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Abstract

Knowledge graphs (KGs) consist of links that001
describe relationships between entities. Due002
to the difficulty of manually enumerating all003
relationships between entities, automatically004
completing them is essential for KGs. Knowl-005
edge Graph Completion (KGC) is a task that006
infers unseen relationships between entities in a007
KG. Traditional embedding-based KGC meth-008
ods (e.g. RESCAL, TransE, DistMult, Com-009
plEx, RotatE, HAKE, HousE, etc.) infer miss-010
ing links using only the knowledge from train-011
ing data. In contrast, the recent Pre-trained012
Language Model (PLM)-based KGC utilizes013
knowledge obtained during pre-training, which014
means it can estimate missing links between015
entities by reusing memorized knowledge from016
pre-training without inference. This part is017
problematic because building KGC models018
aims to infer unseen links between entities.019
However, conventional evaluations in KGC020
do not consider inference and memorization021
abilities separately. Thus, a PLM-based KGC022
method, which achieves high performance in023
current KGC evaluations, may be ineffective024
in practical applications. To address this issue,025
we analyze whether PLM-based KGC methods026
make inferences or merely access memorized027
knowledge. For this purpose, we propose a028
method for constructing synthetic datasets spec-029
ified in this analysis and conclude that PLMs030
acquire the inference abilities required for KGC031
through pre-training, even though the perfor-032
mance improvements mostly come from textual033
information of entities and relations.034

1 Introduction035

A knowledge graph (KG) is graph-structured data036

that includes relationships between entities as links.037

KGs are useful resources to inject external knowl-038

edge into NLP models. Since manually consider-039

ing all possible links between entities is difficult,040

it is important to use a task such as KG comple-041

tion (KGC), which automatically completes unseen042
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Figure 1: PLM-based KGC can reuse pre-trained knowl-
edge of unseen links instead of inferring them.

links from seen ones in a KG. 043

As a basic method for KGC, KG embedding 044

(KGE) is a popular chioce for this task. KGE em- 045

beds entities and their relationships as continuous 046

vectors and then calculates the plausibility of un- 047

seen links. Traditional KGE methods learn these 048

embeddings only from a target KG (Nickel et al., 049

2011; Bordes et al., 2013; Yang et al., 2015; Trouil- 050

lon et al., 2016; Sun et al., 2019; Zhang et al., 2020; 051

Li et al., 2022). Thus, they purely infer unseen links 052

to complete KGs. 053

Similar to other NLP fields, KGC also utilizes 054

pre-trained language models (PLMs) (Yao et al., 055

2019; Lv et al., 2022; Shen et al., 2022; Zhang 056

et al., 2022; Choi et al., 2021; Choi and Ko, 2023; 057

Wang et al., 2021a,c, 2022; Xie et al., 2022; Sax- 058

ena et al., 2022; Chen et al., 2022; Xie et al., 2023; 059

Zhu et al., 2023). Unlike traditional KGE methods, 060

PLM-based KGE methods can access knowledge 061

obtained through pre-training. This characteristic 062

makes PLM-based KGE methods achieve higher 063

KGC performance than the traditional KGE meth- 064

ods. 065

However, since the purpose of KGC is to infer 066

unseen links from seen links in KGs, we should sep- 067

arately consider the performance gain from reusing 068

the information of the unseen links obtained in 069

pre-training and inferring unseen links from the 070

seen links in KGs. Figure 1 shows an example 071

of PLM-based KGC. As we can see, PLM-based 072
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Available Information

Pretrained Language Model (PLM)-based KGC

Traditional BASE
VIRTUAL ANONYMIZED INCONSISTENT FULLY

KGC WORLD ENTITIES DESCRIPTIONS ANONYMIZED

Pre. Rand. Pre. Rand. Pre. Rand. Pre. Rand. Pre. Rand.

Seen links in a KG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Descriptions of entities/relations ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
Pre-trained knowledge of KGs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Abilities obtained by pre-training ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

Table 1: Available information for each configuration. When compared, we can reveal what improves the KGC
performance on PLMs. BASE denotes the setting on the original data, and VIRTUAL WORLD (§3.1), ANONYMIZED
ENTITIES (§3.2), INCONSISTENT DESCRIPTIONS (§3.3), and FULLY ANONYMIZED (§3.4) denote the settings
on our synthetic datasets. Pre. and Rand. denote the setting with pre-trained and randomly initialized weights,
respectively.

