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Abstract

Metal-organic frameworks (MOFs), formed through coordination bonds between
metal ions and organic ligands, are promising materials for efficient gas adsorption,
due to their ultrahigh porosity, chemical tunability and large surface area. Because
over a hundred thousand hypothetical MOFs have been reported to date, brute
force discovery of the best performer MOF for a specific application is not feasible.
Recently, predicting material properties using machine learning algorithms has
played a crucial role in scanning large databases, but this often requires large
labeled training sets, which is not always available. To address this, active learning,
where the training set is constructed iteratively by querying only informative labels,
is necessary. Moreover, in most cases, a very specific range of the property of
interest is desirable. We employ a novel regression tree-based quantile active
learning algorithm that uses partitions of a regression tree to select new samples to
be added to the training set. It thereby limits the sample size while maximizing the
prediction quality over a quantile of interest. Tests on benchmark MOF data sets
demonstrate that focusing on a specific quantile is effective in learning regression
models to predict electronic band gaps and CO2 adsorption in the regions of interest,
from a very limited labeled data set.

1 Introduction

Metal-organic frameworks (MOFs) [1, 2], formed through coordination bonds between metal ions
and organic ligands, are promising materials for efficient gas capture and separation [3, 4], due to their
ultrahigh porosity, chemical tunability and large surface area [5, 6]. They have also been shown to be
potential candidates for water harvesting [7], catalysis [8] and sensing [9], thus evoking an interest
in their electronic properties [10, 11, 12]. Since they are built with metal nodes and organic linkers,
the myriads of possible combinations of these lead to innumerable MOFs which makes discovery of
novel MOFs with a certain property of interest challenging. As experimentally synthesizing such
large numbers of MOFs is not viable, computational techniques like density functional theory (DFT)
[13] and molecular simulations [14] have been used to screen them with a relatively low cost.

In addition to high throughput screening approaches, machine learning (ML) has become a very
important tool to predict properties of MOFs [15, 16, 17, 18, 19, 20, 21]. By training highly accurate
ML models, one can further reduce the cost of performing molecular simulations for each new
structure. The work of Randall Q. Snurr et. al. [22], for example, predicts PBE band gaps for
over 14000 MOFs using a graph neural network (CGCNN [23]). As the availability of a large
labeled data set is not always guaranteed, it prevents the use of deep neural networks in the low
data regime. Therefore building (small) optimal data sets to calibrate other efficient ML models is
necessary in such situations. Active learning (AL) algorithms are designed for such cases. AL aims
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at constructing the most informative, diverse and representative training set iteratively by using an
acquisition function[24, 25] to add new samples to the training set, as opposed to random sampling.
This avoids labeling redundant samples, thus reducing the labeling cost. Many AL algorithms are
model-free i.e. selection of new samples is done based on diversity [26] and/or good representation
[27] of the input space. Model-free AL approaches combined with ML algorithms are beneficial
for prediction tasks when compared to random sampling. But, the resulting sample often does not
represent the target space well, since the procedure does not use any information about the labels.
Adding knowledge of the targets usually assists in understanding its conditional distribution with
the features, resulting in the selection of better samples for prediction purposes. Model-based AL
schemes like Query by Committee (QBC [28]) accomplish this by defining an acquisition criterion
based on the knowledge of the samples already labeled, and an initial model trained on a few labeled
samples. Unfortunately, most model-based AL schemes exhibit high computational complexity.
Another drawback of model-based AL methods is that the obtained sample is model-specific and it
may not be optimal for other ML algorithms.

Furthermore, for many applications, a specific range of the target property is of interest. For example,
to discover conducting MOFs, low values of band gaps are desirable. Similarly, high adsorption values
are desirable for gas capture. Since available data sets are heterogeneous, focusing on a quantile of
interest could be beneficial, and lead to faster discovery of materials with desirable properties at a
lower cost. On the other hand, focusing only on the region of interest would render the model not
generalizable, and may lead to over-fitting, so it is important to train the model on heterogeneous
samples, while focusing more on the quantile of interest. Although there has been substantial work in
the field of active learning in the past years, the task of making accurate predictions on a specific
range of values has not been explored to the best of our knowledge.

