
Abstract

We introduce frequency propagation, a learning algorithm for nonlinear physical1

networks. In a resistive electrical circuit with variable resistors, an activation cur-2

rent is applied at a set of input nodes at one frequency, and an error current is3

applied at a set of output nodes at another frequency. The voltage response of4

the circuit to these boundary currents is the superposition of an ‘activation signal’5

and an ‘error signal’ whose coefficients can be read in different frequencies of the6

frequency domain. Each conductance is updated proportionally to the product of7

the two coefficients. The learning rule is local and proved to perform gradient8

descent on a loss function. We argue that frequency propagation is an instance of9

a multi-mechanism learning strategy for physical networks, be it resistive, elastic,10

or flow networks. Multi-mechanism learning strategies incorporate at least two11

physical quantities, potentially governed by independent physical mechanisms, to12

act as activation and error signals in the training process. Locally available infor-13

mation about these two signals is then used to update the trainable parameters to14

perform gradient descent. We demonstrate how earlier work implementing learn-15

ing via chemical signaling in flow networks ([1]) also falls under the rubric of16

multi-mechanism learning.17

Frequency propagation: Multi-mechanism learning in nonlinear physical18

networks19

I. INTRODUCTION20

Advancements in artificial neural networks (ANN) ([2]) have inspired a search for adaptive phys-21

ical networks that can be optimized to achieve desired functionality ([1, 3–9]). Similar to ANNs,22

adaptive physical networks modify their learning degrees of freedom to approximate a desired input-23

to-output function ; but unlike ANNs, they achieve this using physical laws. In a physical network,24

the input is typically an externally applied boundary condition, and the output is the network’s re-25

sponse to this input, or a statistic of this response. For instance, in a resistive network, an input26

signal can be fed in the form of applied currents or voltages, and the output may be the vector of27

voltages across a subset of nodes of the network. The learning degrees of freedom of the network28

are, for example, the conductances of the resistors (assuming variable resistors). Ideally, these learn-29

ing parameters must be updated using only locally available information. Otherwise, the network30

would require additional channels to transmit the gradient information. Moreover, these parameter31

updates should preferably follow the direction of gradient descent in the loss function landscape, as32

is the case for ANNs.33

34

Existing learning algorithms for adaptive physical networks include equilibrium propagation ([3,35

10]) and coupled learning ([5]). These algorithms are based on the idea of contrastive learning36

([11]) and proceed as follows. In a first phase, an input is presented to the network, either in the37

form of boundary currents or voltages, and the network is allowed to settle to equilibrium (the ‘free38

state’), where a supervisor checks the output of the system. Then the supervisor nudges the output39

towards the desired output. This perturbation causes the system to settle to a new (‘perturbed’)40

equilibrium state, which is a slightly more accurate approximation of the function that one wants to41

learn. The supervisor then compares the perturbed state with the free state to make changes in the42

learning degrees of freedom in such a way that the network spontaneously produces an output that43

is slightly closer to the desired output. In the limit of infinitesimal nudging, this procedure performs44

gradient descent on the squared prediction error ([12]).45

The above procedure is not entirely ‘physical’ in nature, as it requires storing the free state to com-46

pare it with the perturbed state. For example, in the experimental work of [7], the authors use two47

copies of the same network to compute the two states. Alternatively, [13] use a single network,48

but the authors make use of additional SRAM to store the two states before performing the weight49

updates. Another idea proposed by [3] is to use a capacitor (sample-and-hold amplifier) at each50
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FIG. 1. A graphical summary of Frequency Propagation.

node/unit/neuron to store the free state values, but this idea has not been verified experimentally. In51

this work, we propose an alternative multi-mechanism learning approach to overcome this hurdle.52

Our approach incorporates two physical quantities, each driven by their own respective mechanisms:53

one quantity acting as an activation signal and the other acting as an error signal. This concept54

is motivated by biological systems implementing functionality via multiple biophysical routes or55

mechanisms. Such functionality can be chemical, electrical or even mechanical in nature with po-56

tential interactions between such mechanisms. For instance, in the brain, activity can propagate57

from one cell to another via electrical and chemical synapses, as opposed to just one mechanism,58

if you will ([14]). Given this modularity in functionality in biology, it would be remiss not to ex-59

plore such richness in how adaptive physical networks learn. Alternatively, as we shall soon see, the60

modularity is not necessarily in terms of mechanical versus chemical versus electrical signals, but61

distinguishable signals.62

We introduce frequency propagation (Freq-prop), a physical learning algorithm falling under the63

umbrella concept of multi-mechanism learning. In Freq-prop, the activation and error signals are64

both sent through a single channel, but are encoded in different frequencies of the frequency domain65