KGC methods can estimate unseen links without073

inferring them from seen links in the target KG.074

This characteristic is problematic because we can-075

not estimate the inference ability of PLM-based076

KGC methods for truly unseen relationships be-077

tween entities in KGs.078

To address this issue, we propose a method to079

create synthetic datasets for KGC tasks intended to080

separately evaluate KGC performance by reusing081

the knowledge from pre-training corresponding to082

target unseen links and inferring from seen links083

in KGs. More specifically, we change the textual084

information of entities and relations while main-085

taining the graph structure of KGs, thereby creating086

an environment different from the PLMs’ knowl-087

edge corresponding to unseen links in KGs. Due to088

this change, PLMs cannot rely on their pre-trained089

knowledge and must rely on their pure inference090

abilities. Table 1 summarizes the configurations091

provided by our synthetic datasets. By comparing092

these configurations, we can reveal what actually093

contributes to the KGC performance of PLMs.094

We conducted experiments on various pre-095

trained models under our controlled synthetic096

dataset constructed from WN18RR (Dettmers et al.,097

2018), FB15k-237 (Toutanova and Chen, 2015),098

and Wikidata5m (Wang et al., 2021c). The results099

showed that PLMs acquire the inference abilities100

required for KGC in pre-training but rely more101

on textual information of entities and relations in102

KGs. We also observed that the KGC performance103

of PLM-based KGC without pre-trained informa-104

tion is comparable to or lower than that of TransE,105

the traditional KGC. This finding indicates the im-106

portance of both traditional and PLM-based KGC107

methods.108

2 Knowledge Graph Completion 109

2.1 Task Definition for KGs with Descriptions 110

We assume that a KG G includes descriptions de- 111

fined as a tuple, G=(E ,R,T ,D), where E denotes 112

a set of entities, R denotes a set of relations, T 113

denotes a set of triples, and D denotes descrip- 114

tions for the entities. Each triple is represented 115

as (h,r,t)∈T , where h and t∈E are the head and 116

tail entities, respectively, and r∈R is the relation. 117

Every entity ei∈E has a corresponding description 118

di∈D. KGC is a task to fill in the missing triples 119

in KGs. Specifically, this involves using a query, a 120

partial triple (h,r,?) or (?,r,t) to predict its answer, 121

an entity at the position of ?, within the KG. Note 122

that the prediction is exclusively focused on enti- 123

ties; predicting their corresponding descriptions is 124

not required. 125

KGC is often evaluated by rank prediction met- 126

rics such as Hits@k (k∈{1,3,10}), mean rank 127

(MR), and mean reciprocal rank (MRR). Hits@k 128

calculates the proportion of correct entities ranked 129

among the top-k, MR is the average rank of all test 130

triples, and MRR is the average reciprocal rank of 131

all test triples. 132

2.2 KGC Methods 133

Traditional KGC methods, e.g., RESCAL (Nickel 134

et al., 2011), TransE (Bordes et al., 2013), Dist- 135

Mult (Yang et al., 2015), ComplEx (Trouillon et al., 136

2016), RotatE (Sun et al., 2019), HAKE (Zhang 137

et al., 2020), and HousE (Li et al., 2022), primarily 138

focus on the structure of KGs, without considering 139

the extensive textual information. 140

However, recent advancements integrating 141

PLMs have allowed KGC methods to encode 142

text (Yao et al., 2019; Lv et al., 2022; Shen et al., 143

2022; Zhang et al., 2022; Choi et al., 2021; Choi 144
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Figure 2: (a): Example of a KG with entity descriptions for PLM-based methods. Each entity has a corresponding
description. (b) and (c) are the datasets used in this study. We primarily apply two methods for creating these
datasets in VIRTUAL WORLD (§3.1) and ANONIMIZED ENTITIES (§3.2). (b) described in VIRTUAL WORLD
(§3.1) involves swapping the names assigned to entities and relations in the base dataset respectively. (c) described
in ANONIMIZED ENTITIES (§3.2) substitutes the names of entities and relations in the base dataset with random
strings. Note that in both procedures, any entities appearing within the description text are replaced with their
corresponding transformed names to maintain the graph structure within the descriptions.

and Ko, 2023; Wang et al., 2021a,c, 2022) or gen-145

erate facts (Xie et al., 2022; Saxena et al., 2022;146

Chen et al., 2022; Xie et al., 2023; Zhu et al., 2023),147

thereby enhancing the KGC performance. These148

methods can be broadly divided into two categories149

based on their usage: discrimination-based meth-150

ods that utilize PLM encoders, and generation-151

based methods that utilize PLM decoders (Pan152

et al., 2023) (see Appendix A for the details).153

3 Synthetic Dataset Construction154

To analyze the behavior of PLM-based KGC meth-155

ods, we create synthetic data corresponding to each156

setting in Table 1. These settings affect the usable157

information of the PLM-based KGC methods but158

do not influence the traditional KGE methods. We159

explain the details for each setting in the following160

subsections.161

3.1 Virtual World162

To separate the pre-trained knowledge of PLMs and163

a target KG, we create a virtual world by shuffling164

each entity and/or relation name in the KG.165

As shown in Figure 2(b), we shuffle the textual166

information associated with each entity and/or re-167

lation while keeping the graph structure within the168

Algorithm 1: Derangement by Bipartite
Graph

Data: Input array arr of size n, Set of removed
edges removed_edges

Result: Generated array res
1 Create an empty graph G;
2 for i←0 to n−1 do
3 for j←0 to n−1 do
4 if arr[i] ̸=arr[j] and (arr[i],arr[j]) is not

in removed_edges then
5 add edge (i,n+j) in G;
6 end
7 end
8 end
9 match← maximum matching(G)

