting FNO with learned diffeomorphisms [25] and mapping arbitrary point cloud data
between the input domain and latent regular grids with learned encoders/decoders, while
processing on the latent grid with FNO [28] or transformers [1, 53]. Alternatives such
as end-to-end message-passing based graph neural networks [41, 16, 47, 46, 7, 14, 39]
or end-to-end transformer based models [52, 33, 19, 51, 48] have also been proposed.
A thorough comparison of the existing models, not Aot

just in terms of accuracy but also computational

efficiency and scalability, is necessary to evaluate el s
whether these models are yet capable enough to

act as surrogates for highly successful finite ele-

ment methods for engineering simulations [44].

As one of the contributions in this paper, we per-
formed such a comparison (see Sec.3 for details) s
to find evidence for an accuracy-efficiency trade-

off, i.e., accurate and robust models, such as the
message passing based RIGNO of [39] are not
necessarily computationally efficient nor scalable

in terms of training throughput and inference la-

tency. On the other hand, more efficient models

such as GINO [28] are not accurate enough (see

the accompanying Radar Chart in Fig. 1). Given

this observation, our main goal in this paper is o a0t o T o -

to propose an algorithm to learn PDE solution Rjgure 1: Normalized performance of GAOT and
operators on arbitrary domains that is accurate, paselines across eight axes, covering accuracy
computationally efﬁf:ient, apd can be .seamlessly (Acc.), robustness (Robust), throughput (Tput),
scaled to real-world industrial simulations. scalability (Scal.) on time-dependent (TD) and

To this end, we propose Geometry Aware Operator time-independent (TI) tasks.

Transformer (GAQOT, pronounced goat) as a neural surrogate for PDEs on arbitrary domains. While
being based on the well-established encode-process-decode paradigm [41], GAOT includes several
novel features that are designed to ensure both computational efficiency and accuracy, such as

Robust-TD

Inf. Latency

Train Tput

* Qur proposed multiscale attentional graph neural operator (MAGNO) as the encoder
between inputs on an arbitrary point cloud and a coarser latent grid, designed to enhance
accuracy through its multiscale information processing and attention modules.

* Novel Geometry embeddings in the encoder (and decoder) that provide the model with
access to information about the (local) domain geometry, greatly increasing accuracy.

* A transformer processor that utilizes patching (as in ViTs [11]) for computational efficiency.

A MAGNO decoder, able to generate neural fields, with the ability to approximate the
underlying solution at any query point in the domain.

* A set of novel implementation strategies to ensure that the computational realization of
GAQOT is efficient and highly scalable.

Combining these elements allows GAOT to treat PDEs on arbitrary domains in a robust, accurate
and computationally efficient manner. We demonstrate these capabilities by,

» Extensively testing GAOT on 28 challenging benchmarks for both time-independent and
time-dependent PDEs of various types, ranging from regular grids to random point clouds to
highly unstructured adapted grids, and comparing it with widely-used baselines to show that
GAQOT is both highly accurate as well as computationally efficient and scalable, see Fig. 1.

* The efficiency and scalability of GAOT is further showcased by it achieving state of the art
(SOTA) performance on the large scale three-dimensional industrial benchmark of DrivAer-
Net++ dataset for automobile aerodynamics [13]. We also test GAOT and demonstrate its
superior performance to the GINO baseline on two further 3D industrial scale datasets, i.e.,

DrivaerML dataset for automobile aerodynamics and a NASA-CRM dataset for aerospace
applications.

* Through extensive ablations, we also highlight how the novel elements in the design of
GAOT such as multiscale attentional encoders and geometry embeddings crucially contribute
to the overall performance of our model.

2 Methods.

Problem Formulation. We start with a generic time-independent PDE,
D(c,u)=f, YreDcCRY B(u)=uw, z¢€adD, (D)

with v : D +— R™, the PDE solution, c is the coefficient (PDE parameters), f is the forcing term, u;,
are boundary values and D and B are the underlying differential and boundary operators, respectively.
Denoting as x p, a function (e.g. indicator or signed distance) parameterizing the domain D, we
combine all the inputs to the PDE (1) together into a = (¢, f, up, XD), then the solution operator 8
maps inputs into PDE solution with © = 8a. The corresponding operator learning task is to learn
the solution operator 8 from data. To this end, let iz be an underlying data distribution. We sample
i.i.d. inputs a(® ~ p, for 1 < < M and assume that we have access to data pairs (a(i), u(i)) with

u?) = 8a'?), Thus, the operator learning task is to approximate the distribution 84, from these data
pairs. In practice, we can only access discretized versions of the data pairs, sampled on collocation
points (which can vary over samples).

Similarly denoting a generic time-dependent PDE as,
uy +D(c,u) =0, YreDcCRY te[0,T] u(0)=up, €D,)

with, u : D x [0,T] — R™, ¢ the PDE coefficient and uq the initial datum and the underlying (spatial)
differential operator D. Clubbing the inputs to the PDE (2) into a = (¢, ug, Xp), the corresponding
solution operator 8;, with u(t) = 8;(a) for all ¢ € [0,T7], maps the input into trajectory of the
solution. The operator learning task consists of approximating (8),, from data pairs (a(i), u(® ()

forall t € [0, T(i))] and 1 < ¢ < M with samples a; drawn from the data distribution x. However in
practice, we only have access to data, sampled on a discrete set of spatial points per sample as well as

only on discrete time snapshots tSf) e [0, 7] and have to learn the solution operator from them.

GAOT Model Architecture. The overall architecture of GAOT is depicted in Fig. 2. For simplicity
of exposition, we start with the time-independent case, where given inputs a(z;) on the point cloud
Da ={z;} C D,for1 < j < J, GAOT provides an approximation to solution u of the PDE (1) at
any query point z € D. At a high level, GAOT follows the encode-process-decode paradigm of [41].
In the first step, an encoder transforms the input on the underlying point cloud Da to a latent point
cloud D C R?. The resulting spatial tokens are then processed by a processor module to learn useful
representations and its output is remapped to the original domain D via the decoder, which allows
evaluation at any query point x € D.

Choice of Latent Domain. As depicted in SM Fig. B.1, the latent domain D (to which the encoder
maps) can be chosen in three different ways, namely 1) a regular (structured) grid stencil, consisting of
equispaced points on a Cartesian domain (see also Fig. 2) ii) randomly downsampling the underlying
point cloud D or iii) a projected low-dimensional representation, where a high-dimensional domain
is projected to a lower dimension (for instance using tri-plane embeddings in 3-D [9]) and a regular
grid is used in the lower-dimensional domain. GAOT is a general framework where any of these
latent point cloud choices can be employed for D.

Encoder. Given input values a(z;) on the underlying point cloud DA, the encoder aims to transform
it into latent features w,(y) at any point y € D on the latent point cloud. Using a graph-neural
operator (GNO) encoder as in GINO [28] would lead to,

Ny

Te(y) = Y arK (y, i, alwx)p(aler)), 3)

k=1

o

el

(©: Concatenate + Linear @W): Weighted Sum

Physical Field

Increasing Scales

G i
INILIE

Embedding Layer

[

|
Transformer Block |

17

| Transformer Block |

Tokenization

| Transformer Block |

.
/ -
1
i =]
: 3 [y | Transformer Block |
¥ g ‘ o
Q
1 23
: ! . | Transformer Block |
73 S
1) l
: B Linear]
1
1
\
N

BRI

Figure 2: Schematic of the GAOT with an equispaced latent token grid. The encoder uses a multiscale
attentional graph neural operator (MAGNO) to aggregate the input data into geometry-aware tokens. A
vision transformer (ViT) block with residual connections processes tokens, enabling global exchange
of information. A MAGNO decoder identifies the nearest tokens around a given query point to decode
the final field.

with MLPs K and ¢ and the sum above taken over all the n,, points z;, € Da such that |y — x| < r
for some hyperparameter r > 0, where oy, are some given quadrature weights. In other words, a
GNO accumulates information from all the points in the original point cloud that lie inside a ball of
radius r, centered at the given point y in the latent point cloud, and processes them through a kernel
integral.

Our first innovation is based on the realization that this single-scale approach might be limiting the
overall accuracy. Instead, we would like to introduce a mechanism to integrate multiscale information
into the encoder. To this end and as shown in Fig. 2, we choose r,, = s,,,70, for some base radius r¢
and scale factors s,,, form = 1,...,m to modify GNO (3) by,

T() = 3 o K™ (g, zh. alee))plalz), @
k=1

for any fixed scale m and with MLPs K™, . The above sum is taken over all the ny" points x, € Da
such that |y — x| < 7,,,. To choose the quadrature weights a}’, we propose an attention based

choice,
m exp(el” m (WY, Wilay)
op =) Vg W),)
i . Vd
> exp(ef)
k'=1

with Wi, Wit € RX™ are query and key matrices respectively, completing the description of the
attentional graph neural operator (AGNO) (4) at each scale m.

Geometry Embeddings. The only geometric information in the afore-described encoder is provided
by the coordinates of the underlying points. This alone does not convey the rich geometric information
about the domain that can affect the solution of the underlying PDE (2). Hence, we need to
embed further geometric information into the model. Deviating from the literature where geometric
information is provided either by appending them as node and edge features on the underlying graphs
[16] or by encoding a signed distance function [28], we propose to use novel geometry embeddings to
encode this information. To this end and as described in SM Sec. B.3, we can rely on local statistical
embeddings for each point y € D as all the neighboring points x, in Da with |y — x| < 7, have
already been computed in the AGNO encoder. From these points, we can readily compute statistical

descriptors such as i) number of neighbors xj;, € Da, in the ball B, (y), ii) the average distance
Doy = T%m ZZL |y — x|, iii) the variance of this distance D,,,, with respect to the average Dy,
Yy

iv) the centroid offset vector A, = ,%m Z;il(zk — y) and v) a few principal component (PCA)
Y

features of the covariance matrix of y — x, to calculate the local shape anisotropy. These statistical
descriptors, for each scale m and each point y € D are then concatenated into a single vector z,,
normalized across components to yield zero mean and unit variance and fed into an MLP to provide
the embedding g™ (y). Alternatively, geometry embedding using PointNet models [42] can also be
considered.

MAGNO. As shown in Fig. 2, the scale-dependent AGNO w[* (4) and the geometry embedding
g™, at each scale m, can be concatenated together and passed through another MLP to yield a
scale-specific latent features function W™ (y). Next, we need to integrate these features across all m
scales. Instead of naively summing these scale contributions, we observe that different scales might
contribute differently for every latent token to the encoding. To ascertain this relative contribution,
we introduce a (small) MLP v,,, and weigh the relative contributions with a softmax and combine
them into the multiscale attentional graph neural operator or MAGNO encoder by setting,

wel) = 3 Bn)@™ (), VyED, fmy) = —2Wmv) ©
")

Transformer Processor. The encoder provides a set of geometry aware tokens w,(y;), for all
points y, € D, with 1 < £ < L, in the latent point cloud. These tokens are further transformed by a
processor. As shown in Fig. 2, we choose a suitable transformer based processor. While postponing
details on the processor architecture to SM Sec. B.4, we summarize our choices here. If the latent
points {y,} lie on a regular grid (either through a structured stencil or a projected low-dimensional
one), we use a patch-based vision transformer or ViT ([11] and [21, 38] for PDE operator learning)
for computational efficiency. The equispaced latent points are combined into patches and the tokens
in each patch are flattened into a single token embedding which serves as the input for a multi-head
attention block, followed by a feed forward block. RMS normalization is applied to the tokens before
processing. Either sinusoidal absolute position embeddings or rotary relative position embeddings
are used to encode token positions. If the latent points y, are randomly downsampled from the
original point cloud, there is no obvious way to patch them together. Hence, a standard transformer
[50], but with RMS normalization, can be used. Additionally, we employ multiple skip connections
across transformer blocks (see Fig. 2). The transformer processor transforms the tokens w, (y¢) into
processed tokens, that we denote by w,,(y¢), forall 1 < ¢ < L.

Decoder. Given any query point z € D in the original domain, the task of the decoder in GAOT
is to provide w(x), which approximates the solution u of the PDE (1) at that point. To this end, we
simply employ the MAGNO architecture in reverse. By choosing a base radius 7y and scale factors
Sm, a set of increasing radii 7,,, = §,,7¢ are selected to define a set of increasing balls By, (x) around
the query point x (Fig. 2). A corresponding AGNO model is defined by replacing y — =, xr — ys
and a — w,, in (4), with corresponding attentional weights computed via (5). In parallel, geometry
embeddings over each ball By (x) are computed to provide statistical information about how the
latent points y, are distributed in the neighborhood of the query point z. These AGNO features
and geometry embeddings are concatenated and passed through a MLP to provide w(z) which has
the desired dimensions of the solution u of the PDE (1). We denote the GAOT model as Sy with
the output w = 8y(a), for the inputs a to the PDE (1). It is trained to minimize the mismatch the
underlying operator 8, i.e, the parameters 6 are determined to minimize a loss £(8(a), Sy(a)), over
all input samples a’, with £ being either the absolute or mean-square errors.

Extension to time-dependent problems. To learn the solution operator 8; of the time-dependent
PDE, we observe that the 8; can be used to update the solution forward in time, given the solution
at any time point u(t) by applying u(t + 7) = 8, (u(t)). Thus, for any time ¢, given the augmented
input a(t) = (¢, u(t)), with ¢ being the coefficient in the PDE (2), we need GAOT to output u(t + 7),
for any 7 > 0. To this end, we retain the architecture of GAOT, as described for the time-independent
case above, and simply add the current time ¢ and the lead-time T as further inputs to the model.

Table 1: Benchmark results on time-dependent and time-independent datasets. Best and 2nd best
models are shown in blue and orange fonts for each dataset.

Dataset Median relative L' error [%]
Time-Independent GAOT RIGNO-18 Transolver GNOT UPT GINO
Poisson-C-Sines 3.10 6.83 77.3 100 100 20.0
Poisson-Gauss 0.83 2.26 2.02 88.9 48.4 7.57

Elasticity 1.34 4.31 4.92 10.4 126 4.38
NACAO0012 6.81 5.30 8.69 6.89 16.1 9.01
NACA2412 6.66 6.72 8.51 8.82 17.9 9.39

RAE2822 6.61 5.06 4.82 7.15 16.1 8.61
Bluff-Body 2.25 5.76 1.78 44.2 5.81 3.49

Time-Dependent GAOT RIGNO-18 GeoFNO FNODSE UPT GINO
NS-Gauss 2.91 2.29 41.1 384 92.5 13.1
NS-PwC 1.50 1.58 26.0 56.7 100 5.85
NS-SL 1.21 1.28 13.7 22.6 51.5 4.48
NS-SVS 0.46 0.56 9.75 26.0 4.2 1.19
CE-Gauss 6.40 6.90 42.1 30.8 642 251
CE-RP 5.97 3.98 18.4 27.7 26.8 12.3
Wave-Layer 5.78 6.77 11.1 28.3 19.6 19.2
Wave-C-Sines 4.65 5.35 13.1 5.52 12.7 5.82

More precisely, the time-dependent version of GAOT is of the form Sg (z,t,7,a(t)), where a(t) takes

values at points sampled in D. Following [39], the map Sy can be used to update an approximate
solution of PDE (2) in time by following a very general time-stepping strategy:

So(t, 7, a(t)) = yu(t) + 68¢(x,t, 7, a(t)). (7

Here, choosing the parameters (-, d) appropriately leads to different strategies for time stepping:
~ = 0,9 = 1 directly approximates the output of the solution operator at time t + 7;v =1, = 1
yields the residual of the solution at the later time, with respect to the solution at current time;
~ =1,§ = 7 is equivalent to approximating the time-derivative of the solution. GAOT provides the
flexibility to use any of these time-stepping strategies. We also use the all2all training strategy [21]
to leverage trajectory data for time-dependent PDEs.

Efficient implementation. As our goal is to ensure accuracy and computational efficiency, we have
designed GAOT with ability for large-scale computations in mind. We started with the realization
that the heaviest burden of the computation should fall on the processor. The encoder and decoder
are often responsible for memory overheads as these modules entail sparse computations on graphs
with far more edges than nodes, making the computations largely edge-based and leading to high
(and inefficient) memory usage. Moreover, in many PDE learning tasks on arbitrary geometries, the
underlying domain (and the resulting graph) varies significantly between data samples, making load
balancing very difficult.

To address these computational challenges, we resorted to i) moving the graph construction outside
the model evaluation by either storing the graph, representing the input point cloud, in memory
for small graphs or on disk for large graphs and loading them during training with efficient data
loaders ii) sequentially processing each input in a given batch for the encoder and decoder, while still
batch processing in the transformer processor, allowing us to reduce memory usage while retaining
efficiency and iii) if needed for very large-scale datasets, we use an edge-dropping strategy to further
increase the memory usage of the encoder and decoder. These innovations are essential to ensure
batch training and underpin the efficiency of GAOT, even when input geometries vary significantly.
A more detailed discussion on these novel implementation tricks is provided in SM E.2.

3 Results.

Datasets and Baselines. We start by testing GAOT of a challenging suite of 15 datasets for PDEs
with input/output data on arbitrary point clouds in two space dimensions, see SM Secs D and G

—— GAOT

—— CINO
RIGNO-18

—&— Transolver

—— GAOT
—— CINO

RIGNO-18
~&— Transolver

oughput (samples/s)

Mean Relative L' Exror

ing thr

& 10

10° 100 10! 102 — - —
Model size (M parameters) Number of Task-Specifc Traning Sannples

(a) Grid vs. Throughput (b) Model vs. Throughput (c) Transfer Learning

Figure 3: Training throughput (samples/s) with increasing input grid size (a) and model size (b) for
proposed GAOT, GINO, RIGNO and Transolver. (c) Transfer learning performance of GAOT on
unseen bluff body shapes (See SM Sec. E.9 for dataset details). FT (fine-tuning) adapts a pretrained
GAOT model from Table 1, while TFS denotes training from scratch. FT consistently outperforms
TFS across varying numbers of task-specific training samples.

for a detailed description of the datasets and for visualizations, respectively. For time-independent
PDE:s, in addition to the elasticity benchmark of [25], we consider two Poisson equation datasets:
Poisson-Gauss, defined on random points in a square domain, and Poisson-C-Sines, a new dataset
we propose, containing rich multiscale solutions on a circular domain. In addition, we propose 4
new datasets comprising compressible flows past objects, both airfoils as well as bluff bodies. These
datasets have significant variation in domain geometry and flow conditions (Mach numbers ranging
from subsonic to supersonic, varying angles of attack etc.) and are tailor-made for testing neural
PDE surrogates on arbitrary domains in two space dimensions. For time-dependent PDEs, we test on
the challenging datasets considered recently in [39], composed of 8 operators corresponding to the
compressible Euler (2), incompressible Navier-Stokes (4), and acoustic wave equations (2). These
time-dependent operators include complex multiscale solutions with shocks and other sharp traveling
waves which can interact, reflect and diffract making them hard to learn. We test GAOT on these
datasets and compare them with several widely used neural operators for PDEs on arbitrary domains
including those based on message passing (RIGNO [39]), Fourier Layers (GINO [28], GeoFNO [25],
FNO DSE[30]) and Transformers (Transolver [52], UPT [1] and GNOT [19]).