; we can thus obtain the respective responses of the system through frequency (Fourier) decompo-66

sition. This algorithm, which we show to perform gradient descent, can be used to train adaptive67

non-linear networks such as resistor networks, elastic networks and flow networks. Freq-prop thus68

has the potential to be an all-encompassing approach. See Fig. 1 for a graphical summary of Freq-69

prop. In the next section we present this idea of frequency propagation in the context of resistor70

networks, and in section III we show that frequency propagation is an example of multi mecha-71

nism learning and can be generalized to train various physical systems like flow and mechanical72

networks.73

II. NONLINEAR RESISTIVE NETWORKS74

A resistive network is an electrical circuit of nodes interconnected by resistive devices, which in-75

cludes linear resistors and diodes. Let N be the number of nodes in the network, and denote vj the76

electric potential of node j. A subset of the nodes are input nodes, where we can set input currents:77

we denote xj the input current at input node j. For each pair of nodes j and k, we denote θjk the78

conductance of the resistor between these nodes (provided that the corresponding branch contains79
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a linear resistor). We further denote θ = {θjk : linear branch (j, k)} the vector of conductances,80

and x = (x1, x2, . . . , xN ) the vector of input currents, where by convention xj = 0 if node j is81

not an input node. Finally, we denote v = (v1, v2, . . . , vN ) the configuration of the nodes’ electric82

potentials, and v(θ, x) the equilibrium value of v as a function of the branch conductances (θ) and83

the input currents (x).84

The following result, known since the work of Millar ([15]), provides a characterization of the85

equilibrium state – see also ([3]) for a proof of this result with notations closer to ours.86

Theorem 1 There exists a real-valued function E(θ, x, v) such that87

v(θ, x) = argmin
v

E(θ, x, v). (1)

Furthermore, E(θ, x, v) is of the form88

E(θ, x, v) = Einput(x, v) + Enonlinear(v) (2)

+
∑

linear branch (j,k)

1

2
θjk (vj − vk)

2
, (3)

where Einput(x, v) is a function of x and v, and Enonlinear(v) is a function of v only.89

E(θ, x, v) is the ‘energy function’ of the system, also called the co-content ([15]), and the equilib-90

rium state v(θ, x) is a minimizer of the energy function. The energy function contains an energy91

term Einput(x, v) associated to boundary input currents x. It also contains energy terms of the form92

θjk (vj − vk)
2 representing the power dissipated in branch (j, k). The term Enonlinear(v) contains93

all nonlinearities of the system. In a linear resistance network (i.e. when Enonlinear(v) = 0), it94

is well known that the equilibrium configuration of node electric potentials minimizes the power95

dissipation ; Theorem 1 generalizes this result to nonlinear networks. Below we explain how the96

different terms of E(θ, x, v) are constructed.97

Constructing the energy function. Each branch is characterised by its current-voltage character-98

istic ijk = îjk(vj − vk), where îjk(·) is a real-valued function that returns ijk, the current flowing99

from j to k in response to the voltage vj − vk. The energy term corresponding to branch (j, k),100

called the co-content of the branch ([15]), is by definition101

Ejk(vj − vk) =

∫ vj−vk

0

îjk(v
′)dv′. (4)

In general, the characteristic function îjk(·) is arbitrary, i.e. nonlinear. However, some branches are102

linear, meaning that their current-voltage characteristic is of the form ijk = θjk (vj − vk), where103

θjk is the branch conductance [16]. For such linear branches, the energy term is104

Ejk(vj − vk) =
1

2
θjk (vj − vk)

2
, (5)

which is the power dissipated in branch (j, k).105

We gather all the energy terms of nonlinear branches under a unique term:106

Enonlinear(v) =
∑

nonlinear branch (j,k)

Ejk(vj − vk), (6)

where we recall that v = (v1, v2, . . . , vN ).107

As for the energy term Einput(x, v), we present two ways to impose boundary conditions to the108

network to feed it with input signals x, either in the form of boundary currents or boundary electric109

potentials. Recall that we write x = (x1, x2, . . . , xN ) the vector of input signals, where xj = 0 if110

node j is not an input node. In the case of boundary currents, the corresponding energy term is111

Ecurrent
input (x, v) =

∑
j∈{input nodes}

xjvj , (7)

whereas in the case of boundary electric potentials, the energy term is112
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Evoltage
input (x, v) =

{
0 if vj = xj ,

∀j ∈ {input nodes},
+∞ otherwise,

(8)

i.e. the electric potential vj is clamped to xj for every input node j (so that the energy remains113

finite).114

Putting all the energy terms together, and denoting Einput(x, v) the energy term of input signals115

(either Ecurrent
input (x, v) or Evoltage

input (x, v) depending on the case), we get the energy function of Eq. (2-116

3).117

III. MULTI-MECHANISM LEARNING VIA FREQUENCY118

PROPAGATION119

Learning in a resistive network consists in adjusting the branch conductances (θ) so that the network120

exhibits a desired behavior, i.e. a desired input-output function x 7→ v(θ, x). In machine learning,121

this problem is formalized by introducing a cost function C. Given an input-output pair (x, y),122

the quantity C(v(θ, x), y) measures the discrepancy between the ‘model prediction’ v(θ, x) and the123

desired output y. The learning objective is to find the parameters θ that minimize the expected cost124