10 res← an empty list of size n;
11 for i←0 to n−1 do
12 index←match[i]−n;
13 res[i]←arr[index];
14 end
15 return res

created synthetic dataset. To ensure there are no un- 169

shuffled elements, we shuffle the entities using the 170

derangement algorithm by Martínez et al. (2008). 171

However, there are dramatically fewer relations 172

compared to entities (e.g., ten relations for ten thou- 173

sand entities), and if relations are shuffled, the triple 174

remains unchanged in many cases.1 To address 175

1In the case of (Johann Bernoulli, wasBornIn, Basel) and
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these cases, we apply a derangement based on a bi-176

partite graph (Iradmusa and Praeger, 2019; Horsley177

et al., 2020) in Algorithm 1 for relations.178

In Algorithm 1, we introduce removed_edges,179

a set to the bipartite graph-based derangement.180

Lines 4–6 in Algorithm 1 delete edges leading181

to multiple relations in a triplet (h,∗,t), thereby182

preventing transitions to these relations.2 We use183

the Hopcroft-Karp algorithm (Hopcroft and Karp,184

1971) for maximum bipartite matching.185

Additionally, we use Trie search (Yata, 2013) to186

comprehensively search for entity representations187

within each description in Figure 2 and change188

them into their post-shuffled text representations.189

This procedure treats the relationships between enti-190

ties within the descriptions while maintaining their191

original graph structure in the descriptions.192

3.2 Anonymized Entities193

VIRTUAL WORLD can separate the pre-trained194

knowledge of PLMs and a target KG. However,195

this setting may underestimate the KGC perfor-196

mance caused by the overwrap of the entity and/or197

relation names between pre-trained knowledge and198

the target KG.199

The ANONYMIZED ENTITIES setting can solve200

this problem by replacing the textual information201

associated with each entity and/or relation with202

a random string while keeping the original graph203

structure within the dataset, as in Figure2(c). Af-204

terward, we also replace the entity representa-205

tions within the description with these random206

strings using Trie search, the same as VIRTUAL207

WORLD (§3.1).208

Since the random strings should follow language209

characteristics, we first construct character-level210

unigram language models P (si), including space211

characters from the set of textual information of212

each entity and relation.213

Next, we generate random strings s=s1,s2,214

...,sn based on the character-level unigram lan-215

guage model p(s), i.e., the product of the prob-216

abilities of unigram character in the strings:217

p(s)=
n∏

i=1

p(si). (1)218

We stop the generation of strings when an end-219

of-sequence symbol is sampled. The strings are220

treated as a series of independent characters, allow-221

(Johann Bernoulli, diedIn, Basel), the swapping of the rela-
tions wasBornIn and diedIn does not change the triples.

2If removed_edges is empty, it is a normal derangement.
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Figure 3: Example of a synthetic dataset created in
INCONSISTENT DESCRIPTIONS (§3.3). Compared
to Figure2(b) which shows an example of VIRTUAL
WORLD (§3.1), the descriptions here also move to the
same positions as the entities. Also, the entities in the
descriptions do not change. At first glance, it appears
the description explains the real-world relationships of
the corresponding entities, but the relationships between
entities within the synthetic dataset are actually broken.

ing us to generate entirely random strings without 222

using information about co-occurrence between 223

characters. However, we preserve information for 224

the randomly sampled sequences across the entire 225

dataset so that each entity or relation is replaced 226

with a unique sequence avoiding duplicates. 227

3.3 Inconsistent Descriptions 228

To measure the effect of descriptions on PLM- 229

based KGC, we isolate the entity and relation 230

knowledge from the description by breaking the 231

consistency between the graph structure and de- 232

scriptions in addition to the shuffle of entity and/or 233

relation names. 234

INCONSISTENT DESCRIPTIONS has two varia- 235

tions, one in which only the descriptions are shuf- 236

fled and the other in which both the descriptions 237

and entities/relations are shuffled. In the first vari- 238

ation, we derive the scenario in which there is no 239

correspondence between an entity and its descrip- 240

tion by shuffling the set of descriptions via a de- 241

rangement to get a new set d′∈D′. Then, we assign 242

for each entity the new descriptions from D′, i.e., 243

∀ei∈E,ei:di→d′i. 244

The second variation considers the descriptions 245

and entities presented in Figure 3. The difference 246

from Figure 2(b) for VIRTUAL WORLD (§3.1) lies 247

in the way it handles the descriptions. In INCONSIS- 248

TENT DESCRIPTIONS, descriptions are also shuf- 249

fled together with the corresponding textual infor- 250

mation when performing VIRTUAL WORLD, but 251

the entities in the descriptions are preserved. In 252

other words, when we map from ei to ej , we simi- 253

larly map from di to dj . 254
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Figure 4: Example of a synthetic dataset created in
FULLY ANONIMIZED (§3.4). Compared to Figure
2(c), which shows an example of ANONYMIZED EN-
TITIES (§3.2), the descriptions are here also changed
into random strings. The descriptions become noisy
information, and it becomes impossible to utilize any
information from them.