Accuracy and Robustness. In Table 1, we present the relative test errors for the above datasets to
observe that GAOT is very accurate on all of them, being either the best (10) or second-best (4) model
on 14 of them. On average, over the time-independent datasets, GAOT is almost 50% more accurate
than the second-best performing model (RIGNO-18) while on time-dependent datasets, it is slightly
more accurate than the second-best performing model (RIGNO-18). What is even more noteworthy is
the robustness of the performance of GAOT over all the datasets. As seen from Table 1, the accuracy
of GAOT is uniformly good over all the datasets and does not deteriorate on any of them. On the
other hand, all the baselines show significantly poor performance on outlier datasets. This robustness
can be quantified in terms of a robustness score (see SM Sec. E.3) to find that GAOT is almost three
times more robust on the time-independent datasets as the second-best model (RIGNO-18), while
GAOT and RIGNO-18 are as robust as each other on the time-dependent datasets.

Computational Efficiency and Scalability. Itis worth Table 2: Comparison of model size
reiterating that the computational efficiency of an ML (Params.), throughput (samples/s), and
model is a significant marker of overall performance. We latency (ms) across GAOT and represen-
test efficiency in terms of two critical quantities, the frain- tative baselines.

ing throughput and the inference latency. For a given input

and model size, training throughput measures the number =~ Model Params. M) Tput. Latency
of samples that a model can process during training (for- GaoT 5.62 975 6966
ward pass, backward pass and gradient update) per unit ~ GINO 6.04 604 8435

. . P) GP RIGNO-18 2.69 503 1274
time (in seconds) on a given compute system (GPU or picoiver 386 395 1529

CPU). The higher the training throughput, the faster the
model can be trained. On the other hand, the inference latency is the amount of time it takes for a
model to infer a single input. We present the throughput and latency for GAOT and three selected
baselines (RIGNO-18 for Graph-based, GINO for FNO-based and Transolver for Transformer-based

Input Mesh GT Pressure Pred Pressure GT WSS-x Pred WSS-x

Figure 4: Comparison of predicted and ground-truth (GT) results for the pressure and wall shear
stress in the x-direction (WSS-x) on the DrivAerNet++ test sample N_S_WWS_WM_172.

models) in Table 2 for learning tasks (such as the bluff-body dataset for compressible flow) where the
domain geometry varies throughout the dataset. These experiments are conducted on one NVIDIA
GeForce RTX 4090 GPU with float32 precision. We see from this table that GAOT has the highest
training throughput and the fastest inference latency, being almost 50% and 15%, respectively better
than the second-most efficient model (GINO).

How the training throughput of a model scales with increasing input and model size, is absolutely
crucial for evaluating whether it can be used to process large-scale datasets (input scalability) or
whether it can serve as a backbone of foundation models (model scalability) which require large
model sizes [21]. To evaluate the scalability of different models, we plot how the training throughput
changes as input size and model size (Fig. 3 (a, b)) are increased to find that GAOT scales much
more favorably than the baselines with respect to both input and model size. In fact, models like
Transolver and GNOT scale very poorly, making it impossible for us to train them for the large-scale
time-dependent datasets with all2all training, which requires handling large volumes of data for large
input sizes. Hence, we omit them in the accuracy results for time-dependent datasets in Tab. 1. The
results for both accuracy and efficiency across a range of metrics for GAOT, RIGNO, GINO and
Transolver are summarized in SM Tab. E.4 and visualized in the Radar chart Fig. 1. This demon-
strates that GAOT ensures both accuracy (robustness) and computational efficiency (scalability) at
the same time, while being the best model performing model on both sets of metrics.

Industrial scale 3D datasets. Cnven the.hlgh Table 3: Error metrics of MSE (x10~2) and
accuracy and excellent computational efficiency Mean AE (x10~1) for Pressure and Wall Shear
and scalability of GAOT, we showcase its abili- Stress on the DrivAerNet++ dataset

ties further on three challenging three-dimensional ’

large-scale benchmarks for industrial simulations. Pressure Wall Shear Stress
We start with the DrivAerNet++ dataset of [13]. In ~ Medd!

this benchmark, the data consists of high-fidelity

MSE Mean AE MSE Mean AE

: : . GAOT 42694 10699 8.6878 1.5429
CFD simulations across 8K dlfferent. car shapes JiC el 19900 12200 98600 22200
which span the entire range of conventional car de- TripNet 51400 12500 9.5200 2.1500
sign. The underlying task is to learn steady-state =~ RegDGCNN 82900 1.6100 13.8200 3.6400

. GAOT (NeurField) 120786 17826 229160 2.5099
surface fields (See Fig. 4) such as the pressure (NeurFicld)

and wall shear stress, given the input car shape and flow conditions. The data has approximately
500K points per shape, making the overall training extremely compute intensive. Thus, only scalable
models can currently process this learning task. We test GAOT on this challenging 3D benchmark
and report the RMSE and MAE test errors for the pressure and wall shear stress in Tab. 3. Compared
to baselines results taken from the leaderboard of the DrivAerNet++ challenge [9], we see that GAOT
significantly improves on the state-of-the-art (see also Fig. 4). This improvement is most visible in
the MAE for wall shear stress where GAOT is ca. 30% more accurate than the second-best model
(TripNet), which currently sits atop the leaderboard for wall shear stress predictions. We recall that
GAOT’s decoder endows it with neural field properties. We showcase it for the DrivAerNet++ dataset
by training GAOT on a randomly selected set of less than 10% of the total input points (per batch) and
then testing on the original car surface point cloud by querying the desired points through GAOT’s
decoder. Although not as accurate as training GAOT with full input, we observe from Tab. 3 that
this neural field version of GAOT has comparable accuracy to some of the baselines which have

Table 4: Comparison of GAOT and GINO across two benchmarks with MSE (x 10~2) and Mean
AE (x10~1). Cp: Pressure Coefficient, WSS: Wall Shear Stress, P: Pressure, Cf: Skin Friction
Coefficient. DML: DrivaerML dataset, CRM: NASA CRM dataset.

Cp (DML) WSS (DML) P (CRM) Cf (CRM)
MSE Mean AE MSE Mean AE MSE Mean AE MSE Mean AE

GAOT 5.1729 1.2352 16.9818 2.1640 7.7170 1.6014 16.1091 2.2305
GINO 8.8124 1.5238 28.4832 2.7330 10.5688 1.7450 21.1789 2.4240

Model

NASA CRM Input NASA CRM GT NASA CRM Pred DrivaerML Input DrivaerML GT DrivaerML Pred

Figure 5: Comparison of predicted and ground-truth (GT) results for the pressure on the test sample
of DrivAerML and NASA-CRM.

been trained with 10x more input points, further demonstrating the flexibility and accuracy of GAOT.
Further assessments of the neural field property of GAOT are provided in SM E.8.

Next, we consider the very challenging DrivAerML dataset of [2] (see Fig. 5), where the learning task
is exactly the same as in DrivAernet++, i.e., predicting surface fields on the car, given its shape as the
input. However, unlike DrivAernet++ which was based on coarse RANS simulations, DrivAerML’s
ground truth is based on highly accurate LES simulations. This enables the incorporation of much
more fine-scale physical effects in this dataset. The learning problem becomes harder, not just in
terms of the challenging underlying physics, but also the fact that the number of points on the car
surface is now 9M, instead of 500K for DrivAernet++. Thus, only highly scalable models can
deal with this extreme resolution. Consequently, we are only able to test GAOT and GINO for this
dataset and report the results in Table 4 to observe that GAOT is significantly (almost twice on wall
shear-stress) as accurate as GINO on this dataset.

Finally, we consider an industrial-scale dataset, recently proposed in [6], where the learning task (see
Fig. 5), is to predict surface pressure and the skin friction coefficient, given the shape of a full aircraft.
The ground truth is generated with RANS simulations using a Spalart-Allmaras turbulence model,
and the results with GAOT and GINO are reported in Table 4, showing that GAOT significantly
outperforms GINO on this large-scale industrial dataset.

Generality, Generalization and Scaling. We highlight GAOT’s flexibility with respect to the
point distributions that it can handle by testing it on PDEs with regular grid inputs, as suggested in
[39]. To this end, we considered 7 additional datasets and present the test errors in SM Sec. E.5. to
find that GAOT is highly accurate even on regular grids and is either more accurate or comparable
to the highly expressive GNN-based RIGNO, while being more accurate than widely used neural
operators such as FNO and CNO. A key requirement in operator learning [23, 5] is the ability of the
model to generalize (at test time) to input and output resolutions that are different from the training
resolution. As GAOT can be readily evaluated at any query point, we showcase this aspect of GAOT
in SM Sec. E.7. by plotting the test errors for a sequence of resolutions, different from the training
resolution, for the Poisson-Gauss benchmark, to find that GAOT generalizes very well in both the sub-
and super-resolution settings, even to grids with 10x more input points than the training resolution.
Another test of the generalizability of a model is its ability to perform well out-of-distribution, either
zero-shot or when it is fine-tuned with a few in-distribution samples for the new learning task. To
test this aspect, we consider the datasets for compressible flow past bluff bodies and train a GAOT
model on a set of bluff body shapes and then test it on shapes that were not in the training set. Then,
the model is fine-tuned with a few task-specific samples and the results are shown in Fig. 3 (c).
We observe that our model performs very well in a few-shot transfer learning scenario, with the
fine-tuned model providing an almost order of magnitude gain in accuracy over the model, trained

from scratch. Finally, in SM Sec. E.6, we demonstrate that GAOT scales with both model and dataset
size, with scaling with respect to dataset size, also illustrated in Fig. 3 (c)

Why does GAOT work so well ? To answer this question, we have performed extensive ablation
studies in SM Sec.F to observe that i) the MAGNO encoder/decoder is clearly superior to message-
passing based encoders/decoders, ii) choosing a regular equispaced latent point cloud performs
significantly better than either downsampling on the original point cloud or using a projected low-
dimensional regular grid, iii) GAOT is highly robust to the size of its latent grid, iv) a time-derivative
marching strategy, i.e, setting v = 1,0 = 7 in (7) is superior to other choices of 7, d, v) using a statis-
tical geometric embedding performs significantly better than either not using additional geometric
information or using a pointnet to process geometric information vi) incorporating multiscale features
in the MAGNO encoder/decoder provides a significant gain in accuracy when compared to using
just a single scale GNO encoder/decoder as in GINO and vii) The power of GAOT does not just
stem from its VIT processor, but also from its MAGNO encoder/decoder (SM E.5), acting in tandem.
These results justify the choices that we have made in designing GAOT and selecting the relevant
model components, while also revealing how these innovative features underpin GAOT’s accuracy.

However, as argued before, this accuracy might come at the price of computational inefficiency. But,
as we have demonstrated above, GAOT is also the most efficient model and does not have to pay
the accuracy-efficiency trade-off. The reasons behind this boil down to the tricks used in efficiently
implementing GAOT, which are discussed at length in SM E.2 and E.1.

4 Discussion

Summary. We present GAOT, a new neural operator for learning PDE solutions on arbitrary domains.
It is based on a novel multiscale GNO encoder/decoder, combined with geometric embeddings that
convey statistical information about the local domain geometry, and a (vision) transformer based
processor. The model is designed to handle any point cloud input and provide the output at any
query point in the underlying domain. Several innovative strategies have been used to make the
implementation of GAOT computationally efficient and scalable. We test GAOT on a large number
of challenging datasets for a variety of time-dependent and time-independent PDEs over diverse
two-dimensional domain geometries to find that GAOT is significantly more accurate, robust and
computationally efficient in terms of training throughput and inference latency, over a large set of
baselines. We further demonstrate the potential of GAOT by presenting its SOTA performance on
three large-scale three-dimensional datasets of industrial simulations in the automobile and aerospace
sectors. These results demonstrate that GAOT can be a powerful and scalable neural operator with
wide-spread applications. They also showcase the main advantage with an efficient and accurate
neural operator such as GAOT, i.e, its inference time is many orders of magnitude faster than the
runtime of a classical numerical PDE solver. We quantify this speedup in SM E.11 to find that GAOT
can be anywhere between 4 to 9 orders of magnitude faster to run than classical PDE solvers, while
retaining accuracy.

Related Work. As discussed before, there are 3 broad classes of models for learning PDEs on
arbitrary domains namely i) end-to-end message-passing based frameworks exemplified here with
RIGNO, which significantly improves upon models such as (multiscale) MeshGraphNets [41, 16] ii)
Transformer based frameworks such as Transolver [52], GNOT [19] and UPT [1] and iii) frameworks,
based on GNO encoders/decoders and FNO processors as in GINO [28]. GAOT differs from all these
approaches by a) not using graph-based message passing, b) only employing transformers in the
processor ¢) using a transformer, rather than FNO as a processor and significantly augmenting the
GNO encoder/decoder by multiscale features, attention based-quadrature and geometry embeddings.
It is precisely these choices, along with a highly efficient implementation, that allows GAOT to
significantly surpass GINO, RIGNO, and Transolver in both accuracy and efficiency.

Limitations and Extensions. GAOT’s excellent scalability and ability to generalize very well in
a transfer learning setting (Fig. 3c) showcase its potential to serve as the backbone of foundation
models for PDEs, extending models such as Poseidon [21] and DPOT [18] to arbitrary domains.
Physics-informed loss functions can be added to GAOT to enable it to act as a physics-informed
neural operator as in [29]. We also plan to apply GAOT to downstream tasks such as UQ [34], inverse
problems, [37] and PDE constrained optimization [35] to further test its abilities. Finally, theoretical
results for GAOT, such as universal approximation, will be considered in future work.

10

Acknowledgements

The contribution of Siddhartha Mishra to this work was supported in part by the DOE SEA-CROGS
project (DE-SC-0023191).

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Benedikt Alkin, Andreas Fiirst, Simon Lucas Schmid, Lukas Gruber, Markus Holzleitner, and
Johannes Brandstetter. Universal physics transformers: A framework for efficiently scaling

neural operators. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Mockett C. Fuchs M. Fliessbach L. Hetmann H. Knacke T. Schonwald N. Skaperdas V. Fotiadis
G. Walle A. Hupertz B. Ashton, N. and D Maddix. Drivaerml: High-fidelity computational
fluid dynamics dataset for road-car external aerodynamics. arxiv.org, 2024.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi,
and Anima Anandkumar. Neural operators for accelerating scientific simulations and design.
Nature Reviews Physics, pages 1-9, 2024.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 22669-22679, 2023.

Francesca Bartolucci, Emmanuel de Bezenac, Bogdan Raonic, Roberto Molinaro, Siddhartha
Mishra, and Rima Alaifari. Representation equivalent neural operators: a framework for alias-
free operator learning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

Philipp Bekemeyer, Nathan Hariharan, Andrew M Wissink, and Jason Cornelius. Introduction
of applied aerodynamics surrogate modeling benchmark cases. In AIAA SCITECH 2025 Forum,
page 0036, 2025.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE
solvers. In International Conference on Learning Representations, 2022.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello,
Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-
aware 3d generative adversarial networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16123-16133, 2022.

Qian Chen, Mohamed FElrefaie, Angela Dai, and Faez Ahmed. Tripnet: Learning large-scale
high-fidelity 3d car aerodynamics with triplane networks, 2025.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

Thomas D Economon, Francisco Palacios, Sean R Copeland, Trent W Lukaczyk, and Juan J

Alonso. Su2: An open-source suite for multiphysics simulation and design. Aiaa Journal,
54(3):828-846, 2016.

Mohamed Elrefaie, Florin Morar, Angela Dai, and Faez Ahmed. Drivaernet++: A large-
scale multimodal car dataset with computational fluid dynamics simulations and deep learning
benchmarks, 2025.

Léonard Equer, T Konstantin Rusch, and Siddhartha Mishra. Multi-scale message passing
neural PDE solvers. arXiv preprint arXiv:2302.03580, 2023.

11

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia.
Multiscale meshgraphnets. arXiv preprint arXiv:2210.00612, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263-1272. PMLR, 2017.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima
Anandkumar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator transformer
for large-scale PDE pre-training. In Forty-first International Conference on Machine Learning,
2024.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pages 12556-12569. PMLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Képpeli, Roberto Molinaro, Em-
manuel de Bezenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for PDEs.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan
Sunkavalli, Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d.
arXiv preprint arXiv:2311.04400, 2023.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to pdes. Journal of Machine Learning Research, 24(89):1-97, 2023.

Brenda Kulfan. A Universal Parametric Geometry Representation Method - "CST".

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural
operator with learned deformations for pdes on general geometries. Journal of Machine
Learning Research, 24(388):1-26, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations. arXiv preprint arXiv:2003.03485, 2020.

Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash
Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli,
and Anima Anandkumar. Geometry-informed neural operator for large-scale 3d PDEs. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1-27, 2024.

Levi E. Lingsch, Mike Yan Michelis, Emmanuel de Bezenac, Sirani M. Perera, Robert K.
Katzschmann, and Siddhartha Mishra. Beyond regular grids: Fourier-based neural operators on
arbitrary domains. In Forty-first International Conference on Machine Learning, 2024.

Adrien Loseille, Alain Dervieux, Pascal Frey, and Frédéric Alauzet. Achievement of global
second order mesh convergence for discontinuous flows with adapted unstructured meshes. In
18th AIAA computational fluid dynamics conference, page 4186, 2007.

12

[32] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218-229, 2021.

[33] Huakun Luo, Haixu Wu, Hang Zhou, Lanxiang Xing, Yichen Di, Jianmin Wang, and Mingsheng
Long. Transolver++: An accurate neural solver for PDEs on million-scale geometries. In
Forty-second International Conference on Machine Learning, 2025.

[34] Kjetil O Lye, Siddhartha Mishra, and Deep Ray. Deep learning observables in computational
fluid dynamics. Journal of Computational Physics, page 109339, 2020.

[35] Kjetil O. Lye, Siddhartha Mishra, Deep Ray, and Praveen Chandrashekar. Iterative surrogate
model optimization (ISMO): An active learning algorithm for PDE constrained optimiza-

tion with deep neural networks. Computer Methods in Applied Mechanics and Engineering,
374:113575, 2021.

[36] Siddhartha Mishra and Alex (Eds.) Townsend. Numerical Analysis meets Machine Learning.
Handbook of Numerical Analysis. Springer, 2024.

[37] R. Molinaro, y. Yang, E. Engquist, and S Mishra. Neural inverse operators for solving pde
inverse problems. arXiv:2301.11167, 2023.

[38] Roberto Molinaro, Samuel Lanthaler, Bogdan Raoni, Tobias Rohner, Victor Armegioiu, Stephan
Simonis, Dana Grund, Yannick Ramic, Zhong Yi Wan, Fei Sha, Siddhartha Mishra, and
Leonardo Zepeda-Nuiiez. Generative ai for fast and accurate statistical computation of fluids,
2025.

[39] Sepehr Mousavi, Shizheng Wen, Levi Lingsch, Maximilian Herde, Bogdan Raoni, and Sid-
dhartha Mishra. Rigno: A graph-based framework for robust and accurate operator learning for
pdes on arbitrary domains, 2025.

