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ABSTRACT

Transformer-based networks are gaining popularity due to their superior ability to
handle long-range information. However, they come with significant drawbacks,
such as long inference time, and challenging training processes. These limitations
become even more pronounced when performing high-resolution image restora-
tion tasks. We have noticed that there is a trade-off between models’ latency time
and their trainability. Including a convolutional module can improve the networks’
trainability but not reduce their latency. Conversely, sparsification notably reduces
latency but renders networks harder to optimize. To address these issues, a novel
Transformer for image restoration called ShareFormer is proposed here. Share-
Former offers optimal performance with lower latency and better trainability than
other Transformer-based methods. It achieves this by facilitating the sharing of
the attention maps amongst neighboring blocks in the network, thereby consid-
erably improving the inference speed. To maintain the model’s information flow
integrity, residual connections are added to the “Value” of self-attention. Several
lesion studies indicate that incorporating residual connections on “Value” can ag-
gregate the shallow transformers with shared attention, introducing a local induc-
tive bias and making the network easier to optimize without the need for additional
convolution. The effectiveness, efficiency, and easy-to-train of our ShareFormer
is supported by numerous experimental results. Our code and pre-trained models
will be open-sourced upon publication of the paper.

1 INTRODUCTION

Image restoration is a classical inverse problem.
It aims to reproduce high-quality images from de-
graded (e.g., bicubic downsampling, noise, jpeg
compression, etc.) inputs. Since the inception of
SRCNN (Dong et al., 2015) and DnCNN (Zhang
et al., 2017), CNN-based methods have been widely
used to solve image restoration problems. How-
ever, as the architectures evolve, CNN-based meth-
ods (Vedaldi & Lenc, 2015; Zhang et al., 2018a;b;
2020; Zhao et al., 2020; Zhang et al., 2021) face the
problems of excessive inductive bias and small net-
work perceptual field, which limit the performance.
To solve these problems, Transformer-based meth-
ods (Liang et al., 2021; Zamir et al., 2022; Wang
et al., 2022; Yawei Li et al., 2023) were proposed.
Converse to high-level vision tasks, image restora-
tion tasks involving Transformers require careful
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Figure 1: Comparison on ×4 image super-
resolution task in terms of networks’ accu-
racy, latency, and floating point operations
(FLOPs). The area of each circle denotes the
FLOPs of the network. Our method (Share-
Former) achieves competitive performance
while having lower latency and FLOPs.

consideration to ensure that feature resolution and window sizes of attention are sufficiently large
to prevent undue compression of texture information. This requirement makes the overhead for
Transformer-based networks used in image restoration tasks much higher than their usage in other
tasks. Meanwhile, in recent years, performance improvement of low-level vision networks such as
IPT (Chen et al., 2021a), EDT (Li et al., 2023b), and HAT (Chen et al., 2023) has increasingly relied
on sophisticated training strategies such as long-scale pre-training and some other tricks (Lin et al.,
2022). Thus, two questions regarding the design of Transformers are poised to arise: (a) How to
make Transformer faster? (b) How to make Transformer’s optimization easier?
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Methods Self Attention Feed Forward Convolutions Total Trainability(↓)(ms) (ms) (ms) (ms)

SwinIR (Liang et al., 2021) 225.09 54.07 30.56 310.32 11140.44
Restormer (Zamir et al., 2022) 139.12 74.58 30.37 244.07 2153.51
DLGSANet (Li et al., 2023c) 142.93 50.53 30.75 224.21 7743.70
HAT (Chen et al., 2023) 266.39 54.93 164.37 485.69 1019.07

ShareFormer (ours) 94.45 24.57 30.61 149.63 338.79

Table 1: Latency and trainability evaluation of lightweight ×2 image SR task on the NVIDIA RTX
3090 GPU. Trainability is assessed using neural tangent kernel condition number (Chen et al.,
2021b), where lower values indicate faster convergence. More results with various other devices
are given in Appendix A.

To find out the solution to questions (a) and (b), many efficient Transformer-based methods (Zamir
et al., 2022; Lu et al., 2022; Yawei Li et al., 2023; Wang et al., 2023) have been proposed. The
mainstream approach is to incorporate convolutional operators to augment or substitute certain self-
attention modules. These methods leverage the advantage of CNNs in efficiently processing high-
frequency information (Li et al., 2023a), introduce appropriate inductive bias (d’Ascoli et al., 2021;
Barzilai et al., 2023) for Transformers, and expedite network convergence. However, these methods
are not efficient enough while being sufficiently effective. They were insufficient to address the issue
(a) stemming from self-attention mechanisms due to their excessive use of matrix multiplication,
softmax, and other intricate operators. This assertion was corroborated by us using NVIDIA-DLProf
to correlate profile timing data on previous Transformers (Liang et al., 2021; Zamir et al., 2022; Li
et al., 2023c; Chen et al., 2023). The results are shown in Tab. 1, which suggests that the key to
reducing inference time lies in lowering the computational complexity of self-attention modules in
Transformers.
Based on these findings, we share attention maps among neighboring layers to avoid generating at-
tention maps of the network due to their high cost, which is aptly named the shared portion stripe
attention (SPSA). Nevertheless, SPSA disrupts the information flow, causing poor optimization of
the model. To address this issue while still benefiting from SPSA, which saves almost 33% of the
CUDA runtime, we introduce the residual connection to the “Value” of self-attention. To vali-
date the necessity and effectiveness of these residual connections, we conducted lesion studies (Veit
et al., 2016) to show that SPSA-based Transformers with residuals can be equated to the integration
of multiple shallow Transformers with shared attention. This ensemble property introduces local in-
ductive bias (Barzilai et al., 2023) and significantly improves the model’s trainability. Furthermore,
the combined shared attention unit (CSAU), reduces the computational burden of Feed Forward
Network (FFN) by implementing gating units on the shared attention. This unit improves the output
properties of SPSA and prevents potential inaccuracies in Shared Attention whilst ensuring trainabil-
ity. So far, the foundational share attention block (SAB) of ShareFormer has been constructed
using SPSA, complete with residual connections on ”value” and CSAU, with the goal of achieving
high performance, efficiency, and trainability. To summarize, our contributions are as follows:

• For question(a), we propose SAB to reduce the network latency massively. It achieves up
to 7× speedup on high-resolution image denoising compared to previous methods.

• For question(b), we introduce residual connections to the “Value” in SAB, making SAB
converge faster. We show that this design offers appropriate local inductive bias into the
network without increasing latency.

• We use the SAB to build the ShareFormer, a novel Transformer network. ShareFormer
strikes an outstanding balance between latency, trainability, and performance across diverse
image restoration tasks.