Even though the descriptions explain the entities255

in the real world, they diverge from the relation-256

ships among entities in the dataset after the shuffle257

operation. Thus, if the model relies too much on258

the descriptions, it will be confused by this incon-259

sistency.260

3.4 Fully Anonymized261

Figure 4 shows an example of FULLY262

ANONYMIZED, which is similar to ANONYMIZED263

ENTITIES (§3.2) in Figure 2(c) but differs in264

whether or not there is an operation on the265

descriptions. We replace the descriptions with266

random strings using the character-level unigram267

model utilized in ANONYMIZED ENTITIES (§3.2),268

while we keep the original structure of the KGs.269

This setting aims to mitigate underestimating the270

KGC performance caused by the overlap of the271

entity and/or relation names between pre-trained272

knowledge and the target KG. Note that the273

random string generation is applied independently274

to entities, relations, and descriptions. The key275

difference between FULLY ANONYMIZED and276

INCONSISTENT DESCRIPTIONS (§3.3) lies in277

whether the descriptions are readable sentences278

or not; if they are not, the PLMs in FULLY279

ANONYMIZED cannot rely on any pre-trained280

knowledge.281

4 Experiments282

4.1 Settings283

Metrics We analyze how the inference capabili-284

ties are affected by each synthetic dataset (§3) mea-285

sured with the Hits@10 metric on the test dataset286

Dataset #entity #relation #train #valid #test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5m 4,594,485 822 20,614,279 5,163 6,894

Table 2: Dataset statistics.

and the validation dataset in the KGC task.3 287

Datasets We used WN18RR, FB15k-237, and 288

Wikidata5m4 as the base datasets; the details are 289

shown in Table 2.5 We applied VIRTUAL WORLD 290

(§3.1) and ANONYMIZED ENTITIES (§3.2) to 291

the entities and/or relations for creating synthetic 292

datasets, resulting in a total of six types of datasets. 293

Furthermore, we applied INCONSISTENT DE- 294

SCRIPTIONS (§3.3) with and without VIRTUAL 295

WORLD for entities and/or relations. INCONSIS- 296

TENT DESCRIPTIONS (§3.4) is also applied with 297

and without ANONYMIZED ENTITIES, and thus, 298

we obtained additional six types of datasets. In 299

total, we have 13 types of datasets, including the 300

original one for each base dataset. 301

Comparison Methods We employ SimKGC 302

(Wang et al., 2022) and kNN-KGE (Zhang 303

et al., 2022) as Discriminative-based methods, and 304

KGT5 (Saxena et al., 2022) and GenKGC (Xie 305

et al., 2022) as Generation-based methods. We use 306

the LambdaKG framework (Xie et al., 2023) as the 307

base implementation, with hyper-parameters set to 308

their default values. The seed value is fixed for all 309

experiments.6 We set early stopping for WN18RR 310

and FB15k-237 when the Hits@10 value on the 311

validation data did not improve for four epochs. 312

For Wikidata5m, we conducted training only one 313

epoch.7 We also compare two cases: using pre- 314

trained weights and setting weights randomly. 315

3We also measured Hits@1, Hits@3, MRR, and MR, and
all showed similar trends. In this paper, we present the results
using hits@10 for brevity.

4We follow the transductive setting in Wang et al. (2021c).
5We use the datasets with textual information provided by

Yao et al. (2019) for WN18RR, FB15k-237, and by Wang et al.
(2021c) for Wikidata5m.

6We conducted pilot studies with various seeds for sev-
eral datasets and models. The variance observed was around
0.02, so a fixed seed value was chosen. For example, the
Hits@10 scores in kNN-KGE on WN18RR applied with
FULLY ANONYMIZED (§3.4) to all descriptions, entities, and
relations were 0.426 ± 0.001 with three different seeds.

7We only report the results from SimKGC, as kNN-KGE
could not be executed due to computational resource limita-
tions, and both KGT5 and GenKGC did not produce scores
under these settings. We conducted all experiments on a single
NVIDIA A100 (40GB) or a single NVIDIA A6000 (48GB).
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Figure 5: The hits@10 results on WN18RR. “E”, “R”, and “D” represent entity, relation, and description, respectively.
For example, “E&R” denotes the application of the method to both entities and relations. For comparison, we
have also included the hits@10 results on WN18RR by TransE reported by Nathani et al. (2019), which are the
same score because the TransE model does not require textual information. The graphs on the left represent
Discrimination-Based Methods, while those on the right represent Generation-Based Methods.
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Figure 6: Hits@10 results on FB-15k-237. The supplementary explanation is the same as in Figure 5.
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Figure 7: Hits@10 results on Wikidata5m by SimKGC.
We have also included the Hits@10 results on WN18RR
by TransE reported by Wang et al. (2021c).

