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ABSTRACT

In federated learning (FL), model aggregation plays a central role in enabling
decentralized knowledge sharing. However, it is often observed that the aggregated
model underperforms on local data until after several rounds of local training. This
temporary performance drop can potentially slow down the convergence of the FL
model. Prior work regards this performance drop as an inherent cost of knowledge
sharing among clients and does not give it special attention. While some studies
directly focus on designing techniques to alleviate the issue, its root causes remain
poorly understood. To bridge this gap, we construct a framework that enables layer-
peeled analysis of how feature representations evolve during model aggregation in
FL. It focuses on two key aspects: (1) the intrinsic quality of extracted features, and
(2) the alignment between features and their subsequent parameters—both of which
are critical to downstream performance. Using this framework, we first investigate
what model aggregation does to the internal feature extraction process. Our
analysis reveals that aggregation degrades feature quality and weakens the coupling
between intermediate features and subsequent layers, both of which are well shaped
during local training. More importantly, this degradation is not confined to specific
layers but progressively accumulates with network depth—a phenomenon we
term Cumulative Feature Degradation (CFD). CFD severely impairs the quality of
penultimate-layer features, ultimately compromising the model’s decision-making
capacity. Next, we examine how key FL settings—such as aggregation frequency—
can exacerbate or alleviate the negative effects of model aggregation. Finally, we
revisit several commonly used strategies, such as initialization from pretrained
models, and explain why they are effective through layer-peeled analysis. To the
best of our knowledge, this is the first systematic study of model aggregation in FL
from a layer-peeled feature extraction perspective, potentially paving the way for
the development of more effective FL algorithms. The code is available at: https:
//anonymous.4open.science/r/ICLR_14921_ Code-3565.

1 INTRODUCTION

Recently, federated learning (FL) has gained increasing interests (Kairouz et al.,2021) since it can
enable multiple clients to collaboratively train models without sharing their private data. A standard
FL process involves iterative cycles in which local models are trained on each client, followed by
aggregation of these locally updated models on a central server (McMahan et al.,2017), as presented
in Figure[T] During local training, each client performs multiple rounds of model updates using its
private data. Once local training is complete, the updated model is uploaded to the server. The server
then aggregates the uploaded models via parameter-wise averaging, with each model weighted based
on factors such as the number of training samples on each client (Acar et al., 2021} |L1 et al., |2020).
The aggregated model is then sent back to each client for next round of local training.

In the above process, model aggregation is a key step that facilitates knowledge sharing among clients
in FL. However, it is well known that the model aggregation often leads to a significant performance
drop compared to the model before aggregation (Jin et al.l 2022} [Lee et al.,[2022; [Yao et al., [2024).
This phenomenon is particularly pronounced when data distributions across clients are heterogeneous,
a common scenario in practical applications due to factors such as variations in data acquisition
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conditions across different clients (Zhu et al., 2021} [Li et al.l |2021b). To further investigate this
phenomenon, we conduct preliminary experiments in a typical data-heterogeneous FL setting. Figure
[[]presents a performance comparison of the model before and after aggregation, evaluated on the local
data from each client. As shown, the performance of the aggregated model significantly deteriorates
compared to the model before aggregation.
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tion (McMabhan et al.,[2017; Wu et al.| [2023; [Li et al.} [2021a)). Recently, several studies attributes this
phenomenon to ‘client drift” (Li et al.,2020; Karimireddy et al., 2020) and ‘knowledge forgetting’ (Jin
et al.,2022;|Lee et al.,|2022). To address this issue, methods such as partial parameter personalization
(Arivazhagan et al.| 2019} |Li et al., 2021bj Sun et al., 2021)), pre-trained initialization (Nguyen et al.,
2023)), and classifier fine-tuning (Oh et al.| [2022; |Li et al., [2023)) are proposed.
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While the above methods have achieved notable success in mitigating the performance degradation
caused by model aggregation—mainly as measured by metrics such as accuracy or loss—the funda-
mental causes of this issue remain insufficiently understood. This gap can be largely attributed to the
dominant use of deep neural networks (DNNs) in FL|Li et al.| (2021b); [Chen et al.| (2023); [Li et al.
(2023));|Oh et al.[(2022), which are often treated as black-box models Montavon et al.|(2018); Samek
et al.| (2021) composed of stacked layers performing hierarchical feature extraction Yosinski et al.
(2014); |Olah et al.|(2017); Masarczyk et al.| (2024); [Wang et al.|(2023b); |Zeiler & Fergus| (2014);
Rangamani et al.| (2023)). Such architectures hinder the interpretation of internal feature representation
dynamics that potentially underlie aggregation-induced degradation. Although some recent studies
have attempted to analyze FL from a layer-peeled perspective (Luo et al.| 2021} |Chan et al.| [2024;
Adilova et al.,[2024), they either focus on parameter-space analysis using loss-based metrics (Chan
et al.l 2024), or rely on feature similarity metrics that require two models for comparison Luo et al.
(2021));|Adilova et al.| (2024])). To the best of our knowledge, no existing work analyzes the dynamics
of layer-peeled feature extraction using metrics that can be directly computed using a single model to
quantify either feature quality or feature-parameter alignment.

To bridge this gap, we construct a framework to investigate model aggregation from a layer-peeled
feature extraction perspective. We hypothesize that the model performance fundamentally depends
on two key factors: (1) the intrinsic quality of the extracted features, and (2) the degree of alignment
between features and the parameters of subsequent layers. The first factor determines whether
the features are semantically meaningful and discriminative, while the second determines whether
they can be effectively exploited by the model’s decision-making or downstream feature extraction
modules. Accordingly, our framework integrates quantitative metrics to evaluate both aspects,
providing a more interpretable understanding of aggregation effects in FL.

Based on this framework, we perform a layer-peeled feature analysis of aggregation across multiple
datasets and model architectures. In doing so, we aim to answer the following key questions:

* How model aggregation affects feature representations? We observe that model aggre-
gation generally compromises the quality of extracted features and weakens the alignment
between features and subsequent parameters. More importantly, this degradation is not con-
fined to specific layers but accumulates progressively with network depth—a phenomenon
we term Cumulative Feature Degradation (CFD). We identify CFD as a fundamental factor
contributing to the performance drop when aggregating DNNs.

* Why are common solutions effective? We revisit several widely used solutions for mitigat-
ing the effects of model aggregation, including personalizing specific parameters, initializing
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models with pretrained parameters, and fine-tuning the classifier. Our analysis shows that
these methods are effective because they can address the feature degradation issues describe
above. This further validates the utility of our layer-peeled analysis framework.

This study provide a comprehensive study of model aggregation in FL from a layer-peeled feature
extraction perspective. The key findings can inspire the design of more effective FL algorithms.

2 PROBLEM FORMULATION OF FLL FROM A LAYER-PEELED PERSPECTIVE

In this paper, we consider a standard FL system consisting of a central server and M distributed
clients. We assume that each client m contains N, training samples, which are drawn from the
data distribution D,,,. In practice, the underlying data distribution D,,, for each client m is typically
different from one another due to the variations in data collection conditions. Formally, the training
samples on client m can be represented as (!, y’ )N, where !, € X,, C R” denotes the raw
input data for the DNNs, and y?, € ),,, C {0, 1} represents the corresponding ground truth labels
used to optimize the DNNs, with C' denoting the number of classes.

We denote the DNN for client m as 1), (+), with parameters represented by ©,,,. The optimization
objective for an FL system can then be formulated as:

M
1
A .
L(O1,...,0y) = arg@lml%NI—M mgzl Ln(On), (1)

where L,,,(0,,) represents the empirical risk for client m.

To optimize Equation () in a privacy-preserving manner, FL is typically carried out in two iterative
stages: local model training and global model aggregation. During the local model training phase,
each client optimizes its model for F epochs using its private data. Once local training is complete,
each client uploads its updated model to the server. The server then performs model aggregation to
generate the global model. A common aggregation strategy involves applying a weighted average
based on the number of training samples per client, which is expressed as follows:

M
N N,,
®

= M
m=1 Zm:l Nm

Here, © represents the aggregated global model. By repeating the above procedures for several
rounds, the model eventually converges, resulting in the final FL. model. For simplicity, we will
sometimes refer to the locally updated model ®,,, as the pre-aggregated model, and © as the
post-aggregated model. Additionally, we may omit the client and sample indices for simplicity.

(C) @

It is well known that post-aggregated models often suffer a significant performance drop when
evaluated on local data. We provide detailed evidence of this phenomenon in Appendix |G| To better
understand its underlying causes, we propose a layer-peeled feature analysis framework to investigate
how feature extraction evolves across model depth during aggregation. Within this framework, we

reformulate the parameters of the FL. model as ® = {We }zL:y where L denotes the total number of
layers, and the depth increases with ¢. This stacked layers progressively transforms the input data
into prediction outputs, from the shallow layers to the deeper layers. The features of the ¢-th layer for
input x can be formulated as:

=W Wae=W'lg =1, .L-1 (3)

where z* denotes the intermidiated features of /-th layer and we define 2° = .