2 RELATED WORK

Transformers in Image Restoration Based on Swin Transformer (Liu et al., 2021) and its shifted
windows, SwinIR (Liang et al., 2021) was initially proposed to set the new baselines in various
image restoration tasks. Subsequently, several Transformer-based methods (Chen et al., 2021a;
Wang et al., 2022; Chen et al., 2023; Yawei Li et al., 2023) have been proposed in succession.
IPT (Chen et al., 2021a) uses the ImageNet (Russakovsky et al., 2015) to generate a large number of
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Figure 2: The architecture of ShareFormer for image SR.

corrupted image pairs to pretrain the model for improving the performance. HAT (Chen et al., 2023)
found that SwinIR was not able to extract more global information than CNN-based methods such as
RCAN (Zhang et al., 2018b), but the mix of channel attention (Vaswani et al., 2017) with overlapping
window attention could. Although these methods achieve state-of-the-art (SOTA), they introduce a
large amount of computational overhead by computing with heavier attention mechanisms.
Efficient Attention in Transformer Due to the high computational costs of the Transformer-based
methods, more researchers (Katharopoulos et al., 2020; He et al., 2021; Yang et al., 2021; Hua et al.,
2022; Mehta & Rastegari, 2022) are focusing on how to design the architecture with fewer parame-
ters and lower latency for different tasks. Specifically for image restoration tasks, some researchers
achieve this through the hybrid networks (Fang et al., 2022; Zhang et al., 2022; Choi et al., 2023;
Wang et al., 2023; Li et al., 2023a). They use the addition of convolutional modules to bring a more
vigorous representation of high-frequency information and use the self-attention mechanism to en-
sure that these networks have a high perceptual field. As opposed to this, other methods (Zamir
et al., 2022; Zhang et al., 2022; Yawei Li et al., 2023; Li et al., 2023c) decrease the computational
resource usage of attention map generation by incorporating information in the global, regional, and
local range, instead of just incorporating information globally. They also partition the input features
and lessen the attention map’s resolution slightly to attain efficient computation during inference.

3 METHOD

3.1 OVERALL ARCHITECTURE

The overall architecture of the proposed ShareFormer is illustrated in Fig. 2. Here image super-
resolution (SR) is presented as a demonstrative task. Given an input image I ∈ RH×W×3, where
H×W denotes the resolution, ShareFormer firstly applies a convolution layer to obtain shallow fea-
ture F0 ∈ RH×W×C , where C is the embedding dimension of the network. Next, following RCAN
(Zhang et al., 2018b), ShareFormer adopts a residual-in-residual structure to construct a deep feature
extraction module comprised of Ng share attention groups (SAG). Each SAG consists of Nb share
attention blocks (SAB) and a convolution layer. Each SAB, in turn, is composed of SPSA, gated-
Dconv feed-forward network (GDFN) (Zamir et al., 2022), CSAU, and enhanced spatial attention
(ESA) (Liu et al., 2020b). When the shallow feature F0 is fed into the deep feature extraction
module, in each residual group, and within each attention block, SPSA computes the attention map,
GDFN performs spatial adjustments, and CASU integrates attention information. Subsequently, a
convolutional layer is employed to extract the deep feature F1 ∈ RH×W×C . After the extraction
through the deep feature extraction module, we employ the restoration module to generate the high-
quality image Î from the feature Fr = F0 + F1 . As for other image restoration tasks that do not
involve changes in resolution, we build the ShareFormer model following Restormer.

3.2 SHARED PORTION STRIPE ATTENTION

In this section, we describe the details of our SPSA and its compatibility with other self-attention
methods. Starting from the vanilla attention (VA) and following the above analysis of the efficiency
of Transformer-based methods, we will gradually remove the computational overheads in VA to
obtain our SPSA module. For the sake of simplicity, let us express the VA as follows:

V A(X) = Softmax(
WqX(WkX)T

s
)WvX, (1)
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where Wq,Wk,Wv are the linear transformation weights for calculating query (Q), key (K), and
value (V ) from the input X , and s is a constant scalar. Note that this equation represents that the
number of attention heads is 1, and we also disregard the process to transpose the Q,K, and V here.
Portion Stripe Attention. Window attention (WA) (Liang et al., 2021) is a particular case of stripe
attention(SA) (Shi et al., 2023) due to the fact that the shape of the window could be rectangular
rather than square. We assume that the window size is set to [Mh,Mw]. In the current case, the
computational complexity of SA on a feature F ∈ RH×W×C can be described as:

Ω(SA) = 4HWC2 + 2(MhMw)HWC (2)

In order to allow the network to minimize computational cost, we divide the features according to
the channel dimensions and execute the attention computation in portions. The information flow of
the portion stripe attention (PSA) could be formulated as Eq. 4. Supposing the K groups of features{
Fk ∈ RH×W×C , k ∈ K

}
are equally split, the computational complexity of PSA is:

Ω(PSA) = 4HWC2 +
∑
k

2

K
(MhkMwk)HWC (3)

Share Attention. Based on the preceding analysis, we can deduce that the bottleneck in the com-
putation of Q,K, and V by PSA, as well as the generation of attention maps, is predominantly
influenced by factors 2C and

∑
k

2
K (MhkMwk), respectively. This arises from the need to maintain

a consistent resolution with the input features throughout the computations across multiple atten-
tion blocks. Hence, a promising strategy for reducing computational complexity naturally emerges,
which is to reduce redundant calculations along the information flow between adjacent blocks by
sharing Q,K, and V pairs. This results in the information flow to be transformed into the Eq. 5.

Ql−1,Kl−1 = Wq(Xl−1),Wk(Xl−1);

Attnl−1 = Softmax((Ql−1K
T
l−1)/s);

Vl−1 = Wv(Xl−1);

Xl = Wl−1(Attnl−1Vl−1) +Xl−1;

Xl = FFN(Xl);

Ql,Kl, Vl = Wq(Xl),Wk(Xl),Wv(Xl);

Attnl = Softmax((QlK
T
l )/s);

Xl+1 = FFN(Wl(AttnlVl) +Xl);

(4)

Ql−1,Kl−1 = Wq(Xl−1),Wk(Xl−1);

Attnl−1 = Softmax((Ql−1K
T
l−1)/s);

Vl−1 = Wv(Xl−1);

Xl = Wl−1(Attnl−1Vl−1) +Xl−1;

Xl = FFN(Xl);

Gl, Vl = WgXl,Wv(Xl) + Vl−1;

Attnl = Attnl−1;

Xl+1 = Wl(Gl ⊙ (AttnlVl)) +Xl;

(5)
where Attnl denotes the attention map of the block l, ⊙ denotes element-wise multiplication. Shared
attention calculation is highlighted in red, V through the residual connection is highlighted in blue,
and the gate unit is bolded.
The primary motivation for SPSA is to decrease the coefficient of the first term of Eq. 3 by reducing
the number of convolutions. Additionally, by multiplexing the attention maps, we aim to decrease
the coefficient of the second term of Eq. 3, ultimately resulting in a significant acceleration of the
attention mechanism. At this point, the computational complexity of SPSA could be decreased to
Eq. 6. In comparison to Eq. 3, the computational overhead extruded by Eq. 6 is in fact redundant
calculations, as supported by the corresponding empirical evidence provided in Appendix D.