4.2 Results and Analysis316

4.2.1 Effect of knowledge in PLMs317

The results for each model and dataset on WN18RR318

and FB15k-237 are shown in Figures 5 and 6,319

and the results from SimKGC on Wikidata5m are320

shown in Figure 7. In the “Base” setting, all models321
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Figure 8: The plots show Hits@10 scores on WN18RR
for the validation data at each epoch. The solid line
represents using pre-trained weights, and the dashed
line represents initializing weights randomly.

with the pre-trained weights were better than those 322

without them. When the models are trained with- 323

out pre-training weights, they have to infer unseen 324

links based only on information within the training 325
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Figure 9: The correlation matrix (Pearson’s correlation) shows the hits@10 values for the validation data for each
dataset and each model.“Virtual”, “Anonymized”, “Inconsistent”, and “Fully Anonym.” represent the methods
applied in Sections 3.1, 3.2, 3.3, and 3.4, respectively. “E”, “R”, and “D” represent entity, relation, and description,
respectively. For example, “ER” denotes the application of the method to both entities and relations. “w/o wts”
means training from scratch with random initial values. The two graphs on the left are Discrimination-Based
Methods, and the two on the right are Generation-based Methods.

#Relation WN18RR (%) FB15k-237 (%) Wikidata5m (%)
Train Valid Test Total Train Valid Test Total Train Valid Test Total

1 60.09 97.55 97.51 57.68 13.52 65.26 61.64 12.56 24.23 98.58 98.73 24.22
2 35.39 2.41 2.49 37.31 14.02 24.44 25.61 12.98 17.23 1.98 0.93 17.21
3 4.21 0.02 – 4.61 11.39 7.39 8.90 10.88 21.88 0.21 0.28 21.88
4 0.30 0.02 – 0.38 10.01 2.08 2.67 9.53 11.95 0.01 0.05 11.95
5 0.02 – – 0.02 9.06 0.51 0.76 8.85 7.94 0.01 0.01 7.94

Over – – – – 42.00 0.31 0.41 45.19 16.78 – – 16.79

Table 3: The number of relations assigned to each entity in each dataset. Note that some entities may be associated
with multiple entities under certain entity and relation queries.

data of the KGC dataset.326

Comparing “Base”, “Virtual”, and “Anonymized”327

settings, we can see performance degradations by328

restricted access to knowledge for entity names329

obtained in pre-training. However, the models330

without the pre-trained weights achieved better331

or at least comparable results, especially when332

changes were made to both entities and their de-333

scriptions, as you can see in the “Inconsistent” and334

“Fully Anonym.” settings. From the result, we hy-335

pothesize that the performance gain by pre-trained336

weights in “Virtual” and “Anonymized” settings337

comes from the pre-trained ability to read textual338

information.339

Figure 7 shows the importance of pre-trained340

knowledge for entity names in Wikidata5m. For341

the further analysis, we applied the interquartile342

range (IQR), an outlier detection method (Tukey,343

1977), and the result show the significant perfor- 344

mance gap between models with and without pre- 345

trained weights only when entity names and their 346

descriptions were unchanged. This finding indi- 347

cates that PLM knowledge significantly contributes 348

to the model’s inference, especially in Wikidata5m. 349

4.2.2 Biases caused by PLM knowledge on 350

inference for unseen links 351

We discussed the benefit of PLM knowledge in 352

Section 4.2.1, but on the other hand, PLM knowl- 353

edge may adversely affect the inference for unseen 354

entities. Especially in Figures 5 and 6, it is clear 355

that the difference between with and without pre- 356

trained knowledge significantly affected the scores, 357

particularly in the case of entity changes in KGT5. 358

Figure 8 shows the training curves of Hits@10 359

on WN18RR for the validation data. Remarkable 360
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results were observed for the VIRTUAL WORLD361