3 EVALUATION SETUP
3.1 IMPLEMENTATION DETAILS
Datasets. We conduct experiments on cross-domain datasets, including Digit-Five, PACS (Li et al.|

2017), and DomainNet (Peng et al., 2019). For each dataset, samples from a single domain are
assigned to one client. Details on dataset preprocessing and partitioning are provided in Appendix [C]

Model Architectures. Our evaluation are conducted on various architectures, including convolutional
networks (ConvNet), three variants of ResNet (ResNet18, ResNet34, and ResNet50) (He et al., 2016),
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VGG13_BN (Simonyan & Zisserman, [2014) , and ViT_B-16 (Dosovitskiy et al [2021)). Detailed
descriptions of architectures are provided in Appendix D}

Training Settings. We adopt the standard FedAvg algorithm (McMahan et al.,2017)) for federated
training. Model optimization is performed using stochastic gradient descent (SGD) with a learning
rate of 0.01, momentum of 0.5, and a batch size of 64. Each client trains locally for 10 epochs
per global round, and the training runs for a total of 50 global rounds. On the server side, model
aggregation is conducted via weighted averaging of parameters, with weights proportional to the
number of training samples on each client. To account for randomness, all experiments are repeated
three times with different random seeds. Further implementation details are provided in Appendix [E]

3.2 FEATURE EVALUATION METRICS

Our feature evaluation framework incorporates a set of metrics designed to evaluate both the quality
of extracted features (feature vairance (Wang et al.,2023bj; Rangamani et al.,[2023)) and linear probing
accuracy (Chen et al.,[2020; He et al.}|2022; |Wang et al.| 2023a)) and their alignment (Rangamani
et al., 2023} Jordanl 1875} |Bjorck & Golub, [1973) with subsequent model parameters at a given layer
£. To quantify changes in feature extraction before and after aggregation, we additionally introduce
the pairwise distance between features or models and the relative change of evaluated metrics. A brief
overview of these metrics is provided below. The detailed definitions can be found in Appendix [F}

* Feature Variance. We calculate the normalized within-class and between-class variance
to assess the discrimination of extracted features. The within-class variance quantifies the
compactness of features in the same class, where a lower value indicates higher intra-class
consistency. In contrast, the between-class variance reflects the degree of separation among
different classes, with higher values suggesting better inter-class separability.

* Accuracy of Linear Probing. This metric evaluates the generalization of features across
different distributions. We randomly initialize a linear classifier on top of the extracted
features, train it on the target dataset, and report the average test accuracy.

* Alignment between Features and Parameters. This metric is used to evaluate the degree
of coupling between features and their subsequent parameters. A higher value indicates
stronger alignment between the features and the corresponding parameters.

* Relative Change of Evaluated Metrics. It quantifies the metric variations during aggrega-
tion, providing insights into the sensitivity of the extracted features to aggregation.

 Pairwise Distance of Features or Models. It evaluates the differences between the parame-
ters or extracted features of pre-aggregated and post-aggregated models.

4 How MODEL AGGREGATION AFFECTS FEATURE REPRESENTATIONS?
4.1 MODEL AGGREGATION DISRUPTS FEATURE VARIANCE SUPPRESSION

Motivation. In this section, we investigate how feature discrimination evolves during model aggrega-
tion, as it plays a crucial role in determining model performance on local client data. To this end, we
measure both within-class and between-class variances to quantify the degree of intra-class feature
compactness and inter-class featre separability.
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Figure 2: Normalized feature variances at different layers during FL training. The model is trained on
DomainNet using ResNet50: (a) normalized within-class variance, (b) relative change of within-class
variance, (c) normalized between-class variance, (d) relative change of between-class variance.
Experimental Results. Figures[2]and [3|presents the evaluation resutls on DomainNet using ResNet50
as the backbone. These figures reveal several key observations:
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Figure 3: Normalized feature variances across layers at specific rounds. The model is trained on
DomainNet using ResNet50: (a) normalized within-class variance, (b) relative change of within-class
variance, (c) normalized between-class variance, (d) relative change of between-class variance.
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(1) Features become increasingly compressed within the same class as training progresses and
layer depth increases. As shown in Figure[2](a), from a temporal perspective, the within-class feature
variance at a given layer progressively decreases as federated training proceeds. Moreover, as depicted
in Figure 3] (a), from a spatial perspective, at a given training epoch, the within-class feature variance
decreases with increasing network depth. These observations collectively indicate that the within-class
feature variance decreases consistently as training progresses and the model layer goes deeper.
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given layer increases progressively over global
rounds. Similarly, as shown in Figure|§|(a), from
a spatial perspective, at a given global round,
deeper layers exhibit higher between-class vari-
ance. These observations collectively indicate Figure 4: T-SNE |Van der Maaten & Hinton|(2008)
that the model progressively enhances feature visualization of features at different layers on the
separability across classes over both training ‘Quickdraw’ domain of DomainNet. The features
time and network depth. Furthermore, prior are extracted from ResNet50 in last round.

work in centralized learning (CL) show that features become increasingly compact within classes
and more separable across classes as training progresses and depth increases (Wang et al.||2023bj
Rangamani et al.| |2023). Together with Observation (1), our findings reveal that FL exhibits similar
training dynamics from a layer-peeled feature extraction perspective, despite its decentralized nature.

Post-Aggregation

(3) Model aggregation disrupts feature variance suppression during FL training. As shown
in Figures [2] (a) and [3] (a), both temporally and spatially, model aggregation leads to increased
within-class variance and decreased between-class variance. This opposes the training tendency of
DNNs—namely, to reduce within-class variance and increase between-class variance—which has
been empirically verified in Observations 1 and 2. Further supporting evidence is provided in Figure
M] where the visualizations reveal degraded feature discrimination after aggregation across layers.
These findings suggest that, from the perspective of feature variance on local data, model aggregation
inherently contradicts the training objective and can hinder the convergence rate of FL.

While FL shares similar training dynamics with CL—promoting within-class feature compactness
and between-class feature separability—model aggregation can counteract this progression and
ultimately impede FL convergence.

4.2 FEATURE VAIRANCE DISRUPTION ACCUMULATE AS MODEL DEPTH INCREASES

Motivation. In this section, we investigate the relative change in feature variance induced by model
aggregation during FL training. The goal is to assess the sensitivity of different layers to aggregation
and to reveal how the stacked architecture of DNNs affects feature variance in this process.
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Experimental Results. The relative changes in normalized within-class and between-class variance
are shown in the Figures [2]and 3] From these figures, we make the following observations:

(1) Feature variance degradation accumu- Model:DomainNet@ResNet50 Featurc:DomainNet@ResNetS0
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specifically defined in terms of feature variance, @ (o)

we denote it as CFD-V to distinguish it from  Fjoure 5: Mean normalized L; distance of the
CFD observed on other metrics. CFD-V can be  features and parameters between pre-aggregated
attributed to the stacked al.rchltecture of DNNS, 4nd post-aggregated models across model layers
where degraded features in early layers prop- for specific global rounds. The model is trained on

agate to subsequent layers, compounding the  pDomainNet using ResNet50: (a) distance of model
disruption. To further validate this, we compute  parameters (b) distance of features.

layer-wise parameter and feature distances be-

tween pre-aggregated and post-aggregated models. As shown in Figure[5] the magnitude of parameter
distance is consistently smaller than that of feature distance. Moreover, parameter distance decreases
with depth—except for the final classifier—while feature distance increases steadily across layers.
This suggests that performance degradation may not stem solely from parameter divergence that has
been explored previously [Li et al.| (2020), but is more closely associated with CFD-V.

(2) Deeper features begin to compress only after aggregation stabilizes earlier layers. As shown
in Figures2]- 3] during FL training, feature variance in shallower layers first converges to a stable
level, after which deeper layers begin to exhibit compression. If this condition is not satisfied, model
aggregation can instead destabilize features in deeper layers. This behavior is closely related to the
aforementioned CFD-V and further complicates the convergence of FL. models under aggregation.

Feature variance degradation can accumulate due to the stacked architecture of DNN, leading to
severe disruption in penultimate-layer features despite minimal parameter divergence.

4.3 FEATURE-PARAMETER MISMATCH AFTER MODEL AGGREGATION

Motivation. In the previous sections, we analyze how the features themselves are influenced by
model aggregation. However, due to the stacked architecture of DNNs, both the progressive feature
extraction process and the final decision stage depend not only on the quality of the features, but also
on their coupling with the parameters of subsequent layers. In this section, we examine the alignment
between features and their subsequent parameters to understand how model aggregation influences
the consistency between features and the parameters that transform them across layers.
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Figure 6: Evolution in feature-parameter alignment. The model is trained on DomainNet using
ResNet50. Subfigures (a) and (b) show the alignment and their relative changes across global rounds.
Subfigures (c) and (d) show the same metrics across model depth.

Experimental Results Figure 6 presents the results on DomainNet using Reset50. Additional results
are provided in Appendix [[} Based on Figure [6} we can make the following observations:
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(1) Feature-parameter alignment increases as training progresses. From Figure[6](a) and (c), it can
be observed as training proceeds, the alignment between features at a give layer and their subsequent
parameters gradually increases. This suggests that during the training process, the transformation
between layers becomes progressively more coherent, allowing downstream parameters to better
accommodate upstream feature representations. At the early stages of training, the feature-parameter
alignment decreases with increasing model depth, reflecting weaker coupling in deeper layers.
However, the alignment between the penultimate layer (L50) and the classifier improves at a much
faster rate than other layers, eventually surpassing all others after several global rounds.

(2) Feature-parameter alignment is disrupted by model aggregation and exhibits a cumulative
degradation trend. As shown in Figure [6] (a) and (c), model aggregation clearly disrupts the
alignment between features and their subsequent parameters. Furthermore, as shown in Figures [6]
(b) and (d), the relative change in feature-parameter alignment also exhibits a CFD trend, which we
denote as CFD-A. This results in a pronounced mismatch between the penultimate-layer features
and the classifier. Notably, unlike feature variance, the relative change in alignment shows a sharp
spike specifically at the interface between the penultimate layer and the classifie—substantially
greater than the changes observed in earlier layers. This pronounced mismatch, together with the
previously observed decline in feature discrimination, jointly accounts for the significant performance
degradation observed in the post-aggregated model.

Model aggregation induces progressive misalignment between features and subsequent parameters,
with the most severe disruption occurring between the penultimate layer and the classifier.

4.4 MODEL AGGREGATION IMPROVES MODEL GENERALIZATION

Motivation. Previous experiments show that model aggregation disrupts locally formed feature
structures, reducing feature discrimination and degrading performance on local client data. This raises
a key question: if aggregation consistently harms local representations, what is the value of client
collaboration in FL.? To address this, we shift focus from feature discrimination to generalization,
aiming to uncover the potential benefits of aggregation across diverse data distributions.