E(x,y) [C(v(θ, x), y)] over input-output pairs (x, y) coming from the data distribution for the task125

that the system must solve.126

In deep learning, the main tool for this optimization problem is stochastic gradient descent127

(SGD) ([17]): at each step we pick at random an example (x, y) from the training set and update the128

parameters as129

∆θ = −η
∂L
∂θ

(θ, x, y), (9)

where η is a step size, and130

L(θ, x, y) = C(v(θ, x), y) (10)
is the per-example loss function.131

We now present frequency propagation (Freq-prop), a learning algorithm for physical networks132

whose update rule performs SGD. Freq-prop proceeds by modifying the energy of the network133

to push or pull away the network’s output values from the desired outputs. In the case of a134

resistive network (Section II), we inject sinusoidal currents at the output nodes of the network,135

i(t) = γ sin(ωt) ∂C
∂v (v, y), where t denotes time, ω is a frequency, and γ is a small positive136

constant[18]. This amounts to augment the energy function of the system by a time-dependent137

sinusoidal energy term γ sin(ωt)C(v, y). Due to this perturbation, the system’s response v(t) min-138

imizing the energy at time t is139

v(t) = argmin
v

[E(θ, x, v) + γ sin(ωt)C(v, y)] . (11)

The response v(t) is periodic of period T = 2π/ω, and for small perturbations (i.e. γ ≪ 1), it140

is approximately sinusoidal. Next, we assume that we can recover the first two vectors of Fourier141

coefficients of v(t), i.e. the vectors a and b such that142

a =
1

T

∫ T

0

v(t)dt, b =
2

T

∫ T

0

v(t) sin(ωt)dt. (12)

Finally, denoting a = (a1, a2, . . . , aN ) and b = (b1, b2, . . . , bN ), we update each parameter θjk143

according to the learning rule144

∆θjk = −α(bj − bk) · (aj − ak), (13)

where α is a positive constant.145

Theorem 2 For every parameter θjk, we have146

∆θjk = −αγ
∂L
∂θjk

(θ, x, y) +O(γ3) (14)

when γ → 0.147
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Namely, the learning rule (13) approximates one step of gradient descent with respect to the loss,148

with learning rate αγ. Note that this learning rule is local: it requires solely locally available149

information for each parameter θjk.150

[Proof of Theorem 2] Let θ, x and y be fixed. For every β ∈ R, we denote151

vβ⋆ = argmin
v

[E(θ, x, v) + β C(v, y)] . (15)

With this notation, note that the response v(t) of Eq. (11) rewrites v(t) = v
γ sin(ωt)
⋆ . Let us write the152

second-order Taylor expansion of vβ⋆ around β = 0:153

vβ⋆ = v0⋆ + β
∂vβ⋆
∂β

∣∣∣∣∣
β=0

+
β2

2

∂2vβ⋆
∂β2

∣∣∣∣∣
β=0

+O(β3), (16)

where v0⋆ = v(θ, x) by definition (1), and ∂vβ
⋆

∂β

∣∣∣
β=0

and ∂2vβ
⋆

∂β2

∣∣∣
β=0

denote the derivative and second-154

derivative of vβ⋆ at β = 0. Taking β = γ sin(ωt) in the above formula, we get155

v(t) = v
γ sin(ωt)
⋆ = v0⋆ + γ sin(ωt)

∂vβ⋆
∂β

∣∣∣∣∣
β=0

(17)

+
γ2

2
sin(ωt)2

∂2vβ⋆
∂β2

∣∣∣∣∣
β=0

+O(γ3), (18)

uniformly in t. Therefore, the first two vectors of Fourier coefficients a and b of the periodic function156

v(t), with time period T = 2π/ω are157

a =
1

T

∫ T

0

v(t)dt = v0⋆ +
γ2

4

∂2vβ⋆
∂β2

∣∣∣∣∣
β=0

+O(γ3), (19)

b =
2

T

∫ T

0

v(t) sin(ωt)dt = γ
∂vβ⋆
∂β

∣∣∣∣∣
β=0

+O(γ3). (20)

Next, we know from the equilibrium propagation formula (Theorem 2.1 in ([10])) that the gradient158

of the loss L is equal to159

∂L
∂θ

(θ, x, y) =
d

dβ

∣∣∣∣
β=0

∂E

∂θ
(θ, x, vβ⋆ ). (21)

Therefore,160

∂L
∂θ

(θ, x, y) =
∂2E

∂θ∂v
(θ, x, v0⋆) ·

∂vβ⋆
∂β

∣∣∣∣∣
β=0

. (22)