Ω(SPSA) = 0.5(

computational complexity of block l−1︷ ︸︸ ︷
4HWC2 +

∑
k

2

K
(MhkMwk)HWC +

computational complexity of block l︷ ︸︸ ︷
2HWC2 +

∑
k

1

K
(MhkMwk)HWC)

= 3HWC2 +
∑
k

3

2K
(MhkMwk)HWC

(6)

Residual Connections on Value. While utilizing the shared attention offers a substantial speed
increase, it hinders the regular flow of information throughout the network. In order to offset this
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Figure 3: Schematic of the structure of the SAB.

deficiency, we establish residual connections on V between the neighboring attention blocks. So far,
the final architecture of SPSA can be observed in Fig. 3. We shall dedicate Sec. 4 to examining how
this simple operation can introduce inductive bias to the network, along with an explanation of the
underlying mechanisms.

3.3 COMBINE SPSA WITH GATED UNIT

Unfortunately, the outputs of the shared attention module may contain noise, while gating is an
efficient strategy for regulating information. So in order to better control the output distribution of
the SPSA, we use the GDFN (Zamir et al., 2022) as a basic module of our SAB. To further reduce the
computational complexity, we propose the CSAU to combine the SPSA and GDFN into a cohesive
layer defined by the Eq. 5. Furthermore, incorporating gate units and shared attention also alleviates
the significant computational burden associated with directly implementing FFN.

4 TRAINABILITY

In this section, we substantiate the improvement in model trainability resulting from the incorpo-
ration of residual connections on the “Value” of SPSA through a series of lesion studies. These
studies effectively align our model with an ensemble of multiple shallow Transformers with shared
attention modules. As a consequence, the model gains a denser receptive field which leads to some
locality bias that enhances the overall trainability.

4.1 ENSEMBLES OF SHARED ATTENTIONS

Lesion Study. We conducted experiments based on a 72-layer ShareFormer trained on 4× SR
task. Following Veit et al. (2016), we delete or reorder residual modules in ShareFormer during test.
Fig. 4 and Fig. 5 show that MAE loss increases smoothly when randomly deleting or ordering several
modules in ShareFormer. These results closely align with the expected outcomes of ensemble.
It should be noted that shared attention separates information flow from residual branches, resulting
in the model’s information pathway consisting of only one path. Hence, Transformers with shared
attention, but lacking residual values, cannot be regarded as the ensembles of shallow networks.
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Residual Connections on Values vs. on Attention Maps. Since adding residual connections to at-
tention maps does not reduce the number of softmax operations or convolutions in the model, placing
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residuals on the attention maps will not speed up the network, particularly when the share number
increases, see Fig. 6. Furthermore, this will cause the attention maps to become homogeneous.

4.2 EFFECTIVE RECEPTIVE FIELD AND LOCALITY BIAS

The preceding lesion study has unveiled that our ShareFormer fundamentally equates to an ensemble
of multiple shallow Transformers with shared attention. In essence, the efficient receptive field
(ERF) of the ShareFormer is equivalent to the weighted integration of ERFs of the multiple shallow
Transformers. As elucidated by Barzilai et al. (2023), the ensemble behavior of the network results
in its ERF carrying more weight towards the central region of the receptive field. This observation
implies an amplified locality bias of the network, which has been proven to be capable of facilitating
the training (d’Ascoli et al., 2021).
We visualize the ERF of two ShareFormer models
in Fig. 7: the left one lacks residual connections on
“Value”, while the right one includes them. The vi-
sualization indicates that the network incorporating
residual connections on “Value” exhibits a more
pronounced concentration of weight at the central
area of the ERF. This observation suggests that
the inclusion of residual connections on “Value”
of ShareFormer introduces a locality bias, conse-
quently enhancing the network’s trainability. Fig. 7
also includes PSNR and neural tangent kernel con-
dition numbers (Chen et al., 2021b), demonstrating
improved both trainability and performance with
the introduction of residual ”Value,” effectively re-
solving the original trade-off.

 8 px

 8 px

 6 px

 6.5 px

(a) The ERF of the network 
without residual value.

(b) The ERF of the network 
with residual value.

Trainability:787.90
PSNR:26.68 PSNR:26.83

Trainability:577.60
Figure 7: Residual connections on “Value”
brings more concentrated ERF. Trainability is
assessed by the neural tangent kernel condi-
tion number (Chen et al., 2021b), with smaller
values indicating higher trainability. (Left /
Right: without / with residual “Value”)

5 EXPERIMENT RESULTS

We evaluate the ShareFormer on three tasks: image SR, image denoising, and JPEG compression
artifact reduction (CAR). To avoid problems such as gradient vanishing, gradient explosion, and
overfitting, we utilize Smooth L1 loss (Huber, 1992) for image SR and Charbonnier loss (Char-
bonnier et al., 1994) for image denoising and JPEG CAR. The training datasets and protocols, im-
plementation details, and additional results are presented in Appendix B-C. The latency reported is
averaged over 1000 repetitions with an NVIDIA RTX 3090 GPU on 1280× 720 resolution. “N/A”
indicates that the corresponding models are too heavy for the NVIDIA RTX 3090 GPU. When self-
ensemble strategy (Lim et al., 2017) is used in testing, we mark the model with a symbol “+”.

5.1 RESULTS ON IMAGE SR

5.1.1 CLASSICAL IMAGE SR
Quantitative comparison between ShareFormer and several SOTA methods including
RCAN (Zhang et al., 2018b), DRLN (Anwar & Barnes, 2020), HAN (Niu et al., 2020), NLSA (Mei
et al., 2021), SwinIR (Liang et al., 2021), ELAN (Zhang et al., 2022), EDT (Li et al., 2023b), and
ART (Zhang et al., 2023), is reported in Table 2. As we can see, ShareFormer achieves the best
performance on almost all five benchmark datasets for all scale factors. In particular, ShareFormer
archives a PSNR score of 34.19dB on the Urban100 dataset, surpassing SwinIR by 0.38dB, while
maintaining only 62% parameters and delivering over 2 times faster inference speed. When com-
pared to CNN-based methods, while it is hard to achieve a shorter inference time, ShareFormer
exhibits superior performance due to capturing long-range feature dependencies through SPSA.
Qualitative comparison. We present challenging examples for qualitative comparison (×4) in
Fig. 8. It is evident that ShareFormer prevents the output image from being too sharp by reduc-
ing the number of self-attention maps produced. This results in a more appealing visual effect.