Experimental Results. We use linear probing
accuracy to evaluate feature generalization. Fig-
ure [7]reports results on ‘Real” and ‘Sketch’ do-
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Figure 7: Linear probing accuracy when transfer-

we can draw the following observations:

(1) As network depth increases, ID accuracy
improves and then plateaus, while OOD ac-

ring to ‘Real” and ‘Sketch’ domains in Domain-
Net. Experiments are conducted on ResNet34.
R50@Post denotes the results of post-aggregated

model, while R50_@Pre* indicates the results of

curacy rises initially but eventually declines. 4
pre-aggregated models from domain *.

We observe that the ID accuracy of the pre-
aggregated model increases with depth and stabilizes at the final few layers, indicating that the
model progressively extracts more discriminative features from its local data. In contrast, the OOD
accuracy exhibits a different trend—it first increases, then decreases—indicating reduced generaliza-
tion to other clients’ data at deeper layers. This observation aligns with prior findings that DNN’s
tend to learn generalizable features in shallow layers and task-specific features in deepper layers
(Yosinski et al., 2014 [Masarczyk et al., 2024). These results suggest that, under data heterogeneity in
FL, clients may benefit more from collaboratively training on intermediate-layer features rather than
relying solely on the final features.

(2) Post-aggregated model produces more generalizable features than the pre-aggregated
model. As shown in Figure [/ although the pre-aggregated model performs well on ID data, it
exhibits a significant drop in OOD accuracy. This indicates that the pre-aggregated model tends to
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overfit its local data and fails to learn features that generalize to other clients. In contrast, the post-
aggregated model maintains relatively high performance across diverse data distributions, indicating
that aggregation effectively fuses knowledge from clients and yields more generalizable features.

Takeaway

Model aggregation mitigates the overfitting of local models by fusing locally learned knowledge
and facilitates the extraction of more generalizable features across diverse data distributions.

5 WHY ARE COMMON SOLUTIONS EFFECTIVE?

In this section, we revisit several common yet effective solutions to address the accuracy drop
caused by model aggregation using our layer-peeled feature analysis framework. These solutions
include parameter personalization, pre-trained parameters initialization, and classifier fine-tuning.
Our analysis offers a deeper understanding of why these methods are effective, by linking their impact
to the feature-level disruptions and alignment issues identified in the previous sections.

5.1 PERSONALIZING SPECIFIC PARAMETERS

Motivation. Parameter personalization has been shown to be effective in mitigating the performance
degradation caused by model aggregation (Arivazhagan et al.,[2019; [Li et al.,[2021Db; [Liang et al.,
2020; [Sun et all 2021). In this section, we investigate how personalization affects the feature
extraction process from a layer-peeled perspective. We implement various personalization strategies

including FedPer(Arivazhagan et al., 2019), FedBN 20210b)), and PartialFed
2021). More details can be found in Appendix [N}

Experimental Results. Figure 8| presents the results on DomainNet using ResNet34. Additional
results are provided in Appendigb It can be observed that personalizing more parameters within
the feature extractor generally leads to more compact within-class features and smaller changes in
feature variance after model aggregation. This benefit arises because personalizing shallow layers
helps prevent the CFD effect—preserving the locally adapted feature extraction capability that can be
disrupted by aggregation.
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Figure 8: Changes in the normalized within-class feature variance and the alignment between
features and parameters with various personalization strategies. PFL_* denotes the PFL methods that
personalize different parts, with C1 denotes the first convolutional layer and S* denotes the block.

)

Takeaway

Personalizing shallow layers preserves locally adapted feature representations and mitigates the
CFD effects introduced by model aggregation.

5.2 INITIALIZING WITH PRE-TRAINED PARAMETERS ON LARGE-SCALED DATASET

Motivation. Pre-trained parameters have been widely adopted to initialize FL. models and have been
shown to accelerate convergence (Nguyen et al, 2023}, [Chen et al., 2023)). However, these studies
primarily rely on loss or accuracy to assess the effects of pre-trained parameters. In this section, we
investigate how initializing with pre-trained parameters affects the layer-peeled feature extraction.

Experimental Results. Figure [9] presenst the results on DomainNet using ResNet50 pretrained
on ImageNet. Additional experimental results are provided in Appendix [Q] It can be observed
that both the within-class variance and feature-parameter alignment exhibit lower sensitivity to
model aggregation when models are initialized with pre-trained parameters compared to random
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Figure 9: Changes in within-class feature variance and feature-parameter alignment across layers at
specific global rounds. The model is trained on DomainNet using ResNet50 pre-trained on ImageNet.

initialization. This is because pre-training enables the shallow layers to extract meaningful features
early on, allowing the model to concentrate training efforts on deeper layers. Such initialization helps
mitigate the CFD phenomenon discussed in Section[d.2] where deeper layers become increasingly
sensitive to model aggregation and only begin to converge after sufficient compression in preceding
layers. By accelerating the stabilization of shallow-layer features, pre-training effectively reduces the
effective path length of CFD, thereby significantly lowering the relative changes in feature variance
and alignment introduced by model aggregation.

Takeaway

Pre-trained initialization shortens the effective path length of CFD, thereby alleviating the negative
impact of model aggregation on feature stability.

5.3 FINE-TUNING CLASSIFIER USING LOCAL DATA

Motivation. Fine-tuning the classifier using local data has been shown to effectively improve a
model’s adaptation to local distributions (Oh et al.} 2022} [Li et all, 2023)). However, the underlying
mechanism behind this improvement has not been thoroughly explored. In this section, we analyze
the effect of classifier fine-tuning using the feature-parameter alignment metric in our framework.
DomainNet:ResNet18 DomainNet:ResNet18

Experimental Results. Figure|10|shows both ~ ©

1 0.7
accuracy and feature-parameter alignment on 50

. . . & = 0.6
DomainNet when fine-tuning the classifier at <, B,
various global rounds, using ResNet18 as the t 500'4
backbone. Additional experiments are provided < < o
in Appendix [P} We observe that the alignment v = Alsmmeniart
between penultimate layer features and the clas- 0 10 2 30 4 S0 0 10 20 30 40 50
Global Round Global Round

sifier consistently improves with fine-tuning (a)

as FL training progresses. This suggests that gjoyre 10: Accuracy and feature-parameter align-
fine-tuning strengthens the coupling between 1ot when fine-tuning classifier. The experiments

penultlmate-lay(?r features and the classifier, ul- are conducted on DomainNet using ResNet18.
timately enhancing the model performance.

Takeaway

Fine-tuning classifier align global classifier with local features, thereby improving model adapta-
tion and performance on local data.

6 CONCLUSION

In this paper, we introduce a layer-peeled feature analysis framework to study the impact of model
aggregation on feature extraction in FL. Our analysis reveals that while FL’s training dynamics
generally align with those of CL, aggregation disrupts feature quality and alignment, with degradation
accumulating across network layers. We show that strategies like parameter personalization, pre-
trained initialization, and classifier fine-tuning effectively mitigate this degradation. Our work
provides new insights into model aggregation in FL, potentially guiding the development of more
robust and interpretable FL algorithms.
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B RELATED WORK

Federated Learning. FedAvg (McMabhan et al., 2017) is widely recognized as the pioneering work in
FL. It facilitates collaborative model training by iteratively performing independent training on each
client and aggregating the models on the server. While FedAvg demonstrates satisfactory performance
in IID settings (Stich, 2018;'Woodworth et al.l[2020), a performance drop is commonly observed when
data distributions are non-IID. This phenomenon has led to multiple explanations for the degradation,
such as ‘client drift’ (Zhao et al.}2018}; |Karimireddy et al., 2020) and ‘knowledge forgetting” (Jin
et al.,[2022)). To address the challenges posed by non-IID data, various solutions have been proposed,
including local model regularization (Li et al., 2020), correction techniques (Karimireddy et al.| [2020;
Wu et al., 2022), knowledge distillation (Jin et al., [2022; |Lee et al., [2022), and partial parameter
personalization (Li et al.,|2021b; (Collins et al., 2021} |Arivazhagan et al., | 2019; |[Liang et al., |2020;
Sun et al, 2021; |Zheng et al., 2022; Wu et al.| 2023;[2024). However, these methods generally adhere
to the standard framework of local training and global aggregation introduced by FedAvg. There
remains a lack of in-depth exploration into how model aggregation intuitively impacts model training
from a feature extraction perspective.

Federated Learning within Feature Space. Numerous studies have recently observed that heteroge-
neous data can lead to suboptimal feature extraction in FL. models and are working on improving FL
models by directly calibrating the resulting suboptimal feature spaces. A common line of research at-
tributes performance degradation to inconsistent feature spaces across clients. To tackle this problem,
CCVR (Luo et al.} 2021])) introduces a post-calibration strategy that fine-tunes the classifier after FL
training using virtual features generated by an approximate Gaussian Mixture Model (GMM). Several
methods (Tan et al., [2022; |[Zhu et al., 2022} 2023} |Zhou et al., 2023} |Huang et al., [2023) propose
using prototypes to align feature distributions across different clients, ensuring a consistent feature
space. Studies such as FedBABU (Oh et al.} [2022), SphereFed (Dong et al.,|2022)), and FedETF (L1
et al., 2023) utilize various fixed classifiers (e.g., random or orthogonal initialization) as targets to
align features across clients. In addition to inconsistent feature spaces, FedDecorr (Shi et al., 2023aib)
observed that heterogeneous data leads to severe dimensional collapse in the global model. To combat
this, it applies a regularization term based on the Frobenius norm of the correlation matrix during
local training, encouraging the different dimensions of features to remain uncorrelated. FedPLVM
(Wang et al.,|2024) discovers differences in domain-specific feature variance in cross-domain FL.
Consequently, they propose dual-level prototype clustering that adeptly captures variance information
and addresses the aforementioned problem. However, these studies primarily focus on calibrating
features in the penultimate layer while overlooking intermediate features during feature extraction. In
this paper, we present a layer-peeled analysis of how model aggregation affects the feature extraction
process and identify several issues related to the hierarchical topology of DNNss.