Multiplying both sides by γ, and using (20), we get161

γ
∂L
∂θ

(θ, x, y) =
∂2E

∂θ∂v
(θ, x, v0⋆) · b+O(γ3). (23)

Finally, given the form of the energy function (2), and using b = O(γ) and v0⋆ = a + O(γ2) from162

Eq. (19), we get for every parameter θjk163

γ
∂L
∂θjk

(θ, x, y) = (aj − ak) · (bj − bk) +O(γ3). (24)

Therefore the learning rule164

∆θjk = −α(bj − bk) · (aj − ak) (25)
satisfies165

∆θjk = −αγ
∂L
∂θjk

(θ, x, y) +O(γ3). (26)

Hence the result.166
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Remark 1. For simplicity, we have omitted the time of relaxation to equilibrium in our analysis.167

However, a practical circuit has an effective capacitance Ceff and therefore will equilibrate in time168

τrelax ∼ ReffCeff , where Reff is the effective resistance of the circuit. Our learning algorithm will169

work as long as the circuit equilibrates much faster than the timescale of oscillation (τrelax ≪ 1/ω).170

Our analysis thus requires that Ceff be small enough for the assumption τrelax ≪ 1/ω to hold. If this171

is not the case, there will be a tradeoff between how fast one can train the network with Freq-Prop vs172

how accurate the approximation is for gradient. We leave the study of the regime where Ceff is non173

negligible for future work. We note however that the effective capacitance of the circuit is expected174

to grow linearly with the size of the network (the total amount of wire), so that inference time175

grows linearly with the size of the network, too. We also note that the same is true for deep neural176

networks: in a feedforward network, both inference (the forward pass) and training (the backward177

pass of backpropagation) grow linearly with the size of the network.178

Remark 2. While our nudging method (11) is inspired by the one of equilibrium propagation179

([3, 12]), it is also possible to apply the nudging variant of coupled learning ([5]) which might be180

easier to implement in practice ([7]). To do this, we denote vFO the ‘free’ equilibrium value of the181

output nodes of the network (where the prediction is read), without nudging. Then, at time t, we182

clamp the output nodes to vCO(t) = vFO + γ sin(ωt)(y − vFO). This nudging method can be achieved183

via AC voltage sources at output nodes. We note however that Theorem 2 does not hold with this184

alternative nudging method.185

Remark 3. Measuring bj for every node j as per Eq. (12) requires that we use the same reference186

time t = 0 for all nodes, i.e. it requires global synchronization of the measurements for all nodes.187

However, in practice, there may be a time delay tj between nudging and measurement, leading to a188

measured response vj(t) = aj+bj sin(ω(t+tj))+O(γ3) at node j. Without any information about189

tj , we can only obtain the absolute value of the coefficient bj , not its sign. We propose a solution to190

this issue in Appendix A.191

IV. DISCUSSION192

We have introduced frequency propagation (Freq-prop), a physical learning algorithm that falls in193

the category of Multi-mechanism Learning (MmL). In MmL, separate and “distinguishable” acti-194

vation and error signals both contribute to a local learning rule, such that trainable parameters (e.g.195

conductances of variable resistors) perform gradient descent on a loss function. In Freq-prop, the196

activation and error signals are implemented using different frequencies of a single physical quantity197

(e.g. voltages or currents) and are thus distinguishable. We note however that the ‘distinguishabil-198

ity’ of the signals does not mean that they are mathematically ‘independent’: in Freq-prop, the error199

signal depends on the activation signal via the Hessian of the network. Other potential MmL algo-200

rithms may involve independent physical mechanisms, such as an electrical activation signal and a201

chemical error signal or vice versa. Multi-mechanism learning algorithms, such as Freq-prop, may202

have implications towards designing fast and low-power, or high-efficiency, hardware for AI, as they203

are rooted in physical principles. For the time being, inroads are being made by using backpropaga-204

tion to train controllable physical systems in a hybrid in silico-in situ approach ([19]). As we work205

towards a fully in situ approach, Freq-prop is a natural candidate. And while the in situ realization206

of a nonlinear resistor network is an obvious starting point, there are potential limitations, particu-207

larly in terms of timescales. Consider the time of relaxation to equilibrium (τrelax), the time scale of208

the sinusoidal nudging signal (T = 2π/ω), and the time scale of learning (τlearning). Our learning209

methodology requires that τrelax ≪ T < τlearning. More specifically,210

1. Once input is applied, the network reaches equilibrium in time τrelax.211

2. Based on the network’s output, a sinusoidal nudging signal of frequency ω is applied at the212

output nodes. The time scale of evolution of this sinusoidal nudging wave is T = 2π/ω.213