5.1.2 LIGHTWEIGHT IMAGE SR
Quantitative comparison between ShareFormer and several SOTA methods including IMDN (Hui
et al., 2019), RFDN (Liu et al., 2020a), SwinIR (Liang et al., 2021), ELAN (Zhang et al., 2022),
and DLGSA (Li et al., 2023c), is reported in Table 3. It can be seen that ShareFormer-L performs
significantly better on high-resolution datasets such as Urban100 and Manga109. Interestingly, we
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Method Scale Params FLOPs Latency Set5 Set14 BSD100 Urban100 Manga109
(M) (T) (ms) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

RCAN (Zhang et al., 2018b) 15.44 3.77 585.03 38.27 / 0.9614 34.12 / 0.9216 32.41 / 0.9027 33.34 / 0.9384 39.44 / 0.9786
DRLN (Anwar & Barnes, 2020) 15.44 8.39 731.98 38.27 / 0.9616 34.28 / 0.9231 32.44 / 0.9028 33.37 / 0.9390 39.58 / 0.9792
HAN (Niu et al., 2020) 63.61 15.52 1441.23 38.27 / 0.9614 34.16 / 0.9217 32.41 / 0.9027 33.35 / 0.9385 39.46 / 0.9787
NLSA (Mei et al., 2021) 41.80 10.27 1345.97 38.34 / 0.9618 34.08 / 0.9231 32.43 / 0.9027 33.42 / 0.9394 39.59 / 0.9789

SwinIR (Liang et al., 2021) ×2 11.75 2.99 1340.49 38.42 / 0.9623 34.46 / 0.9250 32.53 / 0.9041 33.81 / 0.9427 39.92 / 0.9797
ELAN* (Zhang et al., 2022) 8.25 2.02 1039.02 38.36 / 0.9620 34.20 / 0.9228 32.45 / 0.9030 33.44 / 0.9391 39.62 / 0.9793
EDT (Li et al., 2023b) 11.48 2.84 2439.41 38.45 / 0.9624 34.57 / 0.9258 32.52 / 0.9041 33.80 / 0.9425 39.93 / 0.9800
ART-S (Zhang et al., 2023) 11.72 3.49 N/A 38.48 / 0.9625 34.50 / 0.9258 32.53 / 0.9043 34.02 / 0.9437 40.11 / 0.9804
ShareFormer (Ours) 7.52 1.76 939.22 38.53 / 0.9626 34.62 / 0.9260 32.59 / 0.9049 34.22 / 0.9451 40.10 / 0.9801
ShareFormer+ (Ours) 7.52 1.76 939.22 38.57 / 0.9627 34.69 / 0.9264 32.62 / 0.9052 34.40 / 0.9462 40.20 / 0.9803
RCAN (Zhang et al., 2018b) 15.63 1.78 283.36 34.74 / 0.9299 30.65 / 0.8482 29.32 / 0.8111 29.09 / 0.8702 34.44 / 0.9499
DRLN (Anwar & Barnes, 2020) 34.61 3.94 353.05 34.78 / 0.9303 30.73 / 0.8488 29.36 / 0.8117 29.21 / 0.8722 34.71 / 0.9509
HAN (Niu et al., 2020) 64.35 7.33 686.49 34.75 / 0.9299 30.67 / 0.8483 29.32 / 0.8110 29.10 / 0.8705 34.48 / 0.9500
NLSA (Mei et al., 2021) 44.75 5.14 657.33 34.85 / 0.9306 30.70 / 0.8485 29.34 / 0.8117 29.25 / 0.8726 34.57 / 0.9508

SwinIR (Liang et al., 2021) ×3 11.94 1.42 605.45 34.97 / 0.9318 30.93 / 0.8534 29.46 / 0.8145 29.75 / 0.8826 35.12 / 0.9537
ELAN* (Zhang et al., 2022) 8.28 0.94 456.57 34.90 / 0.9313 30.80 / 0.8504 29.38 / 0.8124 29.32 / 0.8745 34.73 / 0.9517
EDT (Li et al., 2023b) 11.66 1.19 993.25 34.97 / 0.9316 30.89 / 0.8527 29.44 / 0.8142 29.72 / 0.8814 35.13 / 0.9534
ART-S (Zhang et al., 2023) 11.90 1.66 1682.21 34.98 / 0.9318 30.94 / 0.8530 29.45 / 0.8146 29.86 / 0.8830 35.22 / 0.9539
ShareFormer (Ours) 7.71 0.85 422.62 34.99 / 0.9323 30.96 / 0.8537 29.50 / 0.8158 29.95 / 0.8851 35.32 / 0.9543
ShareFormer+ (Ours) 7.71 0.85 422.62 35.08 / 0.9326 31.07 / 0.8548 29.53 / 0.8164 30.14 / 0.8875 35.49 / 0.9549
RCAN (Zhang et al., 2018b) 15.59 0.10 178.01 32.63 / 0.9002 28.87 / 0.7889 27.77 / 0.7436 26.82 / 0.8087 31.22 / 0.9173
DRLN (Anwar & Barnes, 2020) 34.58 0.21 202.62 32.63 / 0.9002 28.94 / 0.7900 27.83 / 0.7444 26.98 / 0.8119 31.54 / 0.9196
HAN (Niu et al., 2020) 64.20 0.40 388.71 32.64 / 0.9002 28.90 / 0.7890 27.80 / 0.7442 26.85 / 0.8094 31.42 / 0.9177
NLSA (Mei et al., 2021) 44.16 0.32 377.51 32.59 / 0.9000 28.87 / 0.7891 27.78 / 0.7444 26.96 / 0.8109 31.27 / 0.9184

SwinIR (Liang et al., 2021) ×4 11.90 0.08 293.25 32.92 / 0.9044 29.09 / 0.7950 27.92 / 0.7489 27.45 / 0.8254 32.03 / 0.9260
ELAN* (Zhang et al., 2022) 8.31 0.05 236.95 32.75 / 0.9022 28.96 / 0.7914 27.83 / 0.7459 27.13 / 0.8167 31.68 / 0.9226
EDT (Li et al., 2023b) 11.63 0.07 590.26 32.82 / 0.9031 29.09 / 0.7939 27.91 / 0.7483 27.46 / 0.8246 32.03 / 0.9254
ART-S (Zhang et al., 2023) 11.87 0.09 547.52 32.86 / 0.9029 29.09 / 0.7942 27.91 / 0.7489 27.54 / 0.8261 32.13 / 0.9263
ShareFormer (Ours) 7.67 0.05 211.10 32.83 / 0.9033 29.11 / 0.7950 27.94 / 0.7498 27.64 / 0.8294 32.18 / 0.9262
ShareFormer+ (Ours) 7.67 0.05 211.10 32.97 / 0.9038 29.20 / 0.7960 27.98 / 0.7506 27.82 / 0.8324 32.41 / 0.9278

Table 2: Quantitative comparison (PSNR/SSIM) for classical image SR with the SOTA methods
on benchmark datasets. The best and second-best results among Transformer-based methods are
marked in red and blue, respectively. The CNN-based methods and Transformer-based methods are
separated via a dashed line for each scaling factor. ”*” means the model was trained with the DIV2K
dataset.