Feature Learning in DNNs. Advanced DNNs are typically structured with hierarchical layers,
enabling them to efficiently and automatically extract informative features from raw data (Krizhevsky
et al.l 2012} |Allen-Zhu & Li, [2023; Wang et al., [2023b)). Numerous efforts have been made to
understand how DNNs transform raw data from shallow to deep layers. A commonly accepted view
is that DNNss initially extract transferable universal features and then progressively filter out irrelevant
information to form task-specific features (Yosinski et al.,2014; |Zeiler & Fergus| 2014} [Evci et al.|
2022; |Kumar et al., [2022). Another line of studies demonstrates that DNNs progressively learn
features that are compressed within classes and discriminative between classes. Specifically, (Alain &
Bengiol |2017) observes that the linear separability of features increases as the layers become deeper,
using a linear probe. (Masarczyk et al., [2024) proposes the tunnel effect hypothesis, which states
that the initial layers create linearly separable features, while the subsequent layers (referred to as
the tunnel) compress these features. Meanwhile, certain research has extended the feature analysis
of neural collapse (NC)—originally observed in the penultimate layers (Papyan et al., 2020)—to
intermediate layers (Ansuini et al.;|2019; Rangamani et al., 2023} |Li et al.| 2024)), showing that the
features of each layer exhibit gradual collapse as layer depth increases. (Wang et al.| [2023b) provides
a theoretical analysis of feature evolution across depth based on deep linear networks (DLNs). These
studies focus on centralized training where there is no model aggregation during training, they provide
solid support for us to effectively analyze feature evolution in FL, especially the influence of model
aggregation on feature extraction. It should be noted that several recent studies have begun to explore
FL from a layer-wise or layer-peeled perspective (Luo et al., 2021} |Chan et al.| | 2024; |Adilova et al.|
2024). However, these works differ significantly from ours in both methodology and analytical
focus. For example, Chan et al. (Chan et al.| 2024) investigate aggregation behavior primarily in
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the parameter space and use loss-based metrics to characterize layer-wise changes, without directly
analyzing intermediate feature representations. Other studies such as (Luo et al., 2021j|Adilova et al.|
2024) rely on feature similarity metrics that require pairwise comparisons between multiple models,
which limits their applicability in single-model diagnostics or online evaluation. In contrast, our work
proposes a unified feature-level evaluation framework that can be applied directly to a single model
and its corresponding data. To the best of our knowledge, this is the first approach to characterize the
dynamics of layer-wise feature extraction in FL using metrics that independently quantify feature
quality and feature-parameter alignment—without the need for auxiliary models or downstream tasks.

C DATASET DESCRIPTION AND PARTITION

In the experiments, we primarily focus on the data-heterogeneous FL setting, where the distribution
of raw input data differs across clients. This data heterogeneity, often referred to as cross-domain FL,
is commonly observed in practical FL applications due to variations in data collection conditions
across clients. Building on previous studies (Li et al., |2021b; Zhu et al., [2022} 2023}, Wang et al.,
2024), we use three widely used public cross-domain datasets: Digit-Five, PACS (Li et al., [2017),
and DomainNet (Peng et al., [2019). These datasets contain multiple domains, with each domain
consisting of images with different backgrounds and styles, which effectively simulate the data
heterogeneity caused by variations in raw input.

The Digit-Five dataset includes images across 10 classes and 5 domains, namely: MNIST-M (Ganin &
Lempitskyl [2015), MNIST (LeCun et al.,[1998), USPS (Hull,|1994), SynthDigits (Ganin & Lempitskyl
2015), and SVHN (Netzer et al., 2011). The PACS dataset includes 4 distinct domains with a total of
7 classes: Photo (P), Art (A), Cartoon (C), and Sketch (S). The DomainNet dataset comprises six
domains: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R), and Sketch (S). Initially,
the DomainNet dataset includes 345 classes per domain. Based on prior research (Li et al., 2021b;
Zhu et al.,|2022), we reduce the number of classes to 10 commonly used ones for our layer-peeled
feature analysis. Figure[TT|shows some example images from these three datasets. The representative
images demonstrate significant variations across different domains, as observed in Figure[IT]

To create the data-heterogeneous setting across different clients, we assign the images from a single
domain to each client. As a result, there are 5 clients for the Digit-Five dataset, 4 clients for PACS,
and 6 clients for DomainNet in our analysis. For the Digit-Five dataset, the number of training and
testing samples are set to 500 and 1000, respectively. For both the PACS and DomainNet datasets, the
number of training and testing samples is set to 500. The images in the Digit-Five dataset are scaled
to 32 x 32 for both the training and testing datasets. For PACS and DomainNet, the images are scaled
to 224 x 224 and we apply data augmentations such as random flipping and rotation for the training
samples. No data augmentations are applied to the Digit-Five or test datasets across all experiments.
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(a) Digit-Five (b) PACS (c) DomainNet

Figure 11: Visualization of example samples within the datasets used for layer-wise feature evaluation:
(a) Digit-Five, (b) PACS, (c) DomainNet. For each domain within these adopted datasets, we show
the representative samples from 5 classes.
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D MODEL ARCHITECTURES

We utilize multiple models for the selected datasets to perform layer-wise feature extraction analysis,
including both Convolutional Neural Networks (CNN) and Vision Transformers (ViT). Specifically,
the CNN models we employ are ConvNet, VGG13_BN (Simonyan & Zisserman) 2014)), and three
variants of ResNet (He et al.l|2016) (ResNet18, ResNet34, and ResNet50). For the ViT architecture,
we apply ViT_B/16 (Dosovitskiy et al., 2021).

The ConvNet model consists of several convolutional layers followed by fully connected (FC) layers.
The detailed architecture of ConvNet is presented in Table[T] with the output size calculated using
the input scale of the Digit-Five dataset as an example. For the other models, we modify only the
classifiers by adjusting the number of output classes to match the requirements of our dataset, while
leaving the backbone architecture unchanged.

For the Digit-Five dataset, we use ConvNet, ResNet18, and ResNet34 for FL training. For both
PACS and DomainNet datasets, we utilize ConvNet, VGG1_BN, ResNet18, ResNet34, ResNet50,
and ViT_B/16 to accomplish the FL training.

Table 1: Detailed Architecture of ConvNet

Layer Output Size Description
Input 32x32x3 Input image
Convl_1 32x32x64 5x5 Convolution, 64 filters, stride 1, padding 2
BNI1_1 32x32x64 Batch Normalization
ReLU1_1 32x32x64 ReL.U activation
MaxPooll_1 16x16x64 2x2 Max Pooling, stride 2
Convl_2 16x16x64 5x5 Convolution, 64 filters, stride 1, padding 2
BN12 16x16x64 Batch Normalization
ReLU1.2 16x16x64 ReL U activation
MaxPooll_2 8x8x64 2x2 Max Pooling, stride 2
Convl_3 8x8x128 5x5 Convolution, 128 filters, stride 1, padding 2
BN1.3 8x8x128 Batch Normalization
RelLLU1.3 8x8x128 ReL.U activation
Flatten 8192 Flatten layer for fully connected input
Linear2_1 2048 Fully connected layer, 2048 units
BN2_1 2048 Batch Normalization
RelLLU2_1 2048 ReL.U activation
Linear2_2 512 Fully connected layer, 512 units
BN22 512 Batch Normalization
RelLLU22 512 ReLU activation
Output (C) C Output layer (number of classes)

E IMPLEMENTATION DETAILS OF EXPERIMENTS

In our experiments, we train the model using the standard FL training process introduced by FedAvg
(McMahan et al., 2017). This process involves iterative local model updating and global model
aggregation. During the local updating phase, the model is optimized using each client’s private data
for E epochs, after which the local models are uploaded to the server for aggregation. In the model
aggregation stage, we apply parameter-wise averaging, using the number of samples as weights for
each client’s local model. The above procedures are repeated for R global rounds until the global
model converges.

For local model updating, we use stochastic gradient descent (SGD) with momentum for model
optimization, where the learning rate is set to 0.01 and the momentum is set to 0.5. The batch size for
local updates is set to 64. Unless otherwise specified, the number of local update epochs E is set to
10, and the number of global rounds R is set to 50.

All of our experiments are conducted using the PyTorch framework (Paszke et al., 2019) and
implemented on a four-card Nvidia V100 (32G) cluster. During the layer-peeled feature analysis, we
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use the forward hook in PyTorch to extract input features from each evaluated layer as we move from
shallow to deeper layers.

For ConvNet, the features preceding each convolutional and linear layer are used for evaluation. For
ResNet, the features before each convolutional layer (excluding the first convolutional layer), the
global average pooling layer, and the classifier are used for evaluation. For VGG13_BN, the features
before each convolutional layer, the linear layers, and the classifier are used for evaluation. For
ViT_B/16, we evaluate the features passed to the multilayer perceptron (MLP), self-attention layers,
layer normalization layers, and the final classifier.

To reduce computational cost during feature evaluation, we apply average pooling to the intermediate
features, thereby lowering their dimensionality. For CNNs, let the intermediate features at the ¢-th
layer be represented as B x H £ x Wt x C* where B denotes the batch size, and H¢, W¥, and
C"* are the height, width, and channel dimensions, respectively. Following previous studies (Sarfi
et al., 2023} |[Harun et al.| 2024)), we apply 2 x 2 adaptive average pooling to the height and width
dimensions (H* x W*). After this adaptive average pooling operation, the intermediate features
within the convolutional layers are reduced to B x 2 x 2 x C'*. We then flatten this tensor into a
one-dimensional vector and compute the feature metrics, where the features of one sample within the
batch has a dimension of 4C*, and the total dimension of the samples within the batch is B x 4C*.
For ViTs, following previous studies (Raghu et al.; 2021;|Harun et al., 2024), we apply global average
pooling to aggregate the image tokens, excluding the class token. For features input to the linear layer
with a two-dimensional shape of B x D?, we directly use these features to perform evaluation.