Assuming that τrelax ≪ T , the network is at equilibrium at every instant t.214

3. We observe the network’s response v(t) for a time τobs > T to extract the coefficients a215

and b of Eq. (12). Updating the conductances of the resistors takes a time τlearning ∼ τobs216

using the values of a and b to determine the magnitude and sign of these updates.217

Finally, could something like Freq-prop occur in the brain? Earlier work analyzing local field po-218

tentials recorded simultaneously from different regions in the cortex suggested that feedforward219
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signaling is carried by gamma-band (30–80 Hz) activity, whereas feedback signaling is mediated220

by alpha-(5–15Hz) or beta- (14–18 Hz) band activity, though local field potentials are not actively221

relayed between regions ([20]). More recent work in the visual cortex argues that feedforward and222

feedback signaling rely on separate “channels” since correlations in neuronal population activity223

patterns, which are actively relayed between regions, are distinct during feedforward- and feedback-224

dominated periods ([21]). Freq-prop is also related in spirit to the idea of frequency multiplexing225

in biological neural networks ([22–24]), which uses the simultaneous encoding of two or more sig-226

nals. While Freq-prop here uses only two separate signals – an activation signal and an error signal227

– one can envision multiple activation and error signals being encoded to accommodate vector in-228

puts and outputs and to accommodate multiple, competing cost functions. With multiple activation229

and error signals one can also envision coupling learning via chemical signaling (Appendix D) with230

Freq-prop, for example, to begin to capture the full computational creativity of the brain.231
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Appendix A: Choice of the nudging signal295

We have seen in section III that, using a sinusoidal nudging signal γ sin(ωt)C(v, y), the measured296

response at node j will be of the form vj(t) = aj + bj sin(ω(t+ tj)) +O(γ3), where tj is the time297

delay between nudging and measurement. Unfortunately, it is not possible to recover the sign of bj298

without any knowledge of tj . This problem can be overcome by using a different nudging signal.299

In general, if we nudge the system by an energy term γf(t)C(v, y), where f(t) is an arbitrary300

function such that supt |f(t)| < ∞, then the system’s response at node j will be of the form vj(t) =301

aj + bjf(t + tj) + O(γ2). Our goal is to choose a f so that we can obtain for every node j the302

values of aj and bj by measuring only vj(t), without knowing tj .303

Clearly, this is not possible for all functions f . For example, if f(·) is a constant, then vj(·) is also304

a constant, and we cannot recover the values of aj and bj from vj(·) alone. As seen above, another305

example for which this is not possible is f(t) = sin(ωt). This is because a time delay tj = π/ω306

will change the sign of the signal, sin(ω(t + tj)) = − sin(ωt) ; therefore the sign of bj cannot be307

recovered without any knowledge of tj .308

An example of a nudging signal for which we can infer the values of aj and bj (up to O(γ2)) is309

f(t) = | sin(ω(t))|. To do this, we observe the response at node j310

vj(t) = aj + bj | sin(ω(t+ tj))|+O(γ2) (A1)

for a duration τobs greater than the time period of the signal T = 2π/ω. The coefficients aj and311

bj can be obtained by identifying the times where the signal’s derivative is zero or is discontinuous.312

Specifically, denoting ∂+vj(t) and ∂−vj(t) the left and right derivatives of the signal at time t, we313

have314

aj = vj(t1) +O(γ2) where ∂+v(t1) ̸= ∂−v(t1), (A2)

bj = vj(t2)− vj(t1) +O(γ2) where ∂v(t2) = 0. (A3)

More generally, we will show that, in principle, it is possible to recover the coefficients aj and bj if315

and only if the function f has the property that there is no τ such that f(t) = sup f+inf f−f(t+τ)316

for every t. In other words, no amount of time delay converts the signal’s ‘upright’ form to its317

‘inverted’ form or vice versa.318

Let f(t) denote the nudging signal. Assuming that f is bounded, recall that, for every j, the mea-319

sured response vj(t) at node j is of the form vj(t) = aj + bjf(t + tj) + O(γ2), where aj and bj320

are the numbers that we wish to recover (up to O(γ2)) to implement the parameter update, and tj is321

an unknown time delay. Our goal is to obtain for every node j the values of aj and bj by measuring322

only vj(t), without any knowledge of tj .323
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We now establish a necessary and sufficient condition on the nudging signal f(t) so that one can,324

at least in principle, uniquely obtain the values of aj and bj for every node j. We are concerned325

with quantities that depend only on a single node and hence we will drop the node index with the326

understanding that all of the analysis applies to any arbitrary node.327

Let F denote the set of all real-valued, bounded functions, and let f be an element of F . Let328

Cf : R3 → F be the function that maps the parameters (a, b, t0) to the function v(·) = a+bf(·+t0).329

