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ABSTRACT

Despite the remarkable success of diffusion models in image generation, slow
sampling remains a persistent issue. To accelerate the sampling process, prior
studies have reformulated diffusion sampling as an ODE/SDE and introduced
higher-order numerical methods. However, these methods often produce diver-
gence artifacts, especially with a low number of sampling steps, which limits
the achievable acceleration. In this paper, we investigate the potential causes of
these artifacts and suggest that the small stability regions of these methods could
be the principal cause. To address this issue, we propose two novel techniques.
The first technique involves the incorporation of Heavy Ball (HB) momentum, a
well-known technique for improving optimization, into existing diffusion numer-
ical methods to expand their stability regions. We also prove that the resulting
methods have first-order convergence. The second technique, called Generalized
Heavy Ball (GHVB), constructs a new high-order method that offers a variable
trade-off between accuracy and artifact suppression. Experimental results show
that our techniques are highly effective in reducing artifacts and improving im-
age quality, surpassing state-of-the-art diffusion solvers on both pixel-based and
latent-based diffusion models for low-step sampling. Our research provides novel
insights into the design of numerical methods for future diffusion work.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020a) are a family of generative models that has gar-
nered considerable attention due to their remarkable image quality. Unlike Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014), which may suffer from mode collapse and instabilities
during training, diffusion models are less sensitive to hyperparameters (Ho et al., 2020; Rombach
et al., 2022) and offer better sampling quality (Dhariwal & Nichol, 2021). These models have been
successfully applied to various image-related tasks, such as text-to-image generation (Nichol et al.,
2022), image-to-image translation (Su et al., 2022), image composition (Sasaki et al., 2021), adver-
sarial purification (Wang et al., 2022; Wu et al., 2022), and super-resolution (Choi et al., 2021).

However, one significant drawback of diffusion models is their slow sampling speed. This is be-
cause the sampling process involves a Markov chain, which requires a large number of iterations to
generate high-quality results. Recent attempts to accelerate this process include improvements to the
noise schedule (Nichol & Dhariwal, 2021; Watson et al., 2021) and network distillation (Salimans
& Ho, 2022; Watson et al., 2022; Song et al., 2023). Fortunately, the sampling process can be repre-
sented by ordinary or stochastic differential equations, and numerical methods can be used to reduce
the number of iterations required. While DDIM (Song et al., 2020a), a 1st-order method, is the most
commonly used approach, it still requires a considerable number of iterations. Higher-order numer-
ical methods, such as DEIS (Zhang & Chen, 2022), DPM-Solver (Lu et al., 2022a), and PLMS (Liu
et al., 2022a), have been proposed to generate high-quality images in fewer steps. However, these
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Figure 1: We demonstrate the occurrence of divergence artifacts in existing numerical methods at
various guidance scales s using 15 sampling steps. Integrating HB momentum into these methods
and our GHVB 1.5 method can mitigate these artifacts. Prompt: ”photo of a girl face” (a) Realistic
Vision v2.0, (b) Anything Diffusion v4.0, (c) Deliberate Diffusion.

methods begin to produce artifacts (see Figure 1) when the number of steps is decreased beyond a
certain value, thereby limiting how much we can reduce the sampling time.

In this study, we investigate the potential causes of these artifacts and found that the narrow stabil-
ity region of high-order numerical methods can cause solutions to diverge, resulting in divergence
artifacts. To address this issue and enable low-step, artifact-free sampling, we propose two tech-
niques. The first technique involves incorporating Heavy Ball (HB) momentum (Polyak, 1987), a
well-known technique for improving optimization, into existing diffusion numerical methods. This
approach effectively reduces divergence artifacts, but its accuracy only has first order of conver-
gence. In this context, the accuracy measures how close the approximated, low-step solution is to
the solution computed from a very high-step solver (e.g., 1,000-step DDIM). The second technique,
called Generalized Heavy Ball (GHVB), is a new high-order numerical method that offers a vari-
able trade-off between accuracy and artifact suppression. Both techniques are training-free and incur
negligible additional computational costs. Figure 1 demonstrates the capability of both techniques in
reducing artifacts compared to previous diffusion sampling methods. Furthermore, our experiments
show that our techniques are effective on both pixel-based and latent-based diffusion models.

2 BACKGROUND

This section first presents the theoretical foundation of diffusion sampling when modeled as an
ordinary differential equation (ODE) and related numerical methods. Second, we discuss ODE
forms for guided diffusion sampling and prior splitting numerical methods. Third, we review the
concept of stability region, which is our primary analysis tool.

2.1 DIFFUSION IN ODE FORM

Modeling diffusion sampling as an ODE is commonly based on the non-Markovian sampling of
Denoising Diffusion Implicit Model (DDIM) from Song et al. (2020a). DDIM is given by:

xt−1 =

√
αt−1

αt

(
xt −

√
1− αtϵθ(xt, t)

)
+
√

1− αt−1ϵθ(xt, t). (1)

Here, ϵθ(xt, t) is a neural network with learnable parameters θ trained to predict noise given the
current state xt and time t as input. The parameter αt is a schedule that controls the degree of
diffusion at each time step. Previous research has shown that DDIM (1) can be rewritten into an
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ODE, making it possible to use numerical methods to accelerate the sampling process. Two ODEs
have been proposed in the literature:

dx̄

dσ
= ϵ̄(x̄, σ), (2)

dx̃

dσ̃
= s(x̃, σ̃), (3)

Equation 2 can be obtained by re-parameterizing σ =
√
1− αt/

√
αt, x̄ = xt/

√
αt, and ϵ̄(x̄, σ) =

ϵθ(xt, t). These transformations are widely used in various diffusion solvers (Zhang & Chen, 2022;
Lu et al., 2022a; Liu et al., 2022a; Zhao et al., 2023). If ϵθ(xt, t) is a sum of multiple terms, such as in
guided diffusion, we can split Equation 2 and solve each resulting equation separately (Wizadwongsa
& Suwajanakorn, 2023). Another ODE (Equation 3) is derived by defining σ̃ =

√
αt/

√
1− αt and

x̃ = xt/
√
1− αt, where an estimation of the final result s(x̃, σ̃) = (xt −

√
1− αtϵθ(xt, t))/

√
αt.

This ODE has the advantage of keeping the differentiation bounded within the pixel value range in
pixel-based diffusion, outperforming Equation 2 in many cases in DPM-Solver++ (Lu et al., 2022b).

2.2 STABILITY REGION

The stability region is a fundamental concept in numerical methods for solving ODEs. It determines
the step sizes that enable numerical approximations to converge. To illustrate this concept, let us
consider the Euler method, a simple, 1st-order method for solving ODEs, given by

xn+1 = xn + δf(xn), (4)

where xn is the approximate solution and δ is the step size. To analyze the stability of the Euler
method, we can consider a test equation of the form x′ = λx, where λ is a complex constant. The
solution of this test equation can be expressed as

xn+1 = xn + δλxn = (1 + δλ)xn = (1 + δλ)n+1x0, (5)

where x0 is the initial value. For the approximate solution to converge to the true solution, it is
necessary that |1 + δλ| ≤ 1. Hence, the stability region of the Euler method is S = {z ∈ C :
|1 + z| ≤ 1} because if z = δλ lies outside of S, the solution xn will tend to ±∞ as n → ∞.

In diffusion sampling, another common family of numerical
solvers is the Adams-Bashforth (AB) methods, also referred
to as Pseudo Linear Multi-Step (PLMS). AB methods en-
compass the Euler method as its 1st-order (AB1), and the
2nd-order (AB2) is given by:

xn+1 = xn + δ

(
3

2
f(xn)−

1

2
f(xn−1)

)
. (6)

The stability regions of AB methods of various orders are
derived in Appendix C. These regions can be visualized by
determining their boundaries using the boundary locus tech-
nique (Lambert et al., 1991). As depicted in Figure 2, the
stability region decreases in size and its boundary becomes
more restrictive as the order of the method increases.
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1.0 AB1 (Euler)
AB2
AB3
AB4

Figure 2: Boundaries of stability re-
gions of the first 4 Adams-Bashforth
methods.

3 UNDERSTANDING ARTIFACTS IN DIFFUSION SAMPLING

One unique issue in diffusion sampling is the occurrence of “divergence” artifacts, which are char-
acterized by regions with unrealistic, oversaturated pixels in the outputs. This problem can arise
from several factors including the use of high-order numerical solvers, too few sampling steps, or
a high guidance scale. (See Appendix P). The existing solution is simply avoiding these factors at
the cost of slower sampling speed or weaker guidance. This section investigates the cause of these
artifacts in Section 3.1 and proposes solutions that do not sacrifice sampling speed in Section 3.2.

3.1 ANALYZING DIFFUSION ARTIFACTS

We analyze the areas where divergence artifacts occur during sampling by examining the magnitudes
of the latent variables in those areas. Specifically, we use Stable Diffusion (Rombach et al., 2022),
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(a) PLMS4
250 steps

(b) PLMS4
15 steps

Figure 3: Generated images and max-pooled latent magnitude maps (brighter colors indicate higher
values). Images with artifacts (b) have higher latent magnitudes than those without artifacts (a).

which operates and performs diffusion sampling on a latent space of dimension 64 × 64 × 4, to
generate images with and without artifacts by varying the number of steps. Then, we visualize each
latent variable z ∈ R4 in the 64 × 64 spatial grid after normalizing it using the channel-wise mean
and standard deviation, computed from the COCO dataset (Lin et al., 2014). Figure 3 shows the
magnitudes of the normalized latent variables after a 4× 4 max pooling for visualization purposes.

We found that artifacts mainly appear in areas where the latent magnitudes are higher than usual.
Note that images without artifacts can also have high latent magnitudes in some regions, although
this is exceptionally rare. Conversely, when artifacts appear, those regions almost always have high
magnitudes. In pixel-based diffusion models, the artifacts manifest directly as pixel values near 1 or
0 due to clipping, which can be observed in Figure 17 in Appendix K.

3.2 CONNECTION BETWEEN ODE SOLVER AND ARTIFACTS

We hypothesize that these artifacts are caused by the numerical instability during sampling. Math-
ematically, we analyze the ODE for diffusion sampling in Equation 2 using the problem reduction
technique for stiffness analysis (Higham & Trefethen, 1993). Assuming that the effect of σ on the
function ϵ̄ is negligible, we use Taylor expansion to approximate the RHS. of Equation 2, yielding

dx̄

dσ
= ∇ϵ̄(x∗)(x̄− x∗) +O(∥x̄− x∗∥2). (7)

Here, x∗ denotes the converged solution that should not have any noise left (i.e. ϵ̄(x∗) = 0), and
∇ϵ̄(x∗) denotes the Jacobian matrix at x∗. As x̄ converges to x∗, the term O(∥x̄ − x∗∥2) becomes
negligibly small, so we may drop it from the equation.

Let λ be an eigenvalue of ∇ϵ̄(x∗)T and v be the corresponding normalized eigenvector such that
∇ϵ̄(x∗)T v = λv. We define u = vT (x̄ − x∗) and obtain u′ = λu as our test equation. According
to Section2.2, if δλ falls outside the stability region of a numerical method, the numerical solution
to u may diverge, resulting in diffusion sampling results with larger magnitudes that later manifest
as divergence artifacts. Therefore, divergence artifacts are more likely to occur when the stability
region is too small. Although some numerical methods have infinite stability regions, those used
in diffusion sampling have only finite stability regions, which implies that the solution will always
diverge if the step size δ is sufficiently high. More details about the derivation can be found in
Appendix D and a 2D toy example illustrating this effect is provided in Appendix E.

One possible solution to mitigate artifacts is to reduce the step size δ, which shifts δλ closer to the
origin of the complex plane. However, this approach increases the number of steps, making the
process slower. Instead, we will modify the numerical methods to enlarge their stability regions.
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4 METHODOLOGY

This section describes two techniques for improving stability region and reducing divergence arti-
facts. Specifically, we first show how to apply Polyak’s Heavy Ball Momentum (HB) to diffusion
sampling, and secondly, how to generalize it to higher orders. Our techniques are designed to be
simple to implement and do not require additional training.