During feature evaluation, we process the features in a batch-wise manner, concatenating them across
all batches in the evaluated dataset. The corresponding feature metrics are then computed based on
these concatenated features. For all experiments, we evaluate the features every 20 local updating
epochs, which corresponds to 2 global rounds when the local update epoch is set to 10. To minimize
the impact of randomness, each experiment is repeated three times with different random seeds.

F FEATURE EVALUATION METRICS

We apply the following metrics to evaluate the features generated by the pre-aggregated model and
post-aggregated model, including the feature variance, alignment between features and parameters,
accuracy of linear probing, pairwise distance of features and models, relative change of evaluated
metrics. For simplicity, we omit the client and sample indices and focus solely on the computation
process of these metrics. As previously stated, the features in our experiments are first stacked into a
two-dimensional tensor, and then used to compute the feature metrics. We assume that the stacked
features at (-th layer is denoted as Z* € RN*P", where N is the total number of samples used for
feature evaluation, and D* denote the feature dimension for one sample at /-th layer. The metrics
used to evaluate features in this paper are computed as follows.

F.1 FEATURE VARIANCE

Building on previous studies (Rangamani et al.| [2023; [Wang et al.l 2023b)), we use within-class
feature variance and between-class feature variance to evaluate the feature structure. Specifically, the
within-class variance quantifies the degree of feature compression within the same class, while the
between-class variance measures the degree of feature discrimination between different classes.

Before calculating the within-class and between-class variances, we first compute the within-class,
between-class, and total covariance matrices of the features at /-th layer as follows:

¢ 1 Gh ¢ ¢ ¢ o T
ZW = N Z (zc,i - l'l’c) (zc,i - l‘l'c)
c=11=1
¢ 1< ¢ ¢ ¢ e T
Sp =5 D (ke — 16) (e — 16) @
c=1
¢ 1 Gh ¢ ¢ ¢ T
ET = N Z (Zc,z - H‘G) (Zc,i - IJ’G) ’
c=1i=1
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where

4 1 14 L 1 e L
Ke = ﬁc Z'Zc,i khg = szzc,i' )

i=1 c=1 i=1

In the above equation, p!, is the mean class feature computed from the samples within the c-th class,
and uG as the global mean feature computed from all samples N, represents the number of samples
within the c-th class. It should be noted that the total covariance matrix can be decomposed as the
sum of the within-class and between-class covariances, i.e.,

27 =3 + 55 (6)

Based on the computed covariance matrices, we then use the total variance Tr(X%) as the normal-
ization factor and compute the normalized within-class variance and between-class variance as
follows:

¢ Tr(Z‘f;V)
¢ Tr(zéB)
75 Tz ®

where Tr(-) denotes the trace of the covariance matrices. These two normalized variances are used to
measure the within-class feature compression and between-class feature discrimination, respectively,
in this paper.

F.2 ALIGNMENT BETWEEN FEATURES AND SUBSEQUENT PARAMETERS

Following previous studies, we use the principal angles between subspaces (PABS) (Rangamani et al.|
2023} Jordan, [1875; Bjorck & Golub, [1973)—denoted as 61, . . . , §c—to measure the alignment be-
tween the range space of class-wise feature means Z* and the top C-rank subspace of the subsequent
input layer parameters W%+,

Specifically, for a linear layer, we first apply singular value decomposition (SVD) to W**! and Z¢,
Le., Wi = UG S (Vigf )T and Z¢ = UL SL(VE)T. We then compute the PABS between
Vi ' and UL, which represent the basis for the input subspace W1 and the range space of Z¢,
respectively. The alignment is finally computed by the mean of the singular values of (Vé'|r1 )TUez.

1 241 £ £+1 41
For the convolutional layer, assume the filter kernel has shape W1 € RCou XCuxky xkw " and

. — £ 14 14
the class-wise feature means have shape Z¢ ¢ R¢*CuxH xW" = A previously stated, Z' can be

reshaped into C' x (CY x 4). We begin by flattening the features and parameters along the Cf,
dimension, resulting in shapes C%, x (C' x 4) for the features and C, x (C4H x k4t x kGtt) for
the parameters. We then compute the alignment along the C¥, dimension as described above.

For the self-attention layer in a ViT, we compute the alignments of the features and the ) K'V" matrices
separately, and then take the average of these alignments as the final metric.

F.3 ACCURACY OF LINEAR PROBING

Linear probing is a technique used in transfer learning to evaluate the quality of learned features by
training a simple linear classifier on top of the features extracted from a pre-trained model (Chen et al.|
2020; He et al.| [2022; Wang et al., [2023a). In this paper, we employ the linear probing technique to
assess feature generalization across diverse data distributions. Specifically, after extracting features
from different layers, we apply a randomly initialized linear classifier on top of these features. This
classifier is then trained using the training subset of the evaluated datasets, and we compute accuracy
by testing on the corresponding samples from the test datasets. The testing accuracy serves as the
metric for evaluating feature generalization on each dataset.
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F.4 PAIRWISE DISTANCE OF FEATURES AND MODELS

We use four metrics to evaluate the distance between two models or the features extracted by them:
mean normalized Ly distance, mean squared distance, mean L, distance, and cosine similarity.
In this section, we focus on the computation of the distance between features, since the model
parameters are reshaped into a single vector, which can be treated as a feature with a sample size of
1. Thus, the distance computation is applied to these features can be directly transferred to models.
Let the features of the pre-aggregated and post-aggregated models be denoted as Z, pm and Zz‘fost,
respectively. The corresponding distance can then be computed as follows.
* Mean Normalized L; Distance. This measure computes the mean normalized L, distance
between the pre-aggregated and post-aggregated feature matrices, and then averages the
distances across all elements, as shown below.

ZZ

Z Z pre post (7’7 j) | (9)

i=1 j=1 PTE ZJ)|+| post(27])|

* Mean Squared Error. This distance measure computes the average squared differences
between corresponding elements of the feature vectors, as shown below.

Dy N ZZ pre iJ) Zpoet(l J)) (10)

=1 j=1

* Mean L; Distance. This distance computes the average L, distances between corresponding
elements of the pre-aggregated and post-aggregated feature matrices, as shown below.

D€1 = ND ZZ| pre ;;ost(z ])' (11)

=1 j=1

* Mean Cosine Similarity. This measure computes the cosine of the angle between the
pre-aggregated and post-aggregated features of the same samples, and then averages these
values across all clients. It quantifies the cosine of the angle between the pre-aggregated and
post-aggregated features, where a value of 1 indicates identical directions and a value of -1
indicates opposite directions. The formulation of the mean cosine similarity is shown below.

iy ) A jy
COS _ Z pre post(zb ) (12)
pre )||H post >||

where Zpre( :) Zﬁost
aggregated features of sample 4 at /-th layer, respectively, and || pre( :)|| and || post( I
denote the Euclidean norms of the pre-aggregated and post- aggregated features at /-th layer

respectively.

(i,:) denotes the dot product of the pre-aggregated and post-

F.5 RELATIVE CHANGE OF EVALUATED METRICS

Since the original metrics of features at different layers can vary in magnitude, we use the relative
change in the evaluated metrics to measure the ratio of change before and after aggregation. Let Vpere
and V! bost tepresent the metrics of features generated by the models before and after aggregation at

{-th layer respectively. The relative change in the evaluated metrics is then defined as:

@
AYV) = M 100%. (13)
| pre|+| ost‘

G DETAILED RESULTS OF PERFORMANCE DROP IN MODEL AGGREGATION

In this section, we provide more detailed results that demonstrate the performance drop during
model aggregation. In these experiments, we perform inference on both the training and testing
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datasets using the pre-aggregated and post-aggregated models. The experimental results are shown
in Figure[T2] These experiments are conducted on different datasets, including Digit-Five, PACS,
and DomainNet, and on various model architectures. From Figure we can observe that the
performance drop introduced by model aggregation is consistent across all adopted datasets and
model architectures, on both training and testing dataset. The performance drop consistently occurs
throughout the entire training procedure of FL. These results indicate that the performance drop
during model aggregation is a common phenomenon in FL.
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Figure 12: Training and testing accuracy curves of the model before and after aggregation, evaluated
on the local dataset during FL training. The experiments are conducted on Digit-Five, DomainNet,
and PACS, using multiple model architectures as the backbone.

H DETAILED RESULTS OF FEATURE VARIANCE

In this section, we provide a detailed analysis of the layer-wise feature variance during FL training.
Our experiments are conducted on three datasets: Digit-Five, PACS, and DomainNet, using various
model architectures, as previously described. For each dataset, we presents four types of feature
variances: normalized within-class feature variance, normalized between-class feature variance,
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original unnormalized within-class feature variance, and original unnormalized between-class feature
variance.

To better visualize feature evolution over time (across different epochs of FL training) and space
(across different layers), we employ two types of visualizations. The first visualizes feature changes
across different layers while keeping the training global round fixed. The second focuses on visualiz-
ing feature evolution across training rounds while fixing specific layers.

The experimental results are presented in the following sections. From these results, we observe
that both the original within-class and between-class feature variances increase as the layer depth
increases. In contrast, the normalized within-class feature variance decreases with both layer depth
and training rounds, which is in contrast to the normalized between-class feature variance. This
suggests that features within the same class become more compressed, while features across different
classes become more discriminative.

However, after model aggregation, the normalized within-class variance increases while the normal-
ized between-class variance decreases. This indicates that model aggregation disrupts the feature
compression objective during DNN training. More importantly, this disruption progressively accu-
mulates across model layers, causing the features in the penultimate layer (which are used for final
decision-making) to degrade more significantly.