We define the following equivalence relation on F : two functions g, h ∈ F are equivalent if they330

differ by a time translation, i.e., g ∼ h if and only if there exists a t0 ∈ R such that g(t) = h(t+ t0)331

for all t ∈ R. Let F̃ = F/ ∼ be the quotient of F under this equivalence relation and let [g] be332

the equivalence class that contains the function g. The map Cf can be lifted to yield C̃f : R2 → F̃333

such that C̃f (a, b) = [a + bf ]. In order to be able to uniquely extract a and b from any equivalence334

class of the form [a + bf ], the function C̃f has to be injective. This can be re-expressed as a direct335

condition on the nudging signal f .336

Proposition 3 The following statements are equivalent:337

P1: The function C̃f : R2 → F̃ defined by C̃f (a, b) = [a+ bf ] is injective.338

P2: There exists no τ ∈ R such that for all t ∈ R,339

f(t) = sup f + inf f − f(t+ τ).340

where sup f = supt f(t) and inf f = inft f(t) denote the supremum and infimum values of the341

nudging signal f respectively.342

We establish this by proving that the negation of the two statements are equivalent, i.e., the following343

statements are equivalent:344

N1: There exists two distinct pairs of real numbers (a1, b1) and (a2, b2) such that [a1 + b1f ] =345

[a2 + b2f ].346

N2: There exists a τ ∈ R such that for all t ∈ R,347

f(t) = sup f + inf f − f(t+ τ).348

Suppose that N2 is true: there is a τ ∈ R such that for all t ∈ R, f(t) = sup f+inf f−f(t+τ). This349

means that f and sup f + inf f − f are related by a time translation, i.e. [f ] = [sup f + inf f − f ].350

Therefore, N1 is true, with (a1, b1) = (0, 1) and (a2, b2) = (sup f + inf f,−1).351

Conversely, suppose that N1 is true: there exists two distinct pairs of real numbers (a1, b1) and352

(a2, b2) and a τ ∈ R such that353

∀t ∈ R, a1 + b1f(t) = a2 + b2f(t+ τ). (A4)

The numbers b1 and b2 cannot be both zero, otherwise the above equation implies that a1 = a2, a354

contradiction. If b1 = 0 and b2 ̸= 0, the above equation implies that f is a constant, in which case355

N2 is clearly true. Otherwise b1 ̸= 0 and we can re-write the above equality as356

∀t ∈ R, f(t) = a+ bf(t+ τ) (A5)

with a = (a2 − a1)/b1 and b = b2/b1. Now there are two possibilities: either b > 0 or b < 0.357

First, let us suppose that b > 0. The above equality imposes the following conditions on the mini-358

mum and maximum values of the function f :359

sup f = a+ b sup f, (A6)
inf f = a+ b inf f. (A7)

Subtracting (A7) from (A6) and reorganizing the terms we get (1− b)(sup f − inf f) = 0. If b = 1,360

then a = 0, contradicting our assumption that (a1, b1) and (a2, b2) are distinct pairs. Therefore361

sup f = inf f , f is constant and N2 is true.362

Second, let us suppose that b < 0. As before we have363

sup f = a+ b inf f, (A8)
inf f = a+ b sup f, (A9)

and again (1 + b)(sup f − inf f) = 0. Either f is a constant, or b = −1, impliying in turn that364

a = sup f + inf f . Therefore, coming back to (A5), we have f(t) = sup f + inf f − f(t + τ) for365

all t ∈ R, which is the statement of N2.366
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Appendix B: General Applicability of Frequency Propagation367

Freq-prop applies to arbitrary physical networks: not only resistive networks, but also flow net-368

works, capacitive networks and inductive networks, among others. In these networks, the notion369

of current-voltage characteristics will be replaced by current-pressure characteristics, current-flux370

characteristics, and charge-voltage characteristics, respectively. The mathematical framework for371

nonlinear elements (Section II) also applies to these networks, where the energy functions mini-372

mized at equilibrium are the co-content, the inductive energy and the capacitive co-energy, respec-373

tively ([15, 25]).374

To emphasize the generality of Freq-prop, we present it here in the context of central force spring375

networks (or ‘elastic networks’) ([5]), as well as Hopfield networks (the Ising model).376

a. Central force spring networks. We consider an elastic network of N nodes interconnected377

by springs. The elastic energy stored in the spring connecting node i to node j is Eij(rij) =378

1
2kij (rij − ℓij)

2, where kij is the spring constant, ℓj is the spring’s length at rest, and rij is the379

distance between nodes i and j. Nonlinear springs are also allowed and their energy terms are380

gathered in a unique term Enonlinear(r). Thus, the total elastic energy stored in the network, which381

is minimized, is given by382

E(θ, r) =
1

2

∑
i,j

kij (rij − ℓij)
2
+ Enonlinear(r), (B1)

where θ = {kij , ℓij} is the set of adjustable parameters, and r = {rij} plays the role of state383

variable.384

In this setting as in the case of resistive networks, we apply a nudging signal γ sin(ωt)C(r, y) at385

the output part of the network, we observe the response r(t), and we assume that we can recover the386

first two vectors of Fourier coefficients of r(t), i.e. the vectors a and b such that a = 1
T