Method Scale Params FLOPs Latency Set5 Set14 BSD100 Urban100 Manga109
(K) (G) (ms) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

IMDN (Hui et al., 2019) 694 162.58 39.71 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
RFDN-L (Liu et al., 2020a) 626 145.32 45.24 38.08 / 0.9606 33.67 / 0.9190 32.18 / 0.8996 32.24 / 0.9290 38.95 / 0.9773

SwinIR-L (Liang et al., 2021) 910 240.72 310.32 38.14 / 0.9611 33.86 / 0.9206 32.31 / 0.9012 32.76 / 0.9340 39.12 / 0.9783
ELAN (Zhang et al., 2022) ×2 582 135.88 192.44 38.17 / 0.9611 33.94 / 0.9207 32.30 / 0.9012 32.76 / 0.9340 39.11 / 0.9782
DLGSA-L (Li et al., 2023c) 745 173.96 224.21 38.20 / 0.9612 33.89 / 0.9203 32.30 / 0.9012 32.94 / 0.9355 39.29 / 0.9780
ShareFormer-L (Ours) 535 117.50 149.63 38.27 / 0.9615 34.13 / 0.9232 32.38 / 0.9023 33.13 / 0.9373 39.46 / 0.9787
IMDN (Hui et al., 2019) 703 72.47 15.34 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
RFDN-L (Liu et al., 2020a) 633 64.70 17.17 34.47 / 0.9280 30.35 / 0.8421 29.11 / 0.8053 28.32 / 0.8547 33.78 / 0.9458

SwinIR-L (Liang et al., 2021) 918 105.97 134.52 34.62 / 0.9289 30.54 / 0.8463 29.20 / 0.8082 28.66 / 0.8624 33.98 / 0.9478
ELAN (Zhang et al., 2022) ×3 590 60.66 84.94 34.61 / 0.9288 30.55 / 0.8463 29.21 / 0.8081 28.69 / 0.8624 34.00 / 0.9478
DLGSA-L (Li et al., 2023c) 752 76.52 102.31 34.70 / 0.9295 30.58 / 0.8465 29.24 / 0.8089 28.83 / 0.8653 34.16 / 0.9483
ShareFormer-L (Ours) 543 52.57 67.51 34.73 / 0.9299 30.66 / 0.8485 29.30 / 0.8106 29.01 / 0.8692 34.54 / 0.9501
IMDN (Hui et al., 2019) 715 43.69 11.21 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
RFDN-L (Liu et al., 2020a) 643 38.95 12.60 32.28 / 0.8957 28.61 / 0.7818 27.58 / 0.7363 26.20 / 0.7883 30.61 / 0.9096

SwinIR-L (Liang et al., 2021) 930 62.80 78.20 32.44 / 0.8976 28.77 / 0.7858 27.69 / 0.7406 26.47 / 0.7980 30.92 / 0.9151
ELAN (Zhang et al., 2022) ×4 601 36.65 50.69 32.43 / 0.8975 28.78 / 0.7858 27.69 / 0.7406 26.54 / 0.7982 30.92 / 0.9150
DLGSA-L (Li et al., 2023c) 761 45.51 86.33 32.54 / 0.8993 28.84 / 0.7871 27.73 / 0.7415 26.66 / 0.8033 31.13 / 0.9161
ShareFormer-L (Ours) 555 31.85 41.47 32.54 / 0.8993 28.94 / 0.7893 27.77 / 0.7434 26.83 / 0.8080 31.40 / 0.9189

Table 3: Quantitative comparison for lightweight image SR with SOTA methods.

observe that ShareFormer exhibits a relatively larger advantage compared to other methods under
a reduced parameter regime, suggesting that SPSA may be particularly well-suited for lightweight
neural networks. For lightweight ×2 image SR, ShareFormer-L has increased 0.34dB than SwinIR
on the Manga109 dataset, but there is only 0.21dB increase for classical ×2 image SR. This fur-
ther leads to the conjecture that lightweight Transformers may have more homogeneous attention
maps, so cross-layer sharing of attention maps could help the model perform better. Meanwhile, the
homogeneity of attention maps may be the key that limits the ability of lightweight Transformers.
Qualitative comparison. As shown in Fig. 8, ShareFormer-L is the only method that precisely
handles the densely packed small structures in the image, such as the windows of the building.

5.2 RESULT ON IMAGE DENOISING

Table 4 and Table 5 show the quantitative comparisons between ShareFormer and representative
methods including RNAN (Zhang et al., 2019), BRDNet (Tian et al., 2020), IPT (Chen et al., 2021a),
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Urban100 (4×): img 008

HR EDSR RCAN RDN

SwinIR DLGSANet ART ShareFormer

Urban100 (4×): img 062

HR CARN IDN IMDN

EDSR SwinIR-L ELAN-L ShareFormer-L

Figure 8: Qualitative comparison with recent SOTA methods on the 4× image SR task. The top row
is classical image SR results, and the bottom row is lightweight image SR results.

Method Latency Set12 BSD68 Urban100
(ms) σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

DnCNN (Zhang et al., 2017) 83.18 32.67 30.35 27.18 31.62 29.16 26.23 32.28 29.80 26.35
DRUNet (Zhang et al., 2021) 172.39 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96
Restormer (Zamir et al., 2022) 1201.53 33.35 31.04 28.01 31.95 29.51 26.62 33.67 31.39 28.33
ShareFormer (Ours) 806.97 33.34 31.02 27.97 31.96 29.52 26.62 33.71 31.44 28.36
RNAN (Zhang et al., 2019) N/A - - 27.70 - - 26.48 - - 27.65
DeamNet (Ren et al., 2021) N/A 33.19 30.81 27.74 31.91 29.44 26.54 33.37 30.85 27.53
SwinIR (Liang et al., 2021) 5689.86 33.36 31.01 27.91 31.97 29.50 26.58 33.70 31.30 27.98
Restormer (Zamir et al., 2022) 1201.53 33.42 31.08 28.00 31.96 29.52 26.62 33.79 31.46 28.29
ShareFormer (Ours) 806.97 33.42 31.06 27.98 31.99 29.53 26.62 33.86 31.55 28.37
ShareFormer+ (Ours) 806.97 33.44 31.09 28.02 32.00 29.55 26.64 33.92 31.63 28.46

Table 4: Quantitative comparison for grayscale image denoising. Top
row: σ-mixed training; Bottom row: σ-specific training.

Noisy Clean

DRUNet SwinIR

Restormer ShareFormer
Figure 9: Grayscale im-
age denoising results.