4.1 POLYAK’S HEAVY BALL MOMENTUM FOR DIFFUSION SAMPLING

Recall that Heavy Ball Momentum is an optimization algorithm proposed by Polyak (1987) that
enhances gradient descent (xn+1 = xn − βn∇f(xn)). The method takes inspiration from the
physical analogy of a heavy ball moving through a field of potential with damping friction. The
update rule for Polyak’s HB optimization algorithm is given by:

xn+1 = xn + αn(xn − xn−1)− βn∇f(xn), (8)
where αn and βn are parameters. We can apply HB to the Euler method (4), in which case we
typically set αn = (1− βn), to obtain

xn+1 = xn + (1− βn)(xn − xn−1) + δβnf(xn), (9)
and we may show that the numerical method above has the same order of convergence as the original
Euler method. For simplicity, we assume that βn = β ∈ (0, 1], which is a constant known as the
damping coefficient. Then, we can reformulate Equation 9 as:

vn+1 = (1− β)vn + βf(xn), xn+1 = xn + δvn+1, (10)
Here, we may interpret xn as the heavy ball’s position, and vn+1—the exponential moving average
of f(xn)—as its velocity. We can see that position is updated with “displacement = time × velocity,”
much like in physics.

For a high-order method of the form xn+1 = xn + δ
∑k

i=0 bif(xn−i), we can apply HB to it as:

vn+1 = (1− β)vn + β

k∑
i=0

bif(xn−i), xn+1 = xn + δvn+1. (11)

The resulting numerical method has a larger stability region, as can be seen in Figures 4b to 4d, in
which we show stability boundaries of AB methods after HB is applied to them with varying βs.
(We use HB 0.4 to denote β = 0.4). However, Theorem 1 in Appendix H shows that as soon as β
deviates from 1, the theoretical order of convergence drops to 1, leading to a significant decrease in
image quality, as illustrated in Figure 5. In the next subsection, we propose an alternative approach
that increases the stability region while maintaining high order of convergence.
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Figure 4: Boundaries of stability regions of 1st- to 4th-order AB methods with HB applied to them
with different values of the damping coefficient β.

4.2 GENERALIZING POLYAK’S HEAVY BALL TO HIGHER ORDERS

In this section, we generalize the Euler method with HB momentum to achieve high-order conver-
gence, similar to AB methods’ generalization of the Euler method. Defining the backward difference
operator ∆ as ∆xn = xn−xn−1. Following Berry & Healy (2004), we express the AB formula by:

∆xn+1 = δ

(
1 +

1

2
∆ +

5

12
∆2 +

3

8
∆3 +

251

720
∆4 +

95

288
∆5 + . . .

)
f(xn). (12)
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β = 0.2 β = 0.4 β = 0.6 β = 0.8 PLMS4 (β = 1.0)

(a) PLMS4 with HB

β = 0.2 β = 0.4 β = 0.6 β = 0.8 DDIM (1,000 steps)

(b) 4th order GHVB

Figure 5: Comparison between the two proposed techniques: (a) HB and (b) GHVB, applied to
PLMS4 (Liu et al., 2022a) with 15 sampling steps. Both are effective at reducing artifacts, but
HB’s accuracy drops faster than GHVB’s as β deviates from 1. Positions of the lanterns in Row (a)
deviate more from the ground-truth (1,000-steps DDIM (Zhang et al., 2023)) than those in Row (b).
Moreover, the image at β = 0.2 in Row (a) becomes blurry as HB yields a numerical method with
a lower order of convergence than what GHVB does. Prompt: “A beautiful illustration of people
releasing lanterns near a river”.

The order convergence is determined by the number of terms on the RHS; for example, AB2 can be
written as ∆xn+1 = δ

(
1 + 1

2∆
)
f(xn). Multiplying Equation 12 by (β + (1− β)∆), we have:

(β + (1− β)∆)∆xn+1 = δ

(
β +

2− β

2
∆ +

6− β

12
∆2 +

10− β

24
∆3 + . . .

)
f(xn). (13)

Note that the update of vn in Equation 10 can be rewritten as (β+(1−β)∆)vn+1 = βf(xn). Next,
we can choose the order of convergence by fixing the number of terms on the RHS. To get, say, a
2nd-order method, we may choose:

(β + (1− β)∆)∆xn+1 = δ

(
β +

2− β

2
∆

)
f(xn) = δ

(
1 +

2− β

2β
∆

)
βf(xn) (14)

= δ

(
1 +

2− β

2β
∆

)
(β + (1− β)∆)vn+1. (15)

Eliminating (β − (1− β)∆) from both sides, we obtain the 2nd-order generalized HB method:

vn+1 = (1− β)vn + βf(xn), xn+1 = xn + δ

(
2 + β

2β
vn+1 +

2− β

2β
vn

)
. (16)

Algorithm 2 details a complete implementation. When β = 1, the formulation in Equation 16 is
equivalent to the AB2 formulation in Equation 6. As β approaches 0, Equation 14 converges to the
1st-order Euler method 4. Thus, this generalization also serves as an interpolating technique between
two adjacent-order AB methods, except for the 1st-order GHVB, which is equivalent to the Euler
method with HB momentum in Equation 10.

We call this new method the Generalized Heavy Ball (GHVB) and associate with it a momentum
number, whose ceiling indicates the method’s order. For example, GHVB 1.8 refers to the 2nd-order
GHVB with β = 0.8. The main difference between HB and GHVB is that HB calculates the moving
average after summing high-order coefficients, whereas GHVB calculates it before the summation.

We analyze the stability region of GHVB using the same approach as before and visualize the re-
gion’s locus curve in Figure 6. The theoretical order of accuracy of this method is given by Theorem
2 in Appendix H. We discuss alternative momentum methods, such as Nesterov’s momentum, which
can offer comparable performance but are less simple in Appendix G.

5 EXPERIMENTS

We present a series of experiments to evaluate the effectiveness of our techniques. In Section 5.1, we
assess the divergence artifacts reduction through qualitative results and quantitative measurements
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Figure 6: Boundary of stability regions for 1st-to 4th- order Generalized Heavy Ball (GHVB).

of the latent magnitudes in a text-to-image diffusion model. Besides reducing artifacts, another
important goal is to ensure that the overall sampling quality improves and does not degenerate (e.g.,
becoming color blobs). We test this with experiments on both pixel-based and latent-based diffusion
models trained on ImageNet256 (Russakovsky et al., 2015) (Section 5.2 and 5.3), which show that
our techniques significantly improve image quality, as measured by the standard Fréchet Inception
Distance (FID) score. Lastly, in Section 5.4, we present an ablation study of GHVB methods with
varying degrees of order. A similar study on HB methods can be found in Appendix Q.
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Figure 9: FID on ADM (†ours)

5.1 ARTIFACTS MITIGATION

In this experiment, we apply our HB and GHVB techniques to the most popular 2nd and 4th-order
solvers, DPM-Solver++ (Lu et al., 2022a) and PLMS4 (Liu et al., 2022a), using 15 sampling steps
and various guidance scales on three different text-to-image diffusion models. The qualitative re-
sults in Figure 1 show that our techniques significantly reduce the divergence artifacts and produce
realistic results (columns a, c). More qualitative results are in Figure 16 in Appendix J.

Quantitatively measuring divergence artifacts can be challenging, as metrics like MSE or LPIPS
may only capture the discrepancy between the approximated and the true solutions, which does not
necessarily indicate the presence of divergence artifacts. In this study, we use the magnitudes of
latent variables as introduced in Section 3.1 as a proxy metric to measure artifacts. In particular, we
define a magnitude score v =

∑
i,j g(z

′
ij) that sums over the latent variables in a max-pooled latent

grid, where g(x) = x if x ≥ τ and 0 otherwise. We generate 160 samples from the same set of text
prompts and seeds for each method from a fine-tuned Stable Diffusion model called Anything V4.

The results using τ = 3 (magnitude considered high when above 3 std.) are shown in Figures 7 and
8. We observe that the magnitude score increases as the number of sampling steps decreases and
higher-order methods result in higher magnitude scores. Adding HB momentum to PLMS4 (Liu
et al., 2022a) or DPM-Solver++ (Lu et al., 2022b) (Figure 7) or employing GHVB with momentum
number β < 1 (Figure 8) can reduce these latent magnitudes. Our methods also show a larger per-
formance difference from previous works as the problem setup is more challenging, as demonstrated
in additional Stable Diffusion experiments in Appendix M and O.

Our recommendation is to employ the Euler method with HB 0.8 or GHVB 0.8 as the default choices
for common usage due to their consistent performance and sufficiently expansive stability regions
(see Appendix for more experiments). In scenarios where accuracy or fidelity to the true DDIM
solution is essential or when a lower sampling step is required, higher-order GHVB variants can be
considered. For guidance on method selection, please refer to Q2 in Appendix A.
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5.2 EXPERIMENTS ON PIXEL-BASED DIFFUSION MODELS

We evaluate our techniques using classifier-guided diffusion sampling with ADM from Peebles &
Xie (2022), an unconditioned pixel-based diffusion model, with their classifier model. Additionally,
we compare our methods with two other diffusion sampling methods, namely DPM-Solver++ (Lu
et al., 2022b) and LTSP (Wizadwongsa & Suwajanakorn, 2023), which have demonstrated strong
performance in classifier-guided sampling.

For DPM-Solver++, we use a 2nd-order multi-step method and compare the results with and without
HB momentum. For LTSP, a split numerical method, we use PLMS4 (Liu et al., 2022a) to solve the
first subproblem (see (Wizadwongsa & Suwajanakorn, 2023)) and compare different methods for
solving the second subproblem, including regular Euler method and its variant with HB momentum
(equivalent to GHVB 0.8). Figure 9 indicates that our techniques effectively improve FID scores for
both DPM-Solver++ and LTSP. Notably, applying our HB momentum to LTSP consistently yields
the lowest FID scores. This experiment highlights the benefits of using HB momentum, which
provides a better choice than Euler method. Table 1 presents additional results, and Figure 17
provides examples of the generated images.
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5.3 EXPERIMENT ON LATENT-BASED DIFFUSION MODELS

We evaluate our techniques using classifier-free guidance diffusion sampling with pre-trained latent-
space diffusion models: DiT-XL (Peebles & Xie, 2022) and MDT (Gao et al., 2023) (more in Ap-
pendix N). We use the 4th-order PLMS4 as our baseline for comparison because it demonstrates
superior performance compared to other methods (see Appendix L).

In Figure 10, a significant gap in FID scores on DiT can be observed between 4th-order PLMS4 and
1st-order DDIM, but this is mostly due to the difference in convergence order rather than divergence
artifacts. Our GHVB 3.8 and 3.9 techniques successfully mitigate numerical divergence and lead
to improved FID scores compared to PLMS4, particularly when the number of steps is below 10.
While HB 0.9 also improves FID scores, using HB 0.8 can worsen FID scores compared to using
PLMS4 alone, as it shares 1st-order convergence with DDIM. For high sampling steps, both HB
and GHVB achieve comparable performance to PLMS4 without significant quality degradation. We
provide additional results in Appendix L, and example images in Figure 18.

5.4 ABLATION STUDY OF GHVB

In this section, we conduct an ablation study of the GHVB method. As explained in Section 4.2,
the damping coefficient β of GHVB interpolates between two existing AB methods, DDIM and
PLMS2. Our goal here is to analyze the convergence error of GHVB methods. The comparison is
done on Stable Diffusion 1.5 with the target results obtained from a 1,000-step DDIM method. We
measure the mean L2 distance between the sampled results and the target results in the latent space.
The results in Figure 11 suggest that the convergence error of GHVB 1.1 to GHVB 1.9 interpolates
between the convergence errors of DDIM and PLMS2 accordingly.