[40] Jens-Dominik Muller. On triangles and flow. University of Michigan, 1996.

[41] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representations,
2021.

[42] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation, 2017.

[43] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652—-660, 2017.

[44] A. Quarteroni and A. Valli. Numerical approximation of Partial differential equations, vol-
ume 23. Springer, 1994.

[45] Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bezenac. Convolutional neural operators for
robust and accurate learning of PDEs. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[46] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
conference on machine learning, pages 8459-8468. PMLR, 2020.

[47] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Ried-
miller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for
inference and control. In International Conference on Machine Learning, pages 4470-4479.
PMLR, 2018.

[48] Louis Serrano, Thomas X Wang, Etienne Le Naour, Jean-Noél Vittaut, and Patrick Gallinari.
AROMA: Preserving spatial structure for latent PDE modeling with local neural fields. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

13

[49] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[50] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[51] Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris
Perdikaris. CVit: Continuous vision transformer for operator learning. In The Thirteenth
International Conference on Learning Representations, 2025.

[52] Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A
fast transformer solver for PDEs on general geometries. In Forty-first International Conference
on Machine Learning, 2024.

[53] Anthony Zhou, Zijie Li, Michael Schneier, John R Buchanan Jr, and Amir Barati Farimani.
Text2PDE: Latent diffusion models for accessible physics simulation. In The Thirteenth
International Conference on Learning Representations, 2025.

14

Supplementary Material for:

Geometry Aware Operator Transformer as an Efficient and Accurate Neural Surrogate for PDEs on

Arbitrary Domains

A Details of Problem Formulation.
A.1 General Formsof PDEs e
A.2 Solution Operators for PDEs oL

A3 DISCretizationS. o o e e e e e e e

B Details of GAOT Architecture
B.l1 Choiceof LatentGrid
B.2 Multiscale Attentional Graph Neural Operator
B.3 Geometry Embeddings o
B4 Processor
B.5 GraphBuilding Tricks
B.6 Training Details.

B.7 Inference e

C Baselines

C.2 Transolver e e

C3 GNOT . . .

D Datasets
D.l Poisson-C-Sines e
D.2 Compressible Flow Past Airfoils & Bluff Bodies

E Additional Results
E.1 Asymptotic Complexity it e
E.2 Runtime Profiling
E.3 Accuracy, Robustness and Computational Efficiency Metrics
E.4 Results for Radar Chartin Main Text.
E.5 Regular Grid Dataset
E.6 Model and Dataset Scaling
E.7 ResolutionInvariance o
E.8 Comparison of Neural Field with UPT
E.9 Transfer Learning
E.10 Training Randomness e

E.11 Runtime Comparison between GAOT and Classical Solvers

F Ablation Studies

F.1 Encode-Process-Decode

17
17
17
18

18
19
20
21
23
24
25
27

29
29
30
31

32
34
34

36
36
36
37
39
40
41
43
44
45
45
46

46

F2 Tokenization Strategies e e 47

F3 Time-Stepping Method 48
F4 Geometric Embedding o 49
F5 Multiscale Features e 50
G Visualizations of Datasets 50

16

A Details of Problem Formulation.

Here, we introduce the core concepts of operator learning for both time-dependent and time-
independent partial differential equations (PDEs). We begin by defining the general forms of PDEs
under consideration and then discuss the associated operator-learning tasks.

A.1 General Forms of PDEs

We focus on two broad classes of PDEs: time-dependent and time-independent.

Time-Dependent PDE. Let D C R? be a d-dimensional spatial domain, and let (0, T") denote the
time interval. A general time-dependent PDE (see Main Text Eqn. (2)) can be written as

%u(t,x) + D(c, t, u, Vyu, Vau,...) =0, Y(t,z) € (0,T) x D,

B(u, Vaou, Viu,...) = u, Y(t,x) € (0,T) x dD, (A.D)

u(0,x) = up(x), Vz € D,
where

* u(t, x) is the PDE solution in (0,7T") x D;

* ¢(t,x) is a known, possibly spatio-temporal parameter (e.g., a material coefficient or source
term);

* D is a (spatial) differential operator;
* B is a boundary operator acting on 0D;
* up(z) are boundary values;
* up(x) is the initial condition at ¢ = 0.
We assume u(t,-) € X C LP(D;R™) for some 1 < p < oo and integer m

> 1.
ugp(x) € X% C X is an element of the initial-condition space, and ¢ € @ C LP(D;R™
from a parameter space.

Likewise,
) is taken

Time-Independent PDE. A time-independent (steady-state) PDE of the general form (Main Text
Eqn. (1)) can be written as

D(c, u, Vau, Vau,...) = f, Vo € D,
(A.2)
B(u, Vyu, Vau,...) =w, Vz €D,
where @(z) € X and ¢(z) € Q are now independent of ¢ and f is a source term. In certain scenarios,
one may view (A.2) as the long-time limit of (A.1), i.e.,

a(z) = tlggo u(t,). (A3)

Hence, much of the theory for time-dependent PDEs can be adapted to time-independent problems
by recognizing steady-state solutions as limiting cases.

A.2 Solution Operators for PDEs
Let us denote the solution to the time-dependent PDE (A.1) by

u(t,") = S(a, c, t), (A.4)

where S : X0 x Q x (0,T) — X is the solution operator, mapping any initial datum ug € X (and
parameter functions ¢ € Q) to the solution u(t) at time ¢.

17

Time-Shifted Operator. In many operator-learning strategies, it is useful to consider a time-shifted
operator that predicts solutions at a future time from a current snapshot. Specifically, define

ST: Ax9x(0,T) xRt — X,
such that
St (ut, ct, T) =&t (ut, c, T) = 't (A5)
Here, u' = u(t,) is the solution snapshot at time ¢, which now serves as an initial condition on the
restricted time interval (¢, T'). Likewise, ¢! is the corresponding parameter snapshot at time ¢.

Steady-State Operator. For the time-independent PDE (A.2), we define

S: 9 — X (A.6)
to be the analogous solution operator, such that @ = S(c) solves the boundary-value problem for
any parameter/boundary data c. Although many operator-learning methods primarily focus on the

time-dependent form S, the same ideas apply to steady-state problems by treating @ as a limiting
case.

Operator Learning Task (OLT). A central goal is to approximate these solution operators without
repeatedly resorting to expensive, high-fidelity numerical solvers. Formally, the OLT can be stated as:

Given a data distribution i € Prob(X°) x Q for initial/boundary conditions
and parameters ¢ € Q), learn an approximation §* ~ S to the true solution
operator S. That is, for any a ~ p, we want 8*(t, a) to closely approximate u(t)
forallt € [0,T). For time-independent problems, this goal changes accordingly to

learning S ~S.
A.3 Discretizations.

In practice, we only have access to a discretized form of the data as the labelled data is generated
either through experiments/observations or numerical simulations. In both cases, we can only evaluate
the inputs and outputs to the underlying solution operator at discrete points.

We start by describing these discretizations for the time-independent PDE (A.2). To this end, fix
the i-th sample and let D) = {xgz) € D@}, for1 < j < J denote a set of sampling points
on the underlying domain D(*). Observe that the underlying domain itself can be an input to the
solution operator 8 of (A.2). We assume access to the functions (¢ (z;), f@(z;),u(z;)) and
the corresponding discretized boundary values. Denoting these discretized inputs and outputs as
At
approximating g# . from the discretized data-pairs (a(i) u)) Note that although the data is

ax)(i) (where a = (¢, f,up)) and u respectively, the underlying learning task boils down to

INGERING!
given in a discretized form, we still require that our operator learning algorithm can provide values of
the output function u at any query point © € D.

For the time-dependent PDE (A.1), in addition to the spatial discretization D) = {l‘g»i) e DO 1,
forl1 <j<J @) we only have access to data at time snapshots tgf) € [o, T(i)]. Thus, the data to the
time-dependent operator learning task consists of inputs (¢ (x;), u(()l) (x;)) and outputs u(xy), £)),
from which the space- and time-continuous solution operator 8; has to be learned at every query
point z € D and time point ¢ € [0, 7.

Summarizing, for both time-independent and time-dependent PDEs, the operator learning task
amounts to approximating the underlying (space-time) continuous solution operators, given dis-
cretized data-pairs.

B Details of GAOT Architecture

This appendix provides a detailed explanation of the core components of the GAOT model architecture,
including the choice of latent token grid, the Multiscale Attentional Graph Neural Operator (MAGNO)
used in the encoder and decoder, the geometry embedding mechanisms, and the transformer-based
processor.

18

B.1 Choice of Latent Grid

Given the input point cloud, denoted by Da above, the first step in our design is to select a latent
point cloud, consisting of points at which our spatial tokens are going to be specified. Here, we
explore three distinct ways of choosing spatial tokens, each offering different trade-offs in terms
of computational cost, geometric coverage, and ease of patching for efficient attention. Figure B.1
schematically illustrates these strategies.

(a) Strategy 1 (b) Strategy 11 (c) Strategy III

Figure B.1: Schematic illustration of the three tokenization strategies in a 2D domain. Blue points
and red circles corresponding to physical grid and latent token grid, respectively. (a) A structured
stencil grid overlaying the domain. (b) Downsampled unstructured points used directly as tokens. (c)
Projecting the 2D domain onto low-dimensional planes.

Structured Stencil Grid (Strategy I). In this approach, we overlay a structured grid of tokens
across Da. For 2D domains, this may be a uniform mesh of cells; for 3D domains, an analogous
dense grid can be used. GINO [28] is a good example for the use of such latent grids.

* Advantages. This grid can be quite fine if needed, ensuring adequate coverage. Moreover,
we can group tokens into patches before feeding them into the transformer processor (see
below), effectively reducing the token count (number of latent points). Our following
experiments in SM Sec. F.2 suggest that patch size has a negligible effect on performance;
hence, one can choose large patches to speed up training.

* Limitations. The main drawback is that token count grows exponentially with the dimension;
for 3D, the number of grid cells can be prohibitively large. Also, if the input data lie on
a low-dimensional manifold embedded in D, some tokens may remain underutilized.
Nonetheless, we find in practice that even empty tokens (those with no neighboring input
points) can still contribute to better global encoding and improved convergence.

Downsampled Unstructured Points (Strategy II). This method directly downsamples the input
unstructured point cloud and treat each sampled point as a token, RIGNO [39] and UPT [1] are
typical methods based on this strategy. If the data are denser in some regions, naturally more tokens
appear there.

* Advantages. This method avoids the pitfalls of having many tokens in empty regions, as
might happen if the data indeed lie on a lower-dimensional manifold. By adaptive sampling,
it can allocate tokens more efficiently.

* Limitations. Unstructured tokens are harder to patch effectively for attention mechanisms in
the processor. In a following experiment, we observed that this strategy can be less effective
than Strategy I even when the domain is indeed partially low-dimensional.

Projected Low-Dimensional Grid (Strategy III). Inspired by certain 3D computer vision mod-
els [8, 22], one can project the 3D domain (or higher-dimensional space) into a lower-dimensional
representation and then place a structured stencil grid in the reduced coordinates—for example, using
triplane embeddings in 3D [9].

* Advantages. Such a projection drastically reduces the token count in 3D, and avoids the
purely low-dimensional manifold disadvantage of Strategy 1. Moreover, one can still apply
patching on the structured plane.

* Limitations. Decomposing d-dimensional coordinates into disjoint projections (e.g., splitting
x,Y, 2 axes) can introduce additional approximation errors. Some local neighborhood

19

information is inevitably lost during the projection. This trade-off can degrade the final
accuracy compared to direct methods (Strategy I or II).

In this paper, we mainly adopt Strategy I, i.e. a structured stencil grid, for all experiments due to its
robustness and simplicity. While using a stencil grid indeed creates some empty tokens in low-density
regions, we consistently observe fast convergence and strong generalization across various PDE
datasets, see the ablation studies in SM Sec. F.2.

B.2 Multiscale Attentional Graph Neural Operator

Both the encoder and decoder in GAOT (see Figure 2 in the main text) employ the proposed Multiscale
Attentional Graph Neural Operator MAGNO). MAGNO is designed to augment classical Graph
Neural Operators (GNOs) by incorporating multiscale information processing and attention-based
weighting. A traditional GNO constructs a local graph for each query point (or token) by collecting
all neighboring nodes within a specified radius, approximating a (kernel) integral operator over this
local neighborhood. Below, we first recap the standard single-scale GNO scheme, then extend it to a
multiscale version, and finally incorporate attention mechanisms for adaptive weighting.

Recap of Single-Scale Local Integration (GNO Basis) For any point y in the latent space D (in
the encoder) or a query point x in the original domain DA (in the decoder), a GNO layer aims to
aggregate information from its neighborhood via a kernel integral. For the encoder, given input data
a(z;) on the original point cloud DA = {z;}, the GNO transforms it into latent features w. (y). The
fundamental GNO computation is given by Eq. (3) from the main text:

Ty

We(y) = arK(y, zx, azr))p(alwr)) (B.1)
k=1
where the sum is over n,, points x, in the original point cloud Da such that |y — x| < r. K and ¢
are MLPs, a(xy) is the input feature at point x4, and «, are given quadrature weights. This form can
be seen as a discrete approximation of an integral operator:

/ K(y,2',a(2"))¢(a(a’))da’ (B.2)
B,,«(y)ﬁDA

where B,.(y) is a ball of radius r centered at y.

Multiscale Neighborhood Construction The single-scale approach, while effective for capturing
local interactions within a fixed radius r, may not efficiently perceive multiscale information crucial
for many PDE problems. To address this, we introduce multiple radii. As described in the main text,
we choose 7,,, = $,,709, Where g is a base radius and s,,, are scale factors (m = 1, ..., m). For each
scale m, we gather points xj, from the original point cloud Da within the ball B,. (y) centered at
y € D (for the encoder) with radius r,,. A GNO-like local integration is then performed for each
scale m, as shown in Eq. (4) from the main text:

nm

Y
Ty) = 3 ap K™ (y, an, alen)plalxr) (B3)
k=1
Here, nZ”L is the number of neighbors x;, within radius r,,,. The MLPs K™ and ¢ can be scale-specific
or share parameters across scales. This paper chooses the shared parameters across all scales.

B.2.1 Attentional Weighting in Local Integration (AGNO)

In the main text, we further propose an attention-based choice for the quadrature weights o}, as
given by Eq. (5):

m exp(e” m (WY, Wilay)

= R g = St T 73 (B4)
2 exp(ef)
r=1

where W', Wi € Raxd (assuming original and latent coordinate dimension d, and attention

dimension d) are learnable query and key matrices. This mechanism allows the model to dynamically
assign contribution weights to each neighbor x; based on the relationship between y and x. This
forms the final form of our Attentional Graph Neural Operator or AGNO at each scale m.

20

B.2.2 Attentional Fusion of Multiscale Features

After computing the AGNO features w2 (y) for each scale (which are then fused with geometry
embeddings, detailed in Sec. B.3, to form @™ (y)), we need to integrate this information from
different scales. As described in the main text (Fig. 2 and Eq. (6)), instead of simple summation or
concatenation, we introduce a small MLP 1,,, to learn the relative contribution of each scale to the
final encoded feature w,(y):

we) = 3 Bn@)T™(w), Punly) = —2LEm W) (8.5)
= 55 exp(u(v)

Here, ., (y) is typically computed based on coordinates of y. /3,,,(y) is the attention weight for the
m-th scale at point y.

The final output of the MAGNO encoder, w,(y), is thus a feature representation that adaptively
weights and fuses multiscale local information with attention mechanisms. The MAGNO in the
decoder follows the exact same structure, with different inputs, outputs, and operating objects, as
described in the Main Text.

B.3 Geometry Embeddings

While the Multiscale Attentional GNO already leverages geometric structure via local neighborhoods,
one often needs to incorporate more explicit shape or domain information in practical PDE scenarios.
For instance, when the geometry of the domain itself (e.g., the shape of an airfoil) plays a critical
role in the solution operator, coordinates alone may be insufficient to encode all the necessary
geometric priors. Therefore, we introduce geometry embeddings to enhance the model’s geometric
awareness. These embeddings work in tandem with the MAGNO encoder (and decoder), providing a
rich geometric description for each token (latent point ¥) and its neighborhood at various scales m.

Prior work on including geometric information in neural PDE solvers typically resorts to two major
approaches: (i) appending geometry features directly into node/edge attributes [39], or (ii) using a
signed distance function (SDF) [28]. However, we argue that:

» Simply merging geometry and physical features at the node level may entangle them
prematurely, potentially hurting performance when the geometry is complex or when
additional modalities (e.g. material properties) must be fused.

» Computing SDF to represent geometry is often cumbersome, especially for unstructured
datasets or when the boundary is only partially known. Each new shape would require
re-computation, and the SDF values may be inaccurate if the surface is not well-defined.

Instead, we advocate two more direct and flexible mechanisms for extracting geometric descriptors:
local Statistical embedding and PointNet-based embedding, shown in Figure B.2.

SRt Foo S G, B MLP (2, 64, 64) (é“fLL"C) PointNet ™
2 2 ifference —— mean \°*)

£ £ B o |[\pool LC

£ 2l e g — D

< 5|5 -1 shared %

Z B Geometric Embedding
£ = —

Calculation Normalization (7, 64, 64, LC)
LC
o % % — [
z X =
Geometric Embedding

() (b)

Figure B.2: Schematic of the Geometric Embedding for Statistical Embedding (a) and PointNet-based
Embedding (b). LC denotes the lifting channels for MAGNO output.

Local Statistical Embedding The core idea is to extract statistical descriptors from the neighbor-
hood B, (y) (or By, (x) for the decoder) of original point cloud points z; (or latent points y, for
the decoder) for each latent point y (for the encoder) or query point x (for the decoder) at each scale
m. Taking the encoder as an example, for a latent point y € D and scale m, its neighborhood is
Ni(y) = {zr € Da : |y — xx| <y}, containing n;* points. We compute the following statistics:

* Number of Neighbors n,": Measures local density around point y.

21

* Average Distance D7, (y):

avg - nm Z |y - xk| (B.6)

Ty k=1
Describes the average spatial extent of the neighborhood.

var()

¢ Distance Variance D™

e N
Diae(y) = — Z ly — x| — Diig(y))? (B.7)
y k=

Reflects the dispersion of points within the neighborhood.
* Neighbor Centroid Offset Vector AJ":

nm

1 Yy
AT = n—mZaﬁk —y (B.8)
Y k=1

The vector from y to the centroid of its neighbors xj.

» PCA Features: These features aim to capture the local shape anisotropy of the distribution
of the n}" neighbor points {z} } within the m-th scale ball B, (y). This is achieved by
performing PCA on the set of these neighbor coordinates {xj}. Using the centroid of

the neighbors zijy. = (% ZZL xk), the d x d covariance matrix of the neighbor
’ Y

coordinates is calculated as:

’VYl

_ _ mm T B9

- m nbrsy ‘rk? xnbrs,y) ()
Ty = 1

If ny" = 0 (or too few points for a meaningful covariance, e.g. ny" < d), the covariance

matrix C}" is treated as a zero matrix, leading to zero eigenvalues. Otherwise, the d real

eigenvalues of this symmetric, positive semi-definite covariance matrix, sorted in descending
order (A7 > A3* > --- > A7 > 0), are used as the PCA features. These eigenvalues
represent the variance of the neighbor data along the principal component directions, thus
describing the extent and orientation of the local point cloud cluster.