and ANONYMIZED ENTITIES methods in KGT5:362

namely the models using pre-trained weights could363

not learn well, even with sufficient epochs of364

training, whereas the models without pre-trained365

weights exhibited inference capability for unknown366

entities. These results suggest that while PLM367

knowledge helps infer unseen links, it may pre-368

vent the learning of new relationships due to the369

relationships included in the PLM knowledge.370

4.2.3 Which factors (entity, relation,371

description) affect inference ability?372

Figure 9 shows the correlation matrix of Hits@10373

scores on the validation data for each dataset and374

model. In Figures 5, 6, and 9, the results from375

the base dataset and changes to relations indicate376

strong correlations in the learning process and377

Hits@10 scores in the test data. Therefore, the378

model is not affected by changes to relations when379

inferring unseen links. As shown in Table 2, the380

number of relations is significantly smaller than381

that of entities. Moreover, Table 3 reveals entities382

with only one assigned relation in the KGC dataset:383

12% in FB15k-237 and over 50% in WN18RR.384

This suggests that the models can infer connections385

between entities without considering their actual386

relations.387

Figure 9 also shows a correlation between VIR-388

TUAL WORLD and ANONYMIZED ENTITIES, in-389

dicating that which kind of textual information390

is used for inference is less important than than391

the consistency in relationships between entities in392

each triplet. Additionally, when changing both the393

entity and the description, the score decreases in394

Figures 5 and 6. Table 4 shows how many entities395

to predict are included in the description of query396

entities; in WN18RR, about 15 % of the entities397

may be able to solve the KGC task just by extract-398

ing information from the description. Changes to399

the description only are less likely to be affected,400

but changing both the entity and the description401

eliminates clues to the answer from both, leading to402

a decrease in the inference capabilities with PLM.403

4.2.4 Effect of model structures on404

performance405

When comparing Generation-based methods with406

Discrimination-based methods, the former are sub-407

stantially affected by random strings of entities. As408

shown in Figure 5, KGT5 and GenKGC without409

the pre-trained weights learn better than those that410

Train (%) Valid (%) Test (%) Total (%)
WN18RR 15.03 15.62 15.34 15.06

FB15k-237 6.11 4.68 4.50 5.92
Wikidata5m 4.58 4.99 4.58 4.58

Table 4: Percentage of target entities to predict is in-
cluded in the description of the query entity for each
dataset. These triplets can be solved by simply extract-
ing information from the descriptions without perform-
ing any inference in the KGC tasks.

have them. Moreover, Figure 8 shows that scores 411

do not improve even with sufficient training, which 412

suggests that the difference in scores is not due 413

to the early stopping. Thus, PLM knowledge pre- 414

vents learning new relationships from descriptions 415

in Generation-based methods. 416

Moreover, Generation-based methods are in- 417

fluenced by the string of the output entity, as 418

seen in Figures from 5 to 7. On the other hand, 419

Discrimination-based methods are less affected by 420

the textual information, in contrast to Generation- 421

based methods that are affected by random strings 422

that lack the characteristics of language and are 423

thus unsuitable for generation (see Appendix B for 424

further analysis). 425

5 Conclusion 426

In this study, we proposed a method for evaluating 427

the inference ability of PLM-based KGC methods 428

by separately considering the information related 429

to unseen links in KGs. Using this method as a 430

basis, we developed synthetic datasets that focused 431

on the structure of KGs and changed only textual 432

information, maintaining graph structure. Then, we 433

compared PLM-based KGC methods using these 434

datasets. 435

The comparison results show that PLMs acquire 436

the inference abilities for KGC in pre-training, 437

whereas in KGs, they rely more on the textual in- 438

formation of entities and relations. Further, we 439

observed that the KGC performance of PLM-based 440

KGC without pre-trained knowledge is compara- 441

ble to or lower than that of TransE, the traditional 442

KGC. This highlights the importance of using both 443

traditional and PLM-based KGC methods. Please 444

see Appendix C for more detailed information on 445

improving the current KGC evaluation based on 446

the insights from our work. 447
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6 Limitations448

In this study, we investigated the inference abilities449

of PLM-based KGC methods empirically, without450

focusing on theoretical verification. Furthermore,451

while our focus was on KGC, we did not verify452

whether these findings could be applied to other453

downstream tasks. Therefore, our future work will454

aim to generalize this empirical study and perform455

verification across various downstream tasks.456

7 Ethical Considerations457

In this study, we have created synthetic datasets de-458

rived from existing KG datasets that have cleared459

ethical issues following published conferences’460

policies. Therefore, our created datasets do not461

introduce any ethical problems.462
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A Details of PLM-based KGC Methods878