Furthermore, we empirically verify that GHVB does achieve a high order of convergence as
predicted by Theorem 2. We compute the numerical order of convergence using the formula
q ≈ log(enew/eold)

log(knew/kold)
, where e is the error between the sampled and the target latent codes, and k is the

8



Published as a conference paper at ICLR 2024

number of sampling steps. As shown in Figure 12, the numerical orders of GHVB 0.5 and GHVB
1.5 approach 0.5 and 1.5, respectively, as the number of steps increases. However, for GHVB 2.5
and GHVB 3.5, the estimated error e may be too small when tested with large numbers of steps,
and other sources of error may hinder their convergence. Nonetheless, these GHVB methods can
achieve high orders of convergence. An analysis of this and other methods is in Appendix I.

6 RELATED WORK

Accelerating diffusion sampling: Our work is closely related to several other approaches aimed
at improving the sampling speed of diffusion models. Certain approaches focus on the improved
numerical aspects of samplers, which we have already covered in Section 2.1. Other approaches
involve training additional separate models, including model distillation (Luhman & Luhman, 2021;
Salimans & Ho, 2022), Schrödinger bridge (De Bortoli et al., 2021), consistency models (Song et al.,
2023), rectified flow (Liu et al., 2022b), and GENIE (Dockhorn et al., 2022b). Our goal is an ODE
solver that seamlessly integrates with any pre-trained diffusion models. This focus sets our work
apart from those aforementioned approaches, which require model retraining.

Connections between momentum methods and ODEs: Our work uses an optimization technique
to create an ODE solver. Interestingly, there is a rich body of research in the near-opposite direc-
tion: using ODEs to analyze optimization methods. Indeed, trajectories made by some optimization
methods can be described as discrete approximations of ODE solutions. The gradient descent algo-
rithm is equivalent to numerically integrating the gradient flow equation: x′ = −∇f(x(t)). Polyak
(1964) introduced the Heavy Ball method and the Heavy Ball ODE, x′′ + ax′ + b∇f(x(t)) = 0,
which is subsequently investigated by Alvarez (2000); Attouch et al. (2000); Balti & May (2016);
Shi et al. (2021), and Goudou & Munier (2009). Similarly, Nesterov (1983) introduced the accel-
erated gradient algorithm and derived its associated ODE, given by: x′′ + a

t x
′ + ∇f(x(t)) = 0.

Further studies (Su et al., 2014; Bubeck et al., 2015; Allen-Zhu & Orecchia, 2014; Lessard et al.,
2016) analyze similar ODEs to understand Nesterov’s algorithm better.

Notice that the above momentum associated ODEs are 2nd-order. Nonetheless, we can also regard
momentum methods as a numerical approximation of the 1st-order gradient flow, which is very
similar to our equation. (Our ODE (2) can be obtained simply by replacing the gradient with the
diffusion model’s output.) Analyzing our solvers through the 2nd-order ODEs is less fruitful as there
is no guarantee that their trajectories would match those of our DDIM’s ODE—a key goal in our
work, inspired by DDIM’s excellent quality (De Bortoli et al., 2021; Karras et al., 2022).

Momentum in neural network design: The benefits of Heavy Ball ODE, which result in smoother
paths and faster convergence to stationary points, have inspired research on neural network archi-
tecture design (Moreau & Bruna, 2017; Nguyen et al., 2020; Li et al., 2018) and 2nd-order neural
ODE models (Xia et al., 2021; Nguyen et al., 2022). In the context of diffusion models, Wu et al.
(2023) reformulate a diffusion ODE into a 2nd-order ODE to enhance the training and sampling
processes, whereas Dockhorn et al. (2022a) does so to the score-based SDE. Instead of redesigning
the network with momentum, our paper specifically proposes new momentum-based solvers for the
normal diffusion network to improve its sampling process.

7 CONCLUSION

Our study highlights an issue when using high-order methods in diffusion sampling with low sam-
pling steps, which leads to the divergence of solutions and artifacts. To address this, we propose
two techniques inspired by Polyak’s HB momentum: HB and GHVB. HB serves as an add-on to
any diffusion solver to reduce artifacts, while GHVB offers flexibility in selecting the most suitable
method for any computation budget. Our extensive experiments confirm the effectiveness of both
techniques across image generation tasks with recent diffusion models, such as text-to-image gen-
eration (Stable Diffusion (Rombach et al., 2022)), classifier guidance (ADM (Dhariwal & Nichol,
2021)) and classifier-free sampling (on DiT (Peebles & Xie, 2022), and on MDT (Gao et al., 2023)).
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A FREQUENTLY ASKED QUESTIONS

Q1: What does the term “divergence artifacts” refer to?

In this paper, the term “divergence artifacts” is used to describe visual anomalies that occur when
numerical solutions diverge, resulting in unusually large magnitudes of the results. In the context
of latent-based diffusion, we specifically define divergence artifacts as visual artifacts caused by
latent codes with magnitudes that exceed the usual range. These artifacts commonly arise when the
stability region of the numerical method fails to handle all eigenvalues of the system, leading to a
divergent numerical solution. We demonstrate the connection between high latent magnitudes and
these artifacts in Figure 13.

Scaling factor
Original (×1.0) ×3.0 ×6.0

Stable Diffusion 1.5

Anything Diffusion V4.0

Pastel-mix Diffusion V4.0

Figure 13: Images generated after multiplying the 4 × 4 square at the center of latent codes with a
constant factor. Using higher scaling factors results in more apparent localized divergence artifacts.
All samples were generated using PLMS4 (Liu et al., 2022a) with a guidance scale of 15 and 250
sampling steps. Prompt: ”A beautiful illustration of a couple looking at fireworks in a summer
festival in Japan”.

Q2: How to efficiently determine a suitable solver for diffusion sampling?

Theoretically identifying a solver with optimal accuracy and a stability region that encompasses all
δλ values is challenging because computing λ from neural networks is intractable. However, given
a fixed amount of computational resources (e.g., sampling steps), one can gather information about
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λ to determine the highest solver’s order without artifacts by first testing Euler’s method with fewer
numbers of steps.

In particular, we can determine the lowest sampling step of Euler’s method that does not produce
artifacts (e.g., via a binary search), then use its stability region to determine the highest order of
GHVB whose stability region encompasses that of Euler’s method. This process does not require
additional sampling or evaluating neural networks and can be solved deterministically (Equation
48-51). This strategy is more efficient than directly testing different orders at the target step because
Euler’s method usually requires fewer steps than our target step. For instance, we can infer that
GHVB3.2 and those with lower orders are applicable at 20 sampling steps by verifying that Euler’s
method works at 5 steps.

Q3: Can we directly interpolate two existing numerical methods instead of using the GHVB
method?

Indeed, this is possible. However, the order of the resulting method will be the lowest order of the
two methods. To illustrate this point, let us consider a direct interpolation between the 1st-order
Euler method (AB1) and the 2nd-order Adams-Bashford method (AB2), expressed as follows:

xn+1 = xn + δ

(
(1− β)f(xn) + β

3

2
f(xn)− β

1

2
f(xn−1)

)
(17)

As outlined in Appendix H, despite the orders of the interpolated methods, the resulting method is a
1st-order method.

B MORE DETAILS ON DIFFUSION MODELING AND SAMPLING

This section presents a high-level summary of the theoretical foundation of diffusion models, along
with the numerical methods employed in these models. Here, we briefly explain a few concepts that
contribute to our method.

B.1 DIFFUSION MODELS AND THEIR SAMPLING

Assuming that x0 is a random variable from the data distribution q(x0) that we aim to replicate
(e.g., the distribution of natural images), diffusion models define a sequence of Gaussian noise
degradations of x0 as random variables x1, x2, ..., xT , where

xt ∼ q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (18)

and βt ∈ [0, 1] are parameters controlling the noise levels. Utilizing the property of the Gaussian
distribution, we express xt directly as a function of x0 and noise ϵ ∼ N (0, I) by

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (19)

where ᾱt =
∏t

i=1(1− βi). By selecting a sufficiently large T (e.g., T = 1, 000) and an appropriate
set of βt, we can assume that xT follows a standard Gaussian distribution N (0, I).

The main idea of diffusion model generation involves training pθ(xt−1|xt), which sequentially re-
verses q(xt|xt−1) using a parametric model while setting p(xt) = N (0, I). Subsequently, we can
sample Gaussian noise xT and use it to reverse-sample xT−1, xT−2, ... until we retrieve x0, which
belongs to our data distribution.

The Denoising Diffusion Probabilistic Model (DDPM) Ho et al. (2020) outlines the utilization of a
neural network denoted as ϵθ(xt, t) to predict the noise ϵ used in the computation of xt in Equation
19. To facilitate the network’s training, a training image labeled as x0 is sampled, alongside values
for t and ϵ. These provided values are then utilized in computing xt using the aforementioned
relationship. Consequently, our network ϵθ is optimized to minimize the difference between the
projected noise and the actual noise: ∥ϵ − ϵθ(xt, t)∥2. Once training is completed, we can draw
samples xt−1 from the conditional distribution pθ(xt|xt−1) given by

pθ(xt|xt−1) = N
(
µθ(xt−1, t),

1− ᾱt−1

1− ᾱt
I

)
, (20)
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where µθ(xt−1, t) = 1√
ᾱt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
and xT ∼ p(xT ) = N (0, I). This step-by-step

sampling process is simple but time-consuming. Several sampling techniques and ODE formulations
can be employed to accelerate this process. (See Section 2.1.)

Many successful diffusion models Dhariwal & Nichol (2021); Song & Ermon (2020); Song et al.
(2020b) consider their target distributions q0(x0) as image distributions, with xt directly repre-
senting a random variable within the pixel space. These models generate images by inferring net-
works directly through diffusion sampling. However, direct training of diffusion models within
high-resolution pixel space are computationally expensive. To address this, Latent Diffusion Mod-
els (LDMs) Rombach et al. (2022) employ a two-stage methodology: Firstly, they employ a trained
pair of encoder E and decoder D that compress images into smaller spatial latent representations.
Secondly, LDMs are then trained on these latent representations z = E(x), rather than directly on
images x. Subsequently, the generation of new images involves sampling a latent representation z
from the diffusion model and decoding it into an image using the decoder, x = D(z).

B.2 NUMERICAL METHOD SUMMARY

Many numerical methods can solve Equations 2 and 3 to accelerate diffusion sampling. In the
following section, we will summarize the methods mentioned within our papers. Let’s denote our
ODE as dx

dσ = f(x), initialized at x0.

Euler’s Method is represented by

xn+1 = xn + δf(xn), (21)

where xn represents the approximate solution, and δ represents the step size. This method, when
applied to Equation 2 or 3, results in the DDIM formulation Song et al. (2020a).

Heun’s Method is a 2nd-order extension of Euler’s Method given by:

xn+1 = xn +
δ

2
(e1 + e2), (22)

Here, e1 = f(xn) and e2 = f(xn + δe1). This method has been used in various diffusion papers,
including Algorithm 1 in Karras et al. (2022) and DPM-Solver-2 in Lu et al. (2022a), and also serves
as the simplest form of Predictor-Corrector methods in Song et al. (2020b); Zhao et al. (2023).

Adams-Bashforth (AB) Methods is a family of methods utilizing previous steps to estimate the
next step, also known as linear multi-step methods. The formulations are as follows:

1st-order (same as Euler’s method):

xn+1 = xn + δf(xn), (23)

2nd-order:
xn+1 = xn +

δ

2
(3e0 − e1) , (24)

3rd-order:
xn+1 = xn +

δ

12
(23e0 − 16e1 + 5e2), (25)

4th-order:
xn+1 = xn +

δ

24
(55e0 − 59e1 + 37e2 − 9e3), (26)

where ek = f(xn−k). Notably, DPM-Solver++ Lu et al. (2022b) applies the 2nd-order AB method
to ODE (3), while PLMS4 Liu et al. (2022a) utilizes the 4th-order AB method on ODE (2).