These statistical descriptors, computed for each scale m and each point y € D, are concatenated into
a vector z’” normalized (e.g., to have zero mean and unit variance for each component), and then fed

into an MLP to yield the geometry embedding g™ (y) for that scale:
9" (y) = MLPgeo(Normalize(z;")) (B.10)

This MLPg,, is typically shared across all points and scales.

Point-Based Embedding As an alternative, we can train a PointNet-style network [43] to derive
a compact geometric descriptor from each tokens neighborhood. Classical PointNet architectures
typically include:
¢ Input Transformer: aligns input points to a canonical space (optional),
* Shared MLP: processes each point individually,
» Symmetric Pooling: aggregates per-point features into a global descriptor, ensuring permu-
tation invariance.

In our PDE setting, we do not necessarily need an input transformer; the local coordinates can directly
serve as input features. We replace the typical max-pooling with mean-pooling to produce smoother
local embeddings (though other pooling strategies are also possible). For a point y and scale m, we

collect the relative coordinates of its neighbors {6}* = =, — y}Zil. These relative coordinates are
fed into a shared MLP (point-wise MLP):

o= MLP(6") (B.11)

22

Then, a symmetric pooling operation (e.g., mean pooling or max pooling) aggregates these per-point
features into a global geometric feature:

m

~ m 1 Ny,
h™(y) = MeanPool({h[*},*,) = — > hy (B.12)

Y k=1

This aggregated feature h™ (y) can optionally be passed through another small MLP to produce the
final geometry embedding g™ (y).

B.3.1 Integration of Geometry Embeddings in MAGNO

As depicted in Fig. 2 of the main text and described in the MAGNO paragraph, in the MAGNO
component of the encoder (or decoder), the geometry embedding is fused with the AGNO output at
each scale. The specific workflow (for the encoder) is as follows:

1. Scale-Specific AGNO Features: For latent point y and scale m, compute the AGNO output
w2 (y) (as described in Sec. B.2.1).

2. Scale-Specific Geometry Embedding: In parallel, using methods from Sec. B.3, compute
the geometry embedding ¢ (y) from the same neighborhood N, (y).

3. Feature Fusion: Concatenate the AGNO features w”*(y) and the geometry embedding
9™ (y), and pass them through an MLP for fusion, yielding the scale-specific latent feature

function W™ (y):
w™(y) = MLPg ([0 (y) [9™ (9)]) (B.13)
where || denotes concatenation. And MLP}"_ . is shared across scales.

4. Multiscale Aggregation: Finally, as described in Sec. B.2.2, an attention mechanism is
used to perform a weighted sum of the fused features {@™ (y)}'™_, from all scales, yielding
the final encoder output we(y) (Eq. (B.5)).

Compared to merging geometry and PDE features at the node level before any operator updates, this
per-scale integration offers several benefits:

* Scale-Adapted Geometry. Each scale has a correspondingly sized neighborhood, allowing the
geometric embedding to reflect local shape details at the appropriate radius. Small radii capture
fine-grained features (e.g. sharp corners), while large radii convey coarse global context.

* Modular Flexibility. Both MAGNO and Geometric Embeddings act as distinct modules. One can
upgrade either component (e.g. adopting a more customized local aggregator or geometry encoder)
without changing the overall pipeline.

* Unified Per-Token Fusion. The final aggregated feature w, (y) collects information from all relevant
scales and from geometric descriptors, leading to a richer token representation. This is particularly
advantageous in settings with complex boundaries (e.g. airfoils, porous media) where multiple
length scales and shape cues matter.

This design preserves the encode-process-decode philosophy: each token gains geometry-aware,
multiscale PDE features during the encoder stage, facilitating global attention and final decoding later
in the pipeline.

B.4 Processor

After constructing geometry-aware tokens, we employ a Transformer-based processor to enable
global message passing among all tokens. Depending on the chosen tokenization strategy (SM B.1),
we can choose the following strategies, respectively:

* Regular Grid (Strategy I or III): If the latent points {y, € D} lie on a regular grid (e.g., via
a structured stencil or a projected low-dimensional regular grid), we adopt a strategy similar
to vision transformers (ViTs) [11]. The latent points are grouped into non-overlapping
"patches." All token features w, (y) within each patch are flattened and linearly projected
into a single patch token embedding. These patch tokens then serve as the input sequence to
the Transformer.

23

* Randomly Downsampled Points (Strategy II): If the latent points {y,} are randomly down-
sampled from the original point cloud D, they lack a regular grid structure. In this case,
there is no obvious "patching" method, and each latent token w,(y,) directly serves as an
element in the Transformer’s input sequence.

Positional Encoding Transformers themselves are permutation-invariant and do not inherently
process sequential order or spatial position. Thus, positional information must be injected. In
GAOT, we use the Relative Positional Embeddings (RoPE) [49], which is a method that integrates
relative positional information directly into the self-attention mechanism. It achieves this by applying
rotations, dependent on their relative positions, to the Query and Key vectors. This has shown strong
performance in many Transformer models.

Transformer Block Structure For the transformer Blocks, we adopt an RMS norm RMSNorm(+)
at the beginning of attention and feedforward layers:

7 = RMSNorm(X), RMSNorm(x) = . O a (B.14)
mean(x?)

where « is a learned scaling parameter. This approach is akin to LayerNorm but uses the root mean
square of feature magnitudes rather than computing mean-and-variance separately. This prenorm
design helps stabilize the gradient flow compared to the conventions in [50]. Each block has the
structure,

Zotn = X+ MultiHeadAttn(RMSNorm(X)), Zg, = Zagen + FFN(RMSNorm(Zatt,I)).

(B.15)
Furthermore, we use Group Query and Flash Attention in the code for efficient multi-head self-
attention.

Long-Range Skip Connections In addition to the intra-block residual connections, we also intro-
duce long-range skip connections across multiple Transformer blocks, as suggested in works like
[4]. For instance, the Transformer blocks can be divided into an earlier part and a later part, and
layers can be symmetrically connected (e.g., the first with the last, the second with the second-to-last,
etc.), allowing later blocks to directly receive information from earlier blocks, further improving
information flow.

By stacking these blocks, the Transformer processor learns complex global dependencies among
tokens, transforming the locally geometry-aware tokens w.(y) from the encoder into processed
tokens wy(ye) that incorporate richer contextual information. These processed tokens are then
converted by the MAGNO decoder to the desired approximation of the output of the underlying
solution operator (see Main Text and Fig. 2).

B.5 Graph Building Tricks

For 2D datasets, we construct neighborhoods for each latent token using a fixed-radius rule, following
the Ref. [28]. This works well because local density variations are moderate and the total edge count
remains manageable. However, this strategy is not scalable for large 3D industrial datasets, where
meshes could be highly adaptive. A single global radius r will lead to a sharp trade-off: if r is large,
the number of edges explodes in dense regions and quickly exceeds GPU memory; if 7 is small, the
Overlap of the local neighborhoods fails to cover the whole physical domain and induces information
loss. To simultaneously control edge count and guarantee the whole domain coverage, we introduce a
bidirectional graph-building strategy that merges two complementary graphs:

1. Radius graph centered at latent tokens. For each latent token y,, we connect all physical
points x; within a radius r, producing edges that encode local aggregation around latent
tokens. This yields good locality, but may not be able to cover the physical regions if r is
too small.

2. KNN graph centered at physical points. For each physical grid point (node) x;, we
connect it to its k£ nearest latent tokens, adding at least one attachment per physical node.
This forms a lightweight backbone that ensures every physical location is represented in the
latent space, even where radius neighborhoods are empty.

24

Graph Building Strategy

Get Encoder Strategy Get Decoder Strategy

KNN:
each physical point
— k nearest latent
dir: phys — latent

Radius:
latent centered
physical within 7
dir: phys — latent

KNN:
each physical point
— k nearest latent
dir: latent — phys

Radius:
physical centered
latent within
dir: latent — phys

Bidirectional:
KNN + radius
dir: phys — latent

Bidirectional:
KNN + radius
dir: latent — phys

Figure B.3: Neighbor strategy dispatcher used in GAOT. For 2D datasets, a radius-based graph is
adopted; for large 3D datasets, the bidirectional strategy (radius + KNN) is used to ensure domain
coverage without edge explosion.

We then merge the two edge sets (remove the repeated pairs). The resulting bidirectional graph
not only ensures all the physical points are considered, but control the total edge count through the
tunable hyperparameter k (typically k& € [1,4]) and radius r. In practice, we use the encoder direction
physical — latent and the decoder direction latent — physical; the same bidirectional recipe applies
to both by swapping source/target roles, shown in Fig. B.3. Although the bidirectional build is more
expensive than a pure-radius build, we precompute graphs offline and cache them, so the extra cost
does not affect training throughput.

On all 2D benchmarks, we retain the pure-radius construction. On 3D industrial-scale datasets, we
switch to the bidirectional construction to avoid radius-induced edge explosion while preserving
coverage. To further control memory and improve robustness, we also apply edge masking during
training.

B.6 Training Details.

This section discusses the details of how the GAOT models were trained, including the loss functions,
data normalization procedures, general training hyperparameters, and default model configurations.
In our experiments, we address both time-independent and time-dependent PDEs. The application of
GAOT to time-independent PDEs is straightforward. For time-dependent PDEs, we employ three
different time-stepping methods and all2all training [21], as discussed in the main text. More details
on these methods can be found in [39].

B.6.1 Loss Function

The loss function used for training GAOT is the Mean Squared Error (MSE), computed between the
model’s final predictions and the true physical quantities. For a set of N, samples and NN, spatial
points, the loss is:

N, Np
1 -~ 9
Enisn = 7 37, 3 22 80i(e) — o) (B.16)
where 8¢(-);(z;) is the model’s prediction for sample ¢ at point z;, and U¢yue s (2;) is the correspond-
ing ground truth. The exact form of Sy () depends on whether the problem is time-independent or
time-dependent.

Time-Independent PDEs. For time-independent PDEs, given an input a(z;) (e.g., boundary
conditions, coefficients ¢), GAOT directly predicts the solution u(x ;). Thus, 8¢(a)(x;) is the direct
output of the GAOT architecture, and the MSE loss is computed between 84 (a)(z;) and the true
steady-state solution ut,ye(x;) of PDE (A.2).

Time-Dependent PDEs. To learn the solution operator for time-dependent PDEs, GAOT is used to
update the solution forward in time. Given the solution u(t) at time ¢ and coefficients ¢ (forming the
augmented input a(t) = (¢, u(t))), the model predicts the solution at ¢ + 7. The GAOT architecture

produces an output Sy (x,t,7,a(t)). The final prediction for u(¢t + 7), denoted Sy(¢, 7, a(t)), is
constructed using a general time-stepping strategy as per Eq. (7) from the main text, see also [39]:

So(t, 7, a(t)) = vu(t) + 68q(z, t, 7, a(t)) (B.17)

25

The MSE loss is then computed between this Sy (¢, 7, a(t)) and the true solution e (t + 7). The

choice of parameters (v,) determines the time-stepping strategy and what the network output Sy
effectively learns:

* Output Stepping (1: 0,6 = 1): The final prediction is 8¢ (¢, 7, a(t)) = gg(x, t,7,a(t)).
The network output 8¢ directly learns to approximate u(t + 7).

* Residual Stepping (y = 1,6 = 1): The final prediction is Sq(t,7,a(t)) = u(t) +
So(x,t,T,a(t)). The network output Sy learns to approximate the residual, u(t + 7) — u(t).

* Time-Derivative Stepping (y = 1,6 = 7): The final prediction is 84(t, 7, a(t)) = u(t) +

T - gg(l‘, t,7,a(t)). The network output Sy learns to approximate the time-derivative,
(u(t+71) —u(t)/T.

GAOT offers the flexibility to use any of these strategies. A detailed ablation of their comparative
performance is described in SM Sec. F.

B.6.2 Data Normalization

Data normalization is applied to stabilize training. We typically use Z-score normalization, where for

a quantity X, its normalized version X is (X — px)/ox. The mean px and standard deviation o x
are computed over the training dataset.

Time-Independent PDEs. For input features a(z;) and output solution fields u(x;), normalization
parameters are computed across all samples and spatial points in the training set for each channel
independently. The model is trained on normalized inputs to predict normalized outputs.

Time-Dependent PDEs. The input «(¢) is normalized using its global mean and standard deviation
computed over all time steps and samples in the training set. The normalization of the target for the
network output Sy(x, ¢, 7, a(t)) depends on the chosen time-stepping strategy, as Sy learns a different
physical quantity in each case:

* Output Stepping: The network gg aims to predict u(t + 7). Thus, the ground truth values
u(t 4+ 7) are normalized, and Sy is trained to predict these normalized values. Statistics fi,,

and o, are computed from all values u(t') in the training set. The normalized target for Sy is
u(t+7) = (u(t +7) = pu) /0w

« Residual Stepping: The network S¢ aims to predict the residual R(t,7) = u(t + 7) — u(t). Thus,
these true residual values are computed from the training data, and their statistics (ur, or) are

used for normalization. The normalized target for Sy is R(t,7) = (R(t,7) — pur)/oR.

* Time-Derivative Stepping: The network g@ aims to predict the time-derivative D(t,7) = (u(t +
7) — u(t))/7. These true derivative values are computed, and their statistics (up, op) are used for

normalization. The normalized target for Sy is ﬁ(t, 7)=(D(t,7) — up)/op-

Time ¢ and lead-time 7 inputs are also typically scaled or normalized. Further details on these
normalizations can be found in [39].

B.6.3 General Training Setup

This section provides an overview of our training hyperparameters. Unless otherwise noted, all
experiments follow these settings. Table B.1 summarizes the primary hyperparameters and training
schedules. In particular, we distinguish between time-dependent and time-independent PDE tasks in
terms of epoch count and highlight the differences in hardware usage for the industrial 3D dataset. All
models except industrial 3D dataset run on a single GeForce RTX 4090 GPU. For the DrivAerNet++
dataset, we use 4 GeForce A100 GPUs in data parallel mode for 50 epochs, and each GPU holds a
batch size of 1. For DrivAerML and NASA-CRM dataset, we use 1 GeForce A100 GPUs for 200
epochs. For the scheduler, we warm up to mitigate instability at early epochs, then adopt a cosine
schedule for gradual decay, and finalize with a step-based drop for fine-tuning the last epoch range.

26

Table B.1: Key training hyperparameters and schedulers used for all models, unless otherwise
specified.

Hardware * Single-GPU: All models for 2D dataset are trained on a single
GeForce RTX 4090 with batch size = 64.
 Single-GPU: Models for DrivAerML and NASA-CRM are
trained on single GeForce A100 GPUs with batch size = 1.
¢ Four-GPU: For the DrivaerNet++ dataset, we use four GeForce
A100 GPUs, each with batch size = 1.

Optimizer * Algorithm: AdamW
» Weight Decay: 1 x 107°
Epochs * 2D Time-Dependent PDEs: 500 epochs

* 2D Time-Independent PDEs: 1000 epochs
* 3D DrivAerNet++: 50 epochs.
* 3D NASA-CRM and DrivAerML: 200 epochs.
Learning Rate Scheduler ¢ Warmup (ﬁgst 10% epochs): LR increases linearly from 8 x 10~4
tol x 107°.

» Cosine Decay (next 85% epochs): LR decays from 1 x 1072 to
1x107%

» StepLR (final 5% epochs): LR drops from 1 x 10~ to 5 x 107°.

B.6.4 GAOT Model Configuration

Table B.2 outlines the default configuration of the GAOT framework. This includes the MAGNO
used in both the encoder and decoder stages, as well as the Transformer-based global processor.
MAGNO converts node features into geometry-aware tokens (encoder) and reconstructs continuous
fields (decoder). By default, the coordinates will be rescaled in the domain [—1,1]¢, and we use
a single aggregation radius 0.033 for adequate coverage. If multiscale is enabled, we adopt radii
{0.022,0.033,0.044}. The default geometric embedding method is local Statistical Embedding (e.g.
as SM Sec. B.3), and will typically be implemented for unstructured datasets. The Transformer
processes geometry-aware tokens globally via multi-head self-attention. We set the hidden dimension
to 256 with a 1024-dim feed-forward layer, residual connections, RMSNorm, and RoPE for positional
embeddings. By adjusting the patch size and the number of tokens, we can trade off computational
cost and model resolution, discussed in SM Sec. F.2.

The configuration slightly differs for the industrial 3D datasets to accommodate large-scale adaptive
meshes. We employ the following number of latent tokens for each dataset:

* NASA-CRM: [64, 64, 32],
e DrivAerML: [64, 32, 32],
e DrivAerNet++: [64, 32, 32].

In these setups, the graph construction follows the bidirectional strategy described in Appendix B.5,
using a single-scale radius of 0.033 and a KNN size of £ = 1. The Transformer processor adopts
a patch size of 2 and consists of 10 layers. All other hyperparameters remain consistent with the
default configuration in Table B.2.

B.7 Inference

When predicting solutions for time-independent PDEs, we simply feed the input parameters a (e.g.
boundary conditions, coefficients, or geometric shape) into our learned operator Sy (a) and obtain
the steady-state output u(x) directly. However, for time-dependent PDEs, there are two different
strategies for forecasting the solution at a future time, using the learned one-step advancement
operator Sy(t, 7, a(t)) which, as defined in Eq. (B.17), takes the current time ¢, a lead-time 7, and the
augmented input a(t) = (¢, u(t)) to predict the solution at ¢ + 7. The two main inference strategies
are direct inference and autoregressive inference.

27

Table B.2: Default architectural hyperparameters for GAOT.

Abbreviation Default Value Description
MAGNO (Encoder / Decoder)
PIC 256 Dimensionality for MAGNO'’s internal hidden layers.
ENC-MLP [64, 64, 64] Hidden layers of the encoder MLP in MAGNO.
DEC-MLP [64, 64] Hidden layers of the decoder MLP in MAGNO.
LC 32 Output/Lifting channels after MAGNO (both encoder and de-
coder).
TS I Tokenization Strategy I.
NT [64, 64] Number of tokens for Strategy I (e.g., a 64 x 64 stencil grid).
GR 0.033 Aggregation radius (single-scale) for every token. If multiscale:
{0.022,0.033,0.044}.
GeoEmb statistical Geometric Embedding for the encoder and decoder.
EM 0.3 Edge masking ratio for the MAGNO, used for 3D drivaernet++
dataset.
Transformer
PS 2 Default patch size for token grouping if Strategy I or III is used.
Norm RMSNorm Normalization used in attention and MLP layers. Pre-norm
configuration.
PE RoPE Positional embedding used in the Transformer. Rotary positional
embeddings.
RES-CON True Residual connections between transformer blocks.
TL 5 Number of Transformer blocks.
THS 256 Hidden dimension per self-attention block.
HEAD 8 Number of attention heads.
Dropout 0.2 Dropout ratio in the attention module.
FEN 1024 4x hidden size (THS) for the feedforward layer.