∫ T

0
r(t)dt387

and b = 2
T

∫ T

0
r(t) sin(ωt)dt. Then, the learning rules for the spring constant kij and the spring’s388

length at rest ℓij read, in this context,389

∆kij = −α bij (aij − ℓij), ∆ℓij = −αkij bij . (B2)

Theorem 2 generalizes to this setting ; the above learning rules perform stochastic gradient descent390

on the loss: ∆θ = −αγ ∂L
∂θ (θ, x, y) +O(γ3).391

b. Continuous Hopfield networks. Freq-prop also applies to Hopfield networks (the Ising392

model) ([11, 26]). In a Hopfield network of multiple units interconnected by synapses, the en-393

ergy term between unit i and unit j is Eij = wijhihj , where wij is the synaptic weight, and hi is394

the state of unit i. The total energy is395

E(θ, h) =
1

2

∑
i,j

wijhihj , (B3)

where θ = {wij} is the set of adjustable parameters, and h = {hi} plays the role of state variable.396

After applying a nudging signal γ sin(ωt)C(h, y) at a set of output units, we observe the response397

u(t) (the state of the units at equilibrium), we compute the vectors a and b such that a = 1
T

∫ T

0
u(t)dt398

and b = 2
T

∫ T

0
u(t) sin(ωt)dt. The learning rules for the weight wij reads399

∆wij = −α(aibj + ajbi), (B4)

which performs stochastic gradient descent on the loss, up to O(γ3).400

Appendix C: Related Work401

Frequency propagation builds on learning via chemical signaling ([1]), which is another example402

of multi-mechanism learning (MmL) in physical networks. Whereas MmL via frequency propa-403

gation uses two different frequencies to play the role of the activation and error signals during404

training, MmL via chemical signaling uses two different chemical concentrations for these signals.405
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[1] presents learning via chemical signaling in the setting of linear flow networks, which we extend406

here to the nonlinear setting (Appendix D).407

Freq-prop is also related to equilibrium propagation (EP) ([3, 12]) and coupled learning ([5]).408

To see the relationship with these algorithms, we consider the case of resistive networks (sec-409

tion II). Denote vjk = vj − vk the voltage across branch (j, k). Further denote vβ =410

argminv [E(θ, x, v) + β C(v, y)] for any β ∈ R. Based on a result from [12], [3] proved that411

the learning rule412

∆EPθjk =
α

2

(
(v0jk)

2 − (vβjk)
2
)

(C1)

performs gradient descent with step size αβ, up to O(β2). We note that the right-hand side of413

(C1) is also equal to α v0jk

(
v0jk − vβjk

)
+ O(β2), showing that the gradient information is con-414

tained in the physical quantities v0 and ∂vβ

∂β

∣∣∣
β=0

. These quantities correspond to the activation415

and error signals of Freq-prop, respectively. To avoid the use of finite differences to measure416

∂vβ

∂β

∣∣∣
β=0

, Freq-prop makes use of a time-varying nudging signal β(t) = γ sin(ωt). With this417

method, the activation and error signals are encoded in the frequencies 0 and ω of the response418

signal v(t) = v0+γ sin(ωt) ∂vβ

∂β

∣∣∣
β=0

+O(γ3). The required information can thus be recovered via419

frequency analysis.420

The idea of using an oscillating nudging signal was also proposed by [11] and more recently (con-421

currently to our work) in ‘holomorphic EP’ ([27]). Our work differs from these two other works in422

several ways. First, our learning rule can be decomposed as ‘activation signal’ times ‘error signal’423

(a × b), whereas the learning rule of [11] takes the form ∆θjk = α
2

∫
sin(ωt)vjk(t)

2dt, and simi-424

larly for holomorphic EP. Second, our learning rule is proved to approximate the gradient of the cost425

function, up to O(β3), unlike in [11]. In [27], the authors exploit the Cauchy formula of complex426

calculus to prove that their algorithm computes the exact gradient of the cost function, indepen-427

dently of the strength of the nudging signal. To achieve this, the authors allow the nudging factor428

to take complex values, i.e. β = γeiωt ∈ C, and the domain of definition of the energy function429

v 7→ E(θ, x, v) is extended to complex configurations v ∈ CN . However, it is not straightforward to430

see how this mathematical formalism can be directly mapped to physical systems such as resistive431

networks or spring networks, which is the motivation of our work.432

Another very recent work proposes an alternative approach to train physical systems by gradient433

descent called agnostic equilibrium propagation ([8]). However, this method imposes constraints434

on the nature of the parameters (θ), which must minimize the system’s energy (E), just like the435

state variables (v) do. This assumption does not allow us to view the conductances of resistors436

as trainable parameters in a resistive network. The method also requires control knobs with the437

ability to perform homeostatic control over the parameters. Our work can also be seen as a physical438

implementation of implicit differentiation in physical networks. We refer to ([28]) for a description439

of implicit differentiation where the authors use a mathematical formalism close to ours.440