Method CBSD68 Kodak24 McMaster Urban100
σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

DnCNN (Zhang et al., 2017) 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62 32.98 30.81 27.59
DRUNet (Zhang et al., 2021) 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61
Restormer (Zamir et al., 2022) 34.39 31.78 28.59 35.44 33.02 30.00 35.55 33.31 30.29 35.06 32.91 30.02
ShareFormer (Ours) 34.41 31.79 28.59 35.48 33.04 30.00 35.57 33.31 30.26 35.13 32.98 30.07

RNAN (Zhang et al., 2019) - - 28.27 - - 29.58 - - 29.72 - - 29.08
BRDNet (Tian et al., 2020) 34.10 31.43 28.16 34.88 32.41 29.22 35.08 32.75 29.52 34.42 31.99 28.56
IPT (Chen et al., 2021a) - - 28.39 - - 29.64 - - 29.98 - - 29.71
SwinIR (Liang et al., 2021) 34.42 31.78 28.56 35.34 32.89 29.79 35.61 33.20 30.22 35.13 32.90 29.82
Restormer (Zamir et al., 2022) 34.40 31.79 28.60 35.47 33.04 30.01 35.61 33.34 30.30 35.13 32.96 30.02
EDT-B (Li et al., 2023b) 34.39 31.76 28.56 35.37 32.94 29.87 35.61 33.34 30.25 35.22 33.07 30.16
ShareFormer (Ours) 34.43 31.80 28.60 35.50 33.07 30.01 35.62 33.35 30.27 35.20 33.05 30.10
ShareFormer+ (Ours) 34.45 31.82 28.62 35.53 33.09 30.04 35.66 33.39 30.31 35.26 33.12 30.20

Table 5: Quantitative comparison for color image denoising. Tab. 4 has
presented a comparison of the latency.

Noisy Clean

DRUNet SwinIR

Restormer ShareFormer

Figure 10: Color image
denoising results.

DRUNet (Zhang et al., 2021), SwinIR (Liang et al., 2021), Restormer (Zamir et al., 2022), and
EDT (Li et al., 2023a) on image denoising. The compared noise levels were set to 15, 25, and 50.
It is evident that our ShareFormer exhibits superior performance in comparison to other methods
employed. Furthermore, in comparison to other Transformer-based methods, ShareFormer delivers
competitive performance while maintaining the fastest inference speed, courtesy of SPSA. Notably,
previous methods that compute attention maps from the spatial perspective, such as SwinIR (Liang
et al., 2021), face challenges when applied to high-resolution images due to their computationally
intensive nature. Conversely, methods that calculate attention maps from the channel perspective,
like Restormer (Zamir et al., 2022), exhibit faster speed but grapple with limited receptive fields.
Our ShareFormer, in contrast, boasts a significantly broader receptive field and demonstrates con-
siderably reduced inference latency, effectively mitigating the constraints associated with existing
network architectures for high-resolution image restoration.
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Dataset q
RDN DRUNet SwinIR ART ShareFormer ShareFormer+

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Classic5
10 30.00 0.8188 30.16 0.8234 30.27 0.8249 30.27 0.8258 30.28 0.8260 30.31 0.8263
30 33.43 0.8930 33.59 0.8949 33.73 0.8961 33.74 0.8964 33.73 0.8967 33.77 0.8969
40 34.27 0.9061 34.41 0.9075 34.52 0.9082 34.55 0.9086 34.54 0.9089 34.57 0.9092

LIVE1
10 29.67 0.8247 29.79 0.8278 29.86 0.8287 29.89 0.8300 29.86 0.8315 29.89 0.8321
30 33.51 0.9153 33.59 0.9166 33.69 0.9174 33.71 0.9178 33.68 0.9190 33.71 0.9192
40 34.51 0.9302 34.58 0.9312 34.67 0.9317 34.70 0.9322 34.66 0.9331 34.69 0.9334

Table 6: Quantitative comparison for JPEG CAR with SOTA methods on benchmark datasets.

Params Latency Performance

SPSA+MLP 9.43M 238.47 27.59 / 0.8275

SPSA+GDFN 8.91M 249.32 27.61 / 0.8280

CSAU (ours) 7.67M 211.10 27.64 / 0.8294

Table 7: Ablation experiments for
the CSAU. It works better and
faster with fewer parameters.

Layers PSNR SSIM Latency
2 27.64 0.8294 211.10
4 27.48 0.8241 198.44
6 27.45 0.8234 183.94

RCAN 26.82 0.8087 178.01

Table 8: The impact of differ-
ent numbers of shared at-
tention layers.

MLP ShiftMLP GateMLP
WA 27.59 27.59 27.62
MHDA 27.45 27.47 27.48
SparseGSA 27.46 27.47 27.48
PSA (ours) 27.60 27.63 27.64

Table 9: Performance of Share-
Formers with different atten-
tion mechanisms and FFNs.

Fig. 9 and Fig. 10 present denoised results by different methods for grayscale denoising and color
image denoising, respectively. Our ShareFormer restores the cleanest and most faithful image.

5.3 RESULT ON JPEG CAR

Tab. 6 shows our ShareFormer obtains satisfactory performance for JPEG CAR on grayscale images.
It shows that the ShareFormer effectively restores the texture of images without JPEG compression.

5.4 ABLATION STUDY AND DISCUSSION

Here the models are trained for (×4) image SR task. The results are evaluated on Urban100 dataset.
Impact of combined shared attention unit. As shown in Tab. 7, when compared with using only
SPSA and FFN, CSAU shows a slight improvement in performance and more significant advantages
in terms of inference speed and parameters.
Different Attentions and FFNs. Eq. 5 shows that our method is compatible with any attention
mechanisms, including WA (Liang et al., 2021), MHDA (Zamir et al., 2022) and SparseGSA (Li
et al., 2023c). We evaluated the ShareFormer-L using various attentions and FFNs, as presented
in Tab. 9. These findings indicate that our shared attention mechanism can be extended to various
window attentions and their upgrades, not solely PSA.
Can Transformer be faster than CNN? As shown in Tab. 3, SPSA exhibits speedup ratios ex-
ceeding 2× when compared to other lightweight Transformers. Tab. 8 provides an overview of
ShareFormer’s performance and latency across different numbers of shared layers. Notably, Share-
Former with 6 shared layers achieves higher accuracy than CNNs like RCAN (Zhang et al., 2018b),
while maintaining comparable latency. This finding underscores the potential of Transformer-based
methods to offer both superior performance and faster inference times than CNN-based methods.