A.1 Discrimination-based Methods879

The early PLM-based KGC methods such as KG-880

BERT (Yao et al., 2019), utilize an encoder-only881

PLMs like BERT (Devlin et al., 2019) to encode882

triples. They perform binary classification to as-883

sess the plausibility of a given triplet. KG-BERT884

transforms a triple (h,r,t) as follows:885

x=[CLS]Texth[SEP]Textr[SEP]Textt[SEP],
(2)886

where Textn represents textual representations of887

n. The PLM takes x as input and conducts binary888

classification using the [CLS] token e[CLS] from the889

final hidden state. It calculates the plausibility of890

the triples, which is formulated as follows:891

Score(h,r,t)=Sigmoid(MLP(e[CLS])). (3)892

Zhang et al. (2022); Choi et al. (2021); Choi and893

Ko (2023) involve filling the missing part of a triple894

with a [MASK] token and predicting it. The input895

sequence x is represented as follows:896

x=[CLS]Texth[SEP]Textr[SEP][MASK][SEP].
(4)897

Nonetheless, simply predicting the [MASK] token898

does not facilitate direct entity prediction. Conse-899

quently, it introduces special tokens into the vo-900

cabulary to represent the corresponding entities for901

prediction. In the case of kNN-KGE (Zhang et al.,902

2022), an initial learning process is undertaken903

when introducing these special tokens to establish904

the relationship between the special tokens and the905

entities.906

The prompt shown in Equation (5) is used to907

mask the special tokens that represent each entity908

ei. With all other parameters fixed, the masked909

entity ei is predicted using cross-entropy loss. This910

approach optimizes the embeddings of these enti-911

ties, which are initially set to random values.912

xi=[CLS] the description of [MASK] is di [SEP],
(5)913

Afterwards, a sentence similar to Eq. (4) is fed914

into the model, which then fine-tunes the model to915

predict the masked entity, as formulated:916

P (t|h,r)=P ([ MASK ]=t|x,Θ), (6)917

where Θ denotes the parameters of the model.918

Finally, SimKGC (Wang et al., 2022), the state-919

of-the-art method employs two encoders. SimKGC920

splits the triple (h,r,t) into a question (h,r) and its921

answer t and uses their respective PLMs to encode922

them into vector space, which can be expressed as: 923

x(h,r)=[CLS] Texth [SEP] Textr [SEP] , (7) 924

xt=[CLS] Textt [SEP] . (8) 925

Then, the [CLS] tokens from the final hidden state 926

are extracted, with the embedding of x(h,r) rep- 927

resented as e(h,r) and the embedding of xt repre- 928

sented as et. The final plausibility of the triples is 929

scored as follows: 930

Score((h,r),t)=cos
(
e(h,r),et

)
. (9) 931

Essentially, the introduced model originally em- 932

ploys the BERT-base model, but it can use variants 933

of BERT such as RoBERTa (Liu et al., 2019). 934

A.2 Generation-based Methods 935

Recently, novel KGC-based methods have been 936

introduced that utilize Encoder-Decoder models, 937

e.g., GenKGC (Xie et al., 2022), KGT5 (Saxena 938

et al., 2022), or Decoder-only Large Language 939

Models (LLMs), e.g., LambdaKG (Xie et al., 2023), 940

AutoKG (Zhu et al., 2023), to directly generate 941

the tail entity t. Unlike traditional KGC methods 942

and discrimination-based methods, which can only 943

complete the KGs using a predefined set of entity 944

candidates, these generation-based methods have 945

the potential to predict unknown entities not in- 946

cluded in the candidate list. This capability unlocks 947

the ability to predict any and all entities in the KGs. 948

When predicting the missing triple (h,t,?), the 949

model converts x(h,r) into a prompt specific to the 950

models, then it into the encoder and generates xt. 951

While there is potential to predict any and all 952

entities, in practice, certain restrictions are put 953

in place to focus the prediction towards entities 954

within the KGs. For example, GenKGC intro- 955

duces an entity-aware hierarchical decoder to place 956

constraints on xt. Furthermore, KGT5 utilizes 957

generation-based PLMs, pre-trained with text de- 958

scriptions specifically for KG representation. No- 959

tably, this is done from scratch with random initial- 960

ization, rather than leveraging pre-trained models, 961

indicating the effectiveness of a tailored approach 962

for each dataset.8 Regarding the foundational mod- 963

els, GenKGC employs BART-base (Lewis et al., 964

2020), while KGT5 utilizes T5-small (Raffel et al., 965

2020). 966

8The authors mention that using pre-trained weights can
improve accuracy in some cases (https://github.com/
intfloat/SimKGC/issues/1). They also discuss the chal-
lenge of training models on small datasets (https://github.
com/apoorvumang/kgt5/issues/4).
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Figure 10: The results of Hits@10 using vicuna-13B
and Llama2-13B in the LLMs KGC methods (Xie et al.,
2023). The LLMs select 1 entity from selected 100
candidate entities by BM25. It generates 10 sentences,
and it is checked whether the correct entity is included
in these. The chance rate is 0.1 because it generated
total 10 entities from 100 candidates.

Finally, some experimental KGC methods use967

decoder-only LLMs. These methods employ well-968

designed prompts to induce in-context learning.969

LambdaKG employs the information retrieval algo-970

rithm (BM25) (Büttcher et al., 2010) to construct971

prompts. It selects the top 100 most relevant enti-972

ties from the dataset as potential answer candidates.973

Similarly, it retrieves the top 5 relevant triples as974

examples for few-shot learning. This information975

is aggregated into a single prompt, which is then976

used by LLMs to select and generate an answer.977

AutoKG addresses the KGC task in a 0-shot or978

1-shot setting without employing an information979

retrieval algorithm. It treats the missing entity as980

a [MASK] token in the prompt and generates the981

corresponding value for the [MASK] token using982

LLMs.983

B Inference capabilities under a zero-shot984

setting with LLMs985

We evaluate the inference capabilities in a zero-986

shot setting by LLMs. We evaluate WN18RR987

and FB15k-237 using the LambdaKG method (Xie988

et al., 2023) described in Appendix A.1.9 Fig-989

ure 10 shows the results using Vicuna-13B (Zheng990

et al., 2023) and Llama2-13B (Touvron et al., 2023).991

The base dataset yields high hits@10 scores, but992

9Original LambdaKG uses GPT-3 (Brown et al., 2020), but
we employ Vicuna-13B and Llama2-13B for reproducibility.
These models have shown competitiveness to GPT-3 on the
MT-bench Reasoning benchmark (Zheng et al., 2023). Fur-
thermore, while the original setting calculates only Hits@1,
this study calculates Hits@10 by considering the top 10 output
probabilities.