B.3 GUIDED DIFFUSION SAMPLING

Guided diffusion sampling is widely used in conditional sampling, such as text-to-image and class-
to-image generation. There are main two approaches for guided sampling:

17



Published as a conference paper at ICLR 2024

Classifier guidance (Dhariwal & Nichol, 2021; Song et al., 2020a) uses a pre-trained classifier
model pϕ(c | xt, t) to define the conditional noise prediction model at inference time:

ϵ̂(xt, t | c) = ϵθ(xt, t)− s∇ log pθ(c | xt, t), (27)

where s > 0 is a “guidance” scale. The model can be extended to accept any guidance function,
such as CLIP function (Radford et al., 2021) for text-to-image generation (Letts et al., 2021). This
approach only modifies the sampling equation at inference time and thus can be applied to a trained
diffusion model without retraining.

Classifier-free guidance (Ho & Salimans, 2021) trains a conditional noise model ϵθ(xt, t | c) to
generate data samples with the label c:

ϵ̂(xt, t | c) = ϵθ(xt, t | ϕ) + s(ϵθ(xt, t | c)− ϵθ(xt, t | ϕ)), (28)

where ϕ is a null label to allow for unconditional sampling. The sampling equations in both ap-
proaches can be expressed as a “guided ODE” of the form

dx̄

dσ
= ϵ̄(x̄, σ) + g(x̄, σ), (29)

where g(x̄, σ) represents a guidance function. To accelerate guided diffusion sampling, splitting
numerical methods have been proposed by Wizadwongsa & Suwajanakorn (2023), such as Lie-
Trotter Splitting (LTSP) divides Equation 29 into two subproblems, i) dy

dσ = ϵ̄(y, σ) and ii) dz
dσ =

g(z, σ), but only apply high-order numerical methods to the first equation while resorting to the
Euler method for the second equation to avoid numerical instability. Higher-order splitting methods,
such as Strang Splitting (STSP), can also mitigate artifacts. However, these methods require solving
the second equation twice per step, which is comparable to increasing the total sampling step to
avoid artifacts. Both approaches require non-negligible computation.

C STABILITY REGION OF ADAM-BASHFORTH METHOD

To investigate the stability of the AB2 method, we apply AB2 to the test equation x′ = λx, which
was also used with the Euler method (Section 2.2). We have xn+1 = xn+ δ

(
3
2λxn − 1

2λxn−1

)
. To

solve this linear recurrence relation, we substitute xn = rn into the formula, where r is a complex
constant. Simplifying the resulting equation, we obtain the characteristic equation:

r2 −
(
1 +

3

2
δλ

)
r +

1

2
δλ = 0, (30)

which has the solutions

r1 =
1

2

1 +
3

2
δλ+

√(
1 +

3

2
δλ

)2

− 2δλ

 , (31)

r2 =
1

2

1 +
3

2
δλ−

√(
1 +

3

2
δλ

)2

− 2δλ

 . (32)

The general formulation of xn can be expressed as

xn = a1r
n
1 + a2r

n
2 , (33)

where a1 and a2 are constants. The numerical solution xn tends to 0 as n tends to infinity when both
|r1| < 1 and |r2| < 1, which means the stability region of AB2 is determined by the complex region

S =

z ∈ C :

∣∣∣∣∣∣12
1 +

3

2
z ±

√(
1 +

3

2
z

)2

− 2z

∣∣∣∣∣∣ ≤ 1

 . (34)

Solving for the complex area from the roots of the characteristic equation can pose significant chal-
lenges in numerical analysis. One commonly employed graphical technique to visualize the stability
region is the boundary locus technique (Lambert et al., 1991).
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C.1 THE BOUNDARY LOCUS TECHNIQUE

The boundary locus technique begins by defining the shift operator E such that Exk = xk−1. Note
that E2xk = Exk−1 = xk−2. Generally, a numerical method can be represented in the following
form:

A(E)xn = δB(E)f(xn), (35)

where A and B are polynomials of E. For example, in the case of the AB2 method, we have
A(E) = 1− E and B(E) = 3

2E − 1
2E

2.

To determine the stability region of a numerical method, we apply the boundary locus technique to
the general form given by Equation 35. The characteristic equation of the method can be obtained
by substituting f(xn) = λxn (i.e., the test equation) and xn = rn, which yields

A(r−1) = δλB(r−1), (36)

where r is the root of the method’s characteristic equation. The stability region of the method
is the area in the complex plane where the characteristic root r have modulus less than 1. The
boundary of the stability region can be determined by substituting r with a modulus of 1 (which
means that r = eiθ for some real value θ) into the characteristic equation and solving for z = δλ.
This yields the locus of points in the complex plane where the characteristic roots of the method
are on the boundary of the stability region. Specifically, we can obtain the curve z = s(θ) =
A(e−iθ)/B(e−iθ), where θ ∈ [−π, π], that represents the boundary of the stability region in the
complex plane. By comparing the stability regions of different numerical methods, we can determine
which method is more stable and accurate for a given problem. The boundary locus technique
provides a powerful tool for analyzing the stability of numerical methods and can help guide the
selection of appropriate methods for solving ODE problems.
Example C.1. (Euler Method) The Euler method, a numerical technique for approximating solu-
tions of ODE, can be expressed as:

(1− E)xn = δEf(xn) (37)

The associated polynomials for this method are:

A(z) = 1− z, B(z) = z (38)

The stability region of the Euler method corresponds to the locus curve in which the solution remains
bounded. This region can be determined by evaluating the complex function:

s(θ) =
A(e−iθ)

B(e−iθ)
=

1− e−iθ

e−iθ
= eiθ − 1, θ ∈ [−π, π]. (39)

The locus curve forms a perfect circle with a radius of 1 and a center at -1.
Example C.2. (AB Methods) The 2nd-order Adams-Bashforth (AB2) method is given by:

(1− E)xn = δ

(
3

2
E − 1

2
E2

)
f(xn). (40)

The locus curve representing the stability region of this method is given by:

s(θ) =
1− e−iθ

3
2e

−iθ − 1
2e

−2iθ
=

2(1− e−iθ)

3e−iθ − e−2iθ
, θ ∈ [−π, π]. (41)

Similarly, the stability regions for the AB3 and AB4 methods can be obtained by evaluating the
complex functions:

s(θ) =
12(1− e−iθ)

23e−iθ − 16e−2iθ + 5e−3iθ
, θ ∈ [−π, π]. (42)

s(θ) =
24(1− e−iθ)

55e−iθ − 59e−2iθ + 37e−3iθ − 9e−4iθ
, θ ∈ [−π, π]. (43)

The locus curves for the boundary of stability regions of the first four AB methods are visualized in
Figure 2.
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Additionally, we include the locus curves for the boundaries of the stability regions of our tech-
niques. As shown in Figure 4, the local curves for the PLMS method with HB β are given by:

PLMS1 with HB β:

s(θ) =
(1− e−iθ)(1− (1− β)e−iθ)

βe−iθ
(44)

PLMS2 with HB β:

s(θ) =
2(1− e−iθ)(1− (1− β)e−iθ)

β(3e−iθ − e−2iθ)
(45)

PLMS3 with HB β:

s(θ) =
12(1− e−iθ)(1− (1− β)e−iθ)

β(23e−iθ − 16e−2iθ + 5e−3iθ)
(46)

PLMS4 with HB β:

s(θ) =
24(1− e−iθ)(1− (1− β)e−iθ)

β(55e−iθ − 59e−2iθ + 37e−3iθ − 9e−4iθ)
(47)

Similarly, the local curves for the GHVB method in Figure 6 are given by:

1st-order GHVB (equivalent to PLMS1 with HB):

s(θ) =
(1− e−iθ)(1− (1− β)e−iθ)

βe−iθ
(48)

2nd-order GHVB:

s(θ) =
2(1− e−iθ)(1− (1− β)e−iθ)

((2 + β)e−iθ − (2− β)e−2iθ)
(49)

3rd-order GHVB:

s(θ) =
12(1− e−iθ)(1− (1− β)e−iθ)

(18 + 5β)e−iθ − (24− 8β)e−2iθ + (6− β)e−3iθ
(50)

4th-order GHVB:

s(θ) =
24(1− e−iθ)(1− (1− β)e−iθ)

(46 + 9β)e−iθ − (78− 19β)e−2iθ + (42− 5β)e−3iθ − (10− β)e−4iθ
(51)

D DERIVATION OF TEST EQUATION

This section presents the derivation of the test equation u′ = λu, which serves as a fundamental tool
for analyzing the stability of numerical methods in diffusion sampling, as discussed in Section 3.2.

Starting from the differential equation for x̄, we have

dx̄

dσ
= ∇ϵ̄(x∗)(x̄− x∗). (52)

We then define u = vT (x̄− x∗), where v is a normalized eigenvector of ∇ϵ̄(x∗)T corresponding to
the eigenvalue λ. Taking the derivative of u with respect to σ and using the chain rule, we have:

du

dσ
= vT

d

dσ
(x̄− x∗) = vT [∇ϵ̄(x∗)](x̄− x∗) (53)

= [∇ϵ̄(x∗)T v]T (x̄− x∗) = (λv)T (x̄− x∗) (54)
= λu (55)

Thus, we obtain the test equation u′ = λu.
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E TOY ODE PROBLEM

This section aims to demonstrate how the solutions yielded by numerical methods can diverge when
the stability regions of the methods are too small. Additionally, we illustrate how our momentum-
based techniques can enlarge the stability region. The demonstration is conducted on a 2D toy ODE
problem given by:

dx

dt
=

[
0 1
−9 −10

] [
x1

x2

]
, x(0) =

[
−1
0

]
. (56)

The eigenvalues of the 2 × 2 matrix are −9 and −1, and the exact solution of Equation 56 is given
by:

x(t) =
1

8

[
1
−9

]
e−9t +

9

8

[
−1
1

]
e−t. (57)

As t increases, x(t) converges to the origin.

Let us say we want to numerically compute x(3) by integrating the ODE for 26 steps with a nu-
merical method. We divide the time interval [0, 3] into 26 equal intervals, resulting in a step size of
δ = 3/26. For this particular setting, it turns out that the 2nd-order Adams-Bashforth (AB2) method
diverges, but the Euler method converges. To see this, observe that the stability region of the AB2
method only cover the interval [−1, 0] of the real line, as depicted in Figures 14b and 14d. So, for
the eigenvalue λ = −9, the product δλ = −27/26 lies just outside the region. Consequently, the
numerical solution yielded by AB2 diverges, as indicated by the blue line in Figures 14a and 14c. In
contrast, the Euler method’s stability region contains both values of δλ, and the numerical solution,
represented by the green line in Figures 14a and 14c, appears to be more accurate.

We can improve the stability from AB2 method by applying any of our proposed techniques: Heavy
Ball momentum (HB) and GHVB. The stability regions of the modified AB2 methods are given
by the red (β = 0.8) and yellow (β = 0.9) lines in Figures 14b and 14d. Observe that they
contains the points associated with the λδ values. As a result, the numerical solutions of the modified
methods converge to the origin, as demonstrated by the red and yellow lines in Figures 14a and 14c,
respectively.
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Figure 14: Comparison of solution trajectories and stability regions of various numerical methods
when applied to the toy ODE problem. Here, we seek to compute x(3) in 26 steps with the Euler
method, the AB2 method, and methods resulting from modifying AB2 with our momentum-based
techniques. Subfigure (a) presents the numerical solutions obtained using our modified AB2 method
with HB momentum, while subfigure (c) showcases those obtained using our GHVB. The stability
regions of the methods are depicted in subfigures (b) and (d) respectively.

F IMPLEMENTATION DETAILS OF PLMS WITH HB AND GHVB METHODS

In this section, we present the complete algorithms for the PLMS method with the HB momentum
and the GHVB method in Algorithm 1 and Algorithm 2, respectively.