H.1 CHANGES OF FEATURE VARIANCE ACROSS LAYERS
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Figure 13: Changes in the normalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
Digit-Five with multiple models that are randomly initialized. The top half of the figure shows the
normalized within-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 14: Changes in the normalized between-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
Digit-Five with multiple models that are randomly initialized. The top half of the figure shows the
normalized between-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 15: Changes in the original unnormalized within-class variance of features across model
layers for specific global rounds, with larger X-axis values indicating deeper layers. The model is
trained on Digit-Five with multiple models that are randomly initialized. The top half of the figure
shows the original unnormalized within-class variance, while the bottom half displays the relative
change in variance before and after model aggregation.
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Figure 16: Changes in the original unnormalized between-class variance of features across model
layers for specific global rounds, with larger X-axis values indicating deeper layers. The model is
trained on Digit-Five with multiple models that are randomly initialized. The top half of the figure
shows the original unnormalized between-class variance, while the bottom half displays the relative
change in variance before and after model aggregation.
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Figure 17: Changes in the normalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained
on PACS with multiple models that are randomly initialized. The top half of the figure shows the
normalized within-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 18: Changes in the normalized between-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained
on PACS with multiple models that are randomly initialized. The top half of the figure shows the
normalized between-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 19: Changes in the original unnormalized within-class variance of features across model
layers for specific global rounds, with larger X-axis values indicating deeper layers. The model is
trained on PACS with multiple models that are randomly initialized. The top half of the figure shows
the original unnormalized within-class variance, while the bottom half displays the relative change in
variance before and after model aggregation.
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Figure 20: Changes in the original unnormalized between-class variance of features across model
layers for specific global rounds, with larger X-axis values indicating deeper layers. The model is
trained on PACS with multiple models that are randomly initialized. The top half of the figure shows
the original unnormalized between-class variance, while the bottom half displays the relative change
in variance before and after model aggregation.
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Figure 21: Changes in the normalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
DomainNet with multiple models that are randomly initialized. The top half of the figure shows
the normalized within-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 22: Changes in the normalized between-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
DomainNet with multiple models that are randomly initialized. The top half of the figure shows the
normalized between-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 23: Changes in the unnormalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
DomainNet with multiple models that are randomly initialized. The top half of the figure shows the
original unnormalized within-class variance, while the bottom half displays the relative change in
variance before and after model aggregation.
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Figure 24: Changes in the unnormalized between-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
DomainNet with multiple models that are randomly initialized. The top half of the figure shows the
original unnormalized between-class variance, while the bottom half displays the relative change in
variance before and after model aggregation.
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Figure 25: Changes in the normalized within-class variance of features across FL training at specific
model layers. The model is trained on Digit-Five with multiple models that are randomly initialized.
The top half of the figure shows the normalized within-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 26: Changes in the normalized between-class variance of features across FL training at specific
model layers. The model is trained on Digit-Five with multiple models that are randomly initialized.
The top half of the figure shows the normalized between-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 27: Changes in the original unnormalized within-class variance of features across FL training
at specific model layers. The model is trained on Digit-Five with multiple models that are randomly
initialized. The top half of the figure shows the original unnormalized within-class variance, while
the bottom half displays the relative change in variance before and after model aggregation.
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Figure 28: Changes in the original unnormalized between-class variance of features across FL training
at specific model layers. The model is trained on Digit-Five with multiple models that are randomly
initialized. The top half of the figure shows the original unnormalized between-class variance, while
the bottom half displays the relative change in variance before and after model aggregation.
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Figure 29: Changes in the normalized within-class variance of features across FL training at specific
model layers. The model is trained on PACS with multiple models that are randomly initialized. The
top half of the figure shows the normalized within-class variance, while the bottom half displays the
relative change in variance before and after model aggregation.
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Figure 30: Changes in the normalized between-class variance of features across FL training at specific
model layers. The model is trained on PACS with multiple models that are randomly initialized. The
top half of the figure shows the normalized between-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 31: Changes in the original unnormalized within-class variance of features across FL training
at specific model layers. The model is trained on PACS with multiple models that are randomly
initialized. The top half of the figure shows the original unnormalized within-class variance, while
the bottom half displays the relative change in variance before and after model aggregation.
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Figure 32: Changes in the original unnormalized between-class variance of features across FL training
at specific model layers. The model is trained on PACS with multiple models that are randomly
initialized. The top half of the figure shows the original unnormalized between-class variance, while
the bottom half displays the relative change in variance before and after model aggregation.

DomainNet:VGG13_BN DomainNet:ResNet18 DomainNet:ResNet34 DomainNet:ResNet50
0.9
5 090 } 3 3 —— 3 09
£085 El 508 M= = 5
5 £ & _)/—’—/—M 508 \ )
=080 = > 0.7 ety -
» P » =ik »
2075 4 4 TN 4
Q Q D06 Q0.
1 0.70 = = /\7 Ll@Pre -- L1@ = 07 . — Li@Pre -- LI@Post .
2065 @ = Z05 — L7@Pre -- L7@) = — L10@Pre-- L10@Post
= W re-- LI0@Post = £ — LI5@Pre=- L15@Post = — L22@Pre-- L22@Post
— L12@Pre=- L12@Post — L13@Pre=- L13@Post — L27@Pre=~ L27@Post . — L40@Pre=- L40@Post
£ 060 = = Z 06
- — LI3@Pre-- LI3@Post | 05 — LI8@Pre-- LI8@Post | 0.4 — L34@Pre-- L34@Post ~ — L50@Pre-- L50@Post 7|
0.55 ’
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Global Round Global Round Global Round Global Round
(@) (©)
) DomainNet:VGG13_BN DomainNet:ResNet18 DomainNet:ResNet34 25 DomainNet:ResNet50
1 25
17.5
S g0 20 20
% 5125 g )
g g g15 g1s
o o o o
2 E g1 210
g £ 50 g g
o} o} S 5 S 5
-7 © 25 -4 -4
0.0 0 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Global Round Global Round
( (2

Global Round
(h)

Global Round
(@)

Figure 33: Changes in the normalized within-class variance of features across FL training at specific
model layers. The model is trained on DomainNet with multiple models that are randomly initialized.
The top half of the figure shows the normalized within-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 34: Changes in the normalized between-class variance of features across FL training at specific
model layers. The model is trained on DomainNet with multiple models that are randomly initialized.
The top half of the figure shows the normalized between-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 35: Changes in the original unnormalized within-class variance of features across FL training
at specific model layers. The model is trained on DomainNet with multiple models that are randomly
initialized. The top half of the figure shows the original unnormalized within-class variance, while
the bottom half displays the relative change in variance before and after model aggregation.
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Figure 36: Changes in the original unnormalized between-class variance of features across FL training
at specific model layers. The model is trained on DomainNet with multiple models that are randomly
initialized. The top half of the figure shows the original unnormalized between-class variance, while
the bottom half displays the relative change in variance before and after model aggregation.
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I DETAILED RESULTS OF ALIGNMENT BETWEEN FEATURES AND
PARAMETERS

In this section, we present the experimental results corresponding to the alignment of features and

the parameters of the subsequent layers. From these results, we observe that the alignment between

features and parameters improves as training progresses, with the alignment of penultimate layer
features and the classifier increasing more rapidly.

After model aggregation, the alignment between features and parameters tends to decrease. However,
the decrease is more pronounced in the classifier. This increased mismatch between penultimate layer
features and the classifier, along with the degradation of the penultimate layer features, causes the
aggregated model to perform significantly worse when sent back to each client.

I.1 CHANGES OF ALIGNMENT ACROSS LAYERS
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Figure 37: Changes in the alignment between features and parameters across model layers for specific
global rounds, with larger X-axis values indicating deeper layers. The model is trained on Digit-Five
with multiple models that are randomly initialized. The top half of the figure shows the original
alignment values between features and parameters, while the bottom half displays the relative change

in alignment before and after model aggregation.
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Figure 38: Changes in the alignment between features and parameters across model layers for specific
global rounds, with larger X-axis values indicating deeper layers. The model is trained on PACS
with multiple models that are randomly initialized. The top half of the figure shows the original

alignment values between features and parameters, while the bottom half displays the relative change
in alignment before and after model aggregation.
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Figure 39: Changes in the alignment between features and parameters across model layers for specific
global rounds, with larger X-axis values indicating deeper layers. The model is trained on DomainNet
with multiple models that are randomly initialized. The top half of the figure shows the original
alignment values between features and parameters, while the bottom half displays the relative change

in alignment before and after model aggregation.

1.2 CHANGES OF ALIGNMENT ACROSS TRAINING ROUNDS
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Figure 40: Changes in the alignment between features and parameters across FL training at specific
model layers. The model is trained on Digit-Five with multiple models that are randomly initialized.
The top half of the figure shows the original alignment values between features and parameters, while
the bottom half displays the relative change in alignment before and after model aggregation.
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Figure 41: Changes in the alignment between features and parameters across FL training at specific
model layers. The model is trained on PACS with multiple models that are randomly initialized. The
top half of the figure shows the original alignment values between features and parameters, while the
bottom half displays the relative change in alignment before and after model aggregation.
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Figure 42: Changes in the alignment between features and parameters across FL training at specific
model layers. The model is trained on DomainNet with multiple models that are randomly initialized.
The top half of the figure shows the original alignment values between features and parameters, while
the bottom half displays the relative change in alignment before and after model aggregation.