Direct Inference (DR) Recall from the main text that our learned operator Sy takes the lead-time
T as an explicit input, allowing for predictions over variable time steps. Given a snapshot of the
solution u(t,,) (which is part of a(t,)), the network can directly predict the solution at any later time
tn + Ttarget, UP to a maximum trained horizon tmayx, by evaluating 8¢ (¢, Tvarget, ¢(tn)). Hence,
for each possible time increment Tyq,rger = k - At (where At is a base time step in the dataset, and
1 < k < kmax), we can produce the models estimate w(t,, + Tiarget) from u(ty) in a single step,
without iterating through intermediate time steps. Concretely, if our dataset is discretized at times
Q2 = {tg, t1,...,tn}, we can directly evaluate Sy(t,, Ttarget, a(ty)) for various Tyqpger values
originating from any ,, € Q2. This provides a sequence of direct predictions at each possible time
offset Tyqrget from any initial time ¢,,.

Autoregressive Inference (AR) While direct inference estimates the solution at a single future
time, an alternative is to iterate the operator in multiple, typically smaller, sub-steps to reach the final
time. This approach is called autoregressive (AR) inference. Formally, given an initial snapshot
u(to), we repeatedly apply the learned operator 8y with a chosen fixed time increment for each step,
At 4R, to advance the solution:

U(tet1) = So(tn, Atar, a(ty))

where t 11 =ty + Atag, and a(tx) = (¢, u(tx)) uses the solution u(ty) from the previous step (or
the initial condition if & = 0). This process is repeated until the desired final time tg,,,) is reached.

(B.18)

We examine two types of autoregressive step sizes in our experiments:

* AR-2: Use an autoregressive time increment of At p = 2 (assuming time units are
consistent with the dataset). Starting from u (), we compute u(to + 2) = Sy (to, 2, a(to)).
Then, using u(to + 2), we compute u(to +4) = Sp(to + 2,2, a(to + 2)), and so on, up to
t14. In total, we perform 7 consecutive evaluations of Sy.

28

* AR-4: Use an autoregressive time increment of At = 4. In this scenario, we predict
u(to +4) = So(to,4, a(to)), then from u(ty + 4), u(to + 8) = 8g(to + 4,4, a(to + 4)),
and so on, eventually reaching ¢4 in just 4 iterations (assuming tq = 0 and ¢ f;,,4; = 16 for
this example, or if ¢14 is the target after some steps).

Generally, the choice of the AR step size At 4 is flexible. One could select any valid Atar < Timax
(where Tyax 1s the maximum lead-time the model was reliably trained for in a single step) at each
sub-step. Note that using fewer, larger time steps (e.g., At 4z = 4) can reduce computational cost
but potentially compounds prediction errors more quickly if the operator 8y is less accurate for
larger single-step lead-times. Conversely, smaller increments (e.g. At 4 = 2) tend to accumulate
errors more gradually but require more iterations (and thus more computation) to reach the final time.
Details can be found in [21, 39].

C Baselines

For the time-dependent benchmarks (including those on unstructured grids detailed in Table 1 and
regular grids in Table E.5, the corresponding baseline results are primarily obtained from the work
by [39]. These baseline models include RIGNO-12, RIGNO-18, CNO, scOT, FNO, GeoFNO,
FNO DSE, and GINO. For further details on these methods, please refer to the paper [39]. In this
work, we have additionally included three more recent models for a comprehensive comparison:
Transolver [52], GNOT [19], and UPT [1]. Brief descriptions of these newly added models and the
specific hyperparameters adopted in our experiments are provided below.

C.1 UPT

Universal Physics Transformers (UPT) [1] form a neural-operator framework that fits into the
canonical encodeprocessdecode pipeline:

U =Do Ao €, (C.1)

where £ (Encoder) compresses k input pointscoming from an arbitrary Eulerian mesh or Lagrangian
particle cloudinto a fixed set of njaene tokens. It first embeds the features and coordinates through
a radius-graph message-passing layer that aggregates information into ns supernodes, and finally
employs transformer and perceiver pooling blocks to obtain the latent representation z;, € R™aenXh

A (Approximator) is a stack of transformer blocks that advances the latent state in time, A : z; —
Zt+At, enabling fast latent roll-outs without repeatedly decoding to the spatial domain.

D (Decoder) is a Perceiver-style cross-attention module that evaluates the latent field at any set of
query positions {y; }5_ |, yielding i a¢ (yi) = D(2e1 ¢, i) With O(nen) complexity independent
of k.

In the setting of time-independent problems, we bypass the latent roll-out stage, and adopt a
lightweight configuration in our experiments. Specifically, we use latent tokens = 64 and em-
bedding dimensions = 64, which results in a model size of 0.74M . A large variant with 256 latent
tokens and 192 embedding dimension as setup in [1] was found to suffer from optimization difficulties
and was not adopted in our baseline results. The same optimizer setup as GAOT is used here.

Considered Hyperparameters

29

Architecture

Trainable parameters 0.74M
Number of supernodes 74 2048
Radius for message passing 0.033
Embedding (feature) channels 64
Encoder transformer blocks 4
Encoder attention heads 4
Latent tokens 7agent 64
Latent dimension h 64
Approximator transformer blocks 4
Approximator attention heads 4
Decoder attention heads 4
Training
Optimizer AdamW
Scheduler same as in B.2
Initial learning rate 1-1073
Weight decay 10-°
Number of epochs 500
Batch size 64

C.2 Transolver

Transolver [52] is a transformer-based operator learning model designed for PDEs on unstructured
grids. It follows an encode-process-decode paradigm by stacking multiple Transolver blocks. The
core of each block is the Physics-Attention mechanism.

Given input features Xppys € RN for N mesh points:

1. Encoding to Tokens: First, for each mesh point feature x; € Xppys, M slice weights
w; € RYM are learned, typically via a projection followed by a Softmax function: w; =
Softmax(Project(x;)). These weights determine the assignment of mesh points to M
learnable "slices". The j-th physics-aware token z; € R'*C is then encoded by a weighted
aggregation of all mesh point features, using the slice weights:

SN wi
i=1 Wi,jTi
>V i

i=1 Wi,j
This results in M tokens Z = {z; }]le € RMxC,

2. Token Processing: These M tokens Z are processed by a standard attention mechanism
(e.g., multi-head self-attention) to capture correlations between different physical states
represented by the tokens:

Z! e = Attention(2) (C.3)

proc

The processed tokens are Z},. = {2} }11, € RM*C.

3. Decoding to Physical Grid (Deslicing): The updated token features Z’ . are then broadcast

proc
back and recomposed onto the N physical mesh points using the original slice weights w:

M
T, = Zw”zg (C.4)
j=1

This yields the output features for the Physics-Attention block, X

phys = {x;}f\él € RNXC'

A full Transolver layer typically incorporates this Physics-Attention mechanism within a standard
Transformer layer structure, including Layer Normalization and Feed-Forward Networks.

30

While the Physics-Attention mechanism itself is designed to have a computational complexity linear
with respect to the number of mesh points, it is important to note that the slicing (Eq. C.2) and
deslicing (Eq. C.4) operations, which involve all NV points, are performed within each of the L
Transolver layers. This repeated mapping can lead to significant computational costs and memory
overhead, especially for large N. This contrasts with architectures like GAOT and UPT, which
perform the encoding to a latent space and decoding from it only once, with intermediate processing
happening entirely in the latent token domain. In our experiments with time-independent partial
differential equations, we followed the settings from the original Transolver paper [52];

Considered Hyperparameters

Architecture
Trainable parameters 3.85M
Hidden channels 256
Attention heads 8
Number of Layers
MLP ratio 2
number of slice 32

Training
Optimizer AdamW
Scheduler same as in B.2
Initial learning rate 1-1073
Weight decay 107°
Number of epochs 500
Batch size 20
C.3 GNOT

General Neural Operator Transformer (GNOT) [19] is a Transformer-based framework designed for
operator learning, particularly addressing challenges such as irregular meshes, multiple heterogeneous
input functions, and multiscale problems. Its overall architecture can be represented as:

G = Fo(B)" ok, (C.5)
————
processor

where £ is the encoder, B represents a GNOT Transformer block (repeated L times), and F is the
output decoder.

1. Encoder (£): The encoder maps diverse input sources (geometry, fields, parameters, edges)
to embeddings using dedicated MLPs. This yields query embeddings Q € RM«*< for
target points and a set of m conditional embeddings {Y“) € RN Xd}Tzl from other input
functions.

2. GNOT Transformer Block (B): Each block refines query embeddings () using conditional
embeddings Y (©) via:

* Heterogeneous Normalized linear Cross-Attention (HNA): Fuses () with each y®
using separate MLPs for keys/values from different Y (), followed by normalization
and averaging.

1 &
Qlross = Q + I Z NormLinearCrossAttn(Q, Y () (C.6)
¢ =1

 Normalized Self-Attention: Applies normalized linear self-attention to Q). for further

refinement. o
Q.r = NormLinearSelfAttn(Q,) (C.7)

Cross

31

* Geometric Gating FFN: A Mixture-of-Experts (MoE) FEN where expert FENs (E},) are
weighted by pg(Zcoord). These weights are predicted by a gating network G(+) using
query point coordinates Z.qd, enabling soft domain decomposition for multiscale
problems.

K
FFNGated (X) = Zpk (xcoord) - By, (X)a Dk (xcoord) = SOftmaX(Gk (xcoord)) (C.8)
k=1

These components, with Layer Normalization and residual connections, form the block.

3. Decoder (F): After L blocks, a final decoder (typically an MLP) maps processed query
features to the output solution.

Considered Hyperparameters

Architecture
Trainable parameters 4.87M
Hidden channels 128
Attention heads 8
Number of Layers 8
MLP ratio 2

Training

Optimizer AdamW
Scheduler same as in B.2
Initial learning rate 1-1073
Weight decay 107°
Number of epochs 500
Batch size 20

D Datasets

In this work, we test GAOT on 28 benchmarks for both time-independent and time-dependent
PDE:s of various types, ranging from regular grids to random point clouds to highly unstructured
adapted grids. The time-dependent and Poisson-Gauss datasets are sourced from [21] and [39],
respectively. The static elasticity dataset is from [25]. The DrivAerNet++ and DrivAerML datasets
are taken from [13] and [2], respectively, where the objective is to predict the surface pressure and
wall shear stress. The NASA-CRM dataset is obtained from [6], where we similarly predict the
pressure field and surface friction coefficient on the NASA Common Research Model (CRM) surface.
For 3D car and wing aerodynamics, the full-resolution surface field is directly predicted without
any downsampling. Furthermore, we have also generated five additional challenging datasets: a
Poisson-C-Sines dataset exhibiting multiscale properties, and four datasets for compressible fluid
dynamics with highly unstructured adapted grids. Detailed information regarding these datasets can
be found in the Tab D.1.

We focus on the following PDE Types simulated for various initial/boundary conditions and domain
geometries:

Hyper-Elastic Equation (HEE)

0%u
S —
where p?® is the mass density, u is the displacement vector, and o is the stress tensor. A constitutive
model links the strain tensor € to the stress tensor. The material is the incompressible Rivlin-Saunders

type, characterized by o = &gie) with w(e) = C1(I1 — 3) + Cao(I2 — 3).

32

Table D.1: Overview of the datasets used in this work. Datasets listed above the line are time-
independent, while those below are time-dependent. Geometry variation (GeoVar) describes whether
every data sample in the dataset has a different geometry. Characteristics briefly describe each
dataset’s geometry or PDE setup. The PDE Type column indicates the corresponding class. Visual-
ization (Vis.) provides references to visual examples; for time-dependent datasets, this may include
visualizations for both unstructured partially ones and original regular grid ones. Datasets marked
with * are newly proposed in this work.

Abbreviation GeoVar Characteristic PDE Type Vis.
Poisson-C-Sines* F Circular domain with sines f PE G.1
Poisson-Gauss F Gaussian source PE G.2
Elasticity T Hole boundary distance HEE G3
NACAQ012* T Flow past NACAO0012 airfoil CE G4
NACA2412* T Flow past NACA2412 airfoil CE G.S5
RAE2822* T Flow past RAE2822 airfoil CE G.6
Bluff-Body* T Flow past bluff-bodies CE G.7
DrivAerNet++(p) T Surface pressure INS G.8
DrivAerNet++(wss) T Surface wall shear stress INS G.9
DrivAerML(p) T Surface pressure coefficient INS G.10
DrivAerML(wss) T Surface wall shear stress INS G.11
NASA-CRM (p) T Surface pressure INS G.12
NASA-CRM (sfc) T Surface friction coefficient INS G.13
NS-Gauss F Gaussian vorticity IC INS G.14,G.22
NS-PwC F Piecewise const. IC INS G.15, G.23
NS-SL F Shear layer IC INS G.16,G.24
NS-SVS F Sinusoidal vortex sheet IC INS G.17, G.25
CE-Gauss F Gaussian vorticity IC CE G.18, G.26
CE-RP F 4-quadrant RP CE G.19, G.27
Wave-Layer F Layered wave medium WE G.20, G.28
Wave-C-Sines F Circular domain with sines IC WE G.21
Poisson Equation (PE)
—Au = f, in (0,1)% (D.2)

with homogeneous Dirichlet boundary conditions. The dataset related to the Poisson equation uses
either sinusoidal or Gaussian-like source terms on square or circular domains (see Table D.1).

Incompressible Navier—Stokes (INS)
V-v=0,
v+ (v-V)v=—Vp+vVi,

where v is the velocity field, p is the pressure, and viscosity is v. It assumes periodic boundary
conditions and samples various initial conditions (e.g., Gaussian, piecewise-constant, sinusoidal
vortex sheets).

Compressible Euler (CE)

ou+ V-F =0, u=(p,pv, E)", E=1ip|v|®+ (D.3)

p
y—1

with v = 1.4. Showing in [21], it imposes periodic boundary conditions and ignore gravity effects.
Data are generated using random initial/boundary conditions such as Gaussian or Riemann problem
(RP) setups.

33

Wave Equation (WE)
Opu — A(x,y)Viu = 0, (D.4)

with a spatially varying propagation speed c¢(x, y) in an inhomogeneous medium. The dataset employs
absorbing or homogeneous Dirichlet boundaries. Initial conditions (e.g., sinusoidal or layered) are
drawn from parameterized distributions.

All time-dependent problems are numerically integrated up to 7' = 1 (except for the Wave-
C-Sines where T=0.005), collected (up to) N; = 21 uniform snapshots per sample at t €
{0,2,4,6,8,10,12,14}. For time-dependent PDE, as mentioned before, we use the same all2all
training strategy proposed in Poseidon [21]. This means that each trajectory can generate 28 pairs for
training.

D.1 Poisson-C-Sines

This dataset contains solutions to the two-dimensional Poisson equation with a circular domain.
The Poisson equation is a fundamental linear elliptic partial differential equation (PDE) given by
Eq. D.2. The dataset represents the mapping from the source term f to the solution u using the
solution operator G T f +— u. The source term is defined as:

K
m . ON—p
f(x,y) = 2 Z aij - (i* + j%) " sin(miz) sin(njy), V(z,y) € D, (D.5)
i,j=1
where r = —0.5 and K = 16. The coefficients a;; are sampled i.i.d. uniformly from [—1, 1] to

generate the dataset. The solution « is computed on a circular domain with zero Dirichlet boundary
conditions. The dataset is generated using a finite element method (FEM) on a triangular mesh in a
circular domain. The mesh is generated using the Delaunay algorithm with 16431 points and 32441
elements.

D.2 Compressible Flow Past Airfoils & Bluff Bodies

A classical benchmark for compressible flow physics used for testing the accuracy of neural operators
and PDE foundation models is the case of flow past airfoils [21, 25]. The datasets used in these
papers are limited to transonic flow past perturbations of a single airfoil. To capture a broader range
of rich flow phenomena, it is essential to explore the parameter space spanned by the Mach number
Ma, angle of attack « and the shape function. To address this issue, this new dataset introduces
samples comprising a range of flow phenomena from subsonic to supersonic flow for varying angles
of attack across classical airfoils and various bluff body geometries. The steady-state compressible
Euler equations govern the flow phenomena in this dataset. The equations have been solved using the
finite-volume EULER solver of the open-source software SU2 [12] on an unstructured grid generated
by Delaundo [40]. Convective flux discretization is done using the Jameson-Schmidt-Turkel (JST)
scheme that is designed especially for achieving quick convergence to steady-state solutions of the
compressible Euler equations. Figure D.1 represents an O-type unstructured mesh generated using
Delaundo for the RAE2822 airfoil. Similar O-type unstructured meshes have been generated for all
airfoils and bluff-bodies considered. The free-stream pressure and temperature conditions for all
simulations in this dataset are p,, = 1 atm and T, = 288.15 K.

D.2.1 Airfoils

perturbations applied to shape functions of the NACA2412, NACAO0012, and RAE2822 airfoils.
Anisotropic adaptive mesh refinement for highly accurate shock resolution (oblique and bow shocks)
is performed using INRIA’s pyAMG library coupled with SU2 [31] . The anisotropic mesh refinement
is done using a Mach sensor that generates refined meshes based on the simulation on a coarse grid
such as in Figure D.1. The final simulations are then performed by the SU2 EULER solver on the
new refined mesh. Figure D.2 represents the highly unstructured adapted grids for transonic and
supersonic flow past the RAE2822 airfoil.

Flow past airfoils is considered for 0.5 < Ma < 1.4,0.5° < a < 5.0° and for 500 unique

We consider the reference airfoil shapes with the upper and lower surface coordinates located at
(z,y2:(£)) and (z,y5(€)) where £ = Z, ¢ is the chord length. We use the Class Function/Shape
Function Transformation (CST) Method [24] for parameterizing the airfoil surfaces in terms of a

34

VAV
ev

VAW,
AV
00
vl

%

0
Yaj
Ve

<\

R

2
\/

Yavay
1%\
0

arl
AV
Vav

e
A
Vavay
£

o

lﬁ
ER] N
SN g AVAN
'M%AMV
SATAAYAVAVAY

YW
vy}
iVay

!
Lot
AVAVAVAVAVAVAVATAL a5
AAVaVAV, Sy
e
AVAVAvAvm!g
V‘VAVA'

Vs
0
uATAYAVAY

X
pas
F

s

-
AVAVAVAY:

\VAVAVAVAVAVAVATS.S)

AVAVAVavLT,®
AVAVAVLVLTLT:

VAVaY

ot
AVavyv,s

ay
AVAVAVAVAVAY:

vay
Vs

<
%)

e
AVAVAY

VAN

s

Vs
v,

v
V)

O

VA
\VAVA
200

V)

XK
VAVAVAVAVAY!
YAVAYAVAYAVS

VA

<
a0y

%

v,

<\

v

g

I

Figure D.1: O-type unstructured mesh - RAE2822 airfoil

class function C'(£) and shape functions SY(¢), S™(€) using an in-house MATLAB code. The airfoil
upper surface function nY(¢) and lower surface function n%(¢) are parametrized as follows:

1°(€) = C(€)SY(€), 1) = C(O)S () (D.6)
where the class function for airfoils is given as:
C&) = Ve -9 (D.7)

and the upper and lower surface shape functions are respectively
n n
n! i ; n! , .
SY = A— " il —g)nt gL _ B i(] _ gyn—i D8
€ =2 Ayt =" SO =2 Bye -9 (D.3)

The polynomials .S; , = #LZ),Q(I — &)"~ % associated with the coefficients (A;, B;) are Bernstein
polynomials and n = 7 is chosen. The parameters (A;, B;) directly influence key airfoil design
variables such as the leading edge radius, trailing edge boattail angle, maximum airfoil thickness and
maximum thickness location. The parameters (Ao, By) are linked to the leading edge radius Ry as

follows,

R
Ag=—-By=+2r, r= % (D.9)
and the parameters (A, B,,) are linked to the upper boattail angle Sy and lower boattail angle 5y :
An = tan(ﬁU)v B, = tan(ﬂL) (D.10)

Figure D.2: Adaptively refined meshes for flow past the RAE2822 airfoil at & = 2.0 and at different
Ma = 0.8 (left), 1.0 (center), 1.4 (right).