G VARIANCE MOMENTUM METHODS

In 2018, a variant of Polyak’s HB momentum called aggregated momentum (Lucas et al., 2018)
was proposed. Its objective is to enhance stability while also offering convergence advantages.
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Algorithm 1: PLMS step with HB momentum
input: x̄n (previous result), δ (step size),
{ei}i<n (evaluation buffer), r (method order),
vn (previous velocity) ;

en = ϵ̄σ(x̄n) ;
c = min(r, n) ;
if c == 1 then
ê = en ;

else if c == 2 then
ê = (3en − en−1)/2 ;

else if c == 3 then
ê = (23en − 16en−1 + 5en−2)/12 ;

else
ê = (55en − 59en−1 + 37en−3 − 9en−4)/24 ;

vn+1 = (1− β)vn + βê;
Result: x̄n + δvn+1

Algorithm 2: GHVB step
input: x̄n (previous result), δ (step size), β (damping parameter)
{vi}i≤n (evaluation buffer), r (method order), ;
vn+1 = (1− β)vn + βϵ̄σ(x̄n) ;
c = min(r, n) ;
if c == 1 then
ê = vn+1 ;

else if c == 2 then
ê = ((2 + β)vn+1 − (2− β)vn)/2β ;

else if c == 3 then
ê = ((18 + 5β)vn+1 − (24− 8β)vn

+(6− β)vn−1)/12β ;
else if c == 4 then
ê = ((46 + 9β)vn+1 − (78− 19β)vn

+(42− 5β)vn−1 − (10− β)vn−2)/24β ;
else
ê = ((1650 + 251β)vn+1 − (3420− 646β)vn

+(2880− 264β)vn−1 − (1380− 106β)vn−2

+(270− 19β)vn−3)/720β ;
Result: x̄n + δê

This modification introduces multiple velocities, denoted by v
(i)
n , each associated with its specific

damping coefficient β(i).

v
(i)
n+1 = (1− β(i))v(i)n + β(i)f(xn), xn+1 = xn + δ

K∑
i=1

w(i)v
(i)
n+1 (58)

Nesterov’s momentum (Nesterov, 1983) is one version of the classic momentum that can also be
applied to diffusion sampling processes to improve stability. It can be written as follows:

yn+1 = xn + δβf(xn), xn+1 = yn+1 + (1− β)(yn+1 − yn) (59)

In fact, Nesterov’s momentum can be obtained from aggregated momentum by considering the
following:

v
(1)
n+1 = (1− β)v(1)n + βf(xn), v

(2)
n+1 = f(xn),

xn+1 = xn + δ((1− β)v
(1)
n+1 + βv

(2)
n+1). (60)

The stability regions of Nesterov’s momentum when applied to the Euler method and high-order
Adams-Bashforth methods are illustrated in Figures 15a through 15d. Observe that the stability
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regions of methods with Nesterov’s momentum become larger in a similar manner to those with
Polyak’s HB momentum. However, the enlargement due to Nesterov’s momentum is more pro-
nounced in the vertical direction, while the Polyak’s HB momentum’s enlargement is more horizon-
tal in nature. (See Figures 14b and 14d) The differences in the shapes of the stability regions suggest
one type of momentum is more suitable to certain ODE problems than the other.
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Figure 15: Comparison of stability regions for different methods with different levels of Nesterov’s
momentum.

While generalizing the aggregated momentum method to higher-order methods is possible, it is no
longer as straightforward as it is with the HB method. As an example, we will consider the 2nd-order
generalization of Nesterov’s momentum method.

We begin by noting that (β + (1− β)∆)vn+1 = βf(xn). Our goal is to find polynomials B and C
such that

∆xn+1 = δ(B(∆)vn+1 + C(∆)f(xn)). (61)

Multiplying both sides of the equation by (β + (1− β)∆), we get

(β + (1− β)∆)∆xn+1 = δ(βB(∆)f(xn) + (β + (1− β)∆)C(∆)f(xn)). (62)

Replace the left side with the first two terms from Equation 13, we obtain

δ

(
β +

2 + β

2
∆

)
f(xn) = δ(βB(∆) + (β + (1− β)∆)C(∆))f(xn). (63)

Let B(∆) = b0 + b1∆ and C(∆) = c0. Then, by balancing the coefficients of ∆ on both sides, we
have 1 = b0 + c0 and 2+β

2 = βb1 + (1− β)c0. We can now write the final formulation as follows:

xn+1 = xn + δ(b0vn+1 + b1(vn+1 − vn) + c0f(xn)). (64)

This suggests that there are countless different ways to expand the stability region of a numerical
method, which offer many new research opportunities.

H ORDER OF CONVERGENCE

When solving ODEs numerically, it is important to consider the accuracy of the method used. One
way to measure accuracy is by considering the order method’s of convergence of the. Suppose we
have a numerical method of the form

A(E)xn = δB(E)f(xn), (65)

where A(E) = a0 + a1E + a2E
2 + ...+ asE

s and B(E) = b0 + b1E + ...+ bsE
s. The method is

said to be of pth order if and only if, for all sufficiently smooth functions x, we have that

s∑
m=0

amx(σ −mδ)− δ

s∑
m=0

bmx′(σ −mδ) = O(δp+1), (66)

where x′ denotes the derivative of x.
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To derive the order of convergence, we use Taylor expansion for both x and x′, yielding

L.H.S. =
s∑

m=0

am

∞∑
k=0

(−mδ)k

k!
x(k)(σ)− δ

s∑
m=0

bm

∞∑
k=0

(−mδ)k

k!
x(k+1)(σ)

=

∞∑
k=0

(
s∑

m=0

am
(−mδ)k

k!

)
x(k)(σ)− δ

∞∑
k=0

(
s∑

m=0

bm
(−mδ)k

k!

)
x(k+1)(σ)

=

∞∑
k=0

(
s∑

m=0

am
(−mδ)k

k!

)
x(k)(σ) +

∞∑
k=1

(
s∑

m=0

bm
mk−1(−δ)k

(k − 1)!

)
xk(σ)

=

s∑
m=0

am +

∞∑
k=1

(
s∑

m=0

am
mk

k!
+

s∑
m=0

bm
mk−1

(k − 1)!

)
xk(σ)(−δ)k

where x(k)(σ) denotes the kth derivative of x evaluated at σ.

Therefore, the method has pth order of convergence if and only if the coefficients satisfy the condi-
tions given by

s∑
m=0

am = 0,

s∑
m=0

am
mk

k!
+

s∑
m=0

bm
mk−1

(k − 1)!
= 0, k = 0, 1, ..., p. (67)

Now, we discuss the convergence order of any numerical method after HB momentum is applied to
it. An example of such an algorithm is the modified PLMS method, presented in Algorithm 1.

Theorem 1 (Convergence order of numerical methods with HB momentum). Suppose that a pth-
order numerical method has the form xn+1 = xn + δ

∑s
m=0 bmf(xn−m), where p ≥ 1. The

modified method that uses HB momentum can be expressed as follows:

vn+1 = (1− β)vn + β

s∑
m=0

bmf(xn−m), (68)

xn+1 = xn + δvn+1. (69)

It has first-order convergence.

Proof. From the condition given in 67, it follows that
∑s

m=0 bm = 1. We can rewrite these equa-
tions as:

xn+1 − xn − (1− β)(xn − xn−1) = δβ

s∑
m=0

bmf(xn−m). (70)

To estimate the order of the modified method, we evaluate Equation 70 and obtain:
s∑

m=0

am = 1− 1− (1− β)(1− 1) = 0, (71)

s∑
m=0

am
m1

1!
+

s∑
m=0

bm
m0

0!
= 0− 1− (1− β)(1− 2) + β

s∑
m=0

bm

= −β + β = 0. (72)

Therefore, we have shown that the modification to the method has first-order convergence.

Next, we turn our attention to the GHVB method.

Theorem 2 (Convergence order of the GHVB method). The rth-order GHVB (Algorithm 2) has
order of convergence of r.
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Proof. We will use the 2nd-order method as an example. Using Equation 16, we can write an equiv-
alent equation as:

xn+1 − xn − (1− β)(xn − xn−1) = δ

(
2 + β

2
f(xn)−

2− β

2
f(xn−1)

)
. (73)

To estimate the order of the modified method, we evaluate Equation 70 and obtain:
s∑

m=0

am = 1− 1− (1− β)(1− 1) = 0,

s∑
m=0

am
m1

1!
+

s∑
m=0

bm
m0

0!
= 0− 1− (1− β)(1− 2) +

(
2 + β

2
− 2− β

2

)
= 0,

s∑
m=0

am
m2

2!
+

s∑
m=0

bm
m1

1!
=

1

2
(0− 12 − (1− β)(12 − 22)) +

(
2 + β

2
11 − 2− β

2
21
)

=
2− 3β

2
− 2− 3β

2
= 0.

Thus, the method has a convergence order of two. Methods of other orders can be dealt with in a
similar fashion.

I ELABORATION ON THE ORDER OF CONVERGENCE APPROXIMATION

In Appendix H, we explored the theoretical aspects of the order of convergence for numerical meth-
ods. In this section, we will delve into the estimation of the order of convergence specifically for
GHVB in Section 4.2.

To assess the order of convergence, we focus on the error e, referred to as the global truncation
error. This error is quantified by measuring the absolute difference in the latent space between the
numerical solution and an approximate exact solution obtained through 1,000-step DDIM sampling.
The order of convergence for a numerical method is defined as q, where the error e follows the
relationship e = O(δq), with δ representing the step size.

To estimate the order of convergence practically, we adopt a straightforward approach. It involves
selecting two distinct step sizes, denoted as δnew and δold, and computing the corresponding errors
enew and eold. These errors can be approximated using the following formulas:

enew ≈ Cnew(δnew)
q, eold ≈ Cold(δold)

q (74)

Here, we make the assumption that Cnew is approximately equal to Cold. By taking the ratio of enew
to eold, we obtain:

enew

eold
≈
(
δnew

δold

)q

(75)

Consequently, we can estimate the order of convergence, denoted as q, by evaluating the logarithmic
ratio of errors and step sizes:

q ≈ log(enew/eold)

log(δnew/δold)
(76)

In our investigation of GHVB in Section 4.2, we conducted sampling experiments using 20, 40, 80,
160, 320, and 640 steps. This choice of an exponential sequence for the number of steps was inten-
tional, as it allowed us to approximate δnew/δold ≈ 1/2. By doing so, we facilitated the estimation
process. The results, representing the approximated order of convergence for GHVB, are visually
depicted in Figure 12.

J ADDITIONAL QUALITATIVE COMPARISONS ON ARTIFACTS MITIGATION

Figure 1 compares our momentum-based methods, HB and GHVB, with two different diffusion
solver methods, DPM-Solver++ (Lu et al., 2022b) and PLMS4 (Liu et al., 2022a), without mo-
mentum. The number of sampling steps is held constant while varying the guidance scale s to

25



Published as a conference paper at ICLR 2024

intentionally induce divergence artifacts. (Note that the guidance scales that yield such artifacts are
different between diffusion models.) The figure demonstrates that, under the difficult settings of low
step counts and high guidance scales where the baseline methods produce artifacts, our proposed
techniques can successfully eliminate them.

We present additional qualitative results to show the effect of the damping parameter β on the quality
of images generated by methods modified with HB momentum. We use methods of varying orders,
including DPLM-Solver++ (Lu et al., 2022b), UniPC (Zhao et al., 2023), and PLMS4(Liu et al.,
2022a). The diffusion models utilized in our analysis are Realistic Vision v2.0 1, Anything Diffusion
v4.02, Counterfeit Diffusion V2.53, Pastel-Mix4, Deliberate Diffusion5, and Dreamlink Diffusion
V1.06. The results are shown in Figure 16. Notice that stronger momentum (lower β) leads to fewer
and less severe artifacts.