In this paper, we aim to be data efficient in predicting electronic band gaps and adsorption properties
of MOFs by adapting a recently proposed model-based AL method [29], namely Regression Tree-
based Active Learning (RT-AL). We propose to extend the method to focus on a range of values of
the property of interest using Quantile RT-AL (QRT-AL), and show that this decreases the labeling
cost tremendously. We also succeed to demonstrate that our approach works for different quantiles of
interest, low quantile for band gap predictions and high quantile for predicting adsorption properties.

The organization of the paper is as follows. Section 2 describes the method. Section 3 introduces the
MOF databases and settings, followed by results and discussion. The last section concludes the paper.

2 Quantile Regression Tree-based Active Learning (QRT-AL)

Following RT-AL [29], an initial sample Iinit of size ninit is constructed randomly from an unlabeled
dataset and is labeled. A standard regression tree is then trained with K leaves, and is used to predict
the labels for every unlabeled sample remaining. Thereafter, the leaves of the tree are used to add
more samples to the training set. Conditionally to the first labeled set, the number of samples to be
labeled from each leaf k, n∗

k, are distributed into the different leaves as:

n∗
k = nact

√
πkσ̂2

kγk∑K
ℓ=1

√
πℓσ̂2

ℓγk
,

where nact are the total number of samples to be selected by QRT-AL, σ̂2
k denotes the variance

computed on the true labels in leaf k, πk is the proportion of unlabeled samples in leaf k, and γk
specifies the quantile interval of interest: for each leaf 1 ≤ k ≤ K,

γk =

∑Q
q=1 w

qnq
k∑Q

q=1 n
q
k

,

where nq
k are the number of unlabeled samples in leaf k in quantile interval q, and wq are weights

defined depending on the quantile of interest. A good sample should be focused around this quantile,
but it should also see samples everywhere, in order to have a global view of the data set. Thus, to
generalize the machine learning model, the range of the response is divided into Q quantile intervals,
instead of completely focusing on the quantile of interest. The new samples added to the training
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set are diverse and representative of both the input and the target space and are more focused on the
target values of interest, thus in principle learning the region of interest better.

After computing the number of samples to be selected from each region, they are selected using
random sampling. Once the new samples are labeled, the regression tree can be retrained, leading
to a more optimised model. This routine can then be repeated by adding few samples at each step,
followed by retraining the regression tree, till the desired size of the training set, or a targeted accuracy
of the model is obtained. The pseudo code of the algorithm is given in the supplementary material.

3 Results

We demonstrate the performance of our method to predict CO2 adsorption for MOFs in the hypotheti-
cal MOF (hMOF) [30] database, and to predict band gaps for MOFs in the Quantum MOF (QMOF)
[22, 31] database. These publicly available data sets consist of atomic structures of MOFs along with
the respective target properties. These were selected as they contain two very different properties of
MOFs: adsorption and band gap.

The version of the QMOF database used [22] consists of 14482 MOFs, with optimised structures and
electronic band gaps (in eV) computed at the PBE-D3(BJ) using DFT. Stoichiometric descriptors
(ST-120) from Meredig and Agrawal et al. [32] were used as the representations, with 103 attributes
describing the elemental fractions from H–Lr and 17 statistical attributes of elemental properties. As
band gap is more sensitive to electronic properties, for the low data regime, simple compositional
descriptors are suitable. The ST-120 features for all the MOFs were computed using Matminer [33].
For band gaps, we are interested in the low quantile for electrical conductivity applications, so we
divide the range of target values into 3 quantiles: [0,0.2), [0.2,0.5) and [0.5,1] with weights 0.70, 0.25
and 0.05 respectively, giving higher weight to the quantile of interest and reducing it as we move
away from the region of interest. Note that there can be different ways of choosing the quantiles and
weights (using different values of weights and finer distribution of the quantiles for instance), and we
present here one of the many possible cases as a proof of concept.