35

To generate perturbed variations of the airfoils, minor random perturbations are made to the CST
parameters (A;, B;) keeping in mind the constraints Ay = —By, A; > B; and Sy > (L. We
have randomly sampled 5384 solutions from our dataset for each classical airfoil shape with a
train/validation/test split of 5000/128/256. For each data, we sub-samples 8000 points for training,
validation and testing.

D.2.2 Bluff-Body

Flow past bluff-bodies is considered at 0.3 < Ma < 1.3,0.5° < a < 15.0° for a wide variety of
simple bluff-body geometries. Steady-state solutions for the compressible Euler equation for flow
past bluff-bodies may not exist or are often unstable making it difficult to attain convergence. This
bluff-body aerodynamics dataset comprises of samples that are at pseudo-steady state in a large
finite-time limit. Figure E.6a describes all the bluff body geometries taken into consideration in this
dataset.

We sample 4384 solutions from our dataset with a train/validation/test split of 4000/128/256 for all
bluff-body geometries used for "Training and Testing" . For each data, we sub-sample 14000 points
for training, validation and testing.

E Additional Results

E.1 Asymptotic Complexity

Table E.1 summarizes the asymptotic complexities of the compared models in Fig. 1. In practice, the
number of edges FE is typically 3 —5 x the number of nodes N. For consistency, we denote the number
of latent tokens by 1" across all models; however, ViT-style patchifying in GAOT effectively reduces
T and thereby improves scalability. Furthermore, different models employ distinct hidden dimensions
C for their edge update functions, which introduces further variation in the total computational cost.

Table E.1: Asymptotic complexity. N: number of nodes, £: number of edges, T: latent tokens, C"
hidden channels, p: patch size, L: number of layers/blocks.

Model Total Complexity
GAOT O(E + L(T/p)>C)
GINO O(E+ LTlogT)C
RIGNO O(LEC)

Transolver O (L(NTC + T°C))

The main computational burden in graph-based models arises from message passing, and memory
usage is dominated by storing edge activations, scaling linearly with both £ and C. GAOT, RIGNO,
and GINO compress information into latent tokens and then perform L layers of latent processing. In
contrast, Transolver performs compression and decoding within each block, operating directly on
nodes of N rather than edge F, but accumulating higher total computation across layers.

It is worth noting that these are theoretical costs only. On modern hardware, actual runtime can
deviate significantly because graph-based operations rely on sparse and irregular memory access
patterns, which are inefficient on GPUs. By contrast, transformer-style dense computations are highly
optimized and throughput-efficient on current accelerators. The following Sec E.2 provides a more
practical profiling comparison.

E.2 Runtime Profiling

To further analyze the computational efficiency of our implementation, we compare the detailed
runtime breakdowns of GINO [28] and GAOT on the NACA0012 dataset using a single NVIDIA
GeForce RTX 4090 GPU. Table E.2 presents the per-component execution times for both models at a
batch size of 1.

For GINO, the total runtime per sample is 13.79 ms, where the encoder and decoder each spend
almost 2 ms on graph building, comparable to or even exceeding the actual GNO operations. Also,
the official implementation of GINO does not support batch processing when the underlying graphs
change within a batch, as is typical for PDEs defined on arbitrary domains. This limitation arises

36

Table E.2: Comparison of time breakdown between GINO (6.07M parameters) and GAOT (5.62M
parameters) with batch size = 1 on the NACAO0012 dataset.

GINO GAOT
Component
Sub-Operation Time (ms) Sub-Operation Time (ms)
Graph building 1.984 AGNO 2.296
Encoder GNO 2.793 GeoEmb 3412
Total Encoder 4.777 Total Encoder 5.708
Processor Per-layer FNO 1.178 Per-layer Transformer (ps=2) 2.02
1.178 x 5 layers 5.89 2.02 x b layers 10.1
Graph building 1.984 AGNO 1.356
Decoder GNO 1.140 GeoEmb 1.865
Total Decoder 3.124 Total Decoder 3.221
Total Time 13.791 19.029

because batch-processing the encoder and decoder often leads to out-of-memory (OOM) errors,
making GINO scale poorly with batch size.

In contrast, GAOT eliminates the runtime overhead of graph building by precomputing graphs and
loading them efficiently from cache. More importantly, to overcome the memory bottleneck in batch
processing, we adopt a hybrid execution strategy: the encoder and decoder are processed sequentially
through a lightweight for-loop, which avoids memory overflow without introducing noticeable
computational overhead, while the processor (Transformer) is fully batch-processed to maximize
throughput. This design choice is based on the observation that, for larger models, the processor
typically dominates the compute cost, making it the optimal module to parallelize. As shown in Table
E.3, GAOT achieves a total runtime of 263.1 ms for batch size 32, while GINO, lacking batching
support, must loop 32 times, resulting in 13.791 x 32 = 441.3 ms. The Transformer processor scales
efficiently (from 10.1 ms for batch size 1 to only 30.1 ms for batch size 32), while maintaining
a manageable total memory usage of 7.74 GB. Consequently, GAOT achieves significantly better
scalability than GINO in both input size and model size, without sacrificing computational efficiency.
For very large graphs, e.g. DrivAerML dataset [2], edge masking is used to control memory usage
ensuring stable training even on limited-memory GPUs.

Table E.3: Breakdown of time and memory for GAOT (5.62M parameters) with batch size = 32 on
the NACAO0012 dataset.

Component Sub-Operation Time (ms) Memory (GB)
Encoder AGNO + GeoEmb 126 1.836
Processor 5-layer Transformer, ps=2 30.1 3.592
Decoder AGNO + GeoEmb 107 2.310
Total 263.1 7.738

E.3 Accuracy, Robustness and Computational Efficiency Metrics

Accuracy For benchmarks in Table 1 and Table E.5, we adopt the relative L error metric, following
the manner of CNO [45], to measure the discrepancy between the ground-truth operator output S(a)
and the model’s prediction Sy(a) over a discrete set of points. Suppose a given sample is discretized
into IV points (either on a regular grid or an unstructured mesh). For a single-component solution
field, the discretized relative L' error ¢ is defined as

.= L5 [@), - (i), E
N i=1 ‘(8(0’))1!
Because the test set contains multiple input—output pairs {(a,S(a))}, we obtain a distribution of

errors. We report the median of these errors—rather than the mean—to mitigate the influence of
strong outliers. For multi-component PDE solutions (e.g., velocity and pressure fields), we compute

37

the median error per component, then average these medians to obtain a single scalar metric. In
time-dependent tasks, we specifically report the relative L' error at the final time snapshot, as errors
usually accumulate over time and thus the last snapshot often poses the greatest challenge.

For the pressure and wall shear stress (WSS) in the DrivAerNet++ dataset, we evaluated the model
on 1154 samples according to the official leaderboard. The errors are calculated based on normalized
pressure and WSS. For pressure, the mean and standard deviation (std) for normalization were
obtained from the open-source code of [13]. However, for WSS, as the normalization statistics
were not open-sourced, we calculated the mean and variance for the x, y, and z components over
8000 samples to be used for normalization. The Mean Squared Error (MSE) and Mean Absolute
Error (MAE) are first computed for each individual sample. Then, the average of these errors across
the 1154 test samples is reported as the final result. This entire procedure strictly follows their
open-source code methodology of [13].

In Table E.4, we further provide an aggregate performance comparison of GAOT and three represen-
tative baseline models (Transolver, GINO, RIGNO-18) on both time-dependent and time-independent
dataset categories, described in Table 1. Specifically, for each individual dataset, we calculate the
normalized scores for every model. The best-performing model is assigned a score of 1. The scores
for other models are calculated as the ratio of the best model’s error to their respective errors:

eITOIpest
Snorm = —= (E.2)
€ITOI'model
These dataset scores are then summed for each model to derive total scores for the time-dependent and
time-independent dataset categories, respectively, offering a complete view of model performance.

Robustness To evaluate the consistency of model performance across different datasets, we intro-
duce a Robustness Score. This score is calculated for both the time-dependent and time-independent
categories of datasets. Leveraging the normalized scores obtained by each model on the individual
datasets within these categories, the Robustness Score for a model is defined as:

Robustness Score = Spom X (1 — CV), (E.3)

where Spom is the mean of the model’s normalized scores across all datasets in a specific category
(either time-dependent or time-independent). The term CV represents the Coefficient of Variation of
these normalized scores, calculated as:

CV = Z5mom (E.4)

SHO]'IH ’
where og,_ . is the standard deviation of the model’s normalized scores within that same category. A
higher Robustness Score suggests that a model not only achieves high average performance (high
mean normalized score) but also exhibits less variability in its performance across the different
datasets within the category (low CV), indicating greater reliability. The robustness scores for GAOT,
Transolver, GINO and RIGNO-18 are shown in Table E.4.

Computational Efficiency To provide a comprehensive characterization of model performance and
analyze the inherent accuracy-efficiency trade-off, we further evaluate the computational efficiency
of the models during both training and inference phases.

Training efficiency is quantified by the training throughput, defined as the number of samples the
model can process per second during training, encompassing the forward pass, backward pass, and
gradient update. A high training throughput is indicative of a model’s ability to learn quickly from
data. This is essential for handling large-scale datasets or developing large foundation models where
training time can be a significant bottleneck. For measuring throughput, the batch size for each
model was determined first by identifying the maximum value that could be run without encountering
Out-of-Memory (OOM) errors on the target hardware. The actual batch size used for the throughput
measurement was then set to approximately half of this maximum. This heuristic is based on the
observation that peak throughput is often not achieved at the absolute maximum batch size, but rather
at a point (frequently around half the maximum) where GPU resources, such as shared memory
bandwidth, are optimally utilized, leading to the highest processing rates.

Inference efficiency is measured by the inference latency, which is the time taken for the model to
perform a single forward pass on an individual sample (i.e., batch size of 1). Low inference latency

38

is a critical attribute for the practical deployment of models, particularly in applications requiring
real-time or near real-time predictions, such as in engineering simulations, interactive design tools, or
control systems.

All computational efficiency metrics were benchmarked on the Bluff-Body dataset with one NVIDIA-
4090 hardware. To ensure reliable and stable measurements, the GPU was warmed up prior to data
collection, and each reported metric is the average of 100 repeated measurements.

E.4 Results for Radar Chart in Main Text.

Table E.4 presents the raw data used to generate the radar chart in Figure 1 of the main text. The
metrics depicted in the radar chart include:

e Accuracy (Acc. and Acc.(t)): Overall accuracy on time-independent (Acc.) and time-
dependent (Acc.(t)) datasets.

* Robustness (Robust. and Robust.(t)): Robustness on time-independent (Robust.) and
time-dependent (Robust.(t)) datasets.

* Training Throughput (Tput.(train)): The number of samples processed per second during
training.

* Inference Latency (Infer. Latency): The time (ms) taken for a single forward pass on one
sample during inference.

The precise definitions and calculation methodologies for these metrics are detailed in Sec. E.3

Table E.4: Data for Radar Chart

Model \ acc.(t) . acc. Tput(train) Infer Latency Peak memory InputScal. ModelScal robust(t) robust

GAOT 7.45 6.30 97.5 6.966 101.7 68.12 48.7 0.80 0.77
Transolver 0 4.12 39.5 15.295 144.0 8.96 6.69 0 0.22

GINO 277 2.94 60.4 8.455 556.8 30.53 40.00 0.15 0.19
RIGNO-18 7.37 4.38 50.3 12.749 188.8 12.52 7.51 0.85 0.29

Table E.4 also includes Peak Memory (MB), which records the peak GPU memory consumption
of each model during inference with a batch size of 1. Although not visualized in the radar chart
(Figure 1), the data indicates that GAOT exhibits the lowest peak memory usage among the compared
models. Furthermore, Figure E.1 (a, c) illustrates the scaling of peak memory with increasing input
grid size and model size, respectively. These plots demonstrate GAOT’s superior memory utilization
capabilities.

The Input Scalability and Model Scalability scores presented in the radar chart are derived from the
training throughput measured under specific conditions:

* Input Scalability is based on throughput at an input grid size of 50,000 points.

* Model Scalability is based on throughput for a model size of approximately 70 million

parameters.

These particular evaluation points were chosen due to the performance limitations encountered with
models like RIGNO-18 and Transolver on a single NVIDIA 4090 GPU, which prevented us from
benchmarking them at larger scales. It is important to note that GAOT’s architecture allows it to scale
significantly beyond these tested limits.

SM Figure E.1 provides detailed scaling curves for both peak memory and training throughput as
functions of input grid size and model size. To vary the model size for these comparisons, we
systematically adjusted key architectural width parameters for each model:

* For Transolver, we scaled its hidden channel dimension through [64, 128, 256, 512, 1024].

* For RIGNO, the hidden channel dimensions of its node and edge functions were varied
across [64, 128, 256, 512, 1024].

* For GINO, the hidden channel dimension of its FNO processor layers was selected from
[16, 32, 64, 128, 256, 512].

39

-8~ GAOT -8~ GAOT
8~ GAOT-8 ~8— GAOT-8
—8— GINO -8~ GINO
~®— RIGNO-18 ~®— RIGNO-18

~®— Transolver =@~ Transolver

<

1 (MB)

throughput (samples/s)
=3

w0
2
g
)
=
& 2
10?4 10
/ -
r : : : : T
10% 10* 10° 10% 10* 10°
Input grid size (nodes) Input grid size (nodes)
(a) Grid vs. Peak Memory (b) Grid vs. Throughput
—8— GAOT
—o— GAOT-8
—e— GINO = 10?4
— —o— RIGNO-18 £
2 108 | —® Transolver £
— &
k. xS
l =
w =
= B
))
E E —e— GAOT
& £ —o— GAOT-8
1024 & 101 —® GINO
—o— RIGNO-18
—o— Transolver

T T T T T T
10° 10! 10% 10° 10! 10%
Model size (M parameters) Model size (M parameters)

(c) Model vs. Peak Memory (d) Model vs. Throughput

Figure E.1: Performance scaling comparisons across different metrics.

* For our GAOT model, we scaled the hidden channel dimension of its attention layers using
values from [64, 128, 256, 512, 1024, 2048], while the hidden dimension of its FFN layers
was maintained at four times the attention layer’s hidden dimension.

This figure also introduces results for GAOT-8, a variant of GAOT where the patch size in the
transformer processor is set to 8 (the default GAOT employs a patch size of 2). As shown, GAOT-8
can achieve enhanced computational performance. Furthermore, as detailed in our ablation studies
(Section F.2), this improvement in efficiency with GAOT-8 does not give rise to the substantial
accuracy degradation.

E.5 Regular Grid Dataset

In addition to datasets with arbitrary point cloud geometries, we also evaluated the performance of our
GAOT model on time-dependent PDE datasets where the inputs are provided on regular (structured)
grids. The results for GAOT are compared against several baselines, including RIGNO (RIGNO-18
and RIGNO-12), CNO, scOT, and FNO. The performance data for these baseline models are sourced
from the original RIGNO paper [39].

As demonstrated in Table E.5, GAOT also performs well on these structured grid datasets. Our
model consistently ranks within the top two across six of the seven benchmark datasets, achieving
the leading (first place) performance on five of them. This highlights GAOT’s robustness and strong
generalization capabilities across different input discretizations.

Furthermore, we ablated GAOT further by just running the ViT processor (without the encoder/de-
coder) on these Cartesian datasets. From these results, it is clear that in some cases, ViT is comparable
to or slightly better than GAOT, indicating that the power of GAOT in these cases stemmed from
a good processor. However in many more cases, GAOT is significantly superior to ViT also show-
ing that the encoder/decoder contribute significantly to expressivity and together, this combination

40

achieves SOTA performance. This interesting experiment clearly delineates the relative contributions
of encoder/decoder vs. processor.

Table E.5: Benchmarks with time-dependent datasets with regular grid inputs. Best and 2nd best
models are shown in blue and orange fonts for each dataset.

Dataset Median relative L' error [%]

Structured GAOT RIGNO-18 RIGNO-12 CNO ViT scOT FNO
NS-Gauss 2.29 2.74 3.78 109 3116 292 1441
NS-PwC 1.23 1.12 1.82 5.03 3.89 7.12 12.55
NS-SL 0.98 1.13 1.82 212 073 249 2.08
NS-SVS 0.46 0.56 0.75 070 039 1.01 7.52
CE-Gauss 5.28 5.47 7.56 220 681 944 28.69
CE-RP 4.98 3.49 4.43 184 430 9.74 3848
Wave-Layer 5.40 6.75 8.97 828 548 1344 28.13

E.6 Model and Dataset Scaling

Model Size To further investigate the scalability of our approach, we conduct an ablation study
on how different model sizes affect performance. We focus on the two compressible Euler datasets,
CE-Gauss and CE-RP, each with 1,024 training trajectories. We measure the final-time relative L'
error (t = t14) and record the total number of parameters and per-epoch training time under various
hyperparameter configurations.

We vary the following components of our GAOT architecture as explained in the Tab B.2:

* LC (Lifting Channels): The number of channels used during the encoder stage to project
from the unstructured node features to latent tokens. Intuitively, a larger LC can preserve
more local features when mapping from the input domain to the latent space.

* TL (Transformer Layers): The depth of the transformer-based processor. Increasing TL
typically increases modeling capacity for global interactions.

e THS (Transformer Hidden Size): The hidden dimension of each self-attention block. A
larger THS can capture richer representations.

* FFN (Feed-Forward Network Size): The hidden dimension inside the FFN sub-layer, which
we set to 4 x THS following standard vision transformer practice.

Table E.6 summarizes the performance across a range of these hyperparameters. We also record the
total number of trainable parameters (in millions) and the approximate epoch time (in seconds) on
one NVIDIA 4090 GPU with a batch size of 64. Here, all experiments are done with patch size equal
to 2.

Table E.6: Relative L' test errors at ¢ = ¢4 with different architectural hyperparameters. Time refers
to training time with batch size equals to 64 on 1 NVIDIA-4090 GPU, and the patch size is set to 2.
The size of training trajectories is 1024.