K ADDITIONAL EXPERIMENT ON ADM

We present additional details and results for the ADM experiment in Section 5.2. The primary
objective of this experiment was to provide a quantitative evaluation of class-conditional diffusion
sampling in the context of pixel-based images. The experiment was conducted using the pre-trained
diffusion and classifier model at the following link: 7. The implementation used in our experiment
was obtained directly from the official DPM-Solver GitHub repository 8.

To enhance the capabilities of DPM-Solver++, we incorporated HB momentum into DPM-Solver++
(just change a few lines of code) and implemented the splitting method LTSP both with and without
HB momentum into the DPM-Solver code for comparative purposes. The experiment was done on
four NVIDIA RTX A4000 GPUs and a 24-core AMD Threadripper 3960x CPU.

The results of the experiment, as measured by the full FID score, are presented in Table 1 (as well as
in Figure 9). Our technique is highlighted in grey within the table, while the best FID score for each
number of steps is indicated in bold. Additionally, Figure 17 showcases sample images from this
experiment. As this experiment uses pixel-based diffusion models, the observed divergence artifacts
differ from those in latent-based diffusion models. Specifically, the artifacts may display excessive
brightness or darkness caused by pixel values nearing the maximum or minimum thresholds.

Number of Steps
Method 10 12 14 16 18 20 25 30

DPM-Solver++ 66.77 46.77 34.56 26.97 21.87 19.48 16.31 15.63
DPM-Solver++ w/ HB 0.8 47.10 33.65 25.61 21.42 18.94 17.76 15.98 15.53
LTSP [PLMS4, PLMS1] 45.32 34.08 26.58 21.54 18.54 17.15 15.79 15.51
LTSP [PLMS4, GHVB 0.8] 37.43 29.74 23.60 20.23 18.46 17.14 16.07 15.79

Table 1: FID scores on classifier-guidance ADM models

1https://huggingface.co/SG161222/Realistic_Vision_V2.0
2https://huggingface.co/andite/anything-v4.0
3https://huggingface.co/gsdf/Counterfeit-V2.5
4https://huggingface.co/andite/pastel-mix
5https://huggingface.co/XpucT/Deliberate
6https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0
7https://github.com/openai/guided-diffusion
8https://github.com/LuChengTHU/dpm-solver
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Without
Momentum

With HB 0.8
(Ours)

With HB 0.5
(Ours)

Realistic Vision V2.0. (s = 16) Anything V4.0 (s = 20) Deliberate (s = 16)

(a) DPM-Solver++(2M) using 15 steps and guidance scale s. Prompt: “a tiny cute bunny”

Without
Momentum

With HB 0.8
(Ours)

With HB 0.5
(Ours)

Anything V4.0 (s = 18) Pastel-mix V4.0 (s = 14) Dreamlike V1.0 (s = 10)

(b) UniPC using 8 steps and guidance scale s. Prompt: “a cute kitty”

Without
Momentum

With HB 0.8
(Ours)

With HB 0.5
(Ours)

Counterfeit V2.5 (s = 7) Dreamlike V1.0 (s = 7) Deliberate (s = 7)

(c) PLMS4 using 15 steps and guidance scale s. Prompt: “cute humanoid red panda”

Figure 16: Impact of different damping coefficients β on HB momentum for 2nd-order DPM-
Solver++(2M) (Lu et al., 2022b), 3rd-order UniPC (Zhao et al., 2023), and 4th-order (Liu et al.,
2022a). Incorporating higher momentum values (lower β) helps mitigate the occurrence of diver-
gence artifacts.
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DPM-Solver++ DPM-Solver++ LTSP LTSP
with HB 0.8 [PLMS4, PLMS1] [PLMS4, GHVB 0.8]

(Ours) (Ours)

Figure 17: Samples from DPM-Solver++ (Lu et al., 2022b) and LTSP (Wizadwongsa & Suwa-
janakorn, 2023) with and without momentum, employing classifier guidance diffusion with a guid-
ance scale of 10 and 20 sampling steps.
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L ADDITIONAL EXPERIMENT ON DIT

This section supplements the experiment on DiT in Section 5.3 and reports results for two additional
baselines: DPM-Solver++ (Lu et al., 2022b) and LTSP4 (Wizadwongsa & Suwajanakorn, 2023).
The code implementation and pre-trained DiT model were obtained directly from the official GitHub
repository9. The experiment was done on four NVIDIA GeForce RTX 2080 Ti GPUs and a 24-core
AMD Threadripper 3960x CPU.

Table 2 presents the full results including those of the original baselines. Our technique is high-
lighted in grey in the table, and the best FID score for each number of steps is in bold. We also
include the improved Precision and Recall metrics (Kynkäänniemi et al., 2019) in Tables 3 and 4,
respectively, where higher values indicate superior performance. Generated samples for different
sampling methods are shown in Figure 18. Our methods produce comparable FID scores to LTSP4
and PLMS4 at 25 steps, but outperform all baselines for lower 6-20 steps.

Number of Steps
Method 6 7 8 9 10 15 20 25

DDIM 55.35 36.97 26.06 19.47 15.02 8.04 6.52 5.94
DPM-Solver++ 18.60 10.80 7.93 6.72 6.13 5.49 5.30 5.24
LTSP4 [PLMS4, PLMS1] 13.33 9.01 7.49 6.55 6.09 5.32 5.20 5.17
PLMS4 13.10 8.94 7.31 6.51 6.03 5.32 5.21 5.17
PLMS4 w/ HB 0.8 14.35 9.25 7.46 6.68 6.19 5.47 5.29 5.24
PLMS4 w/ HB 0.9 11.66 8.16 6.69 6.21 5.78 5.29 5.19 5.17
GHVB 3.8 10.99 7.93 6.63 6.19 5.80 5.31 5.22 5.18
GHVB 3.9 11.67 8.29 6.83 6.30 5.87 5.31 5.22 5.18

Table 2: FID scores on DiT-XL

Number of Steps
Method 6 8 10 20

DDIM 0.36 0.56 0.67 0.79
DPM-Solver++ 0.63 0.75 0.79 0.81
LTSP4 0.67 0.74 0.78 0.81
PLMS4 0.68 0.75 0.78 0.81
PLMS4 w/ HB 0.8 0.68 0.77 0.79 0.81
PLMS4 w/ HB 0.9 0.70 0.77 0.79 0.81
GHVB3.8 0.71 0.77 0.79 0.81
GHVB3.9 0.70 0.76 0.78 0.81

Table 3: Precision on DiT-XL

Number of Steps
Method 6 8 10 20

DDIM 0.60 0.64 0.65 0.67
DPM-Solver++ 0.67 0.68 0.68 0.68
LTSP4 0.70 0.70 0.69 0.68
PLMS4 0.70 0.70 0.69 0.68
PLMS4 w/ HB 0.8 0.68 0.68 0.67 0.68
PLMS4 w/ HB 0.9 0.69 0.69 0.67 0.68
GHVB3.8 0.69 0.70 0.68 0.68
GHVB3.9 0.70 0.70 0.69 0.68

Table 4: Recall on DiT-XL

M ADDITIONAL EXPERIMENT ON TEXT-TO-IMAGE GENERATION

To provide a more comprehensive evaluation of the methods discussed in Section 5.1, we utilize a
fine-tuned variant of Stable-Diffusion called Anything V4. We consider full-path samples generated
by PLMS4 (Liu et al., 2022a) at 1,000 steps as reference solutions. The performance of each method
is evaluated by measuring the image similarity between the generated samples produced using a
reduced number of steps and the reference samples. Importantly, both sets of samples originate
from identical initial noise maps. This comparison allows us to assess how well the solution from
each configuration matches the full-path reference solution.

9https://github.com/facebookresearch/DiT
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Number of steps 6 8 10 15 25

PLMS4
(Liu et al., 2022a)

PLMS4 w/ HB 0.9

GHVB3.8

PLMS4
(Liu et al., 2022a)

PLMS4 w/ HB 0.9

GHVB3.8

Figure 18: Comparison of samples generated from DiT-XL with a guidance scale of 3, using differ-
ent sampling methods and sampling steps.

We measure image similarity using Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018) and the L2 norm in the latent space, as discussed in Section 4.2. The outcomes of these
analyses are visually presented in Figure 19. We also include the results from other metrics, e.g.,
Structural Similarity Index (SSIM) (Wang et al., 2004) and High-Frequency Error Norm (HFEN)
(Ravishankar & Bresler, 2010), in Figure 20.
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Figure 19: Comparison of LPIPS and L2 distance across different sampling methods, with and
without using our momentum techniques. The experimental setting is similar to that in Section 5.1.
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Figure 20: Comparison of SSIM (higher is better) and HFNE (lower is better) distance across differ-
ent sampling methods, with and without using our momentum techniques. The experimental setting
is similar to that in Figure 11.

Discrepancies between the numerical solutions and the 1,000-step reference solution can arise from
two primary factors: the accuracy of the employed method and the presence of divergence arti-
facts. Notably, in this particular context, divergence artifacts tend to outweigh errors stemming from
method accuracy. Consequently, higher-order methods exhibit greater discrepancies in both LPIPS
and L2 similarity measurements. It is worth highlighting that our techniques demonstrate a remark-
able ability to minimize deviations from the reference solution in the majority of cases. Furthermore,
Figure 19 consistently demonstrates the superiority of our techniques compared to other methods,
as evidenced by the lower LPIPS and L2 similarity scores. These results indicate that our techniques
effectively both reduce divergence artifacts and handle errors related to method accuracy.

N EXPERIMENT ON MDT

In this section, we conduct an additional experiment using Masked Diffusion Transformer (MDT)
Gao et al. (2023) for classifier-free guidance diffusion sampling. The code implementation and
MDT model pre-trained on ImageNet256 (Russakovsky et al., 2015) were obtained directly from
the official GitHub repository10. The experiment was done on two NVIDIA GeForce RTX 3090
GPUs. Similar to the experiment on DiT-XL (Peebles & Xie, 2022) in Section 5.3, we compare FID
scores of numerical solvers with our proposed momentum techniques to the baseline of PLMS4 (Liu
et al., 2022a) and DDIM (Zhang et al., 2023) using 50,000 generated samples.

As presented in Table 5, both HB and GHVB momentum can mitigate artifacts and lead to improved
FID scores compared to PLMS4. Note that using HB 0.8 yields worse FID scores compared to using
PLMS4 alone because of its 1st-order convergence property. Similar to Appendix L, we also include
the improved Precision and Recall metrics (Kynkäänniemi et al., 2019) in Tables 6 and 7. This
experiment further highlights that our methods work across various recent diffusion models.

Number of Steps
Method 6 7 8 9 10 15 20 25

DDIM 56.53 36.79 24.17 17.13 12.62 5.11 3.40 2.77
PLMS4 11.10 6.44 5.45 4.30 3.89 2.53 2.15 2.01
PLMS4 w/ HB 0.8 13.36 7.19 5.03 4.03 3.50 2.42 2.12 2.03
PLMS4 w/ HB 0.9 10.48 5.77 4.38 3.65 3.26 2.28 2.03 1.96
GHVB 3.8 9.67 5.60 4.48 3.80 3.39 2.36 2.07 1.98
GHVB 3.9 10.18 5.88 4.83 3.98 3.58 2.43 2.10 1.99

Table 5: FID scores on MDT

10https://github.com/sail-sg/MDT
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Number of Steps
Method 6 8 10 20

DDIM 0.33 0.53 0.64 0.76
PLMS4 0.66 0.71 0.73 0.76
PLMS4 w/ HB 0.8 0.64 0.72 0.74 0.77
PLMS4 w/ HB 0.9 0.66 0.73 0.74 0.77
GHVB3.8 0.67 0.72 0.74 0.77
GHVB3.9 0.67 0.71 0.73 0.77

Table 6: Precision on MDT

Number of Steps
Method 6 8 10 20

DDIM 0.50 0.54 0.57 0.63
PLMS4 0.62 0.65 0.66 0.66
PLMS4 w/ HB 0.8 0.59 0.63 0.64 0.64
PLMS4 w/ HB 0.9 0.61 0.64 0.65 0.65
GHVB3.8 0.62 0.65 0.66 0.65
GHVB3.9 0.62 0.65 0.66 0.66

Table 7: Recall on MDT

O EXPERIMENT ON PERSONALIZED IMAGE GENERATION

This section evaluates our methods on personalized image generation, a task which involves gen-
erating images with specific concepts, styles, or following certain compositions given by reference
images. The sampling process in this task is significantly more challenging to speed up due to a
greater incidence of artifacts compared to the regular diffusion sampling conditioned with only a
text prompt. All experiments were conducted on four NVIDIA RTX A4000 GPUs.