J  VISUALIZATION OF PRE-AGGREGATED AND POST-AGGREGATED FEATURES

This section visualizes the comparison between pre-aggregated and post-aggregated features. It can
be observed that, as layer depth increases, features become more compressed within the same class
and more discriminative across different classes. However, after model aggregation, features become
more scattered within the same class and less discriminative across classes. This phenomenon is

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

particularly pronounced in the penultimate layer features (the leftmost subfigure). These observations
are consistent with the findings from the quantitative metrics described earlier.
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Figure 43: T-SNE visualization of features at different layers on the ‘Quickdraw’ domain of Domain-
Net before and after aggregation. The features are extracted from ResNet18 in the final global round
of FL training, whose parameters are randomly initialized at the beginning.
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Figure 44: T-SNE visualization of features at different layers on the ‘Quickdraw’ domain of Domain-
Net before and after aggregation. The features are extracted from ResNet34 in the final global round
of FL training, whose parameters are randomly initialized at the beginning.
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Figure 45: T-SNE visualization of features at different layers on the ‘Quickdraw’ domain of Domain-
Net before and after aggregation. The features are extracted from ResNet50 in the final global round
of FL training, whose parameters are randomly initialized at the beginning.

K FEATURE DISTANCE AND PARAMETER DISTANCE

This section compares the distance between features and parameters in the pre-aggregated and post-
aggregated models at each layer. It can be observed that, with the exception of the final classifier, the
parameter distance between the pre-aggregated and post-aggregated models is significantly smaller
than the feature distance. Furthermore, the distances between parameters and features show different
trends across layers. While the parameter distance decreases, the feature distance increases as the
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layer depth increases. This demonstrates that even small variations in the parameter space can lead
to significant feature variations, as the stacked structure of DNNs tends to magnify errors in feature
extraction. This observation suggests that the ‘client drift’ proposed by previous studies may not be
the root cause of performance drops during model aggregation.
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Figure 46: Changes in distance of the features and parameters obtained from models before and after
aggregation across model layers for specific global rounds, with larger X-axis values indicating deeper
layers. The model is trained on DomainNet using ResNet18. The distance is measured by 4 metric
including mean normalized distance, mean squared distance, mean L; distance, and mean cosine
similarity. The top half of the figure shows the distance between the parameters of pre-aggregated
and post-aggregated models, while the bottom half displays the distance between the features of
pre-aggregated and post-aggregated models.
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Figure 47: Changes in distance of the features and parameters obtained from models before and after
aggregation across model layers for specific global rounds, with larger X-axis values indicating deeper
layers. The model is trained on DomainNet using ResNet18. The distance is measured by 4 metric
including mean normalized distance, mean squared distance, mean L, distance, and mean cosine
similarity. The top half of the figure shows the distance between the parameters of pre-aggregated
and post-aggregated models, while the bottom half displays the distance between the features of
pre-aggregated and post-aggregated models.
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Figure 48: Changes in distance of the features and parameters obtained from models before and after
aggregation across model layers for specific global rounds, with larger X-axis values indicating deeper
layers. The model is trained on DomainNet using ResNet18. The distance is measured by 4 metric
including mean normalized distance, mean squared distance, mean L, distance, and mean cosine
similarity. The top half of the figure shows the distance between the parameters of pre-aggregated
and post-aggregated models, while the bottom half displays the distance between the features of
pre-aggregated and post-aggregated models.

L DETAILED RESULTS OF LINEAR PROBING

This section evaluates the accuracy of linear probing across diverse data distributions. In our
experiments, we use SGD with a learning rate of 0.01 to optimize the randomly initialized linear
layer. The batch size is set to 64, and the total number of epochs is set to 100. We report the best test
accuracy as the accuracy of linear probing.

From the experimental results, we observe that the features generated by the post-aggregated model
perform well across diverse data distributions. In contrast, the pre-aggregated model only performs
well on its local data distribution. This suggests that, while the model after aggregation may not
extract task-specific features for local distributions, it is more capable of extracting generalized
features that can be applied to different distributions. This is also how model aggregation improves
performance compared to purely local training.
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Figure 49: Accuracy of linear probing at different layers across different domains in DomainNet. The
experiments are performed in global round 50 using ResNet18 as the backbone model. In the figures,
R50@Post represents the results using the model after aggregation, while R50_* @Pre represents the
results using the model before aggregation for domain *.
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Figure 50: Accuracy of linear probing at different layers across different domains in DomainNet. The
experiments are performed in global round 50 using ResNet34 as the backbone model. In the figures,

R50@Post represents the results using the model after aggregation, while R50_* @Pre represents the
results using the model before aggregation for domain *.

M EFFECT OF RESIDUAL CONNECTION

Motivated by the observed zigzag pattern linked to residual blocks, this section investigates the role
of residual connections in model aggregation. We use ResNet18 and ResNet34 as backbones and
remove the residual connections from these models. We then employ these modified architectures for
FL training. This section presents a comparison of accuracy and feature metrics between the models
with and without residual connections. We observe that the relative change in feature metrics is more
pronounced when the residual connections are removed, particularly during the early stages of model
training and in the normalized within-class and between-class feature variance metrics. This may be
because residual connections help mitigate feature degradation by allowing less disrupted features in
lower layers to be propagated to deeper layers.

DomainNet: Train Accuracy DomainNet: Test Accuracy
100 60
50
~ 80 -
< < 40
g 60 2
g g
3 330
o 40 3] )i
< # — ResNetl8@Pre —- ResNetl8@Post < 20 Y/ — ResNetl18@Pre —- ResNetl8@Post
7,7 — ResNet34@Pre == ResNet34@Post 1 — ResNet34@Pre == ResNet34@Post
20 ,/ — Plain_ResNet18@Pre—- Plain_ResNet18@Post f,' — Plain_ResNet18@Pre—- Plain_ResNet]8@Post

Z___— Plain_ResNet34@Pre—- Plain_ResNet34@Post 10 L _~~» — Plain_ResNet34@Pre—- Plain_ResNet34@Post

0 10 20 30 40 50 0 10 20 30 40 50
Global Round Global Round

(a) (b)

Figure 51: Averaged training and testing accuracy curves of the model before and after aggregation,
evaluated on the local dataset during FL training. The experiments are conducted on the DomainNet

dataset. The models trained include the original ResNet18 and ResNet, as well as their plain versions,
with residual connections removed.
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N DETAILED RESULTS WHEN PERSONALIZING SPECIFIC PARAMETERS

This section presents the detailed experimental results obtained by personalizing specific layers
within the model during FL training, a method known as personalized federated learning (PFL). The
experiments are conducted using the ResNet18 and ResNet34 models. As shown in Figure[52] both
models can be divided into several blocks: the first convolutional layer, stages 1-4 (which consist of
stacked convolutional layers), and the fully connected (FC) layer used for classification.

In the experiments, we explore PFL methods by personalizing specific layers within the model.
Specifically, we first examine two commonly used PFL methods: FedPer (Arivazhagan et al.
2019), which personalizes the classifier, and FedBN (Li et al.l [2021b), which personalizes the
batch normalization (BN) layers. Additionally, motivated by (Sun et al., 2021]), we consider two
more strategies for parameter personalization: the successive parameter personalization strategy and
the skip parameter personalization strategy. For the successive parameter personalization strategy,
we personalize multiple consecutive layers starting from the first layer. In the skip parameter
personalization strategy, we randomly select a layer or block for personalization.

The experimental results show that these parameter personalization methods generally lead to better
featured distributions on local data. Moreover, the relative changes introduced by model aggregation
decrease as more parameters within the feature extractor are personalized. This improvement is
due to the reduction in feature disruption accumulation, which is alleviated by personalizing these
parameters, thereby maintaining their ability to extract locally task-specific features without being
affected by model aggregation.
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Figure 52: Illustration of the architectures of ResNet18 and ResNet34, along with the parameter
personalization strategies: (a) Successive parameter personalization strategy, (b) Skip parameter
personalization strategy.
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N.1 SUCCESSIVE PARAMETER PERSONALIZATION
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Figure 53: Accuracy curves when training FL. models with different successive parameter personal-
ization strategies, along with FedAvg, FedPer, and FedBN. In the legend, ‘C1’ is an abbreviation for
the Convl layer, and ‘S*’ represents the abbreviation for Stage* block.

N.2 SKIP PARAMETER PERSONALIZATION
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Figure 54: Accuracy curves when training FL models with different skip parameter personalization
strategies, along with FedAvg, FedPer, and FedBN. In the legend, ‘C1’ is an abbreviation for the
Convl layer, and ‘S*’ represents the abbreviation for Stage* block.

O EFFECT OF LOCAL UPDATING EPOCHS

The local update epoch is a key configuration in federated learning that determines the aggregation
frequency. In this section, we conduct experiments to investigate its impact on model aggregation.
During experimets, we keep the total number of local updates fixed and vary the number of local
epochs. The experimental results are presented in Figure[53] To ensure a fair comparison, we maintain
a consistent total number of updating epochs across comparisons. The results show that increasing
the number of local epochs will compress the within-class features more effectively. However, when
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the models are aggregated, the relative change for larger local update epochs is noticeably greater
than for smaller ones. This highlights the sensitivity of the model aggregation process to the number

of local updating epochs. DomainNet:ResNet34 DomainNet:ResNet34
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Figure 55: Changes in the normalized within-class feature variance and the alignment between
features and parameters when training the FL model with different local update epochs. The model is
trained on DomainNet using ResNet34 as backbone. We present two groups of experiments, keeping
the total number of updating epochs (E x R) fixed at 100 and 500.

P DETAILED RESULTS WHEN FINE-TUNING CLASSIFIER

This section provides detailed experimental results on fine-tuning the classifier to reduce the mismatch
between the features extracted by the global feature extractor and the classifier. The experiments are
conducted on DomainNet using ResNet18 and ResNet34 as backbones. During fine-tuning, we use
SGD with momentum as the optimizer, with a learning rate of 0.01 and momentum set to 0.1. We
perform only 10 epochs of fine-tuning.