Model size Hyperparameters Median relative L' error [%]
Parameters [M] Time[s] LC TL THS FFN CE-Gauss CE-RP
0.14 84 32 5 32 128 48.4 26.5
0.41 89 32 5 64 256 13.2 12.0
1.42 100 32 5 128 512 9.17 7.90
5.6 143 32 5 25 1024 6.88 5.28
5.5 142 16 5 256 1024 7.97 5.94
5.6 154 64 5 256 1024 6.94 5.18
6.1 181 128 5 256 1024 7.33 5.20
1.16 50 32 1 256 1024 25.0 14.5
3.39 98 32 3 256 1024 9.00 6.80
11.2 260 32 10 256 1024 5.28 5.35

41

— v — 95| ¥

IS I 25 q

o ~ - ~

5 32 So 5 SO

=) ~ = 16 ~

~ ~

M SN = S
- ~ -

= 16 S~ = SS

o) ~ o ~

4 v So = VoS

3 =8 ho

= ~ = ~

= Yo = v

53 ~ [} ~ ~
~ Sa. v~ ~
=1 ~ =] N v

5 =

8 2

£ .

= =

128 256 1 3 5 10
Transformer Hidden Size Transformer Layers
(a) (b)

Figure E.2: Relative median L' test errors at t = ¢14 with different strategies for scaling model sizes.
The x-axis in the left plot corresponds to all the following hyperparameters: THS and TL.

ot
o
<

[V
ot
/
4
<«

>
/
{

o]

Dataset W
~
v CE-Gauss ~
CE-RP
64 128 0.12 1.00 3.00 5.00 10.00
Lifting Channels Number of Parameters, 10°

Median Relative L' Error [%)]
[=2]

Median Relative L Error [%]
<
/

'

(@) (b)

Figure E.3: Relative L' test errors at t = ¢, with different strategies for scaling model sizes. The
x-axis in the left plot corresponds to all the following hyperparameters: LC, and the total number of
trainable parameters.

From the top block of Table E.6 (rows 1-4), we observe that as we increase THS from 32 to 256
(keeping TL=5 and LC=32), the final-time errors on both CE-Gauss and CE-RP decrease significantly.
For example, on CE-Gauss, the error drops from 48.4% down to 6.88%. This trend reflects the
transformer’s ability to scale with hidden dimension. The training time per epoch grows from roughly
84 seconds to 143 seconds. While performance improves, larger THS demands more computational
resources.

Next, we fix (TL,THS)=(5,256) and vary LC in the middle block (rows 5-7). Setting LC=32
consistently achieves strong results. Lowering LC to 16 slightly degrades performance, while
pushing LC to 64 or 128 yields only marginal gains. Hence, LC=32 appears sufficient to capture the
encoder-level geometry information.

Finally, the bottom block (rows 8-10) examines the effect of transformer layers TL from 1 up to 10.
With TL=1, errors remain quite high (25.0% on CE-Gauss); adding layers substantially reduces error
t0 9.0% at T'L = 3, and ultimately down to 5.28% at TL=10 on CE-Gauss. Increasing TL to 10 also
expands the parameter count to 11.2M, nearly doubling the training time per epoch (260s).

Figure E.2 illustrates how errors decrease as we scale THS or TL, while Figure E.3 shows the effect
of changing LC or the total parameter count. The largest model tested reaches 11.2M parameters and
attains around 5% error on CE-Gauss, demonstrating the potential to improve accuracy by investing
in more computational resources.

Data Size So far, we have discussed how increasing model size affects accuracy. In this subsection,
we turn our attention to data scaling: we examine how the learned operator’s performance changes as

42

the number of training samples (trajectories or static solutions) grows. Figure E.4 illustrates two sets
of experiments:

20 100
\\
v

v=IIso 50[8y
— . (N
= 3
= IRES = N
s} S S 20 \\
= S~ atas = \Y
S Dataset = .
— v NS-Gauss — AN Dataset
~ NSPwC | 3 10[w s avaset
@ %< o N 1 Poisson-Gauss
2 e NS-SL 2 AN v . @
= ~ Y . = R} Poisson-C-Sines
< NS-SVS < 5 X -
) > Elasticity
3 CE-Gauss 3 N -
G N CE-RP = SN
g \\\\ — g \\
= SNY 3 \
S 3 N
= 1 = v

1
128 256 512 1024 128 256 512 1024 2048
Number of Training Trajectories Number of Training Samples
(a) (b)

Figure E.4: Relative L1 test errors against the size of training dataset. The left plot shows these
results for the time-dependent fluid datasets, and the right plot for time-independent datasets. The
lines show linear regression slopes for each dataset.

(a) Time-Dependent (Fluid) Datasets. We plot the final-time (¢t = ¢14) error on multiple fluid PDE
benchmarks as a function of the training set size {128, 256, 512, 1024}. All of these datasets use
partial-grid subsampling. The results confirm that as we increase the number of training trajectories,
errors consistently drop across all fluid datasets, often in a near-linear fashion with respect to the
number of training trajectories. This trend highlights the model’s capacity to benefit from additional
time-series diversity.

(b) Time-Independent (Static) Datasets. We similarly measure how the final solution error decreases
when expanding the dataset size to {128, 256, 512, 1024, 2048} for three static PDE tasks: Poisson-
Gauss, Poisson-C-Sines, and Elasticity. Note that elasticity is limited to at most 1024 samples due to
data availability. Across all these static problems, we observe a consistent downward slope in error as
the number of samples increases, again underscoring the advantage of larger training sets.

Overall, in both dynamic (time-dependent) and static (time-independent) scenarios, GAOT exhibits a
scalable relationship between training set size and error reduction. As the training data grows, the
learned operator converges more reliably to the underlying PDE solution. This robust data scaling
property supports our premise that GAOT can serve as a strong foundation model backbone for PDE
tasks, becoming increasingly accurate with more extensive datasets.

E.7 Resolution Invariance

One of the core properties for operator learning is resolution invariance—the ability to train on a specific
discretization yet accurately predict solutions at higher/lower resolutions. To validate this property in
our GAOT framework, we conduct experiments on a time-independent PDE, Poisson-Gauss.

Figure E.5 illustrates the resolution invariance capabilities of GAOT. In this experiment, GAOT was
trained using data discretized by 2048 points. Its performance was then evaluated across a spectrum
of seven distinct resolutions: three sub-resolution settings (256, 512, and 1024 points), the training
resolution itself (2048 points), and three super-resolution settings (4096, 8192, and 16384 points).
For comparative purposes, Figure E.5 also displays the performance of the top three baseline models
from Table 1 (excluding GAOT itself), namely RIGNO-18, Transolver, and GINO. These baseline
results were obtained from models that were both trained and tested at a resolution of 8192 points.

The results demonstrate that GAOT possesses excellent resolution invariance. Notably, even when
trained at a resolution of 2048 points, GAOT not only generalizes well to higher resolutions but also

43

10~
1 —e— GAOT
| Training Resolution

< 8- [RIGNO-18
— 1 A Transolver i g
—
g 1 % GINO
& |
— 6 1
~ |
Z
+~
i |
T 4
~
=i
g
3 |
g
= 27 _.-—L—‘

0

256 512 1024 2048 4096 8192 16384
Resolution (Number of Test Points)

Figure E.5: The GAOT model is trained at a resolution of 2048 and evaluate at various test resolutions.
The results for RIGNO-18, Transolver and GINO correspond to models trained and tested at a
resolution of 8192.

achieves the best performance when tested at 8192 points. It outperforms the baseline models which
were specifically trained for and tested at this higher resolution (8192 points), underscoring GAOT’s
efficiency and robustness in learning resolution-independent solution operators.

E.8 Comparison of Neural Field with UPT

The neural field property enables continuous evaluation of the learned mapping at arbitrary spatial
points, allowing models to train and test at different resolutions-a highly desirable capability for PDE
operator learning [1, 48]. This feature allows a model trained on a coarser resolution for efficiency to
be tested at finer resolutions for higher accuracy.

In Table 3 of the main paper, we demonstrated this property for GAOT on the industrial-scale 3D
Drivaernet++ dataset. However, as noted in this result, possessing the neural field property does not
necessarily imply higher accuracy. Indeed, GAOT trained using only 10% of input points but tested
on the full resolution (500K surface points) is less accurate than the fully trained version, though still
outperforming several baselines.

To further examine this, we compared GAOT with the neural-field-based UPT model [1] on the 2D
NACAO0O012 dataset under two settings: (i) both trained and tested at full resolution, and (ii) trained at
one-fourth resolution but tested at full resolution. The results are shown in Table E.7.

Table E.7: Neural field training with 1/4 sub-sampling on the NACAO0012 dataset.
Model Error (Full Resolution) Error (Neural Field)

GAOT 6.81 9.54
UPT 16.1 16.3

These results reveal that: (a) training at full resolution yields better accuracy than coarse training; (b)
GAQOT consistently outperforms UPT under both configurations; and (c) UPT’s limited improvement
with resolution suggests poor convergence, further highlighting the robustness of GAOT as a neural
surrogate with flexible spatial generalization.

44

E.9 Transfer Learning

The set of geometries illustrated in Figure E.6a, represent the varying bluff-body geometries in the
Bluff-Body dataset, which is one of the benchmarks presented in Tab. 1 of the main text. This dataset
is constructed by simulating compressible flow across diverse bluff-body geometries at varying
Ma and a, as described in Sec. D.2. The distinct shapes depicted in Figure E.6b were specifically
employed for the fine-tuning stage of our transfer learning experiments. The corresponding transfer
learning performance, demonstrating the model’s ability to adapt from the shapes used for pretraining
to the novel ones indicated in Figure E.6b, is presented in Figure 3(c) in the main text.

Square Circle Cone Rectangle-L Semicircle-F

Ellipse Ellipse Ellipse Ellipse Ellipse

(a) Shapes utilized for pretraining in the transfer learning experiments.

Cone-F Rectangle-S Semicircle-C Ellipse-1 Ellipse-2

(b) Bluff body shapes employed for the fine-tuning (FT) phase of the transfer learning task.

Figure E.6: The geometries in (a) are included in the Bluff-Body dataset in Tab. 1. Shape-* (*: C, F,
S, L; Shape: Semicircle, Cone, Rectangle) indicates shapes and their contact surfaces (*) with respect
to the flow. Here, F - flat surface, C - curved surface, L - larger side, S - smaller side.

E.10 Training Randomness

In order to quantify the dependence of the final model performance on the inherent randomness in
the training process, such as in weight initialization, we trained the GAOT model six independent
times. Each training run utilized a different seed for the pseudo-random number generator. These
experiments were conducted on the Bluff-Body dataset. The statistics of the resulting relative L' test
errors across these six runs are summarized in Table E.8. The standard deviation of these errors is
0.12. This relatively small standard deviation suggests that the GAOT model exhibits good stability
with respect to the random aspects of the training procedure.

Table E.8: Statistics of relative L' test errors with different random seeds. We train GAOT on
Bluff-Body dataset, which is repeated 6 times.

Dataset Error [%]
Mean = Standard deviation
Bluff-Body 2.394+0.12

45

E.11 Runtime Comparison between GAOT and Classical Solvers

The main rationale for the design of efficient neural surrogates such as GAOT lies in the fact that
classical numerical PDE solvers are slow, particularly in industrial 3D problems. On the other hand,
neural operators are ultra-fast to infer. We discuss this issue from the perspective of GAOT in this
section. To begin with, Table E.9 summarizes the inference times of GAOT and compares them
with the runtimes of classical numerical solvers across several CFD datasets. For fairness, all GAOT
inference times include graph construction overhead.

Table E.9: Comparison of GAOT inference time with traditional CFD solvers.

Dataset Mesh Points Inference Time (ms) Traditional Solver Speedup
Bluff-body 14,000 9.77 283 ~ 419 s ~ 3 x 10%
NS-SL 16,384 10.14 0.1s ~ 10!
DrivaerNet++ 500,000 365.36 375 core hours ~ 3.7 x 107
DrivaerML 9,000,000 14,091.08 61,440 core-hours ~ 1.5 x 10°

The NS-SL dataset is taken from Ref. [21], following the setup of Ref. [39] with random point-
cloud inputs. Their optimized GPU-based spectral viscosity solver achieves approximately 0.1s per
sample. For our new datasets-NACAO0012, NACA2412, RAE2822, and Bluff-body-which simulate
compressible flow around airfoils and bluff bodies, the traditional CPU-based solver required between
283s and 419s per sample due to adaptive grids and iterative refinement (see SM D for details). For
the large-scale 3D benchmark DrivaerNet++ [13], the original authors reported an average cost of
approximately 375 CPU hours per sample. For DrivAerML, [2] indicates that each scale-resolving
CFD simulation using the hybrid RANSLES approach required around 40 hours on 1536 cores
(61,440 core-hours) on AWS HPC clusters, which represents an industrial-grade high-fidelity CFD
workflow that includes near-wall resolution and statistical convergence monitoring.

Overall, traditional numerical solvers span a runtime range from 0.1s to a few minutes for 2D problems
discussed in this work, and up to tens of thousands of core-hours for industrial 3D simulations. In
contrast, GAOT performs inference within 8.95-10.14 ms for 2D datasets and around 365ms for 3D
DrivaerNet++, achieving a remarkable speedup of 15 orders of magnitude for 2D problems and up to
10 orders of magnitude for 3D industrial-scale benchmarks. The reason why DrivAerML shows a
significantly higher runtime compared to other datasets is mainly due to the excessive time spent on
graph building. In fact, if we exclude the graph building process, its inference speed is 446.06 ms.
The relatively long graph building time can be attributed to two factors: first, the large scale of the
input mesh points; and second, to control memory usage while covering the entire solution domain,
we employed more complex graph building techniques (see Section B.5). Nevertheless, even under
these conditions, the efficiency improvement compared to traditional solvers remains at the billion
order of magnitude level as its runtime of approximately 15 secs is completely dwarfed by the more
than the 60K core hours run time of the LES based ground truth simulations.

One can argue that the runtime of classical numerical PDE solvers can be reduced by coarsening the
resolution. This does not hold for the industrial scale datasets as there is a minimum mesh resolution
that is essential for the underlying physics to be resolved. However, on the academic 2D datasets, we
can perform such a coarsening and examine if the cost-accuracy pay-off for GAOT still holds. To this
end, we consider the NACAO0012 dataset and coarsen the resolution of the underlying finite-volume
solver by two levels of refinement. The underlying error is now 4.5%, when compared to the ground
truth but the run-time reduces from 7 mins to approximately 1 minute. This error is comparable to the
error of GAOT (6.8%), while the runtime of GAOT for this dataset is approximately 10 milli-seconds,
leading to a speedup of 6000. This further demonstrates the enormous advantage that an efficient
and accurate neural operator such as GAOT can provide, when compared to classical numerical PDE
solvers.

F Ablation Studies

F.1 Encode-Process-Decode

In this subsection, we investigate the performance of four different encode—process—decode architec-
tures on both time-dependent and time-independent PDE benchmarks. The four models considered

46

are GAOT (ours), Regional Attentional Neural Operator (RANO), Regional Fourier Neural Operator
(RFNO) and GINO [28], with components are Message-Passing (MP) graph neural network [17],
Transformer [50], Fourier Neural Operator (FNO) [26], Graph Neural Operator (GNO) [27] and
proposed Multi-scal Attentional GNO (MAGNO). Table F.1 summarizes the components of each
model. All variants follow an encode—process—decode pipeline but differ in how graph, Fourier, or
transformer-based mechanisms are deployed.

Table F.1: Components for different encode—process—decode designs.
Model Encode Process Decode

GAOT MAGNO Transformer MAGNO
RANO MP Transformer MP
RFNO MP FNO MP
GINO GNO FNO GNO

Figure F.1 shows the median relative L' error for each model on six PDE datasets (4 time-dependent
PDEg, 2 time-independent PDEs). All models are trained for 500 epochs under the same data splits
and hyperparameter conditions. We can see that GAOT consistently achieves strong performance and
robustness across all six datasets. Its errors remain low, highlighting the effectiveness of combining
MAGNO for local geometric encoding with transformer-based global attention. GINO ranks second
in overall accuracy, yet exhibits noticeable difficulties on NS-Gauss and Poisson-C-Sines. RANO
and RFNO perform moderately well on simpler datasets (e.g. Elasticity), but show instability on
more challenging tasks (e.g. NS-SVS or NS-Gauss). This indicates that reliance on message-passing
or FNO-based processors alone may not be sufficient to handle diverse PDE and geometry conditions
with the same level of robustness.

NS-Gauss

NS-PwC A

NS-SL 4

NS-5VS

Elasticity | Model

B GAOT
o RANO
Poisson-C-Sines B RFNO
Em GINO

0 10 20 30 10 50 60 70 80
Median relative L' error [%]

Figure F.1: Median relative L' errors (%) of GAOT, RANO, RFNO, and GINO on six PDE bench-
marks.

Overall, these results reinforce GAOT’s stability across multiple PDE settings. Even with a fixed
training protocol (500 epochs for each dataset), GAOT consistently converges faster and more
reliably, underscoring the advantage of geometry-aware tokens, multiscale attention, and the flexible
transformer backbone.

F.2 Tokenization Strategies

In Section B.1, we have introduced three tokenization methods. Here, we compare these strategies on
two datasets, Elasticity and Poisson-C-Sines. Figure F.2 shows the final median relative L' errors
for each approach. The Strategy I consistently achieves the best performance on both unstructured
datasets. Strategy II & III perform similarly to Strategy I on simpler datasets (elasticity), but can
fail to converge on the more challenging one, Poisson-C-Sines. Similar situations also happen on
models like UPT and GNOT in Tab. 1 of main text. Overall, Strategy I emerges as the most robust
approach in our current experiments. While Strategies II and III show promise, they require more
careful optimization to match Strategy I’s reliability.

47

0 20 10 60 80 100
Median relative L' error [%)]

Figure F.2: Median relative L' errors (%) comparing three tokenization strategies on Elasticity, and
Poisson-C-Sines. The Strategy I, II, III corresponds to the methods discussed in Section B.1.

Next, we focus on Strategy I and study how varying the number of latent tokens (LT), patch size
(PS), and radius (GR) affect performance. Note that here we do not use multiscale radii; each
token has a single radius. Table F.2 summarizes experiments on the elasticity and Poisson-Gauss
datasets. Results show that fewer tokens (e.g., [32,32]) can degrade performance in some cases

Table F.2: Median relative L' errors (%), parameter counts, and training time with different numbers
of latent tokens (LT), patch sizes (PS), and radii (GR).