O.1 FACE-IDENTITY PRESERVING IMAGE GENERATION

This experiment focuses on generating images of people’s faces with certain face orientations, speci-
fied by face key points. We fine-tuned Stable Diffusion (Rombach et al., 2022) using 6 rank-1 LoRAs
(Hu et al., 2021) across six facial identities, which was implemented in the GitHub repository11. We
used a face dataset accessible at Kaggle12. For each identity in the dataset, the corresponding LoRA
was trained with 10 randomly selected images using Pivotal Tuning (Roich et al., 2022), consisting
of Textual Inversion (Gal et al., 2022) followed by LoRA DreamBooth (Ruiz et al., 2022) training,
for 1,000 steps. Note that we employed Stable Diffusion 1.513 as the base model. Our proposed HB
methods were applied to PLMS4 (Liu et al., 2022a) and DPM-Solver++ (Lu et al., 2022b), which
also served as baselines for our comparison.

At test time, we utilized a variant of Stable Diffusion named DreamShaper14 and applied the 6
LoRAs with fixed LoRA scaling parameters α = 1.0 and α = 0.4 for the text encoder and the UNet
model, respectively, resulting in 6 different models. The sampling process is further conditioned
with the outputs from the ControlNet V1.115 trained on a human pose estimation task. Subsequently,
we prepared 25 sets of inputs, i.e., text prompt, face key points, random seed, and a fixed guidance
scale of 15, and generated 25 converged, reference results by applying 1,000-step PLMS4 sampling
to each of the 6 augmented models, resulting in a total of 150 target images. For evaluation, we
calculated the mean LPIPS (Zhang et al., 2018) and L2 distance between these images latent and
those generated by each ODE solver when provided with the same inputs.

For each numerical solver employing momentum number β, we conducted a grid search to find the
optimal value in the range [0.1, . . . , 0.9] that yields the least number of sampling steps such that
the LPIPS is comparable to that of 200-step DDIM Zhang et al. (2023). As shown in Figure 21, the
results indicate that, with the same number of sampling steps, PLMS4 with HB and GHVB generated
higher-quality images than vanilla PLMS4. This implies that those with momentum can achieve the
target image quality with fewer steps. In particular, our two methods reached the LPIPS threshold set
by the 200-step DDIM method with 16.53% and 25.38% less sampling time, respectively, compared
to PLMS4 without momentum. A similar result can be observed when comparing DPM-Solver++
and its HB momentum variant, resulting in 18.22% less sampling time. Figures 23 and 24 provide
examples of the generated images.

11https://github.com/cloneofsimo/lora
12https://www.kaggle.com/datasets/vishesh1412/celebrity-face-image-dataset
13https://huggingface.co/runwayml/stable-diffusion-v1-5
14https://huggingface.co/Lykon/DreamShaper
15https://huggingface.co/lllyasviel/control_v11p_sd15_openpose
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Figure 21: Comparison of LPIPS and L2 distance of (a) PLMS4 with and without momentum, (b)
DPM-Solver++ with and without momentum, and (c) GHVB in the face-identity preserving image
generation experiment.

O.2 REFERENCE-ONLY CONTROL GENERATION

We evaluate our techniques on the reference-only control pipeline implemented for Stable Diffusion
in the following GitHub repository16. This pipeline conditions the sampling process on a text prompt
and a reference image, enabling content and style transfer of the reference image via attention mech-
anism and feature rescaling proposed in AdaIN (Huang & Belongie, 2017).

We utilize a fine-tuned Stable Diffusion model named Anything V3.017 to generate Japanese
animation-style images. Specifically, we prepared 150 sets of inputs, i.e., text prompt, reference
image, random seed, and a fixed guidance scale of 7.5 and style fidelity of 1.0 (see 16), and gener-
ated the target results by using a 1,000-step PLMS4 (Liu et al., 2022a). For evaluation, we calculated
the mean LPIPS (Zhang et al., 2018) and L2 distance between the psudo-converged result and those
generated by numerical solvers when provided with the same inputs.

The results in Figure 22 suggest that PLMS4 with HB and GHVB generated higher-quality images
than the regular PLMS4. Specifically, our two methods reached the LPIPS threshold set by the 150-
step DDIM method with 32.40% and 42.92% less sampling time, respectively, compared to PLMS4
without momentum. Figure 25 provides examples of the generated images.
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Figure 22: Comparison of LPIPS and L2 distance of (a) PLMS4 with and without momentum and
(b) GHVB in the reference-only control experiment.

16https://github.com/huggingface/diffusers/blob/main/examples/community/
stable_diffusion_reference.py

17https://huggingface.co/Linaqruf/anything-v3.0
18https://huggingface.co/datasets/yuvalkirstain/beautiful_interesting_

spectacular_photo_anime_25000
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Number of steps 30 70 110 150 190 1,000 steps PLMS4

(a) PLMS4

(b) with HB 3.8

(c) GHVB3.1

(a) Prompt: “a close up image of 〈s1〉 in a conference”
Number of steps 30 70 110 150 190 1,000 steps PLMS4

(a) PLMS4

(b) with HB 3.8

(c) GHVB3.1

(b) Prompt: “a close up image of 〈s1〉 under a tree”
Number of steps 30 70 110 150 190 1,000 steps PLMS4

(a) PLMS4

(b) with HB 3.8

(c) GHVB3.1

(c) Prompt: “a close up image of 〈s1〉 in a kitchen”

Figure 23: Comparison of samples generated from a fine-tuned Stable Diffusion model called
DreamShaper with (a) PLMS4 (Liu et al., 2022a), (b) PLMS4 with HB 0.8, and (c) GHVB3.1
using different number of sampling steps and guidance scale s = 15.
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(a) DPM-Solver++

(b) with HB 0.9

(a) Prompt: “a close up image of 〈s1〉 in a conference”
Number of steps 20 30 50 70 110 1,000 steps PLMS4

(a) DPM-Solver++

(b) with HB 0.9

(b) Prompt: “a close up image of 〈s1〉 under a tree”
Number of steps 20 30 50 70 110 1,000 steps PLMS4

(a) DPM-Solver++

(b) with HB 0.9

(c) Prompt: “a close up image of 〈s1〉 in a forest”

Figure 24: Comparison of samples generated from a fine-tuned Stable Diffusion model called
DreamShaper with (a) DPM-Solver++ (Lu et al., 2022b) and (b) DPM-Solver++ with HB 0.9 using
different number of sampling steps and guidance scale s = 15.
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(a) PLMS4
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(b) with HB 0.8
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1,000 steps PLMS4

(c) GHVB3.1

Number of steps 30 70 110 150 190 Reference image

(a) PLMS4
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Figure 25: Comparison of samples generated from a fine-tuned Stable Diffusion model named Any-
thing V3.0 in reference-only control pipeline with (a) PLMS4 (Liu et al., 2022a), (b) PLMS4 with
HB 0.8, and (c) GHVB3.1 using different number of sampling steps and guidance scale s = 12.
Reference images are available on Hugging Face18. Prompt: “1girl”
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P FACTORS CONTRIBUTING TO ARTIFACT OCCURRENCE IN FINE-TUNED
DIFFUSION MODELS

We investigate three factors that influence the occurrence of divergence artifacts in diffusion sam-
pling: number of steps, guidance scale, and choice of diffusion models. We present results obtained
from Stable Diffusion 1.5 (Figure 27) and other models fine-tuned to generate images in specific
styles: Midjourney (Figure 29), Japanese animation (Figure 31), and photorealistic (Figure 33).

Our observations reveal that insufficient numbers of steps and high guidance scales positively cor-
relate with the presence of divergence artifacts in the generated samples. Fine-tuned models exhibit
a higher sensitivity to these factors, resulting in a greater incidence of artifacts compared to Stable
Diffusion 1.5. Consistent with the findings presented in Section 3.2, reducing the number of steps
increases the likelihood of artifact occurrence. Furthermore, increasing the guidance scale amplifies
the magnitude of eigenvalues, contributing to the presence of artifacts.

The choice of diffusion model also impacts artifact occurrence. Stable Diffusion 1.5 produces the
fewest artifacts compared to the fine-tuned models. Among these fine-tuned models, Openjourney,
which yields results similar to those obtained from Stable Diffusion 1.5, exhibits the lowest occur-
rence of artifacts. This suggests that extensive changes to the model may alter the eigenvalues and
lead to an increased presence of artifacts.

Additionally, we present the results of our techniques for mitigating divergence artifacts in Figure
28, 30, 32, and 34. The parameter β that offers the optimal tradeoff between reducing artifacts and
maintaining accuracy depends on the chosen guidance scale and diffusion model.

Q ABLATION STUDY ON HB MOMENTUM

This section provides a comprehensive analysis of the convergence speed of Polyak’s Heavy Ball
(HB) momentum, which can be incorporated into existing diffusion sampling methods by modifying
a few lines of code. Specifically, we compare the results obtained from several methods with and
without HB momentum with the targets generated from the 1,000-step DDIM, using LPIPS in the
image space and L2 in the latent space. We then estimate their orders of convergence, as explained
in Appendix I. The results are visually presented in Figure 26.

In contrast to the interpolation-like behavior observed in Figure 12 for GHVB, we observe that
the use of HB momentum leads to an increase in both the LPIPS score and the L2 distance when
selecting values of β that are less than 1. This is even worse than the 1st-order method DDIM
when β is below 0.7. These findings indicate a deviation from the desired convergence behavior,
highlighting a potential decrease in solution accuracy, even though HB momentum has been shown
to successfully mitigate divergence artifacts.

Additionally, we find that the numerical orders of convergence also tend to approach the same value.
These observations align with our analysis in Theorem 1 of Appendix H, indicating that when β
deviates from 1, the employed approach exhibits 1st-order convergence and is unable to achieve
high-order convergence. These conclusions emphasize the importance of carefully considering the
choice of β in order to strike a balance between convergence speed and solution quality. Further
details and insights into the performance of the HB momentum approach can be obtained from
Figure 26, enhancing our understanding of its behavior within the context of the studied problem.
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Figure 26: Comparison of LPIPS, mean L2 distance, and order of convergence of HB when using
different damping coefficients. Statistical means are averaged from 160 initial latent codes.
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Figure 27: Comparison of samples generated from Stable Diffusion 1.5 19using PLMS4 (Liu et al.,
2022a) with different sampling steps and guidance scale.
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Figure 28: Comparison of samples generated from Stable Diffusion 1.5 using PLMS4 with HB β
under various sampling steps and guidance scale s. Specifically, we employ β = 0.9 for s = 7.5,
β = 0.8 for s = 15, and β = 0.6 for s = 22.5 to account for the varying degrees of artifact
manifestation associated with each guidance scale.

19https://huggingface.co/runwayml/stable-diffusion-v1-5
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Figure 29: Comparison of samples generated from Openjourney 20using PLMS4 (Liu et al., 2022a)
with different sampling steps and guidance scale.
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Figure 30: Comparison of samples generated from Openjourney using PLMS4 with HB β under
various sampling steps and guidance scale s. Specifically, we employ β = 0.8 for s = 7.5, β = 0.6
for s = 15, and β = 0.6 for s = 22.5 to account for the varying degrees of artifact manifestation
associated with each guidance scale.