when entities are changed, the impact is high, and 993

it is small when only descriptions are changed. 994

However, LLMs don’t know how the entity was 995

changed, so the chance rate serves as an upper 996

limit. Therefore, it is clear that inference by LLMs 997

is based on pre-trained knowledge. 998

C Exhortation to KGC 999

Datasets As discussed in Section 4.2.3, the infor- 1000

mation for relations has very little impact. Some 1001

entities are assigned only one relation, as shown in 1002

Table 3. Thus, if only the entity is known, it may 1003

be possible to infer the unknown entities without 1004

relation information. Traditional KGC methods 1005

without PLMs can learn the graph structure from 1006

scratch. In contrast, PLMs’ knowledge can help 1007

with completion without relation information, as 1008

discussed in Section B. The current dataset focuses 1009

on entities, but it cannot accurately measure the 1010

effect of relations. Therefore, a dataset that specifi- 1011

cally focuses on relations is needed. 1012

Next, according to Table 4, it has become clear 1013

that the missing entity information is included in 1014

the descriptions of queries. Therefore, if we use 1015

descriptions in the KGC task, it can be considered 1016

a cheat setting, as it utilizes the information extrac- 1017

tion capability from the text data in PLMs. The 1018

descriptions are indeed useful for disambiguation 1019

in entities, but they also provide too much informa- 1020

tion for inference, thus demonstrating information 1021

extraction capabilities. In the future, to measure 1022

the pure inference capabilities for unknown entities, 1023

descriptions should not be used in the KGC task 1024

for fair comparison. 1025

Models As discussed in Section 4.2.1, PLMs’ 1026

knowledge helps inferences for unknown entities. 1027

Therefore, when we evaluate filling in truly un- 1028

known links in KGs by KGC in the future, we 1029

should avoid using pre-trained weights. This sug- 1030

gests that PLM-based KGC methods with pre- 1031

trained weights create a cheat setting because they 1032

utilize external knowledge not included in datasets, 1033

which does not measure the pure inference capabil- 1034

ities for unknown entities in KGC tasks. It is essen- 1035

tial to evaluate the model’s performance based on 1036

the target KGC dataset only for a fair comparison. 1037

D Related Work 1038

Traditional KGC As introduced in §2.2, the tra- 1039

ditional KGC methods, represented as RESCAL 1040

(Nickel et al., 2011), TransE (Bordes et al., 2013), 1041
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DistMult (Yang et al., 2015), ComplEx (Trouillon1042

et al., 2016), RotatE (Sun et al., 2019), HAKE1043

(Zhang et al., 2020), and HousE (Li et al., 2022)1044

only focus on the structure of KGs, without consid-1045

ering the extensive textual information of KGs and1046

pre-trained information. Thus, these models need1047

to complete KGs only by their inference abilities.1048

PLM-based KGC As introduced in §2.2, PLM-1049

based KGC methods encode text (Yao et al., 2019;1050

Lv et al., 2022; Shen et al., 2022; Zhang et al., 2022;1051

Choi et al., 2021; Choi and Ko, 2023; Wang et al.,1052

2021a,c, 2022) or generate facts (Xie et al., 2022;1053

Saxena et al., 2022; Chen et al., 2022; Xie et al.,1054

2023; Zhu et al., 2023) based on pre-trained infor-1055

mation to enhance KGC performance. There are1056

two major categories, discrimination-based meth-1057

ods that utilize PLMs encoders and generation-1058

based methods that utilize PLMs decoders (Pan1059

et al., 2023). However, it is uncertain whether the1060

performance improvement is actually caused by the1061

enhanced ability of inference through pre-training1062

or data leakage from pre-trained data. We aim to1063

reveal that in our work.1064

Data Leakage in PLMs Some existing datasets1065

for the downstream tasks are often directly mixed1066

into the pre-training data (Magar and Schwartz,1067

2022; Kapoor and Narayanan, 2022; Sainz et al.,1068

2023), and general PLMs are not able to answer1069

questions correctly in downstream tasks that re-1070

quire domain-specific knowledge excluded from1071

the pre-trained data (Wang et al., 2023; Jullien et al.,1072

2023; Nair and Modani, 2023).1073

Inference Ability of PLMs Several stud-1074

ies (Zhou et al., 2021; Wang et al., 2021b; Zhu1075

et al., 2023; Zheng et al., 2023; Yu et al., 2023; La-1076

ban et al., 2023; Qin et al., 2023) evaluate the infer-1077

ence abilities of PLMs, but they ignored the impact1078

of the PLMs’ memorization abilities in inference.1079

Therefore, the inference abilities of PLMs remain1080

unclear. While the memorization abilities of PLMs1081

are beneficial (Petroni et al., 2019; Roberts et al.,1082

2020; Heinzerling and Inui, 2021; Wei et al., 2022;1083

Carlini et al., 2023), they can introduce bias (Vig1084

et al., 2020; Kaneko et al., 2022a,b; Meade et al.,1085

2022; Deshpande et al., 2023; Feng et al., 2023;1086

Ladhak et al., 2023) or cause errors due by the1087

contamination in the pre-training data as hullucina-1088

tions (Dziri et al., 2022a,b; McKenna et al., 2023;1089

Ji et al., 2023). This suggests the memorization1090

and inference abilities of PLMs are strongly re-1091

lated, and the pre-trained knowledge of the PLMs 1092

influences their inference abilities. 1093
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