6 CONCLUSION

In this work, we propose ShareFormer for efficient image restoration, which simultaneously achieves
the low latency and high trainability of transformers while maintaining peak performance. Most
previous methods for image restoration introduce an inductive bias into the network through the
incorporation of a convolutional module. However, this approach often led to a notable reduction in
inference speed. On the other hand, sparse attention mechanisms were explored to improve speed,
but they also introduced challenges related to model training. To address these problems, we devised
a strategy named SPSA that involves the sharing of attention maps across adjacent layers, resulting
in a substantial reduction in model latency. Additionally, we introduced residual connections to the
“Value”, resulting in a locality bias and enhancing the model’s trainability. Experiments on image
SR, denoising, and JPEG CAR validate that our ShareFormer achieves SOTA on various benchmark
datasets. In future works, we will apply our ShareFormer to more image restoration tasks, such as
image dehazing, deraining, and deblurring. We will also explore the potential of shared attention in
solving high-level vision problems, including image classification and segmentation.
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APPENDICES

A LATENCY MEASUREMENT

In the main paper, we report the results of latency measurement of many well-known network struc-
tures on NVIDIA RTX 3090 GPU (with constant 100% GPU utilization), due to its wide enough
usage. At the same time, we report the latency report of RTX2080TI and RTX4090 in the appendix
to prove that our method is valid on many hardware platforms. Since the latency will be affected
by the AI system and hardware, to be fair, we unify the normalization and activation layer of the
network as LayerNorm and GELU. We do not use CuDNN for acceleration when computing latency.

Method RTX3090 RTX4090 Denoising JPEG CAR
(ms) (ms) PSNR PSNR / SSIM

DnCNN (Zhang et al., 2017) 83.18 41.19 30.46 - / -
DRUNet (Zhang et al., 2021) 172.39 84.27 32.34 32.65 / 0.8919

SwinIR (Liang et al., 2021) 5689.86 2939.34 32.62 32.74 / 0.8926
Restormer (Zamir et al., 2022) 1201.53 623.15 32.71 - / -
ShareFormer (Ours) 806.97 424.70 32.79 32.75 / 0.8945

Table 10: Inference latency of different methods on different devices for image denoising and JPEG
CAR tasks. The results are evaluated on Urban100 dataset.

Method Scale RTX2080TI RTX3090 RTX4090 Urban100
(ms) (ms) (ms) PSNR / SSIM

RCAN (Zhang et al., 2018b) 898.39 585.03 291.93 33.34 / 0.9384
DRLN (Anwar & Barnes, 2020) 1317.69 731.98 443.34 33.37 / 0.9390
HAN (Niu et al., 2020) 2645.60 1441.23 857.40 33.35 / 0.9385
NLSA (Mei et al., 2021) N/A 1345.97 949.69 33.42 / 0.9394

SwinIR (Liang et al., 2021) ×2 2245.83 1340.49 716.12 33.81 / 0.9427
ELAN* (Zhang et al., 2022) 1824.84 1039.02 581.74 33.44 / 0.9391
EDT (Li et al., 2023b) 3819.79 2439.41 1340.65 33.80 / 0.9425
ART-S (Zhang et al., 2023) N/A N/A N/A 34.02 / 0.9437
ShareFormer (Ours) 1744.79 939.22 470.75 34.22 / 0.9451
RCAN (Zhang et al., 2018b) 458.43 283.36 139.68 29.09 / 0.8702
DRLN (Anwar & Barnes, 2020) 656.45 353.05 203.16 29.21 / 0.8722
HAN (Niu et al., 2020) 1235.97 686.49 347.29 29.10 / 0.8705
NLSA (Mei et al., 2021) 1268.14 657.33 395.45 29.25 / 0.8726

SwinIR (Liang et al., 2021) ×3 1002.33 605.45 327.77 29.75 / 0.8826
ELAN* (Zhang et al., 2022) 824.09 456.57 275.87 29.32 / 0.8745
EDT (Li et al., 2023b) 1623.71 993.25 570.21 29.72 / 0.8814
ART-S (Zhang et al., 2023) N/A 1682.21 853.57 29.86 / 0.8830
ShareFormer (Ours) 775.63 422.62 218.79 29.95 / 0.8851
RCAN (Zhang et al., 2018b) 238.36 178.01 84.07 26.82 / 0.8087
DRLN (Anwar & Barnes, 2020) 342.05 202.62 115.17 26.98 / 0.8119
HAN (Niu et al., 2020) 698.44 388.71 177.65 26.85 / 0.8094
NLSA (Mei et al., 2021) 708.92 377.51 174.88 26.96 / 0.8109

SwinIR (Liang et al., 2021) ×4 493.10 293.25 140.05 27.45 / 0.8254
ELAN* (Zhang et al., 2022) 432.24 236.95 130.45 27.13 / 0.8167
EDT (Li et al., 2023b) 982.94 590.26 301.85 27.46 / 0.8246
ART-S (Zhang et al., 2023) N/A 547.52 285.60 27.54 / 0.8261
ShareFormer (Ours) 400.20 211.10 113.99 27.64 / 0.8294

Table 11: Inference latency for classical image SR.
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Method Scale RTX2080TI RTX3090 RTX4090 Urban100
(ms) (ms) (ms) PSNR / SSIM

IMDN (Hui et al., 2019) 47.86 39.71 20.27 32.17 / 0.9283
RFDN-L (Liu et al., 2020a) 55.90 45.24 22.91 32.24 / 0.9290

SwinIR (Liang et al., 2021) ×2 487.61 310.3 222.78 32.76 / 0.9340
ELAN (Zhang et al., 2022) 311.18 192.4 134.23 32.76 / 0.9340
DLGSA-L (Li et al., 2023c) 507.81 224.2 165.98 32.94 / 0.9355
ShareFormer (Ours) 251.69 149.6 111.09 33.13 / 0.9373
IMDN (Hui et al., 2019) 28.05 15.34 10.27 28.17 / 0.8519
RFDN-L (Liu et al., 2020a) 29.67 17.17 12.86 28.32 / 0.8547

SwinIR (Liang et al., 2021) ×3 246.06 134.52 97.40 28.66 / 0.8624
ELAN (Zhang et al., 2022) 151.72 84.94 50.75 28.69 / 0.8624
DLGSA-L (Li et al., 2023c) 239.66 102.31 76.36 28.83 / 0.8653
ShareFormer (Ours) 123.06 67.51 40.54 29.01 / 0.8692
IMDN (Hui et al., 2019) 13.57 11.21 7.96 26.04 / 0.7838
RFDN-L (Liu et al., 2020a) 15.94 12.60 8.21 26.20 / 0.7883

SwinIR (Liang et al., 2021) ×4 132.10 78.20 52.66 26.47 / 0.7980
ELAN (Zhang et al., 2022) 75.66 50.69 25.94 26.54 / 0.7982
DLGSA-L (Li et al., 2023c) 134.46 86.33 52.85 26.66 / 0.8033
ShareFormer (Ours) 62.93 41.47 20.77 26.83 / 0.8080

Table 12: Inference latency for lightweight image SR.