20https://huggingface.co/prompthero/openjourney
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Figure 31: Comparison of samples generated from Waifu Diffusion V1.4 21using PLMS4 (Liu et al.,
2022a) with different sampling steps and guidance scale.
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Figure 32: Comparison of samples generated from Waifu Diffusion V1.4 using PLMS4 with HB β
under various sampling steps and guidance scale s. Specifically, we employ β = 0.8 for s = 7.5,
β = 0.7 for s = 15, and β = 0.6 for s = 22.5 to account for the varying degrees of artifact
manifestation associated with each guidance scale.

21https://huggingface.co/hakurei/waifu-diffusion
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Figure 33: Comparison of samples generated from Dreamlike Photoreal 2.0 22using PLMS4 (Liu
et al., 2022a) with different sampling steps and guidance scale.
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Figure 34: Comparison of samples generated from Dreamlike Photoreal V2.0 using PLMS4 with
HB β under various sampling steps and guidance scale s. Specifically, we employ β = 0.7 for
s = 7.5, β = 0.6 for s = 15, and β = 0.6 for s = 22.5 to account for the varying degrees of artifact
manifestation associated with each guidance scale.

22https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0
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Figure 35: Comparison of samples generated from Stable Diffusion 1.5 using GHVB(3.0+β) under
various sampling steps and guidance scale s. Specifically, we employ β = 0.5 for s = 7.5, β = 0.2
for s = 15, and β = 0.1 for s = 22.5 to account for the varying degrees of artifact manifestation
associated with each guidance scale.

R ABLATION STUDY ON NESTEROV MOMENTUM

In Appendix G, we investigated the potential of incorporating different types of momentum, such
as Nesterov’s momentum, into existing diffusion sampling methods to mitigate divergence artifacts.
Similar to the analysis conducted in Section 5.4 and Appendix Q, the primary objective of this
section is to explore the convergence speed of Nesterov’s momentum by comparing two key metrics:
LPIPS in the image space and L2 in the latent space.

Figure 36 presents the results, which reveal intriguing parallels with the behavior of HB momentum
observed in Figure 26. When Nesterov’s momentum is applied to the PLMS2 method, the solution
accuracy progressively diminishes as the value of β deviates from 1, as indicated by the correspond-
ing increase in both LPIPS and L2 metrics. Notably, the model’s accuracy drops below that of the
DDIM when β falls below 0.5. Qualitative comparisons of these two types of momentum are shown
in Figure 37.

Furthermore, our analysis of the order of convergence demonstrates that Nesterov’s momentum does
not achieve a high order of convergence, similar to HB momentum. These findings emphasize the
importance of carefully considering the choice of momentum method, along with the specific values
assigned to β, in order to strike an optimal balance between convergence speed and solution quality.

S ABLATION STUDY ON MAGNITUDE SCORE

In this section, our objective is to provide further verification and justification of the experiment con-
ducted in Section 5.1 by exploring various parameter settings for the magnitude score and assessing
their effects on the selected model.
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Figure 36: Comparison of LPIPS, mean L2 distance, and order of convergence of Nesterov’s mo-
mentum when using different damping coefficients. Statistical means are averaged from 160 initial
latent codes.

S.1 RESULTS WITH ALTERNATIVE PARAMETER SETTINGS

To gain deeper insights into the integration of momentum into sampling methods, we analyze the
results of the magnitude scores depicted in Figure 7 (Section 5.1). This analysis involves varying
the threshold τ and the kernel size k for max-pooling in the calculation of the magnitude score. By
investigating different parameter settings, we aim to validate the outcomes of the experiment and
uncover the scaling impact of the magnitude score. The results, shown in Figure 38, highlight the
influence of threshold τ and kernel size k on the magnitude score. It is important to note that while
extreme values of τ or k may introduce ambiguity in interpreting the outcomes, the overall observed
trends remain consistent.

S.2 RESULTS ON ALTERNATIVE MODELS

In this section, we present the findings from our analysis conducted on alternative diffusion models,
namely Stable Diffusion 1.5, Waifu Diffusion V1.4, and Dreamlike Photoreal 2.0. The primary aim
of this investigation is to assess the impact of different models on the magnitude score and determine
whether the trends identified in Section 5.1 hold across diverse model architectures.

For this analysis, we employed the same magnitude score parameters as in Section 5.1. The results
of our examination are illustrated in Figure 39, which showcases the magnitude scores for each
model. One important observation is that the change in model architecture only affects the scale of
the magnitude score, while the overall trend remains consistent across all models.

T STATISTICAL REPORTS

In this section, we present detailed statistical reports for the experiments conducted in Section 5.1
and Section 4.2. These reports provide detailed information, including mean values and their corre-
sponding 95% confidence intervals, to offer a thorough understanding of the experimental results.

Firstly, we focus on the experiment related to mitigating the magnitude score in Section 5.1. The
results depicted in Figure 7 are presented in Table 8. Additionally, the outcomes illustrated in Figure
8 are reported in Table 9. For the ablation study of GHVB in Section 4.2, we provide the results
shown in Figure 11 in Table 10 and report the findings in Figure 12 in Table 11.

Furthermore, we include a runtime comparison of each sampling method in Table 12, detailing the
wall clock time required for each method. The results indicate that all the methods exhibit similar
sampling times, ensuring a fair comparison across the different approaches.
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(a) Prompt: ”A beautiful illustration of a schoolgirl riding her bicycle to school in a small village”
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(c) Prompt: ”A painting of an old European castle in a deep forest with a Blood Moon in the background”

Figure 37: Comparison between two variations of momentum: (a) Polyak’s Heavy Ball (HB) and
(b) Nesterov (NT). These momentum variations are applied to PLMS4 (Liu et al., 2022a) on a fine-
tuned Stable Diffusion model called Anything V4 with 15 sampling steps and a guidance scale of
15. Both variations effectively reduce artifacts. However, the choice of the effectiveness parameter
β might differ due to the distinct shapes of their respective stability regions.

44



Published as a conference paper at ICLR 2024

Threshold τ = 0 τ = 1.5 τ = 3.0 τ = 10.0

kernel size
k = 1

10 20 30 40 50 60
Number of Steps

1.6

1.7

1.8

1.9

2.0

2.1

2.2

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

1.2

1.4

1.6

1.8

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ag

ni
tu

de
 sc

or
e

1e 3

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

kernel size
k = 4

10 20 30 40 50 60
Number of Steps

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

1.0

1.5

2.0

2.5

3.0

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

M
ag

ni
tu

de
 sc

or
e

1e 2

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

kernel size
k = 64

10 20 30 40 50 60
Number of Steps

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
M

ag
ni

tu
de

 sc
or

e
PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

10 20 30 40 50 60
Number of Steps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ag

ni
tu

de
 sc

or
e

PLMS4
PLMS4 w/ HB 0.9
PLMS4 w/ HB 0.8
DPM-Solver++
DPM-Solver++ w/ HB 0.9
DPM-Solver++ w/ HB 0.8

Figure 38: Comparison of magnitude scores on Anything V4 on different combinations of threshold
τ and kernel size k used in max-pooling. #samples = 160
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Figure 39: Comparison of magnitude scores in different diffusion models. #samples = 160

Number of steps
Method 10 15 20 25 30 60

DPM 1.113 ± .090 1.369 ± .102 1.087 ± .083 0.972 ± .075 0.919 ± .068 0.869 ± .067
DPM w/ HB 0.8 0.974 ± .078 1.057 ± .079 0.916 ± .072 0.857 ± .070 0.831 ± .067 0.834 ± .065
DPM w/ HB 0.9 1.043 ± .082 1.186 ± .088 0.986 ± .075 0.921 ± .073 0.867 ± .068 0.844 ± .065
PLMS4 w/ HB 0.8 1.958 ± .116 1.469 ± .105 1.213 ± .097 1.060 ± .087 0.963 ± .076 0.838 ± .063
PLMS4 w/ HB 0.9 2.499 ± .118 1.888 ± .112 1.534 ± .112 1.270 ± .104 1.116 ± .091 0.887 ± .066
PLMS4 3.149 ± .116 2.460 ± .116 1.911 ± .115 1.597 ± .116 1.372 ± .106 0.957 ± .075

Table 8: 95% confidence intervals for the magnitude scores of HB (Figure 7)
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Number of steps
Method 10 15 20 25 30 60

DDIM 0.844 ± .076 0.765 ± .064 0.728 ± .060 0.744 ± .063 0.761 ± .062 0.778 ± .062
GHVB2.1 1.238 ± .097 0.924 ± .072 0.832 ± .067 0.820 ± .066 0.825 ± .066 0.829 ± .064
GHVB2.3 1.291 ± .102 0.952 ± .072 0.872 ± .070 0.836 ± .064 0.831 ± .066 0.828 ± .062
GHVB2.5 1.392 ± .103 1.016 ± .081 0.907 ± .071 0.851 ± .069 0.842 ± .065 0.845 ± .063
GHVB2.7 1.514 ± .105 1.095 ± .085 0.968 ± .077 0.877 ± .068 0.864 ± .067 0.826 ± .063
GHVB2.9 1.673 ± .107 1.203 ± .090 1.023 ± .079 0.934 ± .075 0.901 ± .071 0.835 ± .063
PLMS4 3.149 ± .116 2.460 ± .116 1.911 ± .115 1.597 ± .116 1.372 ± .106 0.957 ± .075

Table 9: 95% confidence intervals for the magnitude scores of GHVB (Figure 8)

Number of steps
Method 10 20 40 80 160 320 640

DDIM 0.584 ± .034 0.409 ± .029 0.304 ± .029 0.210 ± .026 0.139 ± .022 0.085 ± .014 0.048 ± .009
GHVB1.1 0.592 ± .034 0.406 ± .029 0.295 ± .030 0.189 ± .026 0.113 ± .020 0.054 ± .010 0.019 ± .005
GHVB1.3 0.609 ± .035 0.410 ± .029 0.276 ± .029 0.158 ± .023 0.086 ± .017 0.030 ± .007 0.009 ± .003
GHVB1.5 0.624 ± .036 0.409 ± .029 0.261 ± .029 0.145 ± .023 0.067 ± .014 0.021 ± .005 0.006 ± .002
GHVB1.7 0.645 ± .037 0.411 ± .030 0.254 ± .028 0.133 ± .023 0.053 ± .011 0.016 ± .005 0.004 ± .002
GHVB1.9 0.663 ± .037 0.414 ± .030 0.246 ± .028 0.123 ± .021 0.044 ± .009 0.013 ± .004 0.003 ± .001
PLMS2 0.676 ± .038 0.418 ± .030 0.246 ± .028 0.119 ± .021 0.041 ± .009 0.011 ± .003 0.003 ± .001

Table 10: 95% confidence intervals for L2 norm of GHVB (Figrue 11)

Number of steps (knew)
Method 40 80 160 320 640

GHVB0.5 0.247 ± .030 0.235 ± .029 0.351 ± .045 0.450 ± .057 0.474 ± .057
GHVB1.5 0.550 ± .072 0.717 ± .086 0.922 ± .089 1.337 ± .102 1.519 ± .102
GHVB2.5 0.624 ± .077 1.121 ± .115 1.546 ± .132 1.906 ± .153 1.846 ± .147
GHVB3.5 0.459 ± .063 0.920 ± .107 1.877 ± .170 1.960 ± .147 1.779 ± .163

Table 11: 95% confidence intervals for the numerical orders of convergence of GHVB (Figure 12)

Number of steps
Method 15 30 60

DPM-Solver++ 2.49 4.84 9.54
DPM-Solver++ w/ HB 0.9 2.49 4.84 9.54
PLMS4 2.49 4.84 9.54
PLMS4 w/ HB 0.9 2.46 4.79 9.43
PLMS4 w/ NT 0.9 2.53 4.93 9.70
GHVB3.9 2.50 4.84 9.54

Table 12: Comparison of the average sampling time per image (in seconds) when using different
numbers of steps in Stable Diffusion 1.5 on a single NVIDIA GeForce RTX 3080. The time differ-
ences are marginal.
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