It can be observed that, after fine-tuning the classifier, the alignment between the features and the
classifier consistently improves using models at different global rounds during the FL training. As a
result, the testing accuracy also improves.
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Figure 56: Accuracy and alignment between features and parameters during classifier fine-tuning

across global rounds. The experiments are conducted on DomainNet dataset, using ResNet18 and
ResNet34 as backbone model.
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Q DETAILED RESULTS WHEN INITIALIZING MODEL WITH PRE-TRAINED
PARAMETERS

In this section, we present detailed experimental results from using pre-trained parameters as ini-
tialization for FL training. These experiments follow the same setup as the ones described above,
with the only difference being that the model is initialized with parameters pre-trained on large-scale
datasets. The experimental results include the changes in feature variance across layers and training
rounds, the alignment between features and parameters across layers and rounds, and the visualization
of pre-aggregated and post-aggregated features. From these experiments, we find that initializing with
pre-trained parameters effectively mitigates the accumulation of feature degradation. This conclusion
is based on observations from experiments with randomly initialized parameters, where deeper
layers only begin to converge once shallow features have reached a specific state. This is primarily
because the degradation of unconverged features in the shallow layers propagates to the deeper layers,
preventing them from converging until the shallow layers are well-trained. This significantly hinders
the convergence rate of FL training. However, when initialized with pre-trained parameters, we find
that the features of most shallow layers converge early in training, as the model already possesses
strong feature extraction capabilities from being trained on a large-scale dataset. This significantly
reduces the feature degradation accumulation introduced by model aggregation, thereby stabilizing
and accelerating the convergence of FL training.
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Figure 57: Comparison of accuracy with and without pre-trained parameters as initialization. The

performance drop can be significantly mitigated by using pre-trained parameters.
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Q.2 CHANGES OF FEATURE VARIANCE ACROSS LAYERS
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Figure 58: Changes in the normalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
Digit-Five with multiple models that are initialized by parameters pre-trained on large-scaled datasets.
The top half of the figure shows the normalized within-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 59: Changes in the normalized between-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained
on Digit-Five with multiple models that are initialized by parameters pre-trained on large-scaled
datasets. The top half of the figure shows the normalized between-class variance, while the bottom
half displays the relative change in variance before and after model aggregation.
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Figure 60: Changes in the original unnormalized within-class variance of features across model layers
for specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
Digit-Five with multiple models that are initialized by parameters pre-trained on large-scaled datasets.
The top half of the figure shows the original unnormalized within-class variance, while the bottom
half displays the relative change in variance before and after model aggregation.
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Figure 61: Changes in the original unnormalized between-class variance of features across model
layers for specific global rounds, with larger X-axis values indicating deeper layers. The model is
trained on Digit-Five with multiple models that are initialized by parameters pre-trained on large-
scaled datasets. The top half of the figure shows the original unnormalized between-class variance,
while the bottom half displays the relative change in variance before and after model aggregation.
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Figure 62: Changes in the normalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
PACS with multiple models that are initialized by parameters pre-trained on large-scaled datasets.
The top half of the figure shows the normalized within-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 63: Changes in the normalized between-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained on
PACS with multiple models that are initialized by parameters pre-trained on large-scaled datasets.
The top half of the figure shows the normalized between-class variance, while the bottom half displays
the relative change in variance before and after model aggregation.
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Figure 64: Changes in the original unnormalized within-class variance of features across model
layers for specific global rounds, with larger X-axis values indicating deeper layers. The model is
trained on PACS with multiple models that are initialized by parameters pre-trained on large-scaled
datasets. The top half of the figure shows the original unnormalized within-class variance, while the
bottom half displays the relative change in variance before and after model aggregation.
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Figure 65: Changes in the original unnormalized between-class variance of features across model
layers for specific global rounds, with larger X-axis values indicating deeper layers. The model is
trained on PACS with multiple models that are initialized by parameters pre-trained on large-scaled
datasets. The top half of the figure shows the original unnormalized between-class variance, while
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the bottom half displays the relative change in variance before and after model aggregation.
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Figure 66: Changes in the normalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained
on DomainNet with multiple models that are initialized by parameters pre-trained on large-scaled
datasets. The top half of the figure shows the normalized within-class variance, while the bottom half
displays the relative change in variance before and after model aggregation.
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Figure 67: Changes in the normalized between-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained
on DomainNet with multiple models that are initialized by parameters pre-trained on large-scaled
datasets. The top half of the figure shows the normalized between-class variance, while the bottom
half displays the relative change in variance before and after model aggregation.
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Figure 68: Changes in the unnormalized within-class variance of features across model layers for
specific global rounds, with larger X-axis values indicating deeper layers. The model is trained
on DomainNet with multiple models that are initialized by parameters pre-trained on large-scaled
datasets. The top half of the figure shows the original unnormalized within-class variance, while the
bottom half displays the relative change in variance before and after model aggregation.
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Figure 69: Changes in the unnormalized between-class variance of features across model layers
for specific global rounds, with larger X-axis values indicating deeper layers. The model is trained
on DomainNet with multiple models that are initialized by parameters pre-trained on large-scaled
datasets. The top half of the figure shows the original unnormalized between-class variance, while
the bottom half displays the relative change in variance before and after model aggregation.
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Q.3 CHANGES OF FEATURE VARIANCE ACROSS TRAINING ROUNDS
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Figure 70: Changes in the normalized within-class variance of features across FL training at specific
model layers. The model is trained on Digit-Five with multiple models that are initialized by
parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
normalized within-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 71: Changes in the normalized between-class variance of features across FL training at
specific model layers. The model is trained on Digit-Five with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the normalized
within-class variance, while the bottom half displays the relative change in variance before and after
model aggregation.
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Figure 72: Changes in the original unnormalized within-class variance of features across FL training
at specific model layers. The model is trained on Digit-Five with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
unnormalized within-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 73: Changes in the original unnormalized between-class variance of features across FL training
at specific model layers. The model is trained on Digit-Five with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
unnormalized between-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 74: Changes in the normalized within-class variance of features across FL training at specific
model layers. The model is trained on PACS with multiple models that are initialized by parameters
pre-trained on large-scaled datasets. The top half of the figure shows the normalized within-class
variance, while the bottom half displays the relative change in variance before and after model
aggregatlon.
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Figure 75: Changes in the normalized between-class variance of features across FL training at specific
model layers. The model is trained on PACS with multiple models that are initialized by parameters
pre-trained on large-scaled datasets. The top half of the figure shows the normalized between-class

variance, while the bottom half displays the relative change in variance before and after model
aggregation.
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Figure 76: Changes in the original unnormalized within-class variance of features across FL training
at specific model layers. The model is trained on PACS with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
unnormalized within-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 77: Changes in the original unnormalized between-class variance of features across FL training
at specific model layers. The model is trained on PACS with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
unnormalized between-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 78: Changes in the normalized within-class variance of features across FL training at specific
model layers. The model is trained on DomainNet with multiple models that are initialized by
parameters pre-trained on large-scaled datasets. The top half of the figure shows the normalized
within-class variance, while the bottom half displays the relative change in variance before and after

model aggregation.
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Figure 79: Changes in the normalized between-class variance of features across FL training at
specific model layers. The model is trained on DomainNet with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the normalized
between-class variance, while the bottom half displays the relative change in variance before and

after model aggregation.
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Figure 80: Changes in the original unnormalized within-class variance of features across FL training
at specific model layers. The model is trained on DomainNet with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
unnormalized within-class variance, while the bottom half displays the relative change in variance
before and after model aggregation.
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Figure 81: Changes in the original unnormalized between-class variance of features across FL training
at specific model layers. The model is trained on DomainNet with multiple models that are initialized
by parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
unnormalized between-class variance, while the bottom half displays the relative change in variance
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Q.4 CHANGES OF ALIGNMENT ACROSS LAYERS
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Figure 82: Changes in the alignment between features and parameters across model layers for specific
global rounds, with larger X-axis values indicating deeper layers. The model is trained on Digit-Five
with multiple models that are initialized by parameters pre-trained on large-scaled datasets. The top
half of the figure shows the original alignment values between features and parameters, while the
bottom half displays the relative change in alignment values before and after model aggregation.
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Figure 83: Changes in the alignment between features and parameters across model layers for specific
global rounds, with larger X-axis values indicating deeper layers. The model is trained on PACS with
multiple models that are initialized by parameters pre-trained on large-scaled datasets. The top half
of the figure shows the original alignment values between features and parameters, while the bottom
half displays the relative change in alignment before and after model aggregation.
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Figure 84: Changes in the alignment between features and parameters across model layers for specific
global rounds, with larger X-axis values indicating deeper layers. The model is trained on DomainNet
with multiple models that are initialized by parameters pre-trained on large-scaled datasets. The top
half of the figure shows the original alignment values between features and parameters, while the
bottom half displays the relative change in alignment before and after model aggregation.
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Figure 85: Changes in the alignment between features and parameters across FL training at specific
model layers. The model is trained on Digit-Five with multiple models that are initialized by
parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
alignment values between features and parameters, while the bottom half displays the relative change
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Figure 86: Changes in the alignment between features and parameters across FL training at specific
model layers. The model is trained on PACS with multiple models that are initialized by parameters
pre-trained on large-scaled datasets. The top half of the figure shows the original alignment values
between features and parameters, while the bottom half displays the relative change in alignment

before and after model aggregation.
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Figure 87: Changes in the alignment between features and parameters across FL training at specific
model layers. The model is trained on DomainNet with multiple models that are initialized by
parameters pre-trained on large-scaled datasets. The top half of the figure shows the original
alignment values between features and parameters, while the bottom half displays the relative change

in alignment before and after model aggregation.
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Q.6 VISUALIZATION OF PRE-AGGREGATED AND POST-AGGREGATED FEATURES
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Figure 88: T-SNE visualization of features at different layers on the ‘Quickdraw’ domain of Domain-
Net before and after aggregation. The features are extracted from ResNet18 in the final global round
of FL training, whose parameters are initialized by the parameters pre-trained on large-scaled datasets
at the beginning.
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Figure 89: T-SNE visualization of features at different layers on the ‘Quickdraw’ domain of Domain-
Net before and after aggregation. The features are extracted from ResNet34 in the final global round
of FL training, whose parameters are initialized by the parameters pre-trained on large-scaled datasets
at the beginning.
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