B TRAINING DETAILS

In this section, we will present detailed training hyper-parameters for the main experiments to ensure
that this paper can be perfectly reproduced.
Datasets. For image SR, following previous works (Liang et al., 2021), we use DIV2K (Agusts-
son & Timofte, 2017) and Flickr2K (Lim et al., 2017) as training data, Set5 (Bevilacqua et al.,
2012), Set14 (Zeyde et al., 2012), BSD100 (Martin et al., 2001a), Uran100 (Huang et al., 2015) and
Manga109 (Matsui et al., 2017) as test data. For image denoising and image JPEG compression
artifact reduction, following previous works (Liang et al., 2021; Zamir et al., 2022), we use DIV2K,
Flickr2K, BSD500 (Arbelaez et al., 2010), and WED (Ma et al., 2016) as training data. We use
(C)BSD68 (Martin et al., 2001b), Kodak24 (Franzen, 2013), McMaster (Zhang et al., 2011), and
Urban100 as test data for image denoising, Classic5 (Foi et al., 2007), and LIVE1 (Sheikh et al.,
2006) as test data for image JPEG CAR. We reflect pad the input image to a size where the side
length is an integer multiple of 64 before the test and crop back to the original size after the test.
Loss Function. We utilize Smooth L1 loss (Huber, 1992) for image SR and Charbonnier loss
(Charbonnier et al., 1994) for image denoising and JPEG compression artifact reduction. These loss
functions are smoother and differentiable at zero compared to the L1 loss more commonly used in
earlier methods.

Smooth L1 Loss(IG , Î ) =

{
0.5 (IG − Î )2 for |IG − Î | ≤ δ,

|IG − Î | − 0.5 δ, otherwise.

Charbonnier Loss(IG , Î ) =

√
||IG − Î ||2 + ϵ2

(7)

where δ = 0.025 ∗ upsample scale + 0.05, ϵ = 0.001.
Implementation details. Following SwinIR (Liang et al., 2021), the number of attention blocks,
residual groups, and channels are generally set to 6, 6, and 180. The striped window sizes are 8
and 32. For lightweight image SR, we decrease the number of residual blocks, residual groups, and
channels to 5, 4, and 60, respectively. We also decrease the window sizes to 8 and 16 in this case.
The number of attention heads is 1 for all SPSA. Note that if there is relative position bias in the
process of self-attention, it will also be shared in different layers, together with the attention maps.
The details of the network structure for the image denoising and CAR tasks are exactly the same as
for the Restormer (Zamir et al., 2022), except that the number of the SPSA’s attention heads is 1.
Training settings. The AdamW optimizer with an initial learning rate 2× 10−4, batch-size 32, and
iterations 500k trains the network from scratch for image SR. The initial learning rate is 5×10−4 for
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lightweight image SR, respectively. Following Restormer (Zamir et al., 2022), we use Progressive
Learning, we start training with patch size 128 × 128, batch size 32, and learning rate 3 × 10−4.
We use horizontal and vertical flips as data augmentation and use cosine annealing as the learning
strategy for all experiments.

Task Classical SR Lightweight SR Image Denoising & JPEG CAR
Batch-size 8 64 Progressive Learning(*)
Learning-rate 2e-4 5e-4 3e-4
Schedule Cosine Cosine Cosine
Optim AdamW (0.9, 0.999) AdamW (0.9, 0.999) AdamW (0.9, 0.999)
Training Iters 500k 500k 300k
Warmup None None None
Patch-size 48 64 Progressive Learning
Init Default Initialization Default Initialization Default Initialization
augment flip and rot 90 & 270 flip and rot 90 & 270 flip and rot 90 & 270
grad clip None None 0.01
EMA 0.999 0.999 0.999

Table 13: Training details of image SR, image denoising, and JPEG CAR. “Progressive Learning”
means the progressive learning strategy used in Restormer. ”Default Initialization” means PyTorch’s
default parameter initialization strategy.

C EXTRA RESULTS

In this section, we will provide additional details on the parameters and FLOPs of different methods
used in the image denoising task, as well as present more examples of qualitative comparisons
between image SR and denoising tasks.

C.1 EXTRA QUANTITATIVE RESULTS

In this section, we present the parameters, FLOPs, latency, and PSNR metrics for various denoising
methods, showcasing the greater efficacy of our approach.

Method Params FLOPs Latency PSNR on image DN PSNR on JPEG CAR
DnCNN 0.56M 0.55T 83.18 31.24 -
DRUNet 32.64M 2.15T 172.39 31.69 34.41
RNAN 8.96M N/A N/A - -
SwinIR 11.46M 11.28T 5689.86 31.78 34.52
Restormer 26.10M 2.12T 1201.53 31.79 -
EDT-B 11.63M N/A N/A 31.76 -
ShareFormer(ours) 17.64M 1.35T 806.97 31.80 34.53

Table 14: The parameters, FLOPs, latency, and PSNR on CNSD68 σ = 25 image denoising (DN)
task and Classic5 q = 40 image JPEG CAR task.

C.2 EXTRA QUALITATIVE RESULTS

Kodak24: 24

Clean Noise DRUNet

SwinIR Restormer ShareFormer

Figure 12: Qualitative comparison with recent SOTA methods on the σ = 50 image Denoising task.
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BSD100 (4×): 253027

HR EDSR RCAN RDN

SwinIR DLGSANet ART ShareFormer

BSD100 (4×): 78004

HR CARN IDN IMDN

EDSR SwinIR-L ELAN-L ShareFormer-L

Figure 11: Qualitative comparison with recent SOTA methods on the 4× image SR task. The top
row is classical image SR results, and the bottom row is lightweight image SR results.

D REDUNDANCY IN THE ATTENTION MAP

In this section, we present visualizations of the attention maps of SwinIR (Liang et al., 2021) pre-
trained models on a 4× lightweight image super-resolution task to demonstrate the significant re-
dundancy in the Transformers for image restoration.
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E LESION STUDY

Kendall Tau correlation coefficient. We calculate the Kendall Tau correlation coefficient value of
the weights of residual values’ convolution layer.
Effective Receptive Fields. We calculated the ERF following RepLKNet (Ding et al., 2022). The
ERF is defined to be ∂f(x; θ)/∂x, where f(x; θ) means the network and θ means the parameters of
the network.

F TRAINABILITY

In this section, we will analyze the trainability of ShareFormer in more detail.
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Quantitative comparison. In the main text, we provide an adequate qualitative analysis of Share-
Former’s trainability. We use the NTK condition number as the quantitative result of networks’ train-
ability. We calculated the NTK condition numbers for different networks in Tab. 15. ShareFormer
has comparable trainability and higher performance with CNN-based methods, like RCAN (Zhang
et al., 2018b).

Method NTK Urban100
(PSNR / SSIM)

RCAN (Zhang et al., 2018b) 107.03 26.82 / 0.8087

SwinIR (Liang et al., 2021) 1092.39 27.45 / 0.8254
ELAN (Zhang et al., 2022) 2446.48 27.13 / 0.8167
DLGSANet (Li et al., 2023c) 2025.87 27.17 / 0.8175
ShareFormer (Ours) 158.90 27.64 / 0.8294

Table 15: Trainability of ShareFormer and other methods on classical image SR ×4 task.

We approximate the neural tangent kernel on the Set5 dataset by averaging over-block diagonal
entries in the full NTK. Notice that the computation is based on the architecture at initialization
without training.
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