Model Size Hyperparameters Median Relative L' Error [%]
Params [M] Time [s/it] LT PS GR Elasticity Poisson-Gauss
5.60 10.1 [64, 64] 2 0.033 1.80 1.05
6.00 3.06 [64, 64] 4 0.033 1.71 1.57
10.7 2.20 [64, 64] 8 0.033 1.60 1.65
5.56 10.1 [32, 32] 1 0.066 3.41 1.22
5.60 3.00 [32, 32] 2 0.066 2.25 1.22
6.00 11.8 [128,128] 4 0.033 1.67 1.72
10.7 5.02 [128,128] 8 0.033 1.62 1.22

(elasticity), presumably because the domain coverage becomes coarser, making it harder to capture
local variations. More tokens ([64,64] or [128,128]) typically improve accuracy and stabilize
convergence. Nevertheless, computational costs rise when the number of tokens grows, as transformer
attention scales quadratically with token count. Increasing the patch size (PS) reduces the number
of tokens entering the transformer, lowering the training time. Encouragingly, performance does
not degrade sharply with larger patches. For instance, going from PS = 2 to 8 is fairly stable across
datasets. Note that the overall parameter count can increase if each token aggregates larger local
features, but in practice, training runs faster due to fewer tokens in self-attention. Radius (GR)
grows if we reduce the number of latent tokens because we need to ensure coverage of the entire
physical domain by enlarging the receptive field. This is critical for unstructured or irregular samples,
especially if tokens must capture a bigger subregion.

F.3 Time-Stepping Method

We now investigate how different time-stepping formulations (see Section B.6) affect performance
on time-dependent PDEs. Specifically, we compare the output, residual, and derivative stepping
strategies. Table F.3 reports the median relative L' errors for six representative fluid dynamics
benchmarks on regular grids.

As shown, modeling the operator as a time derivative (derivative column) often yields the lowest
final-time errors on all but one dataset (CE-RP, where the Output strategy slightly outperforms the
others). We hypothesize that treating the operator as J,u naturally enforces a continuous dependence
on time, analogous to neural ODEs or residual networks [20, 10], which can improve stability and
accuracy over multiple steps. In experiments involving time-dependent PDEs, we therefore use

48

Table F.3: Median relative L' errors (%) at final time ¢4 for GAOT with three different time-stepping
methods.

Dataset Median relative L' error [%]
Output Residual Derivative

NS-Gauss 3.57 3.60 2.52
NS-PwC 1.95 1.70 1.23

NS-SL 1.78 1.49 1.29
NS-SVS 0.60 0.60 0.56
CE-Gauss 8.80 8.93 7.97

CE-RP 5.17 6.12 5.94

derivative time stepping as the default unless stated otherwise. This approach not only achieves strong
final-time accuracy, but also aligns with our design goal of a differentiable, time-continuous operator.

F.4 Geometric Embedding

As discussed in Section B.3, our framework incorporates a geometric embedding network to encode
shape and domain information separately from the physical (PDE) state. Table F.4 compares these ge-
ometric embedding approaches against a baseline "original" (i.e., no additional geometry embedding)
on two original unstructured datasets (Wave-C-Sines, Poisson-C-Sines).

Table F.4: Median relative L' errors (%) for various geometry embedding approaches. Original omits
geometric embedding, while Statistical and PointNet follow Section B.3.

Dataset Median relative L' error [%]
original statistical pointnet

Wave-C-Sines 6.50 5.69 6.07

Poisson-C-Sines 6.60 4.66 23.7

In the unstructured datasets, including Wave-C-Sines, and Poisson-C-Sines, explicitly encoding
domain geometry yields a more pronounced benefit. In particular, the statistical strategy consistently
outperforms PointNet on these irregular meshes, and in Poisson-C-Sines, training with the PointNet
approach appears unstable (23.7% error). Based on these observations, we use statistical embedding
by default for unstructured dataset given its stable and superior performance in most cases.

We further conducted ablation studies on DrivaerNet++ and DrivaerML to examine the effect of
statistical geometric embeddings. Three configurations were considered: (1) without geometric
embedding (nGEmb-nGEmb), (2) applying geometric embedding only in the encoder (GEmb-
nGEmb), and (3) applying geometric embedding in both the encoder and decoder (GEmb-GEmb).

Table E.5: Ablation study on the effect of geometric embedding configurations across DrivAerNet++
and DrivAerML datasets.

GEmb-nGEmb GEmb-GEmb nGEmb-nGEmb
MSE Mean AE MSE Mean AE MSE Mean AE

DrivAerNet++(p) 4.2694 1.0699 4.3119 1.0818 4.5278 1.1036
DrivAerNet++(wss) 8.6878 1.5429 8.7783 1.5690 9.3192 1.6125
DrivAerML(p) 5.1729 1.2352 10.8591 1.7344 8.6625 1.5693
DrivAerML(wss) 16.9818 2.1640 41.0027 3.0822 24.8614 2.4965

Dataset

The results show that introducing geometric embeddings consistently improves model performance
compared to not using them. Interestingly, we observed that applying the geometric embedding
only in the encoder yields even better performance, but less computational effort. Moreover, for the
DrivAerML dataset, adding a geometric embedding in the decoder actually degrades performance,
producing results even worse than the model without any geometric embedding. Our analysis
indicates that while the models training loss continues to decrease, its validation loss quickly saturates.
We think that incorporating geometric embedding in the decoder, where operations are very close

49

to the final predictions, makes the model more prone to overfitting. Especially on the 3D industrial
dataset, where we used more complex graph-building techniques. These complex graph-building
tricks lack the unified principles for the model to learn and likely amplify the overfitting tendency
when the decoder also encodes geometric information. Therefore, we only use geometric embeddings
in the encoder for our 3D industrial benchmarks.

F.5 Multiscale Features

As introduced in Section B.2, our encoder can capture multiscale local information by aggregating
neighborhood features across multiple radii. Specifically, we compare:

* Single-scale: using a single fixed radius of 0.033 for each point.
* multiscale: using three radii [0.022, 0.033, 0.044] for each point.

Table F.6: Median relative L' errors (%) comparing single-scale vs. multiscale features.

Dataset Median relative L' error [%]
Single-scale multiscale
Wave-C-Sines 5.69 4.6
Poisson-C-Sines 4.66 3.04

Table F.6 reports the mean relative L' errors on unstructured datasets including Wave-C-Sines and
Poisson-C-Sines. Results show that multiscale neighbors yield a clear reduction in error. For instance,
in Poisson-C-Sines, the error decreases from 4.66% to 3.04%. This contrast reflects the fact that a
single, fixed receptive field on a regularly spaced grid is often sufficient. However, on unstructured
domains where the mesh density can vary, using multiple radii helps the network capture both fine
and coarse local structures.

G Visualizations of Datasets

Estimates produced by trained models are visualized in this section for different datasets.

Input Ground-truth Model estimate
;fo: :";é ;:c y - ’ . -
(A - - - .,_
RSN G2 %
f'n'*...\-:;*.. #)
3\"‘. '.f"'z“.‘::- ‘ ‘
,'c a-l".‘.'\"f.:—: ,"
-‘ - \, -‘ t' . - *
- - - ? & L]
e " :‘ .’;’ “ ‘ - a

—

le-3

|
I

Figure G.1: Model input, ground-truth solution, and model estimate of a test sample of the Poisson-
C-Sines dataset.

50

Input Ground-truth Model estimate

o o o

—:— _I . - _
-5 0 5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
le-3

Figure G.2: Model input, ground-truth solution, and model estimate of a test sample of the Poisson-
Gauss dataset.

le2

Figure G.3: Model input, ground-truth solution, and model estimate of a test sample of the Elasticity
dataset.

51

Input Ground-truth Model estimate Point distribution

5
5 L A
00 05 10 15 20 0.666 0.726 0.786 0.846 0.906 0.966 1.026 1.086 1.146 1.206
(a) Ma=0.7,a = 2.0°
Input Ground-truth Model estimate

I
a
%) »
00 05 10 15 20 0535 0.630 0.725 0.820 0.915 1.010 1.105 1.200 1.295 1.390
o
(b) Ma=0.9,a=3.0
Input Ground-truth Model estimate
I
a
%)
00 05 10 15 20 0568 0.728 0.888 1.048 1208 1368 1.528 1688 1.848 2.008

©) Ma=12,a=20°

Figure G.4: Model input, ground-truth solution, model estimate and point distribution of test samples
of the NACAO0012 dataset.

52

Input Ground-truth Model estimate Point distribution

it

g
7] | —
00 05 10 15 20 0.384 0.492 0.600 0.708 0.816 0.924 1.032 1.140 1.248 1.356
(a) Ma=0.9,a =4.0°
Input Ground-truth Model estimate
I
a
%3]

[—
00 05 10 15 20 0.408 0.516 0.624 0.732 0.840 0.948 1.056 1.164 1.272 1.380
(b) Ma =1.0,a = 1.0°
Ground-truth Model estimate Point distribution

——m

00 05 10 15 20

040 056 072 0.88 104

120 136 152 168 184

(©) Ma=13,a=3.0°

Figure G.5: Model input, ground-truth solution, model estimate and point distribution of test samples
of the NACA2412 dataset.

53

Ground-truth Model estimate Point distribution

0.508 0.580 0.652 0.724 0.796 0.868 0.940 1.012 1.084 1.156

(@) Ma =0.6, . = 3.5°

Ground-truth Model estimate

(b) Ma = 1.1, a = 4.0°

Ground-truth Model estimate

0.0

05 110 15 20 0.568 0.696 0.824 0.952 1.080 1.208 1.336 1464 1.592 1.720
() Ma=12,a=35°

Figure G.6: Model input, ground-truth solution, model estimate and point distribution of test samples
of the RAE2822 dataset.

Ground-truth Model estimate Point distribution

SDF

0.00 025 050 075 100 0475 0.575 0.675 0.775 0.875 0.975 1.075 1.175 1.275 1375

(a) Cone at Ma = 0.9, « = 7.0°
Input Ground-truth Model estimate Point distribution

/ &

0.00 025 050 075 100 0160 0312 0464 0.616 0.768 0.920 1.072 1.224 1376 1.528

(b) Ellipse at Ma = 1.05, « = 12.5°
Input Ground-truth Model estimate Point distribution

O

b

000 025 050 075 100 002 021 040 059 078 097 116 135 154 173

(c) Semicircle-F at Ma = 1.2, « = 6.0°

SDF

SDF

Figure G.7: Model input, ground-truth solution, model estimate and point distribution of test samples
of the Bluff-Body dataset.

Input Mesh Ground-truth Model estimate

Pressure
550

44 463

-1563 -1056

Figure G.8: Model input, ground-truth solution, model estimate of a test sample N_S_WWS_WM_172
of the surface pressure on the DrivAerNet++.

55

Input Mesh Ground-truth Model estimate

&F &F &F

Wall shear Strgss (x-componenr)
-3.72 -0.79 2.1

5.05

(@) WSS -X

Input Mesh Ground-truth Model estimate

&F &F &

Wall Shear Stress (y-component
3.03 5500 CmPOnIE)

(b) WSS -Y

Input Mesh Ground-truth Model estimate

&F & &F

Wall Shear Stress (z-component)
-6.22 -2.05 213

1039

(c) WSS -Z

Figure G.9: Model input, ground-truth solution, model estimate of a test sample N_S_WWS_WM_172
of the surface wall shear stress on the DrivAerNet++.

56

Input Mesh Ground-truth Model estimate

Pressure Coefficient
169

443 -3.06 032 1.06

Figure G.10: Model input, ground-truth solution, model estimate of a test sample Boundary_78 of
the surface pressure coefficient on the DrivAerML.

57

Input Mesh Ground-truth Model estimate

&F &F &F

Wall shear Stress (x-component)
-11.81 -5.18 1.

1844

(@) WSS -X

Input Mesh Ground-truth Model estimate

&F &F &

Wall Shear Stress (y-component
20.62 rSsg-compongy),

-38.60 33.32

(b) WSS -Y

Input Mesh Ground-truth Model estimate

&F &F &

MWall shear Strgss (z-component)
-8.49 2.02 12.53

-19.01 23.04

(c) WSS -Z

Figure G.11: Model input, ground-truth solution, model estimate of a test sample Boundary_78 of
the surface wall shear stress on the DrivAerML.

58

Input Mesh Ground-truth Model estimate

Pressure
033

-1.80 -1.06 040 113
I B

Figure G.12: Model input, ground-truth solution, model estimate of a test sample of the surface
pressure on the NASA-CRM.

59

Input Mesh Ground-truth Model estimate

Surface Friction Coefficient (xrcom%onen()
0.001 0.004 0.006

-0.001 0.009

(a) SFC - X

Input Mesh Ground-truth Model estimate

Susface Friction Coefficient (y-componen)
-2.44e-03 1.19e-05 247e-

-4.90e-03 -03 4.92e-03
I -]
Input Mesh Ground-truth Model estimate
Surface Friction Coefficient (z'comgonen()
-2.54e-03 -2.22e-04 2.10e-03 4.41e-03 6.73e-03

(c)SFC-Z

Figure G.13: Model input, ground-truth solution, model estimate of a test sample of the surface
friction coefficient on the NASA-CRM.

60

Input Ground-truth Model estimate

-1.0 -0.5 0.0 0.5 1.0

Figure G.14: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢4 of a test
sample unstructured NS-Gauss dataset.

61

Model estimate

7
N
-

Figure G.15: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢4 of a test
sample unstructured NS-PwC dataset.

62

-5 0 5 -1.0 -0.5 0.0 0.5 1.0
le—1

Figure G.16: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢4 of a test
sample unstructured NS-SL dataset.

63

Ground-truth Model estimate

¥

—4 -3 -2 -1 0 1 2 3 4
le—1 le—1

Figure G.17: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢4 of a test
sample unstructured NS-SVS dataset.

64

Input Ground-truth Model estimate
o R

le=7+2.5

Figure G.18: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢4 of a test
sample unstructured CE-Gauss dataset.

65

Ground-truth

Model estimate
R

le—1 le—1

Figure G.19: Model input at ¢ = ¢(, ground-truth solution and model estimate at ¢ = ¢4 of a test
sample unstructured CE-RP dataset.

66

Input Ground-truth Model estimate
: TR §4 & %

le3
Figure G.20: Model input at ¢ = %(, ground-truth solution and model estimate at t = ¢4 of a test

sample unstructured Wave-Layer dataset

Model estimate
o“.

Input Ground-truth
K .M . NI
. ‘}' N % . '/'\"_‘.
AR :m L AECD) I RO Rh
s ¥ # N . * ; y / ») .
gh“" s J g &< J e
2 -1 0 1 2 3
le—-2

-2.5 0.0 2.5
le-2
Figure G.21: Model input at ¢ = %, ground-truth solution and model estimate at t = t14 of a test

£z

sample Wave-C-Sines dataset.

67

Ground-truth

Model estimate

— —

—

-1.0 -0.5

T
0.0

T
0.5 1.0

Figure G.22: Model input at ¢ = ¢, ground-truth solution and model estimate at t = t14 of a test

sample NS-Gauss dataset.

68

Input Ground-truth Model estimate

S
-5 0 5
le—1

| ——
-5 0 5
le—1

Figure G.23: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢4 of a test
sample NS-PwC dataset.

Input Ground-truth Model estimate

I] B
-1 0 1 -1.5 —-1.0 -0.5 0.0 0.5 1.0 1.5

» S \w—" T

- LS # #

" -l

L & i -

. - ot
S ™

® -

. “_

A -

A 3 - . -
| — B : B |
-5 0 5 -1.0 -0.5 0.0 0.5 1.0

le—1

Figure G.24: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢;4 of a test
sample NS-SL dataset.

Input Ground-truth Model estimate

L Ll
’ ’
L] L]
- '
B : E— |
-4 -2 0 2 4

le—-1
|

(' &

-4 -3 -2 -1 0 1 2 3 4
le—1 le—1

Figure G.25: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢;4 of a test
sample NS-SVS dataset.

71

Input Ground-truth Model estimate

|

1
-20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

E— |

3.0 3.5 4.0

le—=7+2.5

Figure G.26: Model input at ¢ = ¢, ground-truth solution and model estimate at t = t14 of a test
sample CE-Gauss dataset.

72

Input Ground-truth Model estimate
E J

le—-1
>
L AR . A
—Z:-“L
-2.5 0.0 2.5
le—1

| —
2.0 2.5
le—1

Figure G.27: Model input at ¢ = ¢p, ground-truth solution and model estimate at ¢ = ¢4 of a test
sample CE-RP dataset.

73

Input Ground-truth Model estimate

» . "“ l‘."

[— [aa— . ; E—
25 30 35 4.0 26 28 30 32 34 36 38 40
le3 le3

Figure G.28: Model input at ¢t = t(, ground-truth solution and model estimate at t = ¢4 of a test
sample Wave-Layer dataset.

74

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction (lines 55-81) clearly state the paper’s contribu-
tions regarding the GAOT model, and demonstrate its performance in terms of accuracy and
efficiency across various PDE learning tasks.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The Limitations and Extensions section (line 355-364) outlines several poten-
tial limitations: this paper doesn’t address the rigorous theoretical analysis of GAOT. The
method has not yet been evaluated on real 3D datasets, and it has not been tested on down-
stream tasks such as uncertainty quantification (UQ), inverse problems, or PDE-constrained
optimization.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not present theoretical results in our paper.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper states the detailed setup for generating experimental results and is
provided in Supplemental Material sections B and C.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted our anonymized version of our code with the full paper
submission. This includes the necessary details to set up the environment and run the
experiments which will recreate the results from our proposed algorithm.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have illustrated the detailed training and testing setup in the SM sections
B.6 and C.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide sensitivity to training randomness in SM Sec. E.10.

75

10.

11.

12.

13.

14.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides the detailed computer resources needed to reproduce these
experiments in the SM B.6.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows the NeurIPS Code of Ethics in every respect. Our research
does not include the use of human subjects and focuses on models with minimal risk for
safety and security concerns or misuse.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper mentions wide-spread applications in science and engineering as a
positive impact. Moreover, our work is focused solely on scientific applications, with little
to no ability to be used for potentially harmful or nefarious tasks such as the generation of
false or misleading information or social engineering.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work does not present any resources or artifacts with risks of misuse.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the original owners of assets (e.g., code, data, models) are explicitly
mentioned in the paper. Any resources presented for the first time, i.e. the aforementioned
time-independent datasets, are owned by the authors and made publicly available under the
appropriate license.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentation detailing the parameters within the dataset, as well
as how the data may be loaded to be used for use in other works.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

76

https://neurips.cc/public/EthicsGuidelines

15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

77

	Introduction
	Methods.
	Results.
	Discussion
	Details of Problem Formulation.
	General Forms of PDEs
	Solution Operators for PDEs
	Discretizations.

	Details of GAOT Architecture
	Choice of Latent Grid
	Multiscale Attentional Graph Neural Operator
	Geometry Embeddings
	Processor
	Graph Building Tricks
	Training Details.
	Inference

	Baselines
	UPT
	Transolver
	GNOT

	Datasets
	Poisson-C-Sines
	Compressible Flow Past Airfoils & Bluff Bodies

	Additional Results
	Asymptotic Complexity
	Runtime Profiling
	Accuracy, Robustness and Computational Efficiency Metrics
	Results for Radar Chart in Main Text.
	Regular Grid Dataset
	Model and Dataset Scaling
	Resolution Invariance
	Comparison of Neural Field with UPT
	Transfer Learning
	Training Randomness
	Runtime Comparison between GAOT and Classical Solvers

	Ablation Studies
	Encode-Process-Decode
	Tokenization Strategies
	Time-Stepping Method
	Geometric Embedding
	Multiscale Features

	Visualizations of Datasets