Lastly, other physical learning algorithms that make explicit use of time are being developed. For441

instance, recent work proposes a way to train physical systems with time reversible Hamiltonians442

([6]). In this method called Hamiltonian echo backpropagation (HEB), the error signal is a time-443

reversed version – an “echo” – of the activation signal, with the cost function acting as a perturbation444

on this signal. However, HEB requires a feasible way to time-reverse the activation signal.445

Appendix D: Multi-Mechanism Learning via Chemical Signaling446

In this appendix, we generalize the learning algorithm via chemical signaling ([1]) to nonlinear net-447

works. Learning via chemical signaling is another example of multi-mechanism learning in physical448

networks. It uses pressures and chemical concentrations to implement a local learning rule. This way449

of using multiple independent “mechanisms” is the central idea behind multi-mechanism learning.450

Consider a flow network, i.e. a network of nodes interconnected by tubes. A flow network is451

formally equivalent to the resistive network of Section II, with v being the configuration of node452

pressures, and θjk being the conductance of the branch between nodes j and k.453
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Learning via chemical signaling proceeds as follows. In the first phase, given θ and input signals x,454

the configuration of node pressures stabilizes to its equilibrium value v(θ, x) given by455

v(θ, x) = argmin
v

E(θ, x, v). (D1)

In the second phase, we inject chemical currents e = −β ∂C
∂v (v(θ, x), y) at output nodes, where456

β is a (positive or negative) constant. As a result, a chemical concentration u develops at each457

node. Assuming that the configuration of node pressures v(θ, x) is not affected by the chemical, the458

chemical concentration u at equilibrium satisfies the relationship:459

∂2E

∂v2
(θ, x, v(θ, x)) · u = −β

∂C

∂v
(v(θ, x), y). (D2)

Indeed, diffusion along a tube follows the same equation as that of flow along the same tube, up460

to a constant factor (replacing node pressures and flow conductivity by chemical concentration and461

diffusion constant, respectively). When there is no ambiguity from the context, we write v = v(θ, x)462

for simplicity. We note that, although v is not affected by the chemical, u depends on v. In particular463

u also depends on θ and x through v.464

Next, denoting u = (u1, u2, . . . , uN ), we update each parameter θjk according to the learning rule465

∆θjk = −α(uj − uk) · (vj − vk), (D3)

where α is some constant. Note that this learning rule is local (just like the learning rule of Freq-466

prop), requiring only information about nodes j and k for each conductance θjk.467

Theorem 4 For every parameter θjk, it holds that468

∆θjk = −αβ
∂L
∂θjk

(θ, x, y). (D4)

Namely, the learning rule of Eq. (D3) performs one step of gradient descent with respect to the loss,469

with step size αβ. We note that learning via chemical signaling comes in two variants, either with470

β > 0 and α > 0, or with β < 0 and α < 0. The procedure performs one step of gradient descent471

as long as the product αβ is positive.472

[Proof of Theorem 4] First, we write the first-order equilibrium condition for v(θ, x), which is473

∂E

∂v
(θ, x, v(θ, x)) = 0. (D5)

We differentiate this equation with respect to θ:474

∂2E

∂v2
(θ, x, v(θ, x))

∂v

∂θ
(θ, x)+

∂2E

∂v∂θ
(θ, x, v(θ, x)) = 0.

(D6)

Multiplying both sides on the left by u⊤ we get475

u⊤ ∂2E

∂v2
(θ, x, v(θ, x))

∂v

∂θ
(θ, x)+

u⊤ ∂2E

∂v∂θ
(θ, x, v(θ, x)) = 0.

(D7)

On the other hand, multiplying both sides of (D2) on the left by ∂v
∂θ (θ, x)

⊤, we get476

∂v

∂θ
(θ, x)⊤

∂2E

∂v2
(θ, x, v(θ, x))u

= −β
∂v

∂θ
(θ, x)⊤

∂C

∂v
(v(θ, x), y)

= −β
∂L
∂θ

(θ, x, y)

(D8)
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Comparing (D7) and (D8) we conclude that477

u⊤ ∂2E

∂v∂θ
(θ, x, v(θ, x)) = β

∂L
∂θ

(θ, x, y). (D9)

Finally, using the form of the energy function (2), we have for each parameter θij478

(ui − uj) · (vi − vj) = β
∂L
∂θij

(θ, x, y). (D10)

Therefore the learning rule479

∆θjk = −α(ui − uj) · (vi − vj) (D11)
satisfies480

∆θjk = −αβ
∂L
∂θjk

(θ, x, y). (D12)

Hence the result.481
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