The hMOF database consists of 137,652 hypothetical MOFs, with data of CO2 adsorption in mol/g
available at 0.05 and 2.5 bar pressures obtained using grand canonical Monte Carlo (GCMC) simula-
tions [30]. We curate a set of 16 features: element-fractions of the 11 species present in the database
and 5 structure-related properties, namely Pore Limiting Diameter (PLD), Largest Cavity Diameter
(LCD), void fraction, gravimetric and volumetric surface area, as these features are known to directly
impact the adsorption properties of transition metal complexes. For CO2 adsorption, the high quantile
intervals are of interest for efficient gas capture, so the quantiles chosen are [0,0.6), [0.6,0.8) and
[0.8,1] with weights 0.05, 0.25 and 0.70 respectively.

The full data sets were split in the ratio 8:2 in a stratified manner, with 80% being the pool of MOFs
from which the training set is chosen, and the remaining 20% were in the test set, used to determine
the performance of the trained models. The first 20 samples (100 for hMOF) were selected using
Random Sampling (RS) and the initial training set was constructed, followed by training the first
regression tree using scikit-learn [34]. The minimum samples in a leaf parameter was set to 5, as
suggested in [29], keeping it high enough to get meaningful variance between labeled samples, but
sufficiently low for the tree to give accurate predictions. This is followed by iterative additions
of MOFs (batch size indicated in the plots) to the training set till approximately 10% of the total
available training pool is labeled. At each iteration, a Random Forest (RF)1 of 50 regression trees
is trained using the training set at the given iteration and its performance is measured by making
predictions on the held out test set and computing the quantile MAE (QMAE), for the quantile of
interest Q, defined by:

QMAE =
1

♯{q(yi) ∈ Q}
∑

i:q(yi)∈Q

(yi − ŷi),

1Other tree-based methods like Gradient Boosting Regression Tree (GBRT) and XGBoost[35], and other ML
models[29] can also be trained. Since tree-based models are interpretable and require almost no hyperparameter
tuning, they are used here. Moreover, tree-based methods have been shown to train models with accuracy close
to that of many deep learning models like graph neural networks[36], with far less computational complexity
and more explainability, thus making RFs an apt choice.
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Figure 1: Label distribution of the training sets (with 200 MOFs) selected by RS, RT-AL and QRT-AL
(left to right, respectively) from the training pool of the QMOF database. The vertical dashed lines
depict the quantile intervals chosen and the quantile interval of interest has been shaded. Respective
parity plots are shown below each case for the first two quantiles.

where yi are true labels of the test set, and ŷi is the prediction for a test sample using the RF, which is
the classical MAE but computed only on test points that are in the considered quantile. Along with
QRT-AL, we also train RFs on MOFs selected using random sampling and RT-AL to determine the
degree of improvement of our algorithm over them. Note that QRT-AL can be used both in batch
and sequential mode (see Appendix for training curves for the sequential case). The sequential case
however is extremely computationally expensive, and does not lead to a reduction in QMAE when
compared to the batch-mode, therefore batch-mode AL is used here.

The top row of Figure 1 shows the distribution of the labels (band gap) of 200 MOFs selected by
RS, RT-AL and QRT-AL (left to right, respectively) from the QMOF dataset. We see that RT-AL
samples evenly from the different regions of the label space, while RS does not, and misses some
regions. Our method QRT-AL succeeds to selected higher number of samples from the low quantile
(quantile of interest for band gap, shown as the shaded region), and progressively selects fewer
samples for higher values of band gap. Note that even though QRT-AL selects more sample from
the low quantile, it also selects samples from all other quantiles, thus ensuring that the training set is
still representative enough of the complete target space. The advantage of focusing on a quantile can
be seen from the parity plots in the bottom row of Figure 1, shown for the first two quantiles. For
low values of band gap, the higher density of samples around the diagonal for QRT-AL indicates
that QRT-AL successfully identifies more MOFs with low band gap, when compared to RT-AL and
random sampling, with only 200 samples in the training set. On the other hand, random sampling
predicts those values of band gaps well which correspond to the peaks of the label distribution of the
true labels, while RT-AL predicts all values of band gaps with roughly the same accuracy.

Figure 2 shows QMAE plots for band gap and CO2 adsorption prediction, along with histograms of
the respective target quantities. The QMAE were averaged over 100 runs, with different train-test
splits to compute variance caused by different initializations, and the standard deviation is shown
as shaded regions in the plots. For band gap prediction, QRT-AL outperforms both RT-AL and RS
as expected. Interestingly, the QMAE of RT-AL is higher than that of RS. This can be understood
from the distribution of the band gaps. RT-AL samples well from all regions of the target space,
as shown in [29]. However, as for this problem low values of band gap are of interest, sampling
well from all regions is not desirable. RS samples better than RT-AL since it does not take the
diversity/representativity of the input features or the labels into account. RS thereby selects fewer
MOFs with high values of band gap, as there are few of them, and more MOFs with low band gap
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Figure 2: Quantile MAE (averaged over 100 runs) computed on the test set predicting band gaps for
MOFs in the QMOF database, and CO2 adsorption at 0.05 and 2.5 bar pressures for MOFs in the
hMOF database, while sampling the training set with RS, RT-AL and QRT-AL. Distributions of the
respective target properties has been shown as histograms below each case. The vertical dashed lines
depict the quantile intervals chosen and the quantile interval of interest has been shaded.

values, giving better QMAE values in the low quantile region. On the contrary, for CO2 adsorption,
RT-AL selects better samples compared to RS. This happens because here the interest is in the high
quantile, and from the distribution of CO2 adsorption at both 0.05 and 2.5 bar pressures, we see that
there are very few MOFs in the high quantile region. Thus, RS ends up sampling more from the
peaks of the distribution, that does not correspond to the target values of interest. RT-AL, on the
other hand, ensures sampling from all regions of the target, thereby also sampling from the tails of
the distribution. As QRT-AL is designed to focus more on the region of interest (the tail of the full
distribution in this case), it samples better than both RS and RT-AL.

Another interesting detail observed upon comparing the QMAE plots of CO2 adsorption for 0.05 vs
2.5 bar pressures is that for 0.05 bar, QRT-AL and RT-AL both improve over RS by a large margin,
while for 2.5 bar, the improvement of RT-AL over RS is minor. The performance of RS at 10000
samples is achieved by RT-AL in only 3000 samples for 0.05 bar pressure, while for 2.5 bar, 7000
samples are needed to achieve the performance of 10000 samples randomly drawn. Even though
this reduction is still very significant, this difference occurs due to the highly peaked distribution
of adsorption at 0.05 bar, as compared to the slightly more evenly distributed adsorption at 2.5 bar
which makes it easier for RS to sample from different regions of the target space. As QRT-AL focuses
specifically on the quantile of interest, it samples better than RS and RT-AL in both cases. This is
why even though RS and RT-AL give similar performance when the target is more evenly distributed,
QRT-AL still stands out.

4 Conclusion and Discussion

In this paper, we show that our method, QRT-AL, is a promising active learning algorithm when
specific ranges of the target variables are of interest. QRT-AL significantly reduces the labeling cost,
for two very different properties of metal organic frameworks, on data sets of very different sizes
and selects the most informative samples for both high and low quantile cases. To the best of our
knowledge, this is the first method to take into account such an objective in active learning. We are
confident that this first step in quantile active learning has much greater potential beyond this MOF
data set benchmark and will prove to be an interesting topic of research in the future.
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